
In-process  improvement 
through  defect data 
interpretation 

An  approach  that  involves  both  automatic  and 
human  interpretation to correct  the  software 
production  process  during  development  is 
becoming  important in IBM as a means to 
improve  quality  and  productivity. A key  step  of 
the  approach  is the interpretation of defect  data 
by  the  project  team.  This  paper  uses  examples of 
such  correction to evaluate  and  evolve  the 
approach,  and to inform  and  teach  those  who  will 
use  the  approach  in  software  development.  The 
methodology  is  shown to benefit  different  kinds 
of  projects  beyond  what  can  be  achieved  by 
current  practices,  and  the  collection of examples 
discussed  represents  the  experiences of using a 
model  of  correction. 

T he software  process'  provides  a  framework 
for  the  development of software  systems. 

Deficiencies in the definition or  execution of the 
activities  that  comprise the  process result in poor 
quality  products  and large cycle times. Hence, it 
is  important to understand how the  errant  activ- 
ities  may be corrected inprocess, i.e., during the 
course of development. 

Recently,  an  approach  to  in-process  correction 
that involves both machine and human  interpre- 
tation of classified defect  data'  has  been  steadily 
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gaining momentum in IBM, and considerable 
experience with its use is now available. A  study 
of this  experience is presented to understand  the 
scope and value of the  approach. 

The  scope of the  approach  may  be  determined by 
asking whether  there  are  any  restrictions  on  the 
software  projects  that  use  this  approach. Apply- 
ing the  approach  to  a wide variety of software 
development efforts can  help  determine  the  an- 
swer.  Reference 2 reports  that  the methodology 
was used successfully  to  correct  the  process 
problems of a specific project,  and  examples of 
process  correction  and  corroborating  evidence 
showed  that  the  process had indeed  been  cor- 
rected.  This  paper  shows  that  the methodology 
can  be  successfully used with a range of different 
projects,  thereby suggesting that  there  are  no im- 
posed  restrictions on  the kinds of projects  that 
may  use  the  approach. 
Wopyright 1994 by International  Business  Machines Corpo- 
ration.  Copying in printed  form  for  private  use is permitted 
without  payment of royalty provided that (1) each reproduc- 
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The  value gained by using the  approach is de- 
scribed in two  ways.  First,  the  process  correction 
examples  are  presented in a fashion that  ex- 
presses their immediate benefit to a  software de- 
veloper  or manager. For  instance,  an example 

The value is in the  cost 
saved by correcting 

defects in development. 

may show  that  a  correction  surfaced five defects 
that might otherwise  have  escaped  to  be discov- 
ered by  the  customer in the field. Thus,  the  value 
of the methodology can  be  expressed in terms of 
the  cost  saved  by  correcting  defects during de- 
velopment,  instead of correcting  them at the  cus- 
tomer  site. 

Second,  the  examples  are  studied  to  establish 
whether  other  methods could have been success- 
fully used to  make similar corrections.  This dem- 
onstrates  the  drawbacks  associated with not us- 
ing the  approach. 

The organization of this  paper reflects the  above 
objectives.  First, background material is pre- 
sented on the process  correction methodology. 
Second,  examples of process  correction from dif- 
ferent  projects  are  shown in order to  demonstrate 
the  value of the methodology to project teams. 
The experiences  are  used  to  address  the  issues of 
scope and value. Third,  the  steps  that  must  be 
taken to  correct  the  process  are refined based on 
the  experiences. Finally, on the  basis of the  ev- 
idence  that is presented, we conclude  that  the 
methodology is an important  advance in software 
process  correction. 

This  paper  contains  a  set of real-life experiences 
that  can  be studied by software  developers  and 
managers to understand how they  can make use 
of an evolving process  correction methodology 
and what it can do for them  beyond  current  prac- 
tices. Hence, in addition to its technical contri- 
bution, the  paper  also  has  educational  value. 
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The methodology 

The  details of the  projects  that used our  process 
improvement methodology are given in Table 1, 
which lists  the following characteristics of each 
such  project: 

Hardware  environment 
Software  environment 
Project size 
Staffing, including programmers  and  testers 
Tracking tools used 
Process model-waterfall or a combination of 
waterfall and iterative 
Parallel development-whether some  project 
components  were following a different schedule 

As can be  seen from the  table,  the  projects  de- 
scribed  cover  wide  ranges in terms of complexity, 
size,  and  environment, and all used our  process 
improvement methodology. The  two principal ac- 
tivities of the methodology, namely, defect clas- 
sification and analysis, are  next  described using 
material from Reference 2 to the  extent needed to 
make this paper self-contained. The experience 
with one specific project  (Project A) forms  the 
basis for introducing the methodology to  the 
reader. 

Orthogonal Defect Classification. The  history of 
software engineering is populated with numerous 
examples of using metrics  to  better manage and 
improve  the  development  process.  The classifi- 
cation of defects to identify key  components is 
also fairly common and a good exposition  on it 
can  be found in Reference 4. There is also a  pro- 
posed draft of an IEEE Standard on clas~ification.~ 
However, although most developed classification 
systems  are useful, they  are quite ad hoc. The 
limitation that  an ad hoc  measurement  imposes is 
that  the  measurements  are  hard  to  validate and 
are  much  harder  to leverage toward  more scien- 
tific analysis or  the development of a baseline. We 
believe a significant contribution in this  arena  is  a 
technique of measurement called Orthogonal De- 
fect  classification (ODC). 637 

The  ideas  for ODC evolved from a finding that 
there is a link between  the  semantics of defects 
and the  maturity of a  product going through the 
development  process.8  This led to developing 
classification, where  the  values of an attribute, 
called defect type, were designed to recognize the 
maturity through a  change in the distribution 
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Table 1 Project  characteristics 

Project Hardware Software Amount of Programmers Tools Process Parallel 
Name Environment Environment New  and and  Testers Used Model Development 

Changed  Code 

mainframe 

mainframe, 
midrange, 
workstation 

mainframe 

workstation 

mainframe 

midrange, 
workstation 

mainframe 

operating 
system 

database 

operating 
system 

application 

database 

compiler 

operating 
system 

medium 15 

very  large 85 

small 3 

very  large 80 

medium  10 

very  large 38 

large 32 

test defect 
tracking, 
inspection 
tracking 
test defect 
tracking, 
inspection 
tracking 

test defect 
tracking, 
test case 
tracking 

test defect 
tracking 

test defect 
tracking, 
inspection 
tracking 

test defect 
tracking 

test defect 
tracking, 
inspection 
tracking 

waterfall 
combined 
with 
iterative 
waterfall 
combined 
with 
iterative 

waterfall 

waterfall 
combined 
with 
iterative 
waterfall 

waterfall 
combined 
with 
iterative 

waterfall 
combined 
with 
iterative 

of the attribute  values.  Thus,  the  distributions 
provide  an  instrument  to  measure  progress.  The 
defect  type  attribute was primarily designed to 
provide  feedback on the  maturity of the  product 
in a  development  process. The  key  was  to estab- 
lish the  values of the  attribute so that  changes in 
the  distribution explain the  maturity of the  prod- 
uct through the  process. ODC measurements  may 
provide  the  capability  of long-term value  due  to 
process and product  invariance in the measure- 
ment. 

The power of  measurement  can be multiplied by 
measuring several  aspects of the  process using 
multiple attributes.  This  leads  to multidimen- 
sional data.  The implementation of the ODC 
scheme in IBM, reported in this  study, involved 
five key attributes:  defect  type, missing or  incor- 
rect, trigger, source,  and impact. Among these, 

the  defect  type  and  the trigger have  been devel- 
oped  and  tested  to follow the guidelines of ODC 
and collectively provide  causal information. Re- 
ferring to  Table 2, the impact, as  the name sug- 
gests,  measures  an effect. Source partitions  the 
product in terms of the developmental history of 
the  code, identifying subpopulations  that may be 
interesting. Thus  the  categories collectively pro- 
vide  a  measure of cause  and effect, critical to  the 
improvement of the  process  or  product.  These 
data  over  the project life cycle may provide long- 
termvalue in terms of baselines  and  sophisticated 
models. 

For  the  purpose of this  paper it is necessary  to 
understand  the  values of the ODC attributes  that 
are  referenced.  Apart from the engineering as- 
pects of identifying the  values  there is a usability 
and human aspect  to it that is equally important. 
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In  particular,  the  choices  have to  be few so that 
it improves  accuracy,  and the education  process 
must be sound. Defect type and missing or incor- 
rect  capture information about  the  type of activity 
that  was  undertaken  to fix the  defect. For in- 
stance,  the  type of a defect  isfinction if it had to 
be fixed by correcting major product functional- 
ity. A defect  is classified missing if it had to  be 
fixed by adding something  new,  and classified in- 
correct if it could be fixed by making an  in-place 
correction.  Source identifies the partition in 
which  the  defect is located, i.e., it captures 
whether the defect  occurred  because of errant  ac- 
tivities in previous  releases  or  the  current  release. 
For instance, a defect  is classified newfunction if 
it was found in that  part of the  product  that  con- 
sisted of new  code,  and classified rewn'tten if, in- 
stead, it was found in code  that  was  part of an old 
release of the product  but was being rewritten for 
the present  release. Trigger captures information 
about  the specific inspection  focus  or  test  strategy 
that  caused  the  defect  to  surface. For instance, a 
defect found by thinking about  the flow of logic of 
a design or implementation is classified opera- 
tional  semantics, while a defect found by thinking 
about  the compatibility of the  current  release  to 
previous  releases  is classified backward  compat- 
ibility. Impact  captures information about  cus- 
tomer  activities  that would be affected should the 
defect  have  escaped  into  the field. For instance, 
the impact of a defect is classified capability if, 
had it escaped to the field, it would have affected 
the  functionality of the product  adversely; is clas- 
sified usability if instead, it would have affected 
only  the  ease with which the  customer could use 
the product; is classifiedpeqormance if it would 
have affected only  the  performance of the product 
but  not  its capability. 

In addition to  these measurements,  there  has  tra- 
ditionally been a set of process-  and  product-spe- 
cific measurements  that  are collected by defect 
tracking tools. The  project team also classified 
defects by using the  attributes  phase  found,  phase 
introduced, and component. Phase found identi- 
fies the  developmental  phase at which a defect 
was found, while phase introduced identifies the 
phase  at which it was introduced. For instance, 
the  phase  introduced  is classified CLD if the  defect 
was introduced during component-level design, 
or classified MLD if it was  introduced during mod- 
ule-level design. Component identifies the soft- 
ware  component in which the  defect was located. 
Clearly, those  attributes also relate a defect to a 
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Table 2 Classiflcation  attributes 

Attrlbute Descrlptlon 

Defect type Determines  correction  method 

Missing  or  Corrected by adding  something new or 
incorrect  making  in-place  change 

Trigger  Captures  information  that  caused the 
defect  to  surface 

Source  Partitions  developmental  history of  the 
code 

Impact  Measures an effect 

Where: 

Defect  type = Function,  interface,  assignment, 
checking,  data  structure,  document,  etc. 

