J. R. Tirso, “Establishing a Software Reuse Support Struc-
ture,” Proceedings of the IEEE International Conference on
Communications, Denver, CO (June 1991), pp. 47.2.1-47.2.5.

W. Tracz, “Software Reuse: Motivators and Inhibitors,” Pro-
ceedings of Computer Society International Conference,
(COMPCON), Spring ’87; IEEE Cat. No. 87CH2409-1 (Feb-
ruary 1987), pp. 358-363.

J. R. Tirso

IBM Personal Software Products Division
Boca Raton

Florida

H. Gregorius

IBM Large Scale Computing Division
Poughkeepsie

New York

Information reuse parallels software
reuse

Organizations that place a high value on their in-
formation can best leverage and maintain that in-
formation if they apply the same infrastructure
and techniques used for reusable software. The
software life cycle produces several types of re-
usable information such as customer information,
product development information, and process
information. Just as software reuse benefits from

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

structured programming practices, information
reuse benefits from the use of common tools, cen-
trally coordinated standards and terminology,
and development practices consistent with good
writing and design.

Reusable information. Information reuse is the re-
use of nonexecutable entities. We distinguish in-
formation reuse from information management
by the end use of the retrieved information. In
information reuse, the user incorporates the re-
trieved information into a work product, whereas
in information management, the user retrieves in-
formation to read or reference it. Computerized
library card catalogs and information retrieval
tools are examples of information management
systems. '

The nonexecutable entities in information reuse
can be grouped into four categories because of
differing characteristics and requirements: cus-
tomer information, process information, product
development information, and miscellaneous
information. Customer information describes
software to the customer. Process information
focuses on the process, such as ISO 9000 docu-
mentation, process diagrams, schedule documen-
tation, and quality projections. Product develop-
ment information includes business cases,
requirements, designs, test cases, and plans. Mis-
cellaneous information includes reusable forms
and product-independent graphics.

Further complicating the issue of information re-
use are the numerous media in which businesses
can deliver the above categories of information.
Four such forms are hardcopy, softcopy, inte-
grated on-line, and hypermedia. Hardcopy con-
sists of text and graphics printed on paper; soft-
copy is this same material when displayed on a
video display terminal; on-line information con-
sists of all text and graphics stored with the code
for display and use in an integrated, interactive
manner; and hypermedia is text, graphics, ani-
mation, audio, video, image or executable code
stored in various places and logically linked to-
gether.

To determine whether a piece of information
should be supplied as a reusable part, three ques-
tions may be asked:

¢ Is there a known near-term need for other uses
of this information or document?

TECHNICAL FORUM 615

¢ Is the document structured so that it can be
tailored with relative ease?

¢ Is there a commitment to maintain the docu-
ment once it is available for reuse?

Before an organization supplies a part, it must
decide the most effective structure for the infor-
mation. In contrast to code reuse, in which the
use of unmodified parts is stressed, information
reuse often involves parts designed for modifica-
tion by the user. Examples of information in-
tended for modification are fill-in-the-blanks-type
reports, document outlines, and shells or tem-
plates for displays or forms. We still encourage
reuse of unmodified information parts when the
situation permits, such as in the case of diagrams,
“clip art,” and hypermedia nodes.

Two effective ways to structure reusable infor-
mation are (1) as an example (complete informa-
tion) or (2) as a template (framework for the in-
formation). These terms are used to distinguish
between the two levels of information complete-
ness in reuse libraries. Example information may
be a complete document, graphic, or screen that
provides the user with an integral picture of the
information entity. The user can retrieve and use
the example as it is or modify it to meet a specific
need. The user may also retrieve and use the ex-
ample to get a better understanding of how to fill
in a template. Templates are documents, graph-
ics, screens, and other items that have a frame-
work for the generic sections of the item and in-
structions on how to complete the reusable item.
From these templates and examples the user has
the potential to produce customized quality items
in less time. The systematic use of templates and
examples can result in dramatic savings.?

Infrastructure for information reuse. As for soft-
ware reuse, the infrastructures used by 1BM> and
Hewlett-Packard Co.* provide cross-project le-

verage. Just as sites may have reuse champions to -

foster reuse at a laboratory, and projects may as-
sign reuse leaders to encourage reuse on a prod-
uct, information developers should have an in-
formation reuse champion to encourage reuse of
all information items. It is important for the in-
formation developers to have adequate represen-
tation within the central coordinating organiza-
tion so that information-specific issues and
nuances can be addressed by the overall reuse
policies.

