In-process improvement
through defect data
interpretation

An approach that involves both automatic and
human interpretation to correct the software
production process during development is
becoming important in IBM as a means to
improve quality and productivity. A key step of
the approach is the interpretation of defect data
by the project team. This paper uses examples of
such correction to evaluate and evolve the
approach, and to inform and teach those who will
use the approach in software development. The
methodology is shown to benefit different kinds
of projects beyond what can be achieved by
current practices, and the collection of examples
discussed represents the experiences of using a
model of correction.

he software process' provides a framework

for the development of software systems.
Deficiencies in the definition or execution of the
activities that comprise the process result in poor
quality products and large cycle times. Hence, it
is important to understand how the errant activ-
ities may be corrected in process, i.e., during the
course of development.

Recently, an approach to in-process correction
that involves both machine and human interpre-
tation of classified defect data® has been steadily
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gaining momentum in IBM, and considerable
experience with its use is now available. A study
of this experience is presented to understand the
scope and value of the approach.

The scope of the approach may be determined by
asking whether there are any restrictions on the
software projects that use this approach. Apply-
ing the approach to a wide variety of software
development efforts can help determine the an-
swer. Reference 2 reports that the methodology
was used successfully to correct the process
problems of a specific project, and examples of
process correction and corroborating evidence
showed that the process had indeed been cor-
rected. This paper shows that the methodology
can be successfully used with a range of different
projects, thereby suggesting that there are no im-
posed restrictions on the kinds of projects that
may use the approach.
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The value gained by using the approach is de-
scribed in two ways. First, the process correction
examples are presented in a fashion that ex-
presses their immediate benefit to a software de-
veloper or manager. For instance, an example

The value is in the cost
saved by correcting
defects in development.

may show that a correction surfaced five defects
that might otherwise have escaped to be discov-
ered by the customer in the field. Thus, the value
of the methodology can be expressed in terms of
the cost saved by correcting defects during de-
velopment, instead of correcting them at the cus-
tomer site.?

Second, the examples are studied to establish
whether other methods could have been success-
fully used to make similar corrections. This dem-
onstrates the drawbacks associated with not us-
ing the approach.

The organization of this paper reflects the above
objectives. First, background material is pre-
sented on the process correction methodology.
Second, examples of process correction from dif-
ferent projects are shown in order to demonstrate
the value of the methodology to project teams.
The experiences are used to address the issues of
scope and value. Third, the steps that must be
taken to correct the process are refined based on
the experiences. Finally, on the basis of the ev-
idence that is presented, we conclude that the
methodology is an important advance in software
process correction.

This paper contains a set of real-life experiences
that can be studied by software developers and
managers to understand how they can make use
of an evolving process correction methodology
and what it can do for them beyond current prac-
tices. Hence, in addition to its technical contri-
bution, the paper also has educational value.
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The methodology

The details of the projects that used our process
improvement methodology are given in Table 1,
which lists the following characteristics of each
such project:

* Hardware environment

* Software environment

* Project size

* Staffing, including programmers and testers

¢ Tracking tools used

* Process model-—waterfall or a combination of
waterfall and iterative

* Parallel development—whether some project
components were following a different schedule

As can be seen from the table, the projects de-
scribed cover wide ranges in terms of complexity,
size, and environment, and all used our process
improvement methodology. The two principal ac-
tivities of the methodology, namely, defect clas-
sification and analysis, are next described using
material from Reference 2 to the extent needed to
make this paper self-contained. The experience
with one specific project (Project A) forms the
basis for introducing the methodology to the
reader.

Orthogonal Defect Classification. The history of
software engineering is populated with numerous
examples of using metrics to better manage and
improve the development process. The classifi-
cation of defects to identify key components is
also fairly common and a good exposition on it
can be found in Reference 4. There is also a pro-
posed draft of an IEEE Standard on classification.’
However, although most developed classification
systems are useful, they are quite ad hoc. The
limitation that an ad hoc measurement imposes is
that the measurements are hard to validate and
are much harder to leverage toward more scien-
tific analysis or the development of a baseline. We
believe a significant contribution in this arenais a
technique of measurement called Orthogonal De-
fect Classification (0DC).%’

The ideas for ODC evolved from a finding that
there is a link between the semantics of defects
and the maturity of a product going through the
development process.® This led to developing
classification, where the values of an attribute,
called defect type, were designed to recognize the
maturity through a change in the distribution
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Table 1 Project characteristics