Trigger = Operational  semantics,  language 
dependencies,  concurrency, side 
effects,  document  consistency,  lateral 
compatibility,  backward  compatibility, 
rare  situation,  design  conformance,  etc. 

Source = New function,  rewritten  code,  etc. 

Impact = Capability,  usability,  performance,  etc. 

specific set of process activities. For  instance, if 
a defect is located in Component A, we know that 
the  activities used to develop  Component A are 
responsible for the  defect being introduced. 

The  project  team  members classified all defects 
found during the  reviews of all deliverables pro- 
duced (i.e., final programming specification doc- 
ument, design structures  document, logic manu- 
als, and  code) as well as during the  execution of 
the  test  phases.  Having no prior  experience,  the 
analysis step  was integrated into  the  process of a 
project in the most  obvious fashion. The classified 
defects  were analyzed after every  phase of the 
process.  Thus,  the  analysis was  done after phases 
such as component-level design, module-level de- 
sign, code, unit test,  function  test, and system 
test,  The  process of the project was adjusted to 
reflect the  results of every  analysis  before  pro- 
ceeding to  the  next  phase.  The analysis step  is 
described  next. 

Defect analysis and feedback. The  second  step of 
the methodology is the  analysis of the defect data 
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using an approach to machine-assisted  data  ex- 
ploration called attribute focusing. Details of the 
approach  may be found in Reference 9. Other  ex- 
periences  based on the application of attribute 
focusing (AF) to  software  development  have  been 
reported. AF was  used”  to analyze  defect  survey 
data  to suggest improvementspost-process, i.e., 
after the  end of development. AF was  utilized6 to 
assess  the  effectiveness of inspections and testing 
methods. AF was also used’ to  make  in-process 
improvements to the  process of a single project. 
Those  works did not  address  the  scope  and  value 
of using attribute focusing for in-process im- 
provement,  which  is the subject  of  this  paper. 

procedure called an interestingness  JiLnction that 
orders  attribute  values to reflect their  potential 
interestingness for a human analyst. (Ashwin 
Ram”  is credited  with coining the  term  “inter- 
estingness.”) A set of attribute  values  corre- 
sponds  to  a  set of defects, namely, the  defects 
that  were classified using those  attribute  values. I 

The interestingness 
function  orders 

attribute values. 
The approach is discussed  next.  The goal of at- 
tribute focusing is to provide  a  systematic  way  for 
a domain specialist,  who  may  not  be skilled at 
data  analysis,  to  analyze  data  that are classified 
across  many different attributes. It  targets  the  lay  Hence,  Figure 1 depicts  the  ordering of attribute 
person  instead of the  data  analyst,  a goal that  values  by ranking subsets.  The  data of the  project 
distinguishes it from the usual  data  exploration  teams  were  processed by using two interesting- 
system  (see,  for example, systems  described in ness  functions  to  order  attribute  values  based on 
Reference 11). The typical software  developer or a  degree of magnitude, and  pairs of attribute  val- 
tester is considered to  be a domain specialist in ues based on a degree of association.  The  use of 
this  context.  such  functions is quite common in data exdora- 

The  key  aspects of the approach  are  illustrated in 
Figure 1. Information is  abstracted  from  a  phys- 
ical situation  to  create an attribute-valued  data 
set.  For  our  purpose,  a  record of the  data  set 
represents  a  defect found by  the  project  team  dur- 
ing the  course of development  and classified using 
the  attributes  described in the  previous  section, 
Orthogonal Defect Classification, along with a 
written  description of the defect. A data  set  con- 
sists of data from all the  defects available at  the 
end of a  phase or a  stage within the  phase of the 
project.  A  project can start using the methodol- 
ogy at  any  stage,  and  examples of projects  that 
started  as  early as component-level design or  as 
late as function  test will be described. 

Continuing with the  description  of  attribute  fo- 
cusing (Figure l), the classified defects in a  data 
set  are processed  automatically  to  produce  a  set 
of interesting  charts  that are interpreted  by the 
project  team in a specific manner. We present  the 
mechanical and manual procedures of attribute 
focusing, and exemplify each  procedure using 
data from one specific project (Project A). 

Interestingness and filteringfunctions. First,  the 
classified data  are  processed automatically by a 
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tion and in machiie learning. Heuristics, which 
are commonly used to  search  for  interestingness, 
include measures of magnitude, association,  cor- 
relation,  and informational entropy. 11~13 

Second,  another  automatic  procedure called a 
filtering  function processes  the  orderings  pro- 
duced by an  interestingness function and  presents 
it  in a  manner  suitable  for human consumption. It 
makes  use of knowledge of human processing of 
attribute-valued  data to  do this. The  use of such 
a filtering function  is  a  novel idea, although it is in 
keeping with the  recent  emphasis  on  interactive 
approaches for data exploration. l4 

Conceptsfrom Project A. Let us  understand the 
above  concepts in the  context of Project A. A 
filtering function was  used to produce  charts  that 
show  the  spread of values  for  an  attribute,  such  as 
shown in Figure 2, or which show  the  cross-prod- 
uct  of  two  attributes  such as shown in Figure 3. 
The  tables in the  charts  present  the  values of the 
attributes in decreasing  order of their interesting- 
ness. As we  shall  see,  that information is used to 
focus the project  team on certain  trends in the 
data. Usually, there  are eight numbered  items or 
less, which is in keeping with a published obser- 
vation  that  people find  it  difficult to retain more 
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Figure 1 The  attribute focusing approach 

r 
MODEL  OF  HUMAN 
INTERPRETATION 

7A 
INTERESTINGNESS FILTERING 

FUNCTION 

r 
DISCOVERY 

ACTION - 

NO  ACTION 

2. DEFECT SUBSET B 
1. DEFECT SUBSET  A 

SUBSETS 
OF 
DEFECTS 

100000.SUBSET X 
1 DEFECT  SUSSET A 

NO  DISCOVERY 

COMPREHENSION 1 
1 NO  COMPREHENSION 

I 
INVESTIGATE 

than seven  plus  or minus two items in short-term 
memory. l5 Furthermore,  the  charts  are produced 
in decreasing order of interestingness, and only so 
many charts  are produced as  are reasonable for  a 
person to interpret  at  one sitting. Based on knowl- 
edge of the limits of human processing and a cal- 
ibration of the average time it takes  a person to 

interpret  one  chart pertaining to  defect  data, it has 
been  our experience that  the number of charts 
produced should be restricted to less than or 
equal to 20 (to limit the duration of an interpre- 
tation session to about two hours). We observed 
that restriction in our implementation. Once  the 
project team had classified all the  data for a  phase, 
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Figure 2 Missing or incorrect  type  of  error  for  Project A 

El 
TYPE OF ERROR OBSERVED (%) EXPECTED (%) DIFFERENCE (“A) 

1. INCORRECT 37 50 -13 

2. MISSING 63 50 13 

our implementation took  less  than five minutes (of 
wall clock time) to  generate  the 20 charts (re- 
ferred  to as AF charts)  to  be  used to analyze  the 
data  for  that  phase.  That  cost of chart  generation 
is negligible and, hence,  the  overhead of using 
attribute focusing is about  two  hours  per  phase of 
the  process,  that being the  duration of the  feed- 
back meeting. For this  paper,  the original charts 
generated by the  authors  were simplified and  the 
method of display illustrates  only  the information 
pertinent to  the discussion. 

Next, let us understand  the information in the AF 
charts  to gain a  better  understanding of the  inter- 
estingness  and filtering functions. Much of the 
data for Project A was  generated by classifying 
defects  found during the inspections16 of the com- 
ponent-level design and module-level design doc- 
uments. 

The AF chart in Figure 2 was among the 20 charts 
generated  for  the  data from the  early  component- 
level design inspections of Project A. Figure 2A 
shows  the distribution of the  attribute missing or 
incorrect. The  table in part B indicates  the inter- 
estingness of the  attribute  values based on a  de- 
gree of magnitude. Let us  understand  the first row 
of this table. The observed column indicates  that 
37 percent of the  defects were classified incorrect. 
The expected column shows  what  the  percentage 
of  such  defects would have  been had the  values of 
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the  attribute  been equally likely. Since missing or 
incorrect has  two  values,  that  percentage is 50 
percent.  The difference column is the difference 
between 37 percent and 50 percent, or -13 per- 
cent. 

We  can now get a  better  understanding of the 
relationship between  the  interestingness and fil- 
tering functions. The  interestingness function 
computes  the difference for  every  attribute  value 
and  then  lists  attribute  values in decreasing  order 
of the  absolute  value of the differences. The fil- 
tering  function  uses  the  ordering  to  decide which 
charts should be brought to  the  attention of the 
analyst.  Starting  from  the  top,  the filtering func- 
tion selects  the  attribute  values  and  hence,  the 
attributes to  be charted.  Once 20 charts  have  been 
selected,  the  procedure  terminates. 

The AF chart in Figure  3  shows  the  cross  product 
of the  attributes defect  type and phase intro- 
duced. The  chart  was among those  generated by 
processing  the  data from the module-level design 
inspections of Project A. The  table in part D in- 
dicates  the  interestingness of the  attribute  values 
based on a degree of association. Let us  under- 
stand  the first row of the table. The  column type 
indicates  that 14 percent of the  defects had a de- 
fect type of document (see also Figure 3A). The 
phase column indicates  that 16 percent of the de- 
fects  were  introduced in component-level design 
(CLD) (see also Figure 3B). Column type and 
phase indicates  that 5 percent of the  total  defects 
were  introduced in CLD and  were of type docu- 
ment (see also Figure 3C). Had  the classification 
of defects as document and CLD been  statistically 
independent, we would have  expected  to find that 
(0.14 * 0.16 = 0.2), or 2 percent, of the  defects had 
been classified document and CLD, as indicated in 
the expected column. The difference (5% - 2% = 
3%) is indicated in the diflerence column, and 
serves  as  a  measure of the degree of association 
between  the  attribute  values in the first row. 