616 TECHNICAL FORUM

There are certain aspects of the reuse infrastruc-
ture that a central organization typically handles.
These include establishing standards to facilitate
reuse of parts across organizations. The stan-
dards must include requirements for specific qual-
ity levels within the reuse libraries. The standards
should also include content standards, or refer-
ences to content standards (e.g., tagging and style
standards used by publishers to define the layout
of documents), and interface standards (e.g., def-
inition of how to make reusable information parts
interconnect or flow together).

Experience shows that the classification termi-
nology also needs to be managed centrally. With-
out central coordination, each discipline or bus-
iness area uses separate and distinct terminology,
which can have two potential impacts on users.
First, the users may be overwhelmed by the num-
ber of terms used in a classification and, second,
the users may have difficulty discriminating
among some of the terms because several terms
may represent the same concept (depending on
the domain) or the same term may represent dif-
ferent domain-specific concepts.

All of these situations reduce the likelihood of a
user successfully retrieving applicable parts.’

Measuring the value. We can make the case that
information reuse saves money and time, but
there are still obstacles to overcome. As with soft-
ware reuse, we must have the management sup-
port necessary to begin measuring the payback of
information reuse. For example, graphics and hy-
permedia are information areas with a high po-
tential reuse return on investment because of the
high cost of creating new information. The first
step is to get management to recognize the ben-
efits to the business through the use of modified
software reuse metrics or other information value
techniques.® Organizations involved in process-
related initiatives, such as total quality manage-
ment or ISO 9000 registration, will already recog-
nize the value of process information. Managers
whose product sales require user-friendly docu-
mentation should also quickly recognize the value
of information.

“More isn’t always better” summarizes the di-
lemma for reuse metrics. Organizations typically
reward productivity of code and information
based on how much an individual produces—the
more lines of code, function points, or text words

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

per unit of time, the better the results in terms of
productivity numbers. Information reuse metrics
in particular should reflect the value added to the
product. The goal is to devise metrics that reward
the developer for the closeness that is achieved to
the goals of the product release. For an operating
systems programmer, less may be highly pre-
ferred. For an information developer, the amount
of information is less important than whether the
end user can easily understand the concepts or
tasks being discussed.

There are no perfect solutions to the reuse met-
rics problem. Although industry recognizes a
number of issues related to measuring reuse,’ IBM
currently has accepted software reuse metrics.®
We also have an initial set of measurement stan-
dards for information reuse and will continue to
evolve these standards as experience dictates.
Based on this prototype framework, most current
projects show information reuse percentages
(how much information is reused) in the single-
digit range, which we find healthy and predictable
at this early stage in our information reuse pro-
gram.

Another consideration related to business and
measurements comes from the intangible benefits
of reuse. In software, these intangible benefits
consist of delivering more function per release or
improving performance and quality with reused
parts. In information reuse, the intangibles in-
clude quality improvements such as additional in-
dexing, enhancements to technical descriptions,
and increased time spent planning for the next
release. In contrast to software reuse, informa-
tion reuse does not have a large experience base
from which to judge the effects of these results, so
intangible benefits must be projected from a small
sampling and from general experiences.

Tool considerations. For information reuse to suc-
ceed, we must have adequate tools available and
those tools must be integrated into our informa-
tion development environments. We must also
consider other tool issues intrinsic to information
development, such as the ability to manage graph-
ics and multimedia files.

Due to the relatively high cost of producing graph-
ics compared to the cost of producing text, graph-
ics is an area rich with reuse opportunities. To
facilitate the search and retrieval of graphics (il-
lustration graphics and images) within the devel-

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

opment environment for information, there
should be, at a minimum, the capability to browse
and cut-and-paste graphics. This implies a re-
quirement for workstations with connections to a
reuse repository.

In most organizations, information developers
use a variety of products to create graphics and
images with a variety of formats. Therefore, the
information reuse champion should:

* Convince all information reuse participants to
standardize on one or two products (and for-
mats) and provide these products to everyone
currently using other products

* Provide support for all commonly-used graph-
ics and image products and provide translation
utilities to allow conversion between the for-
mats

Selection of either of these options may lead to a
temporary decrease in productivity while training
on the new products, or training on conversion, is
accomplished. However, the organization should
experience long-term productivity gains through
the sharing of quality graphics.