Project Hardware Software Amount of Programmers Tools Process Parallel
Name Environment Environment New and and Testers Used Model Development
Changed Code
A mainframe operating medium 15 test defect ~ waterfall yes
system tracking, combined
inspection  with
tracking iterative
B mainframe, database very large 85 test defect  waterfall yes
midrange, tracking, combined
workstation inspection  with
tracking iterative
C mainframe operating small 3 test defect  waterfall no
system tracking,
test case
tracking
D workstation application very large 80 test defect  waterfall yes
tracking combined
with
iterative
E mainframe database medium 10 test defect ~ waterfall no
tracking,
inspection
tracking
F midrange, compiler very large 38 test defect ~ waterfall yes
workstation tracking combined
with
iterative
G mainframe operating large 32 test defect ~ waterfall no
system tracking, combined
inspection  with
tracking iterative

of the attribute values. Thus, the distributions
provide an instrument to measure progress. The
defect type attribute was primarily designed to
provide feedback on the maturity of the product
in a development process. The key was to estab-
lish the values of the attribute so that changes in
the distribution explain the maturity of the prod-
uct through the process. ODC measurements may
provide the capability of long-term value due to
process and product invariance in the measure-
ment.

The power of measurement can be multiplied by
measuring several aspects of the process using
multiple attributes. This leads to multidimen-
sional data. The implementation of the ODC
scheme in IBM, reported in this study, involved
five key attributes: defect type, missing or incor-
rect, trigger, source, and impact. Among these,
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the defect type and the trigger have been devel-
oped and tested to follow the guidelines of ODC
and collectively provide causal information. Re-
ferring to Table 2, the impact, as the name sug-
gests, measures an effect. Source partitions the
product in terms of the developmental history of
the code, identifying subpopulations that may be
interesting. Thus the categories collectively pro-
vide a measure of cause and effect, critical to the
improvement of the process or product. These
data over the project life cycle may provide long-
term value in terms of baselines and sophisticated
models.

For the purpose of this paper it is necessary to
understand the values of the ODC attributes that
are referenced. Apart from the engineering as-
pects of identifying the values there is a usability
and human aspect to it that is equally important.
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In particular, the choices have to be few so that
it improves accuracy, and the education process
must be sound. Defect type and missing or incor-
rect capture information about the type of activity
that was undertaken to fix the defect. For in-
stance, the type of a defect is function if it had to
be fixed by correcting major product functional-
ity. A defect is classified missing if it had to be
fixed by adding something new, and classified in-
correct if it could be fixed by making an in-place
correction. Source identifies the partition in
which the defect is located, i.e., it captures
whether the defect occurred because of errant ac-
tivities in previous releases or the current release.
For instance, a defect is classified new function if
it was found in that part of the product that con-
sisted of new code, and classified rewritten if, in-
stead, it was found in code that was part of an old
release of the product but was being rewritten for
the present release. Trigger captures information
about the specific inspection focus or test strategy
that caused the defect to surface. For instance, a
defect found by thinking about the flow of logic of
a design or implementation is classified opera-
tional semantics, while a defect found by thinking
about the compatibility of the current release to
previous releases is classified backward compat-
ibility. Impact captures information about cus-
tomer activities that would be affected should the
defect have escaped into the field. For instance,
the impact of a defect is classified capability if,
had it escaped to the field, it would have affected
the functionality of the product adversely; is clas-
sified usability if instead, it would have affected
only the ease with which the customer could use
the product; is classified performance if it would
have affected only the performance of the product
but not its capability.

In addition to these measurements, there has tra-
ditionally been a set of process- and product-spe-
cific measurements that are collected by defect
tracking tools. The project team also classified
defects by using the attributes phase found, phase
introduced, and component. Phase found identi-
fies the developmental phase at which a defect
was found, while phase introduced identifies the
phase at which it was introduced. For instance,
the phase introduced is classified CLD if the defect
was introduced during component-level design,
or classified MLD if it was introduced during mod-
ule-level design. Component identifies the soft-
ware component in which the defect was located.
Clearly, those attributes also relate a defect to a
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Table 2 Classification attributes

Attribute Description

Defect type Determines correction method

Missing or Corrected by adding something new or

incorrect making in-place change

Trigger Captures information that caused the
defect to surface

Source Partitions developmental history of the
code

Impact Measures an effect

Where:

Defect type = Function, interface, assignment,
checking, data structure, document, etc.

= QOperational semantics, language
dependencies, concurrency, side
effects, document consistency, lateral
compatibility, backward compatibility,
rare situation, design conformance, etc.

Trigger

Source = New function, rewritten code, etc.

Impact = Capability, usability, performance, etc.

specific set of process activities. For instance, if
a defect is located in Component A, we know that
the activities used to develop Component A are
responsible for the defect being introduced.