Interpretation ofAF charts. Let us  continue with 
the  description of the  attribute focusing ap- 
proach. As indicated in Figure 1, the AF charts  are 
interpreted by a domain specialist or analyst by 
using a model  of  interpretation.’ While a com- 
plete  discussion of the model of interpretation  is 
beyond  the  scope of this  paper,  its  use will be 
adequately illustrated later in this  section. The 
specialist performs  the following for  every AF 
chart.  There is an attempt to explain the interest- 
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Figure 3 Example  of  defect  types  and  where  they  were  introduced  for  Project A 

El DEFECT  TYPE 

34% FUNCTION 1 I-. 14%  DOCUMENT 

1 5% 

9%  DATA 

, INTERFACE  16%  ASSIGNMENT 

El WHERE  DEFECT  WAS  INTRODUCED 

16%  COMPONENT-LEVEL 

64%  MODULE-LEVEL 
DESIGN  (MLD) 0 MLD 

!El DEFECT  TYPE  AND  WHERE  INTRODUCED 

5% DOCUMENT 
8% DOCUMENT 
DEFECTS 
IN MLD 

CLD 

MLD 

El 
TYPE 
DEFECT  PHASE  TYPE  PHASE  TYPE  AND  EXPECTED  DIFFERENCE 

INTRODUCED (%) (%) PHASE(%) (%I (46) 

1. DOCUMENT  CLD  14  16 5 2 3 

2. DOCUMENT  MLD  14  84 8 11 -3  

3. ASSIGNMENT  MLD  16  64  16  14 3 

4.  ASSIGNMENT  CLD  16  16 0 3 -3 

WHERE 

PHASE - PERCENT OF  TOTAL  DEFECTS  THAT  WERE  INTRODUCED IN 
TYPE I PERCENT  OF  A  (COLUMN  1)  DEFECT  TYPE 

A  (COLUMN 2) PHASE 

INTRODUCED IN A  (COLUMN 2) PHASE 
TYPE  AND  PHASE - PERCENT  OF  TOTAL  DEFECTS  OF  A  (COLUMN  1)  TYPE  AND 

c 

D 

ingness (magnitude or  association) of the  attribute ingness considered in the  context of the domain. 
values  that  appear in the  chart by relating the Such  consideration is given to  every item in the 
interestingness  to  events in the domain. Specifi- table of the AF chart.  Some  items  are easily un- 
cally, the  cause of the  interestingness must be derstood  by  the  specialist and do not lead to  new 
determined,  and  the implication of the  interest- insights. However,  some  items  do lead the  spe- 
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Figure 4 Model of interpretation 

CAUSE 

IMPLICATION 

I VALIDATION  OF  CORRECTION I{ 

L 

QUALYTATIVE  BENEFIT 

-PREVENTSDEFECT 
-REMOVES  DEFECT 

-ADJUSTS - CORRECTSTHE PROC€SS 

cialist to a  better  understanding of the domain 
and,  consequently, to action  that reflects the  new 
realization. 

The model of how the  analyst gains such  an un- 
derstanding  is exemplified below and in Figure 4 
for  a  table  that  shows  that a is associated with b 
but  is  disassociated with w ,  where a ,  b ,  w are 
attribute  values. 

Understand  the  cause of interestingness 
- a occurs  frequently  with b but  infrequently 

with w. 
- Why? 
- What event could have lead to  such an  oc- 

currence? 

Understand  the implication of interestingness 
- a occurs  frequently with b but infrequently 

- Is  that desirable? 
- What will happen if no action is taken? 

with w .  

Recall that  the  analyst  is  a domain specialist  who 
may  not  be skilled in data analysis. Note  that  the 
questions  above do not make  reference to  data 
analysis  terms  and  concepts.  Instead,  they  en- 
courage  analysts  to  think  directly  about  events in 
their domain. In  fact,  analysts  are  also  encour- 
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aged to  consider  the absence of any  table items, 
which their domain experience  has taught them to 
expect. As shown in Figure 1, that  exercise  re- 
sults in either  the  discovery  or no discovery of 
knowledge. The discove y of knowledge is where 
the  explanation of the interestingness  leads to a 
new insight about  the domain. In our  context,  this 
translates  to the identification of a  process prob- 
lem and  the implementation of a  corrective  ac- 
tion. Occasionally, there  is no need to implement 
a  corrective action because  the problem has al- 
ready  been resolved. With no discovery of knowl- 
edge there  are two possibilities. Either  the  expla- 
nation of the  interestingness is something already 
known to  the analyst,  or  the  analyst  cannot com- 
prehend the interestingness. In the former  case, 
no action is necessary. In the  latter  case,  known 
as  the investigate step,  the  interestingness  must 
be investigated by  the analyst  at  a  later time. The 
interestingness  is  based  on  the magnitude of a 
particular  attribute  value  or  the  association of a 
pair of attribute  values. The analyst  must  study 
the detailed written  descriptions of a  sample of 
defects  that  were classified by choosing those  at- 
tribute  values in an  attempt  to explain the  ob- 
served  interestingness. 

Let us exemplify the  interpretation  process using 
the AF charts for Project A. To interpret  the  chart 
in Figure 2, the  project  team played the role of 
analyst.  They had to explain the magnitude of the 
attribute  values in the  table by determining the 
cause  and considering the implication of the mag- 
nitude. If that led to  the identification of a  process 
problem, the  team had to come  up with a  correc- 
tive action. The large proportion of missing de- 
fects in the  chart led to  the discovery  and  cor- 
rection of a  process problem in Project A. 

We use the headings cause, implication, and cor- 
rective action to describe  the  results of the dif- 
ferent steps in the model of interpretation given 
above. 

Cause-The large proportion of missing defects 
was  attributed  to  lapses in communication be- 
tween designers  who  were working in separate 
subteams.  These  lapses  were manifested by 
functionality that was missing in the design, a 
fact  that was discovered during inspections. Re- 
peated  inspections of the design were  then  done 
until the  team felt confident that  the design was 
complete.  Thus,  a  process problem was identi- 

IBM SYSTEMS JOURNAL,  VOL 33, NO 1. 1994 



fied: the  lack  of communication between differ- Benefit-The dimensions just  discussed help 
ent  subteams.  establish  that an experience indeed represents 

the  successful identification and correction of 

B 
Implication-The product may be  shipped with 
incomplete functionality. 

Corrective action-The use of “teach-the- 
team”  sessions,  wherein individual team mem- 
bers periodically present their work  to  the  en- 
tire team, was planned. These  sessions would 
prevent  lapses in communication. To show  that 
the methodology achieves  what it is meant to 
do, namely in-process identification and  correc- 
tion of process problems, every  experience  is 
also evaluated along the dimensions of (1) cor- 
roboration of process  problems identified by in- 
formation that  was  not  captured  by  the  defect 
data  but was known to  the  team and used to 
make their decision, and (2) validation of cor- 
rective  actions  undertaken by looking for ap- 
propriate  trends in defect  data collected after 
those  actions  were implemented. 

The  relevant  information for process  corrobo- 
ration  of  the  process problem in Project A was 
consensus among team  members  that  they had 
not communicated,  the  nature of the  missing 
defects as described in their written  descrip- 
tions, and  the fact that the defects  were found 
in inspections  that involved members  across 
different subteams. 

B 

D 

Validation of correction-The injection rate of 
missing defects  dropped from 63 percent  to 44 
percent  for CLD completed  after  the  start of 
teach-the-team  sessions.  Since  the  reduced  rate 
applied to about 80 percent of the  product,  the 
savings  were significant. As we determined 
from the  interpretation of the  Figure 2 AF chart, 
the  team  made  use of knowledge that was not 
captured by the  data  to reach  a decision. For 
instance,  what  the  data did not indicate was  the 
feeling that communication between  subteams 
was  poor,  the fact that  defects  were found when 
subteams did communicate  via  inspections, and 
the  nature of the missing defects as evident 
from their written  descriptions. Only a  person 
who is very familiar with the  project could have 
such knowledge and apply it  in a few minutes to 
interpret  the AF chart. A quality  expert  who is 
not part of the  project team will not  have  that 
knowledge and hence,  may  quite possibly mis- 
interpret  the AF chart. 

. 
~ 

problems. To  provide  a  better  understanding of 
the  value of such  correction, it is shown  that 
every  experience  results in one  or more  bene- 
fits, such as (1) removes  defects, which were 
latent, (2) prevents  defects from being injected, 
(3) adjusts  the  course of the  project  to avoid a 
problem or  exposes a problem that  the  project 
team  does  not  know how to avoid, which is  a 
near-term benefit since it only affects the  cur- 
rent  release,  and (4) corrects  the  process used 
by  the  project or  exposes a  process  weakness 
that the project  team  does  not  know how to 
correct, which is a long-term benefit since it 
should also affect successive  releases  that use 
the  same  process. 

Therefore, in the  Project A discussion (Figure 
2) ,  the benefit was  that  the  corrective  action 
prevents  defects,  and identifies and  corrects  a 
deficiency in the  process used by  the team. The 
teach-the-team  sessions should be  part of the 
process  for parallel development,  to  improve 
communication. 

Next, we describe  the  interpretation of the AF 
chart in Figure 3 using the dimensions described 
above. Recall that  the  chart  was among those gen- 
erated from data of the module-level design in- 
spections of Project A. To interpret  the  chart,  the 
project  team had to explain the  association of the 
attribute  values in the  table  or  the  absence of an 
expected  association of attribute  values in the  ta- 
ble, by determining the  cause and considering the 
implication of the  association. If this  interpreta- 
tion led to identifying a  process problem, the  team 
had to  come  up  with  a  corrective action. The  as- 
sociations  shown in the  table  were easily ex- 
plained by  the  project  team. For instance,  Item 3 
in Figure 3D, shows  an  association  between  de- 
fects  that  were k e d  by correcting assignment 
statements  and  the module-level design (MLD) 
phase, while Item 4 shows  a  disassociation  be- 
tween  such  defects  and  component-level design 
(CLD). The team noted  those  associations  were to 
be  expected  since  at  component-level design, the 
nature of the  work  done  was at too high a level to 
include specification of assignment statements. 
That level of detail was  addressed in MLD. How- 
ever,  the  absence of a  row which showed a strong 
association  between the defect typefunction  and 
phase  introduced CLD led to the identification of 
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another  process problem in Project A. The ab- 
sence of a pair of attribute  values  indicates  this 
pair is neither  strongly  associated  nor  strongly 
disassociated.  However, a strong  association was 
expected  since functional aspects of the design 
are  addressed  during CLD. The reason  for the ab- 
sence of such  association  became  clear  when  the 
data (not shown in the figure) showed  that a large 
number of function  defects  were  introduced in 
MLD . 

Cause-CLD work  was still being done  after  the 
beginning of the MLD stage.  The  corroboration 
of the  process problem showed  that (1) a miss- 
ing item in the  requirements list was responsible 
for an incomplete  component-level design and 
the defect was discovered and fixed  in the  mod- 
ule-level design stage, (2) a formal requirements 
document did not  exist  and individual team 
leaders maintained their  own list of require- 
ments,  and (3) there  was  consensus among team 
members  that, owing to  the varied  customer 
base of the  product,  some  requirements  were 
hard  to  determine. 