Use of local area network graphics tools such as
Corel DRAW** or Teamwork** can also help the
casual user. Benefits are gained by reducing the
time and frustration of the users because they do
not have to install multiple products and maintain
a consistent level of product capabilities. This
makes the user’s job of browsing and editing the
reusable graphics much easier.

Another tool consideration is the capability to
manage hypermedia parts. This broader set of
parts includes all of those already discussed for
graphics and images, plus those related to the use
of sound and video. In addition to the difficulties
associated with handling a variety of file types
(and the associated requirements for storage me-
dia, browsers and editors, and education), there
are the additional issues of classifying, managing,
maintaining and retrieving the multitude of small
parts. At this time we find the most important
retrieval issues relate to performance and usabil-
ity of the tools. However, we believe that in the
long term, maintenance issues will be the most
difficult and costly to resolve.

How to build reusable information. The creator of
reusable information can achieve reusability

TECHNICAL FORUM 617

through understanding the desirable characteris-
tics of reusable software and then applying those
characteristics to information. These character-
istics of software reusability are similar to those
promoted by software engineering practices.’ Re-
use requires a focus on the basic problem of good
software design and development. Similarly, re-
use of information is successful only when infor-
mation developers follow good writing practices.
Some desirable characteristics follow.

Abstraction. The component extracts only essen-
tial properties from the problem space to model in
software and omits nonessential details. The
component abstracts both data and algorithms.

Ease of understanding. The component is thor-
oughly documented, including self-documenting
code and plenty of in-line comments.

Functional completeness. The component has all
the required operations for the current require-
ment and any reasonable future requirements.

Uniformity. The component uses consistent no-
tation, control structures, and calls, and logically
relates objects the same at any level.

Modularity. The component has good structure to
organize data and algorithms. Components also
exhibit the desirable properties of loose coupling
(few interconnections) and strong cohesion (the
component does a specific and well-defined func-
tion).

Reliability. The component consistently per-
forms the advertised function without error. The
component has been repeatedly tested across var-
ious hardware and operating systems.

Information hiding. The component suppresses
implementation to focus on abstraction and make
levels of abstraction independent of each other. It
hides implementation details from the user. The
component clearly defines the interfaces to allow-
able operations and data.

Good error and exception handling. The compo-
nent isolates, documents, and handles errors con-
sistently. The component provides a variety of
options for error response.

Portability. The component does not depend on
unique hardware or operating system services.

618 TECHNICAL FORUM

Interpretation of some of these characteristics is
needed to understand how they apply to infor-
mation. For example, error handling and porta-
bility apply most directly to information written
for on-line or hypermedia use. It is as important
to thoroughly test on-line or hypermedia infor-
mation on all platforms of potential use as it is for
code. However, information for only hardcopy
use has little reliance on these two characteristics
to achieve reusability. Error handling for on-line
and hypermedia information has the same prob-
lems as code, that is, portability across platforms
and interoperability between parts. Our parts de-
signed for cross-platform reuse have so far only
achieved a partial solution to error handling.

Abstraction, uniformity, and information hiding are
familiar concepts to information developers trained
in hypermedia development,” although the termi-
nology used here is software-based. Ease of under-
standing is always one of the most difficult objec-
tives to achieve. For reuse, ease of understanding
has the added burden that it must be accomplished
within the framework defined by modularity.

Creating components for reuse libraries. To en-
courage a supply of reusable parts (components)
we should give consideration to the following:

* Make supplying components easy. Grouping
parts into many small components with similar
characteristics must be balanced by the costs of
developing and supplying the supporting infor-
mation for each component. Build templates for
the parts containing supporting information and
develop other cost control methods for pack-
aging components.

¢ Store related parts together. Sometimes we or-
ganize groups of related reusable parts into
components. For instance, the design, code,
test cases, and user documentation for a par-
ticular software function may be stored to-
gether in the reuse library. All the information
needed to use a part should be placed together.