The project team members classified all defects
found during the reviews of all deliverables pro-
duced (i.e., final programming specification doc-
ument, design structures document, logic manu-
als, and code) as well as during the execution of
the test phases. Having no prior experience, the
analysis step was integrated into the process of a
project in the most obvious fashion. The classified
defects were analyzed after every phase of the
process. Thus, the analysis was done after phases
such as component-level design, module-level de-
sign, code, unit test, function test, and system
test. The process of the project was adjusted to
reflect the results of every analysis before pro-
ceeding to the next phase. The analysis step is
described next.

Defect analysis and feedback. The second step of
the methodology is the analysis of the defect data
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using an approach to machine-assisted data ex-
ploration called attribute focusing. Details of the
approach may be found in Reference 9. Other ex-
periences based on the application of attribute
focusing (AF) to software development have been
reported. AF was used !’ to analyze defect survey
data to suggest improvements post-process, i.¢.,
after the end of development. AF was utilized® to
assess the effectiveness of inspections and testing
methods. AF was also used? to make in-process
improvements to the process of a single project.
Those works did not address the scope and value
of using attribute focusing for in-process im-
provement, which is the subject of this paper.

The approach is discussed next. The goal of at-
tribute focusing is to provide a systematic way for
a domain specialist, who may not be skilled at
data analysis, to analyze data that are classified
across many different attributes. It targets the lay
person instead of the data analyst, a goal that
distinguishes it from the usual data exploration
system (see, for example, systems described in
Reference 11). The typical software developer or
tester is considered to be a domain specialist in
this context.

The key aspects of the approach are illustrated in
Figure 1. Information is abstracted from a phys-
ical situation to create an attribute-valued data
set. For our purpose, a record of the data set
represents a defect found by the project team dur-
ing the course of development and classified using
the attributes described in the previous section,
Orthogonal Defect Classification, along with a
written description of the defect. A data set con-
sists of data from all the defects available at the
end of a phase or a stage within the phase of the
project. A project can start using the methodol-
ogy at any stage, and examples of projects that
started as early as component-level design or as
late as function test will be described.

Continuing with the description of attribute fo-
cusing (Figure 1), the classified defects in a data
set are processed automatically to produce a set
of interesting charts that are interpreted by the
project team in a specific manner. We present the
mechanical and manual procedures of attribute
focusing, and exemplify each procedure using
data from one specific project (Project A).

Interestingness and filtering functions. First, the
classified data are processed automatically by a
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procedure called an interestingness function that
orders attribute values to reflect their potential
interestingness for a human analyst. (Ashwin
Ram! is credited with coining the term “inter-
estingness.”) A set of attribute values corre-
sponds to a set of defects, namely, the defects
that were classified using those attribute values.

The interestingness
function orders
attribute values.

Hence, Figure 1 depicts the ordering of attribute
values by ranking subsets. The data of the project
teams were processed by using two interesting-
ness functions to order attribute values based on
a degree of magnitude, and pairs of attribute val-
ues based on a degree of association. The use of
such functions is quite common in data explora-
tion and in machine learning. Heuristics, which
are commonly used to search for interestingness,
include measures of magnitude, association, cor-
relation, and informational entropy.'""

Second, another automatic procedure called a
filtering function processes the orderings pro-
duced by an interestingness function and presents
it in a manner suitable for human consumption. It
makes use of knowledge of human processing of
attribute-valued data to do this. The use of such
a filtering function is a novel idea, although it is in
keeping with the recent emphasis on interactive
approaches for data exploration.'*

Concepts from Project A. Let us understand the
above concepts in the context of Project A. A
filtering function was used to produce charts that
show the spread of values for an attribute, such as
shown in Figure 2, or which show the cross-prod-
uct of two attributes such as shown in Figure 3.
The tables in the charts present the values of the
attributes in decreasing order of their interesting-
ness. As we shall see, that information is used to
focus the project team on certain trends in the
data. Usually, there are eight numbered items or
less, which is in keeping with a published obser-
vation that people find it difficult to retain more
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Figure 1 The attribute focusing approach
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than seven plus or minus two items in short-term
memory. ' Furthermore, the charts are produced
in decreasing order of interestingness, and only so
many charts are produced as are reasonable for a
person to interpret at one sitting. Based on knowl-
edge of the limits of human processing and a cal-
ibration of the average time it takes a person to
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interpret one chart pertaining to defect data, it has
been our experience that the number of charts
produced should be restricted to less than or
equal to 20 (to limit the duration of an interpre-
tation session to about two hours).’ We observed
that restriction in our implementation. Once the
project team had classified all the data for a phase,
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Figure 2 Missing or incorrect type of error for Project A

s
E EXAMPLE OF DEFECTS w
IN COMPONENT-LEVEL DESIGN

. 68% MISSING

TYPE OF ERROR OBSERVED (%) EXPECTED (%) DIFFERENCE (%)
1. INCORRECT 37 50 -13
2. MISSING 63 50 13

our implementation took less than five minutes (of
wall clock time) to generate the 20 charts (re-
ferred to as AF charts) to be used to analyze the
data for that phase. That cost of chart generation
is negligible and, hence, the overhead of using
attribute focusing is about two hours per phase of
the process, that being the duration of the feed-
back meeting. For this paper, the original charts
generated by the authors were simplified and the
method of display illustrates only the information
pertinent to the discussion.