Implication-Module-level design should  only 
be done  after  component-level design is  com- 
plete, else  the  process is not being followed. 
Serious  consequences  can include missed 
schedules  and poor quality. 

Corrective action-The requirements  material 
and  the final programming specification were 
reinspected  for  completeness. 

Validation of correction-No further missing 
requirements were found through test. 

Benefit-The corrective  action  removes  defects 
and  is  an  adjustment  that  prevents shipping a 
product  with missing functionality.  It also iden- 
tifies a deficiency in the  process:  the  product is 
too  complex  to avoid a formal requirements 
process. A suitable  process  change should be 
made  for  future  releases. 

Experiences from Projects B and C 

Having  described  our  process improvement 
methodology, we now present  the  experiences 
from a number of different projects (see Table 1). 
The  experiences are presented in two parts,  sep- 
arated  by  the  section  “Comparison with other 
feedback  techniques.”  That  separation allows the 
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reader  who is interested mainly in the principles 
underlying our methodology to skip the second 
set of additional examples. The additional exam- 
ples  do  not  introduce  new principles but  they  do 
serve  an auxiliary purpose.  First,  they  serve as an 
educational aid for readers  who  wish  to  use  and 
deploy  our methodology. Second,  they  provide 
additional evidence to support  the main result of 
this  paper, namely, that  our methodology works 
for different kinds of projects. 

The  descriptions of the  project  experiences  use 
the  same dimensions as were exemplified in the 
earlier subsection  “Interpretation of AF charts’’ 
for  Project A, and  illustrate  that  the methodology 
provides benefits in four  ways.  It helps remove 
defects, it helps prevent  defects, it helps identify 
corrective  actions  for the immediate project, and 
it helps identify problems  with  the underlying pro- 
cess being used. 

While a quantitative  expression of the  value of all 
corrective  actions will only  be  complete  once field 
data  exist, it is possible to quantify  the  net benefit 
of corrective  actions  that  remove  defects. For in- 
stance, if such a correction led to  the detection of 
five defects  that would otherwise  have  been found 
in the field, the  cost of finding the  defects in the 
field and  the  cost of the  correction may be used to 
calculate the net benefit. Relevant  experiences 
are  presented by expressing  the  value of the  cor- 
rective  actions in both  qualitative  and  quantita- 
tive  terms. To determine  the  quantitative  value, 
the  defects  removed  as a consequence of a cor- 
rective action were  studied by  the  project team to 
determine  the  number of defects  that would have 
escaped  to  the field had the  situation not been 
corrected. The basis  for  such  determination  is  de- 
scribed  and  the  total  cost of dealing with those 
field defects  computed by using 15 person  days to 
be  the  cost of dealing with a single field defect 
(note that this  number  may  underestimate the im- 
pact of such  defects). Similarly, the  costs of find- 
ing defects in function  test (FT) and  system  test 
(ST) are  assumed  to  be  one and three  person  days, 
respectively. 

Experiences from Projects B and C are used to 
illustrate the principles learned  about  the meth- 
odology. Later in the  paper (after the section  on 
comparison with other  techniques)  more  experi- 
ences  from  Project A and  the  experiences from 
Projects D, E, F, and G are used to only  further 
support  the  ideas  presented.  Each  subsequent 
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Figure 5 A trigger  in  component-level  design  for  Project B 
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TRIGGER  OBSERVED (%) EXPECTED (%) DIFFERENCE (Oh) 

1, OPERATIONAL  SEMANTICS 52  11  41 

2.  LANGUAGE  DEPENDENCIES 0 1 1  -1 1 

3. CONCURRENCY 0 11 -1 1 

4.  SIDE  EFFECTS 0 11 -1 1 

5. DOCUMENT  CONSISTENCY 20 11 8 

6. LATERAL  COMPATIBILITY 3 11 - 8  

7. RARE  SITUATION 5 1 1  - 6  

experience  is  introduced in terms of the problem 
that  was identified by the  team. 

Experience of reviewers not considered. Project B 
used  a  textual  document called a functional pro- 
gramming specification to  describe  component- 
level design, and a  team of inspectors read 
through  the  document to validate  the design. 

The AF chart in Figure 5 shows  the  distribution  for 
the  attribute trigger, which captures  what  the in- 
spector  was looking for when  the  defect  was 
found. The relatively small magnitude of defects 
that  were found by considering lateral compati- 
bility, rare situation, and backward compatibility 
led to  the  discovery of a  process problem. 

Cause. Review was limited by  the  experience of 
the reviewers. Compatibility issues  and patholog- 
ical scenarios  were  not  considered  adequately. 

Corroboration of the  process problem indicated 
that (1) there  was  a  consensus among reviewers 
that  they  were  uncertain  about compatibility is- 
sues, (2) reviewers did not  have  extensive  expe- 
rience  with  the  product, and (3) the compatibility 
requirement for the  product was not  met. 

Implication. Existing  customer applications may 
fail when  the new release is installed, and the new 
release may fail when used with  other  products. 

Corrective action. An experienced  person  re- 
viewed the  document with focus on identifying 
missing external information, particularly in 
backward compatibility and lateral compatibility. 

Validation of correction. An experienced  re- 
viewer found 38,18, and 1 additional defects clas- 
sified backward compatibility, lateral compatibil- 
i t y ,  and rare situation, respectively. 
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Figure 6 Source  and  trlgger  in  function  test  for  Prolect C 
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3. REWRITTEN  CODE  TEST  COVERAGE 52  52 33 27 6 

4. REWRITTEN  CODE  SIMPLE  PATH  COVERAGE  52 15 2 8 - 6  

Qualitative  benefit. The  corrective  action  re- 
moves  defects and is an adjustment  that  prevents 
shipping a  product  that  is incompatible with  pre- 
vious  releases and other  products. It also identi- 
fies a  weakness in the  process used to select  re- 
viewers, namely, it does  not  adequately  consider 
breadth  and  depth of experience of reviewers. 

Not function  testing  all  areas  directly. In  the Proj- 
ect  C  experience, all the  problems  were identified 
after  the  function  test  stage,  and  function  test was 
restarted  after all corrective  actions had been im- 
plemented. This  made it easy  to  assess  the effec- 
tiveness of the  corrective  actions  since  the  result 
could be  compared using the  same  function  test 
process  before  and  after  the  corrective  actions. 
Furthermore,  the  product had a main path of ex- 
ecution, which was  to  be  the main focus  of  system 
test  cases.  Hence, by determining if they  were  on 
or off the main path, it was  easy  to establish if 
defects found by implementing corrective  actions 
would have  escaped to  the customer.  In  the  text 
below, such  defects  are  referred  to  as field de- 
fects. Recall that  the  cost of correcting  each  de- 
fect  detected in the field is  assumed to  be 15 per- 
son  days. 

Items 1 and 3 in the  table of the AF chart in Figure 
6 show  that new function is disassociated  with 
test coverage, while rewritten  code is  associated 
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with test coverage. More  defects  were found in 
that  part of the  product  that  was being rewritten 
using a  function  test  strategy called test coverage 
than  were being found in the  part of the  product 
that was being newly developed. This  trend led to 
the identification of a  process problem. 

Cause. Function  test was doing a  better  job of 
testing the rewritten  code  than  the  new function. 
Corroboration of the  process problem indicated 
that (1) the  purpose of function test  was  to  cover 
two areas:  Area 1, consisting of old and rewritten 
code,  and  Area 2, a new function  used by Area 1; 
and (2) for  function testing, the  product  was  con- 
figured as depicted in Figure 7, namely, to  test 
Area 2 through  Area 1, i.e., by using Area 1 to 
manipulate the  function in Area 2. Since  Area 2 is 
manipulated using Area 1, it is easier  to  test  the 
functionality of Area 1 than  Area 2. 

Implication. Defects  may remain latent in Area 2. 

Corrective  action. Area 2 was  tested  directly as 
shown in the new scenario in Figure 7. 

Validation of correction. Two field defects  were 
found. 

Qualitative  benefit. The  corrective  action  re- 
moves  defects  and  is  an  adjustment to  ensure 
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Figure 7 Correcting  the  test  strategy  for  Project  C 
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there  are  no  latent  defects in the  Area 2. It also 
identifies a  weakness in the  function  test  process, 
namely, the  use of a policy of not  function  testing 
any area  that  cannot  be manipulated directly. The 
process should be  corrected  to  consider  situa- 
tions  such as this and determine if function test is 
even  appropriate. 

Quantitative  benefit. The  cost of corrective  ac- 
tion was 25 person  days to generate new test 
cases  and  execute them. The  total benefit was two 
field defects  found, potentially saving 30 person 
days,  and  the net benefit was five person  days. 

Design  not re-evaluated. Item 1 in the  table of the 
AF chart in Figure 8 shows  that inteqace errors 
are associated with test  coverage, indicating it 
was easier to find defects in interfaces in function 
test  than  other  kinds of defects. 

Cause. The new environment  was not accounted 
for in the original software design. Corroboration 
of the  process problem indicated that (1) function 
test  variations in a  new  environment revealed 13 
defects,  and (2) design documents did not  address 
the new environment. 

Implication. Errors pertaining to  the new envi- 
ronment may remain in the  code  after function 
test completion. 

Corrective  action. Function  test was suspended 
while additional code  inspections  were  completed 
that  focused on eliminating errors in the new ap- 
plication environment. 
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Validation of correction. Only one  new  error was 
found relating to  the new environment in the  con- 
tinuation of function  test after the  code  inspec- 
tions  were  completed, and the  code reviews 
found eight field defects. 

Qualitative  benefit. The  corrective action re- 
moves  defects  and is an  adjustment  to make sure 
there  are  no  latent  defects pertaining to  the new 
environment.  It  also identifies a  weakness in the 
planning process  for  the  product.  This problem 
was  caused  because  the  project was originally de- 
signed for an earlier version of the  host  operating 
system. When it was moved to a different product 
release,  the design was not  re-evaluated to con- 
sider  the new operating  environment.  This  can  be 
corrected by requiring projects to re-evaluate de- 
sign if the product  release level running the  func- 
tion is changed. 

Quantitative benefit. The  cost of corrective  ac- 
tion was 20 person  days  to  complete  code  re- 
views. The total benefit was eight field defects 
found, potentially  saving 120 person  days,  and  the 
net benefit was 100 person  days. 

A weakness  testing  complex  operations. Item 1 in 
the  table of the AF chart in Figure 9 shows  that 
rewritten code is  associated with an impact to us- 
ability, suggesting that  defects in the  rewritten 
code  are  more likely to affect customer usability 
than  other kinds of impact. 