* Consider packaging alternatives. Large docu-
ments with many files are best kept in separate
components. This will reduce the confusion
when trying to locate files embedded from a par-
ticular document or component. If the docu-
ment consists of a small number of files and is
related by subject and owner, it may be grouped
with other smaller documents into a component.
An example of this is grouping hypertext link def-
inition files for all the products at a site into one

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

component. Consider where files will be located
and the impact of grouping documents into a com-
ponent before beginning packaging.

e Make it easy to find the right part. The classi-
fication of the components will not facilitate re-
trievability unless the parts in the component
have many similar characteristics. Put the in-
formation into the component that will meet a
predicted use, not several uses. Consider the
terminology of the domains where the part ap-
plies and choose the terms that most accurately
and naturally describe the part. If the user can-
not find the part, the user cannot use it.

e Make it easy to get the part. Consider which
groups, at your site and other sites, will want to
access and retrieve this reusable part. Consider
how this part fits with other parts and where
intended users may look for it. Provide options
for users on different computer systems and de-
velopment environments to easily retrieve the
part.

Assign maintenance responsibility. The defini-

tion of a component states that all information

in it is the responsibility of a single owner. The
owner may be a department or a delegated per-
son, such as a librarian. However, developers
should clearly understand that they have main-
tenance responsibilities for their component.

Delegation of maintenance cost is the largest

cost benefit of reuse.?

Classifying for retrieval. Retrievability, necessary
for reusability, is aided by accurate classification
of components using common terms. We recom-
mend a dual retrieval process consisting of clas-
sifiers search and then a free-text search on the
source files of the candidate parts. Recent empir-
ical data also support this two-pass approach. '

Classifiers aid retrievability by describing the char-
acteristics of a component or an entire library
through the use of common terminology. Examples
of classifiers are the national language of the infor-
mation and the name of the author or developer.
Classifiers may have a bounded set of values
(terms) from which to chose, such as the national
languages supported, or have an unbounded set of
values, such as the set of possible authors’ names.

During the last two years, an increasing number
of organizations and companies have experi-
mented with classification schemes as a method
for retrieving software parts.!*’> Some have con-
cluded that the maintenance costs and usability

1BM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

factors outweigh the benefits. ® Others have tried
alternative approaches to information classifica-
tion'” or information retrieval. ® The experiences
at IBM indicate that the environment (distributed
versus centralized), the size of the development
group, and the breadth of the domains that re-
quire searching for a particular reusable part de-
termine the classification and retrieval require-
ments. This is especially true when we consider
the diversity of information types and the many
forms information may take."

Summary. Reusing information products can ex-
tend the effects and benefits of the traditional cor-
porate code reuse program. Just as organizations
leverage their software modules and components
in new applications, pieces of information in such
forms as text, graphics, and hypermedia can find
homes in subsequent products. However, al-
though software reuse has managed some suc-
cesses, information reuse remains in its infancy.
The need to establish a supporting organizational
framework, tools, and standards continues to
pose technical obstacles to information reuse.
This forum entry outlines how the information
reuse program at IBM built on our software reuse
experiences and begins to address these obsta-
cles. Although relatively young, information re-
use is a key part of our development process and
reuse program.

Acknowledgments. The author would like to thank
Ann Arader, Joseph Caruso, Jeffrey Poulin, and
the many reviewers for their comments, insight,
and help in the preparation of this forum entry.

**Trademark or registered trademark of Corel Corp. or Cadre
Technologies.

Cited references and note

1. G. Story, et. al., “The RightPages Image-Based Elec-
tronic Library for Alerting and Browsing,” IEEE Com-
puter 25, No. 9, 17-26 (September 1992).

2. M. M. Sherry, “Methodology for Software Documenta-
tion Reuse,” Proceedings of the Human Factors Society
36th Annual Meeting—1992, Human Factors Society,
Santa Monica, CA 90406 (1992), pp. 198-201.

3. See the first entry in this forum, “Management of Reuse
at IBM,” by J. R. Tirso and H. Gregorius.

4. M. L. Griss, “Software Reuse: From Library to Facto-
ry,” IBM Systems Journal 32, No. 4, 548-566 (1993, this
issue).

5. J.S. Poulin and K. P. Yglesias, “Experiences with a Fac-
eted Classification Scheme in a Large Reusable Software
Library (RSL),” submitted to Computer Software and
Applications Conference (COMPSAC °93), Chicago, IL
(November 3-5, 1993).

TECHNICAL FORUM 619

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. R. Glazer, “Measuring the Value of Information: The In-

formation-Intensive Organization,” IBM Systems Jour-
nal 32, No. 1, 99-110 (1993).