Next, let us understand the information in the AF
charts to gain a better understanding of the inter-
estingness and filtering functions. Much of the
data for Project A was generated by classifying
defects found during the inspections ' of the com-
ponent-level design and module-level design doc-
uments,

The AF chart in Figure 2 was among the 20 charts
generated for the data from the early component-
level design inspections of Project A. Figure 2A
shows the distribution of the attribute missing or
incorrect. The table in part B indicates the inter-
estingness of the attribute values based on a de-
gree of magnitude. Let us understand the first row
of this table. The observed column indicates that
37 percent of the defects were classified incorrect.
The expected column shows what the percentage
of such defects would have been had the values of
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the attribute been equally likely. Since missing or
incorrect has two values, that percentage is 50
percent. The difference column is the difference
between 37 percent and 50 percent, or —13 per-
cent.

We can now get a better understanding of the
relationship between the interestingness and fil-
tering functions. The interestingness function
computes the difference for every attribute value
and then lists attribute values in decreasing order
of the absolute value of the differences. The fil-
tering function uses the ordering to decide which
charts should be brought to the attention of the
analyst. Starting from the top, the filtering func-
tion selects the attribute values and hence, the
attributes to be charted. Once 20 charts have been
selected, the procedure terminates.

The AF chart in Figure 3 shows the cross product
of the attributes defect type and phase intro-
duced. The chart was among those generated by
processing the data from the module-level design
inspections of Project A. The table in part D in-
dicates the interestingness of the attribute values
based on a degree of association. Let us under-
stand the first row of the table. The column type
indicates that 14 percent of the defects had a de-
fect type of document (see also Figure 3A). The
phase column indicates that 16 percent of the de-
fects were introduced in component-level design
(cLD) (see also Figure 3B). Column type and
phase indicates that 5 percent of the total defects
were introduced in CLD and were of type docu-
ment (see also Figure 3C). Had the classification
of defects as document and CLD been statistically
independent, we would have expected to find that
(0.14 % 0.16 = 0.2), or 2 percent, of the defects had
been classified document and CLD, as indicated in
the expected column. The difference (5% — 2% =
3%) is indicated in the difference column, and
serves as a measure of the degree of association
between the attribute values in the first row.

Interpretation of AF charts. Let us continue with
the description of the attribute focusing ap-
proach. As indicated in Figure 1, the AF charts are
interpreted by a domain specialist or analyst by
using a model of interpretation.® While a com-
plete discussion of the model of interpretation is
beyond the scope of this paper, its use will be
adequately illustrated later in this section. The
specialist performs the following for every AF
chart. There is an attempt to explain the interest-
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Figure 3 Example of defect types and where they were introduced for Project A
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ingness (magnitude or association) of the attribute
values that appear in the chart by relating the
interestingness to events in the domain. Specifi-
cally, the cause of the interestingness must be
determined, and the implication of the interest-
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ingness considered in the context of the domain.
Such consideration is given to every item in the
table of the AF chart. Some items are easily un-
derstood by the specialist and do not lead to new
insights. However, some items do lead the spe-
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Figure 4 Model of interpretation

CAUSE
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CORRECTIVE' ACTION
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- CORRECTS THE PROCESS

cialist to a better understanding of the domain
and, consequently, to action that reflects the new
realization.

The model of how the analyst gains such an un-
derstanding is exemplified below and in Figure 4
for a table that shows that @ is associated with b
but is disassociated with w, where a, b, w are
attribute values.

e Understand the cause of interestingness
— a occurs frequently with b but infrequently
with w.
~ Why?
— What event could have lead to such an oc-
currence?

* Understand the implication of interestingness
— a occurs frequently with b but infrequently
with w.
— Is that desirable?
~ What will happen if no action is taken?