Cause. The  team identified the  programs  that  con- 
sisted of rewritten code and then  considered 
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Figure 8 Defect  type and trigger  for  Project C 
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1. INTERFACE TEST COVERAGE 21 52 19 11 8 

2. CHECKING SIMPLE PATH COVERAGE 17 15 9 2 7 

3. BUILDIPACKAGE TEST COVERAGE 7 52 0 4 -4 

4. BUILD/PACKAGE SIDE EFFECTS 7 26 6  2 4 

5. INTERFACE SIDE EFFECTS 21 26 2  5 -3 

6. CHECKING TEST COVERAGE 17 52 6 9 -3 

7. INTERFACE SIMPLE PATH COVERAGE 20 15 0 3 -3 

8. ASSIGNMENT SIDE EFFECTS 26 26 9  7  3 

which of those would be  most  susceptible  to 
usability problems. They  concluded  that  the  pro- 
gram that  handles  operations requiring more  than 
one tape  drive  (referred  to as multi-reel opera- 
tions)  was  more  error-prone  because (1) it in- 
volves  more  complex  and  end-user  interaction, 
(2) function  test  variations had surfaced six de- 
fects running multi-reel functions, and (3) unit test 
had not  executed  a multi-reel variation. 

Implication. Multi-reel operations may not  have 
been  adequately designed or tested.  Customers 
may identify additional problems running such 
operations. 

Corrective action. Additional code  inspections 
were  completed  that  focused on the  error-prone 
program. This was followed by additional unit 
test  variations using multi-reel operations. 

Validation of corrective action. Four field defects 
were  found, and no new errors  were found in the 
error-prone program after the  corrective  actions 
were implemented. 

Qualitative benefit. The  corrective  action  re- 
moves  defects and is an  adjustment to make sure 
there  are no latent  defects in multi-reel  opera- 
tions. It  also identifies a  weakness in the  devel- 
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Figure 9 Source and impact for Project C 
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1. REWRITEN CODE USABILITY 52 28 19 14 4 

2. NEW FUNCTION USABILITY 37 28 7 10 -3 

3. NEW FUNCTION INSTALLABILITY 37 4 4 1 2 

opment and testing of complex  operations.  The 
experience  suggests  that  the  process for the  prod- 
uct  must distinguish between simple and  complex 
operations.  Hence,  the  project  team suggested 
that  a  checklist of complex  environments be 
maintained and  considered during development 
of future releases. 

Quantitative benefit. The  cost of corrective  ac- 
tion was 10 person  days to complete reviews. The 
total benefit was four  defects  found,  potentially 
saving 60 person  days, and the net benefit was 50 
person  days. 

Not distinguish types of execution. The following 
trend lead to  the identification of a  process  prob- 
lem. Refer to Item 2 in the table of Figure 10. 
Errors that impact the capability of the  compo- 
nent  are  associated  with being incorrect. Item 1 of 
Figure 11 shows  that capability defects  are being 
found during function  test using the more sim- 
plistic test coverage strategy.  Item 3 of Figure  12 
shows  that timing and serialization problems are 
being found that impact the capability of the  prod- 
uct. 
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The  trend  suggests  that  the  product  has  its  capa- 
bility in place,  but  even function test  cases  that 
test  the  capability in obvious  ways  detect timing 
and serialization problems. 

Cause. The  product  was unstable with regard to 
events  that could occur in different sequences. 
Corroboration of the  process problem indicated 
that (1) the  component  was  a  complex  function 
with many different events  that could occur  at  any 
time and in different sequences.  Thus, while it 
was  easy  to implement the  capability of the  prod- 
uct corresponding  to  the  obvious  sequence of 
events  (the main-line execution), it was much 
harder to cover  the  unexpected  sequences  that 
could occur, and (2) there  was  consensus among 
the team that  such  sequences had not  received 
special emphasis. 

Implication. An important  part of the  capability 
of the  product was  to allow the  user to  restore a 
corrupted  database.  Defects  that affect this  capa- 
bility may still exist  after  function  test is com- 
pleted, suggesting that  customers  may  not  be able 
to recover  lost  data. 
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Figure 10 impact of a missing  or  incorrect  type of error  for  Project C 

TYPE OF ERROR 

El 
MISSING OR 
INCORRECT ERROR IMPACT 

1. MISSING CAPABILITY 24 57 9 14 -5 
2. INCORRECT CAPABILITY 76 57 40 44 5 

3. MISSING INTEGRITY/SECURITY 24 7 6 2 4 

4. INCORRECT INTEGRITY/SECURITY 76 7 2 6 - 4  

TYPE  AND 
TYPE (“10) IMPACT (%) IMPACT (%) EXPECTED (?lo) DIFFERENCE (%) 

Corrective  action. Additional test  variations  that 
forced the component to execute  events in  dif- 
ferent  orders  were  executed.  The  focus of this 
change was in function test,  where  these  types of 
defects should be  surfaced,  but unit test  also  at- 
tempted some of these  variations. 

Validation of correction. Four field defects  were 
found. 

Qualitative  benefit. The  corrective action re- 
moves  defects and is an adjustment to make sure 
there  are  no  latent  defects  that affect the  restore 
operation. It  also identifies a  process  weakness 
that is similar to the weakness identified in the 
previous  process problem. While the  product has 
at  least  two  types of execution  that  have  very 
different levels of development complexity, the 
process used does not dihinguish  between them. 
The problem was caused  by  the large number of 
event  sequences  that could be generated by the 
component. An automated tool that  can randomly 
generate different event  sequences will help in 
bringing more of these  defects to the surface. The 

use of such  a tool must be made  part of the  pro- 
cess for future  releases. 

Quantitative  benefit. The  cost of corrective  ac- 
tion was 15 person days for additional testing. The 
total benefit was four defects found, potentially 
saving 60 person  days, and the  net benefit was 45 
person days. 

The  total of the  net benefits for the project was 
200 person days.  The additional cost of restarting 
the function test after the  corrective  actions  were 
implemented was estimated  by  the lead tester to 
be 22 person days; hence, the  net benefit for the 
project was 178 person days. 

Comparison  with  other  feedback  techniques 

The examples described thus  far  demonstrate  the 
value of using our  process improvement method- 
ology. Next,  we  study  these examples to establish 
if other  methods could have been used  success- 
fully to make similar corrections.  This allows the 
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Figure 11 Impact and trigger for Project C 

EXPECTED (“A) DIFFERENCE (“A) 

1. CAPABILITY TEST COVERAGE 57  52 37  30 7 

2. CAPABILITY SIDE EFFECTS 57 26 11 15 -4 

3. INTEGRITY/SECURITY SIDE EFFECTS 7 26 6 2 4 

4. CAPABILITY SIMPLE PATH COVERAGE 57 15 6 9 -3 

L 

drawbacks  associated with not using the ap- 
proach to be understood. 

Two  other  approaches for providing in-process 
feedback  are considered: causal analysis and 
goal-oriented approaches. Causal analysis entails 
the detailed study  of  written  descriptions of de- 
fects  to  correct  the  process, while the goal-ori- 
ented approaches utilize in-process metrics that 
measure  whether specific process  objectives  (or 
goals) are being achieved. First,  let  us review the 
advantages of process feedback based on  at- 
tribute focusing, which are known already. Ref- 
erences 2 and 10 show  that  the  use of attribute 
focusing results in several advantages over  the 
other techniques: 

Efficiency. Causal analysis of a large number of 
defects  is  a manual and time-consuming pro- 
cess.  Hence, if a large number of defects  are 
detected,  only  a  subset of defects will be  ana- 
lyzed. In  contrast,  the  overhead of using at- 
tribute focusing is  two  hours  per  set of defects, 
independent of the number of defects. Hence, 
the  entire population of defects  can  be  ana- 
lyzed. 

Applicability. Goal-oriented approaches often 
rely on the availability of historical measures to 
define the goal. For  instance,  the goal may be 
that the number of defects  per lines of code 
found in a  component lie within a pre-specified 
range that  is  set  based  on historical data.  In 
contrast,  attribute focusing uses  measures of 
interestingness that need not rely on historical 
expectations. Since in practice such  expecta- 
tions are seldom available, this is a major ad- 
vantage. 

In this paper  the  above advantages are not re- 
emphasized. Instead  a  deeper understanding of 
the differences between the use of attribute fo- 
cusing and the use of other  techniques  is gained. 
Note  that  the  advantages  above suggest that  feed- 
back based on attribute focusing is especially. use- 
ful when  the number of defects  is large and his- 
torical expectations  are not available, since  the 
other  techniques may not apply under  these cir- 
cumstances.  Here, to get a  deeper understanding 
of the difference, the  circumstances under which 
causal analysis and goal-oriented approaches do 
apply are considered. Hence, it is assumed that 
all defects undergo causal analysis and reliable 
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Figure 12 impact of a  defect  type  for  Project C 

El 
6% CAPABILITY 

DEFECT TYPE 

17% CHECKING 

El TYPE AND 
DEFECT TYPE IMPACT TYPE ( x )  IMPACT (%) IMPACT (%) EXPECTED (%) DIFFERENCE, (%) 

1. CHECKING USABILITY 17 28 9 5 5 

2. BUILD AND PACKAGING INSTALLABILITY 7 4 4 0 3 

3. TIMING/SERIALIZATION CAPABILITY 6 57 6 3 2 

4. CHECKING CAPABILITY 17 57 7 10 -2 

5. BUILD AND PACKAGING USABILITY 7 28 0 2 -2 

historical expectations  are available, and the ex- 
amples of process  correction described in pre- 
ceding sections  are  studied to establish if the 
other  methods could have been used to make sim- 
ilar corrections.  It  is  next  shown  that  feedback 
based on attribute focusing complements the 
other  techniques  since it identifies and corrects 
problems that  cannot be addressed by the  other 
methods. 

Causal  analysis. During causal analy~is”,’~ a  se- 
lect set of defects  is studied one at a time. While 
the  causal  analysts will undoubtedly  notice obvi- 
ous  trends in the  defects, it is hard for people to 
spot  the  more complicated patterns  with this man- 
ual process. For instance,  consider  the problem 
section, “Not distinguish types of execution.” 
Three  trends must be noticed before the problem 
can  be identified. From  the  written  descriptions of 
the  defects,  the  analysts must note that: 

1. Capability defects  tend  to require in-place cor- 
rection. 

2. Capability defects tend to be found by straight- 

3. Timing and serialization problems tend to im- 
forward function test  cases. 

pact capability. 