. J. S. Poulin, “Issues in the Development and Application

of Reuse Metrics in a Corporate Environment,” Fifth In-
ternational Conference on Software Engineering and
Knowledge Engineering, IEEE, San Francisco, CA (June
16-18, 1993), 258-262. '

. J. S. Poulin, D. Hancock, and J. M. Caruso, “The Bus-

iness Case for Software Reuse,” IBM Systems Journal 32,
No. 4, 567-594 (1993, this issue).

. G. Booch, Software Engineering with Ada, Benjamin

Cummings, Menlo Park, CA (1987).

STARS, Repository Guidelines and Standards for the
Software Technology for Adaptable, Reliable Systems
(STARS) Program, IBM CDRL No. 0460, STARS Tech-
nology Center, Affiliates Desk, Suite 400, 801 N. Ran-
dolph Street, Arlington, VA 22203 (March 15, 1989).

J. Nielsen, Hypertext and Hypermedia, Academic Press,
Inc., New York (1990).

W. B. Frakes, “Software Reuse, Quality, and Productiv-
ity,” Proceedings of the International Software Quality
Exchange 92, Juran Institute, Inc., San Francisco, CA
(1992), pp. 9-9 to 9-18.

R. Prieto-Diaz and P. Freeman, “Classifying Software for
Reusability,” IEEE Software 4, No. 1, 6-16 (January
1987).

E. Karlsson, S. Sivert, and E. Tryggeseth, “Classification
of Object-Oriented Components for Reuse,” Proceedings
of TOOLS’7, Prentice-Hall, Inc., Englewood Cliffs, NJ
(1992), pp. 1-13. ‘

RIG Technical Committee on Asset Exchange Interfaces,
“A Basic Interoperability Data Model for Reuse Libraries
(BIDM),” Reuse Interoperability Group (RIG) Proposed
Standard RPS-0001, April 1, 1993. Note: The Reuse li-
brary Interoperability Group is a group of government,
industry, and academic participants interested in the de-
velopment of interoperability solutions. Their material is
available from AdaNET (telephone 800-444-1458) and
ASSET (telephone 304-594-3954), or RIG Secretariat, c/o
Applied Expertise, 1925 North Lynn Street, Arlington,
VA 22209.

R. Prieto-Diaz, “Implementing Faceted Classification for
Software Reuse,” Communications of the ACM 34, No.
5, 88-97 (May 1991).

K. Laitinen, “Document Classification for Software
Quality Systems,” ACM Software Engineering Notes 17,
No. 4, 32-39 (October 1992).

Y. S. Maarek, D. M. Berry, and G. E. Kaiser, “An In-
formation Retrieval Approach for Automatically Con-
structing Software Libraries,” IEEE Transactions on
Software Engineering 17, No. 8, 800-813 (August 1991).
K. P. Yglesias, “Limitations of Certification Standards in
Achieving Successful Parts Retrieval,” Proceedings of
the 5th International Workshop on Software Reuse, Palo
Alto, CA (October 26-29, 1992), pp. YGL 1-5.

K. P. Yglesias

IBM Large Scale Computing Division
Poughkeepsie

New York

620 TECHNICAL FORUM

A reusable parts center

In 1991 the Reuse Technology Support Center
was established to coordinate and manage the re-
use activities within IBM. One component of the
established reuse organization was a Reusable
Parts Technology Center in Boblingen, Germany,
with the mission to develop reusable software
parts and to advance the state-of-the-art in soft-
ware reuse.

The history of the Boblingen parts center dates
back to 1981. It started as an advanced technol-
ogy project looking at methods for reusable de-
sign. A recent activity was to develop a compre-
hensive class library for C++**. This library is
offered together with an IBM product (IBM C Set
++ compiler).

In the beginning the goal of the project was to
have an integrated software development system
that supported the reuse of parts. A first approach
tried to find appropriate parts by analyzing exist-
ing code, but lead to the belief that parts of code
can easily be reused if they are realizations of
abstract data types. Projects that followed veri-
fied this, and now the parts center offers imple-
mentations of abstract data types for different lan-
guages and operating systems. This entry in the
forum describes how the parts center evolved and
what experiences were gained by this effort.

The need for a parts center. Before the existence
of a reusable parts center, reuse of code across
project borders seldom took place. No organiza-
tional structures supported cross-project commu-
nication. In addition, the lack of a common design
language made communication difficult. Many
different description methods for code were in

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