Recall that the analyst is a domain specialist who
may not be skilled in data analysis. Note that the
questions above do not make reference to data
analysis terms and concepts. Instead, they en-
courage analysts to think directly about events in
their domain. In fact, analysts are also encour-
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aged to consider the absence of any table items,
which their domain experience has taught them to
expect. As shown in Figure 1, that exercise re-
sults in either the discovery or no discovery of
knowledge. The discovery of knowledge is where
the explanation of the interestingness leads to a
new insight about the domain. In our context, this
translates to the identification of a process prob-
lem and the implementation of a corrective ac-
tion. Occasionally, there is no need to implement
a corrective action because the problem has al-
ready been resolved. With no discovery of knowi-
edge there are two possibilities. Either the expla-
nation of the interestingness is something already
known to the analyst, or the analyst cannot com-
prehend the interestingness. In the former case,
no action is necessary. In the latter case, known
as the investigate step, the interestingness must
be investigated by the analyst at a later time. The
interestingness is based on the magnitude of a
particular attribute value or the association of a
pair of attribute values. The analyst must study
the detailed written descriptions of a sample of
defects that were classified by choosing those at-
tribute values in an attempt to explain the ob-
served interestingness.

Let us exemplify the interpretation process using
the AF charts for Project A. To interpret the chart
in Figure 2, the project team played the role of
analyst. They had to explain the magnitude of the
attribute values in the table by determining the
cause and considering the implication of the mag-
nitude. If that led to the identification of a process
problem, the team had to come up with a correc-
tive action. The large proportion of missing de-
fects in the chart led to the discovery and cor-
rection of a process problem in Project A.

We use the headings cause, implication, and cor-
rective action to describe the results of the dif-
ferent steps in the model of interpretation given
above.

* Cause—The large proportion of missing defects
was attributed to lapses in communication be-
tween designers who were working in separate
subteams. These lapses were manifested by
functionality that was missing in the design, a
fact that was discovered during inspections. Re-
peated inspections of the design were then done
until the team felt confident that the design was
complete. Thus, a process problem was identi-
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fied: the lack of communication between differ-
ent subteams.

*.Implication—The product may be shipped with
incomplete functionality.

*oCorrective action—The use of “teach-the-
team” sessions, wherein individual team mem-
bers periodically present their work to the en-
tire team, was planned. These sessions would
prevent lapses in communication. To show that
the methodology achieves what it is meant to
do, namely in-process identification and correc-
tion of process problems, every experience is
also evaluated along the dimensions of (1) cor-
roboration of process problems identified by in-
formation that was not captured by the defect
data but was known to the team and used to
make their decision, and (2) validation of cor-
rective actions undertaken by looking for ap-
propriate trends in defect data collected after
those actions were implemented.

The relevant information for process corrobo-
ration of the process problem in Project A was
consensus among team members that they had
not communicated, the nature of the missing
defects as described in their written descrip-
tions, and the fact that the defects were found
in inspections that involved members across
different subteams.

. Validation of correction—The injection rate of
missing defects dropped from 63 percent to 44
percent for CLD compieted after the start of
teach-the-team sessions. Since the reduced rate
applied to about 80 percent of the product, the
savings were significant. As we determined
from the interpretation of the Figure 2 AF chart,
the team made use of knowledge that was not
captured by the data to reach a decision. For
instance, what the data did not indicate was the
feeling that communication between subteams
was poor, the fact that defects were found when
subteams did communicate via inspections, and
the nature of the missing defects as evident
from their written descriptions. Only a person
who is very familiar with the project could have
such knowledge and apply it in a few minutes to
interpret the AF chart. A quality expert who is
not part of the project team will not have that
knowledge and hence, may quite possibly mis-
interpret the AF chart.
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s, Benefit—The dimensions just discussed help
establish that an experience indeed represents
the successful identification and correction of
problems. To provide a better understanding of
the value of such correction, it is shown that
every experience results in one or more bene-
fits, such as (1) removes defects, which were
latent, (2) prevents defects from being injected,
(3) adjusts the course of the project to avoid a
problem or exposes a problem that the project
team does not know how to avoid, which is a
near-term benefit since it only affects the cur-
rent release, and (4) corrects the process used
by the project or exposes a process weakness
that the project team does not know how to
correct, which is a long-term benefit since it
should also affect successive releases that use
the same process.

Therefore, in the Project A discussion (Figure
2), the benefit was that the corrective action
prevents defects, and identifies and corrects a
deficiency in the process used by the team. The
teach-the-team sessions should be part of the
process for parallel development, to improve
communication.