It is quite difficult for a causal analyst to notice 
even  one  such  trend. Consider what  must  be  done 
to notice Trend 1 in the list above. First, the de- 
scription of a defect must  be read and understood 
in terms of capability and fkes that  are  corrected 
in place. This  is difficult since it requires  that, of 
all the myriad ways  that could have been chosen 
to understand the  defect, it is understood  partic- 
ularly in these terms. As is clear from the many 
experiences  presented in preceding sections, 
there  are many different trends  that  can prove 
useful in detecting a  process problem, and a 
causal analyst would have to  check  every defect 
for all these  trends.  Second,  the first step must be 
repeated for the  next  such defect while remem- 
bering the prior pattern. This second step must be 
repeated for a  set of defects before concluding 
there is a  trend.  Such  a  process is difficult for 
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people to apply.  Therefore, it seems  less likely 
that  causal  analysis will detect complicated 
trends  such  as  those in the  referenced prior sec- 
tion. In  contrast,  attribute focusing finds the 
trends automatically. 

To be more specific, the above  example  does  not 
indicate  that  causal  analysis  cannot  easily find the 
process problem. The message is  that  the problem 
cannot  be found easily in causal  analysis by rep- 

Feedback based on attribute 
focusing complements other 

techniques. 

licating the identification of trends found by  at- 
tribute focusing. If the  written  descriptions of the 
defects could have suggested the problem without 
the need to notice  trends,  then  there would be no 
difficulty  in  finding the problem in causal analysis. 
However,  there is another  class of process  prob- 
lems that  is  clearly hard to detect in causal anal- 
ysis simply because  there  are  no  defects  to  ana- 
lyze. Consider  the  experience in Project B in the 
problem section  “Experience of reviewers  not 
considered.’’ A problem was identified because 
very few defects had triBer classified as lateral 
compatibility, indicating that  few  defects  were 
found by thinking about compatibility. To under- 
stand why causal  analysis may not find this  pro- 
cess problem, let us  consider  a  situation  where  no 
defects  at all are classified lateral compatibility. 
Since  there are no defects  to  consider,  there  are 
no  written  descriptions  to  study  and,  hence,  the 
problem cannot  be identified. The difficulty  in 
finding such  problems using causal analysis oc- 
curs  because  the  method  makes  an implicit as- 
sumption  that  none or few  defects reflect good- 
ness, while many  defects  indicate  a problem. 
However, as shown by  the  experience,  none  or 
few defects  can also indicate  a problem, namely, 
insufficient execution of a  required activity. It fol- 
lows  that  causal analysis may not find such  prob- 
lems. In contrast,  an AF chart will  highlight the 
case if very few or  no  defects  occur in a  category. 

IBM SYSTEMS JOURNAL, VOL 33, NO 1. 1994 

Goal-oriented  approaches. Many different tech- 
niques  have  been  proposed to manage software 
production.  These include statistical  defect mod- 
eling approaches  that  predict  the reliability of a 
software  product (for example, see References 
19-21), and  feedback  techniques  that  compare in- 
process  measurements with historical expecta- 
tions  to  determine if the project is on  the right 
track (for example, see References 22-24). While 
these  techniques accomplish different useful pur- 
poses,  they  share  a common philosophy-they 
are goal-oriented, i.e., they utilize specific in-pro- 
cess  metrics to measure if specific process  objec- 
tives  (or goals) are being achieved. For example, 
Goal A is achieved if Metric X lies in the range Z, 
else it is not achieved. And therein lies their major 
difference with  feedback  based  on  attribute  fo- 
cusing which, while it uses  in-process  metrics, 
does  not utilize them  to  measure  whether  pre- 
defined goals are being met. If a goal-oriented ap- 
proach  is being used, it must  be precisely known 
which subset of a  set of attributes is going to  be 
used and  exactly how it is going to  be used to 
provide  feedback. When the  approach  is applied 
to different projects,  the  same  subset of attributes 
is used in similar fashion to determine if the rel- 
evant goals have  been achieved. 

In contrast,  when using AF, a  subset of the  data 
attributes is automatically selected to generate 
the 20 AF charts  that  are used to provide  feed- 
back. So, even though two different projects  may 
collect data using the  same  set of attributes,  two 
different projects  may  receive  feedback from AF 
charts  based  on different subsets of those  at- 
tributes.  That  data-driven  (as  opposed to goal- 
driven) nature allows AF to complement goal-ori- 
ented  approaches for reasons given next. 

Process  feedback from defect  data begins with  the 
observation of some  pattern in attribute-valued 
data.  In principle, if one could look for all possible 
patterns  that  can  occur,  one could provide  perfect 
feedback. However,  the combinatorial complex- 
ity of the  space  is much too large for  such  obser- 
vation to  be feasible. For example, in a  data  set 
with 10 attributes,  each of which has 10 values, 
there  are 45 distinct AF charts  to  show  the  cross 
product of pairs of attributes,  and 100 possible 
trends  that  may  be  observed in a  chart.  There- 
fore,  there  are 4500 possible patterns  that may be 
observed by simply considering pairs of at- 
tributes. Not surprisingly, goal-oriented ap- 
proaches  focus  only  on  some predefined patterns 
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Figure 13 Trigger and component for Project A 

I 2%  INDIA 1 i%BRAVO I 
1%  OTHER  COMPATIBILITY  (10%) 

fJJ BACKWARD 

I 

TRIGGER  AND 7 
TRIGGER COMPONENT TRIGGER (%) COMPONENT (%) COMPONENT (‘A) EXPECTED (So) DIFFERENCE (%) 

1.  DOCUMENT  CONSISTENCY TANGO 46 32 24 15 9 

2. OPERATIONAL  SEMANTICS INDIA 15 39 

3. BACKWARD  COMPATIBILITY BRAVO 10  14 

14 

7 

6 

1 

8 

5 

4.  OPERATIONAL  SEMANTICS TANGO 15 32 0 5 -5 

5.  DOCUMENT  CONSISTENCY BRAVO 46  14 3 6 -3 

6.  DOCUMENT  CONSISTENCY INDIA 46 39 15  18 -3 

7. BACKWARD  COMPATIBILITY INDIA 10 39 2 4 -2 
8.  DESIGN  CONFORMANCE TANGO 7 32 0 2 -2 

9. OPERATIONAL  SEMANTICS BRAVO 15 14 0 2 -2 

that  are known to  be relevant.  Hence,  a set of 
goal-oriented approaches used to provide feed- 
back to a  project define the  set of known patterns 
in the  data to look for and  act upon. On the  other 
hand,  attribute focusing is  a mechanism to learn 
about and act upon unknown yet possibly impor- 
tant  patterns.  In  this regard, the  two  approaches 
complement each  other.  The  subtle  nature of 
some of the  process problems that  have  been  de- 
scribed, e.g.,  in the sections describing Project C, 
support  this viewpoint. After determining the rel- 
evance of such  trends,  they  can form the  basis for 
a goal-oriented feedback technique that  can  be 
used for future projects. However,  such  trends 
may not have been discovered by using a goal- 
oriented technique. 

In summary, we argue that  the  causal analysis 
and the goal-oriented approaches  may  not ad- 
dress  certain kinds of process problems that  can 
be corrected by using attribute focusing. Hence, 
it is not surprising that many of the  experiences of 
process  correction in this  paper  were  detected  by 
attribute focusing in projects  where causal anal- 

ysis and goal-oriented approaches  were  also used 
for process feedback. That result is discussed in 
a  later  section on “Summarizing the experience.” 
The  reader  who is interested in the principles un- 
derlying our methodology may skip  ahead  to  that 
section. The intervening material consists of ad- 
ditional experiences and does  not  introduce new 
principles. It  has mainly educational and eviden- 
tial value. 

More  experiences  from  Project A 

In addition to the problems previously described 
for Project A, two other problems are discussed 
next. 

Lack of formal  requirements  process. The AF chart 
in Figure 13 shows  the  cross  product of the  at- 
tributes trigger, which captures  what  the inspec- 
tor  was looking for when  the defect was found, 
and component, which specifies the  software 
component of the  product in which the  defect  was 
found. The project team explained most of the 
associations in the table without discovering a 
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Figure 14 Defect  type  and  missing  or  incorrect  error  for  Project A 

DEFECT TYPE 

12% INCORRECT- 
15% MISSING ~ I FUNCTION (27%) 

El MISSING OR TYPE AND 
DEFECT TYPE INCORRECT ERROR TYPE (“A) ERROR (%) ERROR (%) EXPECTED (%) DIFFERENCE (%) 

1. INTERFACE INCORRECT 15 56 15 9  7 

2. INTERFACE MISSING 15 44 0 7 -7 

3. FUNCTION MISSING 27 44 15 12 3 

4. FUNCTION INCORRECT 27 56 12 15 -3 

5. DOCUMENT INCORRECT 47 56 24 27 -3 

6. DOCUMENT MISSING 47 44 24 21 3 

-~ - . 

process problem. For example, the disassociation 
between component Bravo and operational se- 
mantics in table Item 9 was  attributed to the be- 
havior of component Bravo, which was meant to 
merely copy blocks of storage and therefore did 
not involve complex logic. Hence,  most  defects in 
component Bravo would not be found by thinking 
about the flow of logic in the  operation of com- 
ponent Bravo, since that operation was  very sim- 
ple. However, the disassociation between com- 
ponent India and backward compatibility (table 
Item 7) led to the  discovery of a  process problem. 

Cause. Component India must  address compati- 
bility issues to ensure  that  customer applications 
built upon previous  releases of the product run 
correctly on this release. However,  those  issues 
were not addressed in component India. Hence, 
few defects  that pertained to compatibility were 
found. Corroboration of the  process problem in- 
dicated (1) consensus among designers, (2) a com- 
patibility requirement for the  product, and (3) the 
lack of compatibility features in the design of 
component India to date. 

Implication. Existing customer applications may 
fail when the new release is installed. 

Corrective action. Component India was  de- 
signed for compatibility before proceeding to the 
next phase, and the redesigned component India 
was inspected for compatibility. 

Validation of con-ection. Similar to the  corrobo- 
ration of the  same  process problem. 

Benefit. The  corrective action removes defects 
and is an adjustment that  prevents shipping a 
product  that  is incompatible with previous re- 
leases. It also identifies a  weakness in the process 
used to  translate  requirements to design. The 
project team attributed  this  weakness  to  the lack 
of a formal requirements  process already noted 
for Project A and,  perhaps,  a  lack of experience 
with the  product  on the part of some team mem- 
bers. 

Component-level  design is incomplete. The AF 
chart in Figure 14 shows  the  cross  product of the 
attributes defect type and missing or incorrect. 
Table Item 3 shows thatfinction defects  are  as- 
sociated  with missing. 

Cause. This could not be determined by  the team 
at  the  feedback session. As per  the model of in- 
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Figure 15 Defect  type  during  system  test for Project D 

@I DEFECT TYPE 

21% ASSIGNMENT 3% FUNCTION 

DEFECT TYPE OBSERVED (%) EXPECTED (%) DIFFERENCE (%) 

1. INTERFACE 37  13 24 

2. TIMING OR SERIALIZATION 1 13 - 1 1  

3. DOCUMENT 1 13 - 1 1  

4. FUNCTION 3  13 - 9  
5. ASSIGNMENT 21  13 9 

terpretation,  the  team had to  investigate  that as- 
sociation  at  a  later time. The  results of the  inves- 
tigation are given below in “Investigate.” 