Next, we describe the interpretation of the AF
chart in Figure 3 using the dimensions described
above. Recall that the chart was among those gen-
erated from data of the module-level design in-
spections of Project A. To interpret the chart, the
project team had to explain the association of the
attribute values in the table or the absence of an
expected association of attribute values in the ta-
ble, by determining the cause and considering the
implication of the association. If this interpreta-
tion led to identifying a process problem, the team
had to come up with a corrective action. The as-
sociations shown in the table were easily ex-
plained by the project team. For instance, Item 3
in Figure 3D, shows an association between de-
fects that were fixed by correcting assignment
statements and the module-level design (MLD)
phase, while Item 4 shows a disassociation be-
tween such defects and component-level design
(cLD). The team noted those associations were to
be expected since at component-level design, the
nature of the work done was at too high a level to
include specification of assignment statements.
That level of detail was addressed in MLD. How-
ever, the absence of a row which showed a strong
association between the defect type function and
phase introduced CLD led to the identification of
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another process problem in Project A. The ab-
sence of a pair of attribute values indicates this
pair is neither strongly associated nor strongly
disassociated. However, a strong association was
expected since functional aspects of the design
are addressed during CLD. The reason for the ab-
sence of such association became clear when the
data (not shown in the figure) showed that a large
number of function defects were introduced in
MLD.

* Cause—CLD work was still being done after the
beginning of the MLD stage. The corroboration
of the process problem showed that (1) a miss-
ing item in the requirements list was responsible
for an incomplete component-level design and
the defect was discovered and fixed in the mod-
ule-level design stage, (2) a formal requirements
document did not exist and individual team
leaders maintained their own list of require-
ments, and (3) there was consensus among team
members that, owing to the varied customer
base of the product, some requirements were
hard to determine.

¢ Implication—Module-level design should only
be done after component-level design is com-
plete, else the process is not being followed.
Serious consequences can include missed
schedules and poor quality.

* Corrective action—The requirements material
and the final programming specification were
reinspected for completeness.

Validation of correction—No further missing
requirements were found through test.

Benefit—The corrective action removes defects
and is an adjustment that prevents shipping a
product with missing functionality. It also iden-
tifies a deficiency in the process: the product is
too complex to avoid a formal requirements
process. A suitable process change should be
made for future releases.

Experiences from Projects B and C

Having described our process improvement
methodology, we now present the experiences
from a number of different projects (see Table 1).
The experiences are presented in two parts, sep-
arated by the section “Comparison with other
feedback techniques.” That separation allows the

192 BHANDARI ET AL.

reader who is interested mainly in the principles
underlying our methodology to skip the second
set of additional examples. The additional exam-
ples do not introduce new principles but they do
serve an auxiliary purpose. First, they serve as an
educational aid for readers who wish to use and
deploy our methodology. Second, they provide
additional evidence to support the main result of
this paper, namely, that our methodology works
for different kinds of projects.

The descriptions of the project experiences use
the same dimensions as were exemplified in the
earlier subsection “Interpretation of AF charts”
for Project A, and illustrate that the methodology
provides benefits in four ways. It helps remove
defects, it helps prevent defects, it helps identify
corrective actions for the immediate project, and
it helps identify problems with the underlying pro-
cess being used.

While a quantitative expression of the value of all
corrective actions will only be complete once field
data exist, it is possible to quantify the net benefit
of corrective actions that remove defects. For in-
stance, if such a correction led to the detection of
five defects that would otherwise have been found
in the field, the cost of finding the defects in the
field and the cost of the correction may be used to
calculate the net benefit. Relevant experiences
are presented by expressing the value of the cor-
rective actions in both qualitative and quantita-
tive terms. To determine the quantitative value,
the defects removed as a consequence of a cor-
rective action were studied by the project team to
determine the number of defects that would have
escaped to the field had the situation not been
corrected. The basis for such determination is de-
scribed and the total cost of dealing with those
field defects computed by using 15 person days to
be the cost of dealing with a single field defect
(note that this number may underestimate the im-
pact of such defects).® Similarly, the costs of find-
ing defects in function test (FT) and system test
(ST) are assumed to be one and three person days,
respectively.

Experiences from Projects B and C are used to
illustrate the principles learned about the meth-
odology. Later in the paper (after the section on
comparison with other techniques) more experi-
ences from Project A and the experiences from
Projects D, E, F, and G are used to only further
support the ideas presented. Each subsequent
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Figure 5 A trigger in component-level design for Project B
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experience is introduced in terms of the problem
that was identified by the team.

Experience of reviewers not considered. Project B
used a textual document called a functional pro-
gramming specification to describe component-
level design, and a team of inspectors read
through the document to validate the design.

The AF chart in Figure 5 shows the distribution for
the attribute trigger, which captures what the in-
spector was looking for when the defect was
found. The relatively small magnitude of defects
that were found by considering lateral compati-
bility, rare situation, and backward compatibility
led to the discovery of a process problem.