Implication. While no cause  was found, the  trend 
had a  clear implication: The  component-level de- 
sign may  be  incomplete.  The  project should not 
exit the CLD phase  before ensuring that all major 
functionality  is  covered. 

Investigate. The  project  team  read  the detailed 
descriptions of the  defects  that had been classified 
finction and missing to  try and  understand  the 
cause of the  association.  They found those de- 
fects  pertained  to  a specific functionality of the 
product, namely, its ability to  recover from an 
erroneous  state.  This implied that  the design of 
that  function  may  have  been incomplete. 

Corrective action. Reinspect  component-level 
design of the  recovery  function. 

Validation of cowective action. Twelve  defects 
were found. 

Qualitative benefit. The corrective  action  re- 
moves  defects,  and is an  adjustment to make  sure 
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that  the  component-level design of the  recovery 
function is complete  before proceeding to  the 
module-level design stage. 

Quantitative benefit. The cost of corrective  ac- 
tion was 15 person days. The  total benefit was 
that,  based on historical data, most recovery  de- 
fects  that  escape design are  eventually found in 
the field; hence, assuming 10 of the 12 defects 
would have  been found in the field, the  total  ben- 
efit is 150 person  days.  The net benefit was 135 
person  days. 

Experiences from Projects D and E 

Problems with the design, test,  and  inspection 
processes  are  uncovered in the  examples from 
Projects D and E. 

Flawed design and test processes. The AF chart in 
Figure 15 shows  the  distribution  for  the  attribute 
defect type, which captures information about  the 
nature of the  error. A process problem was un- 
covered  when  the  project  team  noticed  the large 
magnitude of defects found at  system  test (ST) 
that  were fixed by correcting  interfaces,  and  the 
small magnitude of defects found at system  test 
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that  were fixed by correcting timing and serial- 
ization problems. 

Cause. Function  test did not  adequately  remove 
module or  component  interface  defects in many 
components.  Those  defects  escaped  to  system 
test, and were overwhelming system  testers. 
Also, many  interface  defects  were injected during 
design and  escaped to later  stages. 

Corroboration of the  process problem indicated 
that (1) each  component  team  executed  function 
test for its own components,  hence  function  test 
could not adequately  focus on interfaces between 
component  and  user  interfaces, (2) a low-level 
design stage was not part of the formal process, 
and (3) component-level design documents  con- 
tained little or no detail about  component  inter- 
faces. 

Implication. Interface  defects, timing and serial- 
ization, and  other  defects  may remain in the  prod- 
uct  after  shipment  since  the time scheduled  for 
system  test  is  spent removing interface  problems 
instead of executing  true  system  test  testcases. 

Corrective  action. System  test  was halted and 
function test  was  re-entered. Special emphasis 
was placed on function test of the  components 
most  associated with interface problems. 

Validation of correction. An additional 424 inter- 
face  defects  were removed from the  product. 

Qualitative  benefit. The  corrective action re- 
moves  defects and is  an  adjustment  that  prevents 
shipping a  product which is poorly integrated. It 
also identifies a  weakness in the design process 
and  the  test  process.  The  process used for the 
current  release did not have  a formal low-level 
design stage, and the function test  strategy fo- 
cused  only on component  function, and not on the 
relationship between  components, which was  to 
be  tested  during  system  test.  Evidently,  that re- 
lationship is too complex for  such  a  process. Fu- 
ture  releases of the  product should use  a formal 
low-level design stage  that specifies and inspects 
interfaces in detail and  tests  an integrated product 
during function  test. 

Quantitative  benefit. The  cost of corrective  ac- 
tion was 424 person  days  at  a  cost of one  person 
day per defect.  The total benefit was 1272 person 
days, assuming that all 424 defects  were found at 
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system  test at a  cost of three  person  days  per 
defect,  and  the  net benefit was 848 person days. 

It should be  noted,  however,  that  the  team was 
aware of a  project  quality problem prior to using 
the methodology, but  they had not agreed on the 
cause of the problem or  the  corrective  action. 
Thus it is not  clear  that the methodology was 
solely responsible for all 424 discovered  defects. 

Inspections  did  not  detect  interface  errors. The AF 
chart in Figure 16 shows an association  between 
defect  type interface and the  development  phase 
unit test, indicating that  more  such  defects  were 
found in unit test  than  other  phases. In fact,  there 
is  a  continued  increase in defect  type interface as 
the  development  progresses from the module- 
level design through code  inspection to unit test. 
This led to  the  discovery of the following process 
problem. 

Cause. The module-level design and  code  inspec- 
tions were  not effective at  detecting intetface de- 
fects. 

Corroboration of the  process problem indicated 
that (1) the  teams had inspected  pseudocode in- 
stead of inspecting the  code itself. Thus,  many 
defects  detected in code  inspections are problems 
with the  quality of pseudocode being reported 
via  defect  type document (see  table  Item 3 in Fig- 
ure 16), and (2) some teams had treated  the 
pseudocode  inspections  as  a combined module- 
level design and  code  inspection, omitting inspec- 
tion of the  actual code and low-level design. 

Implication. Function  test will have difficulty 
completing its  scheduled  test plan because of in- 
terface defects, which should have  been removed 
earlier. 

Corrective  action. For  subsequently  scheduled 
components,  the  inspections for module-level de- 
sign and code  were decoupled, and  the  focus  dur- 
ing the  code  inspection  was  completed  code in- 
stead of pseudocode. 

Validation of correction. Defects of type inter- 
face were  expected to peak at code  inspection 
and to diminish at unit test. 

Benefit. The  corrective action should remove  de- 
fects. It  is an adjustment  that  prevents  an  adverse 
impact to  the function  test  schedule  caused by  the 
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Figure 16 Defect  type  and  phase  found  for  Proiect E 
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1. DOCUMENT  UNIT  TEST 10 42 0 4 -4 

TYPE  AND 
PHASE  FOUND  TYPE (%) PHASE (%) PHASE (%) EXPECTED (%) DIFFERENCE (%) 

2. INTERFACE  UNIT  TEST 23 42 14 10 4 

3. DOCUMENT  CODE  INSPECTION 10 44 8 4  4 

4. ASSIGNMENT  UNIT  TEST 20 42 11 9  3 

5. INTERFACE  CODE  INSPECTION 23 44 8 10 

6. ALGORITHM 

-2 

CODE  INSPECTION 21 44 11  9 2 

7. FUNCTION  UNIT  TEST 12 42 3 5 -2 

escape of numerous integuce defects  into  func- 
tion test.  It  also identifies and  corrects  a problem 
with the inspection  process, namely, the combin- 
ing of module-level design and  code  inspections 
into a pseudocode inspection. 

Experiences from Projects F and G 

Problems  with informational messages  and  the 
lack of complete  requirements  are  discussed for 
Project F, and  untested  overlay  structures  are 
noted in Project G. 

Existing  compiler  messages had errors. This proj- 
ect  team was developing a compiler. The magni- 
tude of defects in the AF chart in Figure 17 that 
were  introduced in the old version (i.e., that  are 
defects in a  previous  version of the compiler) led 
to  the identification of a  process problem. 

Cause. Even though the relative magnitude of old 
defects  was small, the developers  were  con- 
cerned  that  even  a small number of latent  defects 

would disrupt  the  current  development  schedule, 
which had not planned for  such  defects, so they 
decided to analyze  them  further.  It was discov- 
ered  that  a  majority of the  defects  were  associated 
with the problem that  developers  were unfamiliar 
with compiler message development guidelines 
and review process.  Hence,  many  such  defects 
were injected into  the compiler messages. 

Corroboration  of  the  process problem indicated 
that (1) apart from the defects in existing compiler 
messages,  many  defects were injected into  com- 
piler messages being developed for the  current 
release, which supported  the  hypothesis  that  the 
process of message development was  suspect (for 
example, 54 percent of the  defects found in one of 
the  components being currently  developed  were 
defects in compiler messages, while in another 
component  the  proportion was 60 percent), (2) 
most of the  defects in the compiler messages  were 
related to incorrect terminologies used in the mes- 
sages  and missing description of the  error  recov- 
ery  actions of the compiler, (3) correct terminol- 
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Figure 17 Phase  where  error  was  introduced for Project  F 

El PHASE  INTRODUCED 

71%  COMPONENT-LEVEL  13%  OLD  OR 
DESIGN  INSPECTION 1 1- PREVIOUS  VERSION 

c El 
PHASE  INTRODUCED OBSERVED (%) EXPECTED (%) DIFFERENCE ( O h )  

1. COMPONENT-LEVEL  DESIGN  INSPECTION 71 33 38 

2. OLD VERSION 13 33 -21 

3. REQUIREMENTS 16 33 -17 

ogies and  necessary  parts of compiler messages 
were specified in the compiler messages devel- 
opment guidelines, and (4) there  was no consen- 
sus among developers  when compiler messages 
should be reviewed during the development cy- 
cle. 

Implication. The compiler messages  may  contain 
incorrect terminologies that  customers  do  not un- 
derstand,  which affects the usability of the com- 
piler. The  structure of the compiler messages  may 
be  inconsistent, which affects the  perceived  qual- 
ity of the compiler. Translators  may find  it  diffi- 
cult to translate the messages  into  a different 
national language, which will increase  the  trans- 
lation cost of the compiler. And finally, informa- 
tion developers will need to spend  more time re- 
viewing the compiler messages. 

Corrective  action. A compiler messages kickoff 
meeting was held, during which information de- 
velopers explained the compiler messages devel- 

opment guidelines and review process  to  the en- 
tire development team. 

Validation of correction. Information developers 
found fewer  defects  when inspecting compiler 
messages. 

Benefit. The corrective action will prevent  such 
defects  from being injected and will improve  cus- 
tomer usability and  reduce language translation 
cost.  It is a  process  adjustment as well as a  pro- 
cess  correction. It should improve  the  quality of 
the  current  product as well as improve  the pro- 
cess of message  development  for  subsequent  re- 
leases. 

Incomplete  requirements. Refer to  the AF chart in 
Figure 17, which shows  data collected during 
early  component-level design inspections. The 
magnitude of defects  that  were  introduced during 
the  requirements  stage, and had therefore  es- 

BHANDARI ET AL 207 IBM  SYSTEMS  JOURNAL,  VOL 33, NO 1. 1994 



Figure 18 Missing  or  incorrect  error  and  where  introduced  for  Project F 
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caped  the  requirements  inspection, led to the 
identification of a  process problem. 