Cause. Review was limited by the experience of
the reviewers. Compatibility issues and patholog-
ical scenarios were not considered adequately.
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Corroboration of the process problem indicated
that (1) there was a consensus among reviewers
that they were uncertain about compatibility is-
sues, (2) reviewers did not have extensive expe-
rience with the product, and (3) the compatibility
requirement for the product was not met.

Implication. Existing customer applications may
fail when the new release is installed, and the new
release may fail when used with other products.

Corrective action. An experienced person re-
viewed the document with focus on identifying
missing external information, particularly in
backward compatibility and lateral compatibility.

Validation of correction. An experienced re-
viewer found 38, 18, and 1 additional defects clas-
sified backward compatibility, lateral compatibil-
ity, and rare situation, respectively.
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Figure 6 Source and trigger in function test for Project C
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Qualitative benefit. The corrective action re-
moves defects and is an adjustment that prevents
shipping a product that is incompatible with pre-
vious releases and other products. It also identi-
fies a weakness in the process used to select re-
viewers, namely, it does not adequately consider
breadth and depth of experience of reviewers.

Not function testing all areas directly. In the Proj-
ect C experience, all the problems were identified
after the function test stage, and function test was
restarted after all corrective actions had been im-
plemented. This made it easy to assess the effec-
tiveness of the corrective actions since the result
could be compared using the same function test
process before and after the corrective actions.
Furthermore, the product had a main path of ex-
ecution, which was to be the main focus of system
test cases. Hence, by determining if they were on
or off the main path, it was easy to establish if
defects found by implementing corrective actions
would have escaped to the customer. In the text
below, such defects are referred to as field de-
fects. Recall that the cost of correcting each de-
fect detected in the field is assumed to be 15 per-
son days.

Items 1 and 3 in the table of the AF chart in Figure
6 show that new function is disassociated with
test coverage, while rewritten code is associated
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with test coverage. More defects were found in
that part of the product that was being rewritten
using a function test strategy called fest coverage
than were being found in the part of the product
that was being newly developed. This trend led to
the identification of a process problem.

Cause. Function test was doing a better job of
testing the rewritten code than the new function.
Corroboration of the process problem indicated
that (1) the purpose of function test was to cover
two areas: Area 1, consisting of old and rewritten
code, and Area 2, a new function used by Area 1;
and (2) for function testing, the product was con-
figured as depicted in Figure 7, namely, to test
Area 2 through Area 1, i.e., by using Area 1 to
manipulate the function in Area 2. Since Area 2 is
manipulated using Area 1, it is easier to test the
functionality of Area 1 than Area 2.

Implication. Defects may remain latent in Area 2.

Corrective action. Area 2 was tested directly as
shown in the new scenario in Figure 7.

Validation of correction. Two field defects were
found.

Qualitative benefit. The corrective action re-
moves defects and is an adjustment to ensure
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Figure 7 Correcting the test strategy for Project C
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there are no latent defects in the Area 2. It also
identifies a weakness in the function test process,
namely, the use of a policy of not function testing
any area that cannot be manipulated directly. The
process should be corrected to consider situa-
tions such as this and determine if function test is
even appropriate.

Quantitative benefit. The cost of corrective ac-
tion was 25 person days to generate new test
cases and execute them. The total benefit was two
field defects found, potentially saving 30 person
days, and the net benefit was five person days.

Design not re-evaluated. Item 1 in the table of the
AF chart in Figure 8 shows that interface errors
are associated with fest coverage, indicating it
was easier to find defects in interfaces in function
test than other kinds of defects.

Cause. The new environment was not accounted
for in the original software design. Corroboration
of the process problem indicated that (1) function
test variations in a new environment revealed 13
defects, and (2) design documents did not address
the new environment.

Implication. Errors pertaining to the new envi-
ronment may remain in the code after function
test completion.

Corrective action. Function test was suspended
while additional code inspections were completed
that focused on eliminating errors in the new ap-
plication environment.
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Validation of correction. Only one new error was
found relating to the new environment in the con-
tinuation of function test after the code inspec-
tions were completed, and the code reviews
found eight field defects.

Qualitative benefit. The corrective action re-
moves defects and is an adjustment to make sure
there are no latent defects pertaining to the new
environment. It also identifies a weakness in the
planning process for the product. This problem
was caused because the project was originally de-
signed for an earlier version of the host operating
system. When it was moved to a different product
release, the design was not re-evaluated to con-
sider the new operating environment. This can be
corrected by requiring projects to re-evaluate de-
sign if the product release level running the func-
tion is changed.

Quantitative benefit. The cost of corrective ac-
tion was 20 person days to complete code re-
views. The total benefit was eight field defects
found, potentially saving 120 person days, and the
net benefit was 100 person days.