Cause. Even though the relative magnitude of re- 
quirements  escapes was small, the  team was con- 
cerned  that  the  requirements  developers  and in- 
spectors did not  have  the  appropriate level of 
experience. 

Corroboration of the  process problem indicated 
that (1) the  developers  created  the  component- 
level designs based on the  requirements  without 
even recognizing defects in the  requirements,  and 
(2) consensus among developers who inspected 
the  requirements  was  that  they had difficulties in 
finding defects  because  the  authors of the  require- 
ments  were  the  more  experienced  members of the 
team, and there is a  tendency to  be less  critical of 
the  work of experienced colleagues. 

The first fact is also  captured by the AF chart in 
Figure 18, which was generated  at  the midpoint of 
the  component-level design inspection (110). De- 
fects  introduced in the  requirements  stage  are  as- 
sociated with missing in table  Item 4. Such  de- 
fects  are  more likely to  be fixed by introducing 
new material in the  requirements  document  than 
correcting in place. One would think that  the de- 

signers would have recognized that  the  require- 
ments  document was incomplete. Such  was  not 
the  case.  Defects in the  requirements  were  not 
found until the component-level design inspec- 
tions, which resulted in major rework of the  de- 
signs. 

Implication. The compiler will not  provide  the 
functionalities expected by the  customers. 

Corrective action. Developers  worked  with  the 
authors of the  requirements  document  to  ensure 
the  requirements  were  complete and correct,  then 
reiterated component-level design for the affected 
areas. The  work  to  ensure  the requirements were 
complete and correct included reinspecting the 
appropriate  sections of the  requirements  docu- 
ment, and holding meetings during which devel- 
opers explained their interpretation of the  re- 
quirements from a  customer’s  perspective. 

Validation of correction. Reduction in the  num- 
ber of escapes from requirements  inspection  to 
later  phases  was  expected. Refer to  the AF chart 
in Figure 19, showing that  escapes from require- 
ments  were indeed few. 
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Figure 19 Phase  error was introduced  and  found  for  Project  F 
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Benefit. The  second  corrective action removes 
defects,  whereas  the first corrective  action should 
prevent  defects from being injected,  since  the 
less-experienced  members will have a better un- 
derstanding of the  requirements.  It is a process 
adjustment  that  reduces  the risk of shipping a 
compiler with incomplete functionality. How- 
ever,  that risk has  not  been eliminated since Fig- 
ure 19 shows  that, while escapes from require- 
ments  have declined, they did occur all the  way 
to unit test. A better  adjustment would have  been 
to add experienced staff to  the team. This discus- 
sion also identifies a weakness in the staffing pro- 
cess for  the  product, namely, that it does  not 
weight the  experience of personnel  adequately 
when deciding the composition of the team. 

Untested  overlay  structures. The relatively large 
magnitude of defects classified side effects in unit 

test  data  (see AF chart in Figure 20) led to  the 
identification of the following process problem. 

Cause. The  previous  version of the  software  con- 
tained overlay  structures within work  areas, 
which the unit testers did not  understand well. 

Corroboration. Several problems escaped unit 
testing due  to  the affected area  not being exam- 
ined. The overlay was detected with regression test 
cases for component areas that were not modifled. 

Implication. Latent problems may still exist. 

Corrective action. Since  the old code  was difficult 
to  understand and test,  future  projects should re- 
design, recode,  and  retest  the  overlay  structures. 

Benefit. Exposes a potential problem for  the  cur- 
rent project and identifies a process  correction for 
future  projects. 
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Figure 20 Trigger  in  unit  test  for  Project G 

EJ 
34% SIMPLE 

TRIGGER 

38% COMBINATIONAL 

29%  SIDE  EFFECTS 

TRIGGER 
OBSERVED  EXPECTED  DIFFERENCE 
( " 4  (%I (%) 

1.  COMBINATIONAL  PATH 38 14 23 
2. SIMPLE  PATH  COVERAGE 34 14 20 

3.  SIDE EFFECTS 29 14 14 

4. TEST VARIATION 0 14 -14 

5. TEST COVERAGE 0 14 -14 

6. TEST INTERACTION 0 14 -14 

7. TEST  SEQUENCING 0 14 -14 

Table 3 Project  interactions 

Process  Correction  Project  Number of Causal  Number of Number of 
Methodology  Started Feedback  Sessions  Anaiysls  Preventions  Removals 

Component-level design A 2 Yes 4 5 

B 1 Yes 2 2 
E 2 Yes 1 2 
F 3 Yes 4 5 

Unit test G 2 Yes 0 3 
Function  test C 1 no 0 4 
System test D 5 Yes 0 14 

Summarirlng the experlence 

Table 3 uses  the following dimensions to  summa- 
rize the  cost  and benefit of using attribute  focus- 
ing for  the different projects in Table 1. 

Phase  started,  or  the  phase  the  project  was in 
when  the  team  started using the  process  cor- 
rection methodology 
Number of feedback  sessions held, where  each 
feedback  session  lasts  about two hours 
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Formal  causal analysis used or not used (yes or 

Number of preventions, or  the number of issues 
that led to defect  prevention  measures for the 
current  release 
Number of removals, or  the number of issues 
that led to defect removal measures  for  the  cur- 
rent  release 

no) 

What the table  indicates is summarized in the fol- 
lowing four points. 
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1. The methodology identifies and  corrects  pro- 
cess  problems in different kinds of projects. 
This is the main result discussed in this  paper 
and is evident from Table 1 and  the  two right- 
most columns of Table 3. 

2. With regard to  the  current  release,  projects 
that  start earlier benefit by the  prevention  and 
removal of defects, while projects  that  start 
late benefit only by  the removal of defects (see 
Table 3). All projects benefit by  the  prevention 
and removal of defects in future  releases as 
evidenced by  the  experiences in this  paper 
(read  the  sections  with  the heading “Benefit” 
for each  experience). 

3. The  use of other  techniques  does  not  appear to 
reduce the effectiveness of the methodology. 
See  Table 1 (the  tracking  tools used are sug- 

used by the  teams) and Table 3 (see  the column 
“Causal Analysis”). This  supports  the argu- 
ment in the  section of this  paper called “Goal- 
oriented  approaches”  that  our methodology 
complements  other  defect-based  approaches 
for in-process  correction. 

4. Let us understand  what  the  above  results tell 
us about  our methodology in the general con- 
text of project management and control. 
Clearly, a goal of the management of the dif- 
ferent  projects  described in Table 1 was  to 
identify and  correct  process  problems  such  as 

lems remained unidentified and  uncorrected 
until the  attribute focusing feedback  sessions. 
All projects  described in Table 1 were involved 
in the  actual  production of major software 
products.  We  can  assume  that  the  project 
teams  and their management did the  best  they 
could do,  and  therefore  conclude  that their ef- 
fort  is  representative of current  practices in 
project management and control.  That conclu- 
sion is  also justified by  the  fact  that  the 
projects in Table 1 were  drawn  from six sites 
separated by considerable geographical dis- 

business.  Therefore, one may  compare  our 
methodology against the effort of the manage- 
ment of the different projects to conclude  that 
it can complement current  practice in project 
management and control. 

D 

D gestive of the kinds of goal-oriented analyses 

D those  presented in this  paper.  But  those prob- 

B tances and engaged in very different lines of 

Model of interpretation  and  correction 

Finally, the  lessons of experience  are  incorpo- 
rated  into  the methodology to build a  complete 

model of correction. AF, as described in Refer- 
ence 9, is  a general approach  to knowledge dis- 
covery  that  can  be applied to  domains  other  than 
software engineering. As  such, it does  not specify 
the  exact  process  one  uses in the application do- 
main to  discover knowledge, or  to implement an 
action in the physical domain once knowledge is 
discovered.  It  merely states that  the  analyst  re- 
lates  the  items in the legends of the  selected 
charts  to  the domain-which leads to  the discov- 
ery of knowledge and the implementation of ac- 
tions  based on this knowledge. Based on  the 
experience of using AF as a  feedback mechanism, 
the following model of correction  has evolved for 
defect analysis. The  steps of the model corre- 
spond to  the dimensions used to  present  the  ex- 
periences in preceding sections,  and  were illus- 
trated in Figure 4. 

1. Identify  a problem. 
Discuss  a trend-the presence or absence of 
certain  items in the table of one  or  more 
charts. 
- Discuss  the possible cause of the  trend 
- Corroborate  the  cause  with the team 
- Infer  the result if a  corroborated  cause  is 

not acted upon 
Possible  outcomes 
- Problem identified-continue 
- Determined cause is not  a problem-stop 
- The  cause  could  not be determined-sam- 

ple defects  that  correspond  to  the  trend 
and study  written  descriptions  to  deter- 
mine cause 

2. Act to correct  the problem. 
3. Validate a  corrective action. 

Did the  corrective action have  the  desired 
effect? 
- Plan-what is the  anticipated  change in 

analysis of classified defect data?  Other ef- 
fects? 

- Observe  the  anticipated  change 

- Change observed-continue 
- Change not observed-go back  to identify 

Outcome 

4. Assess  the  corrective  action in terms of: 
Cost-labor, dollars 
Benefit-additional defects  discovered  or 

Nature-does it truly  solve  the problem or  is 

Exposure-is the  process  correction  expe- 

prevented,  cycle  reduction 

it merely  expedient? 

dient? 
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5 .  Report process  corrections and exposures to 
appropriate parties: 

Other teams  on project 
Lab-wide process team 
Management 

Step 1 is undertaken during the  attribute focusing 
feedback  session.  The people who will carry  out 
corrective  actions or investigate problems are 
also identified during this session. The  other  steps 
are carried out after the  session, and are usually 
coordinated  by a member of the project team. 

The  use of the model is quite intuitive as one  step 
leads naturally to the next.  It is possible to get a 
feeling for this  by reading the  experiences in the 
section  “Experiences from Projects  B and C” in 
conjunction with the model description. 

Conclusion 

Experiences  with  a  software  process  correction 
methodology that  uses machine-assisted data ex- 
ploration of classified defect  data  have been pre- 
sented.  The  experiences  were analyzed to under- 
stand  the  scope and value of the methodology. It 
was shown that  the methodology has been used 
successfully by  very different projects,  thereby 
suggesting that it does not impose restrictions  on 
the kinds of projects  that  may  use  the  approach. 
The  projects used the methodology to remove la- 
tent  defects, to prevent the injection of defects, 
and to identify near-term  process  adjustments 
and long-term process  corrections.  It  was shown 
that  those benefits translate to substantial labor 
savings and quality improvement. Finally, the 
methodology was shown to address  process prob- 
lems that  are not addressed by current  practices. 
On the basis of the  above evidence, we conclude 
that  the  software  process  correction methodology 
is an important advance  that  can  have  a major 
impact on  software development in the  near fu- 
ture. 
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