A weakness testing complex operations. Item 1 in
the table of the AF chart in Figure 9 shows that
rewritten code is associated with an impact to us-
ability, suggesting that defects in the rewritten
code are more likely to affect customer usability
than other kinds of impact.

Cause. The team identified the programs that con-
sisted of rewritten code and then considered
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Figure 8 Defect type and trigger for Project C
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which of those would be most susceptible to
usability problems. They concluded that the pro-
gram that handles operations requiring more than
one tape drive (referred to as multi-reel opera-
tions) was more error-prone because (1) it in-
volves more complex and end-user interaction,
(2) function test variations had surfaced six de-
fects running multi-reel functions, and (3) unit test
had not executed a multi-reel variation.

Implication. Multi-reel operations may not have
been adequately designed or tested. Customers
may identify additional problems running such
operations.
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Corrective action. Additional code inspections
were completed that focused on the error-prone
program. This was followed by additional unit
test variations using multi-reel operations.

Validation of corrective action. Four field defects
were found, and no new errors were found in the
error-prone program after the corrective actions
were implemented.

Qualitative benefit. The corrective action re-
moves defects and is an adjustment to make sure
there are no latent defects in multi-reel opera-
tions. It also identifies a weakness in the devel-
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Figure 9 Source and impact for Project C
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opment and testing of complex operations. The
experience suggests that the process for the prod-
uct must distinguish between simple and complex
operations. Hence, the project team suggested
that a checklist of complex environments be
maintained and considered during development
of future releases.

Quantitative benefit. The cost of corrective ac-
tion was 10 person days to complete reviews. The
total benefit was four defects found, potentially
saving 60 person days, and the net benefit was 50
person days.

Not distinguish types of execution. The following
trend lead to the identification of a process prob-
lem. Refer to Item 2 in the table of Figure 10.
Errors that impact the capability of the compo-
nent are associated with being incorrect. Item 1 of
Figure 11 shows that capability defects are being
found during function test using the more sim-
plistic test coverage strategy. Item 3 of Figure 12
shows that timing and serialization problems are
being found that impact the capability of the prod-
uct.
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The trend suggests that the product has its capa-
bility in place, but even function test cases that
test the capability in obvious ways detect timing
and serialization problems.

Cause. The product was unstable with regard to
events that could occur in different sequences.
Corroboration of the process problem indicated
that (1) the component was a complex function
with many different events that could occur at any
time and in different sequences. Thus, while it
was easy to implement the capability of the prod-
uct corresponding to the obvious sequence of
events (the main-line execution), it was much
harder to cover the unexpected sequences that
could occur, and (2) there was consensus among
the team that such sequences had not received
special emphasis.

Implication. An important part of the capability
of the product was to allow the user to restore a
corrupted database. Defects that affect this capa-
bility may still exist after function test is com-
pleted, suggesting that customers may not be able
to recover lost data.
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Figure 10 Impact of a missing or incorrect type of error for Project C
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Corrective action. Additional test variations that
forced the component to execute events in dif-
ferent orders were executed. The focus of this
change was in function test, where these types of
defects should be surfaced, but unit test also at-
tempted some of these variations.

Validation of correction. Four field defects were
found.

Qualitative benefit. The corrective action re-
moves defects and is an adjustment to make sure
there are no latent defects that affect the restore
operation. It also identifies a process weakness
that is similar to the weakness identified in the
previous process problem. While the product has
at least two types of execution that have very
different levels of development complexity, the
process used does not distinguish between them.
The problem was caused by the large number of
event sequences that could be generated by the
component. An automated tool that can randomly
generate different event sequences will help in
bringing more of these defects to the surface. The
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use of such a tool must be made part of the pro-
cess for future releases.

Quantitative benefit. The cost of corrective ac-
tion was 15 person days for additional testing. The
total benefit was four defects found, potentially
saving 60 person days, and the net benefit was 45
person days.

The total of the net benefits for the project was
200 person days. The additional cost of restarting
the function test after the corrective actions were
implemented was estimated by the lead tester to
be 22 person days; hence, the net benefit for the
project was 178 person days.

Comparison with other feedback techniques

The examples described thus far demonstrate the
value of using our process improvement method-
ology. Next, we study these examples to establish
if other methods could have been used success-
fully to make similar corrections. This allows the
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Figure 11 Impact and trigger for Project C
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drawbacks associated with nor using the ap-
proach to be understood.

Two other approaches for providing in-process
feedback are considered: causal analysis and
goal-oriented approaches. Causal analysis entails
the detailed study of written descriptions of de-
fects to correct the process, while the goal-ori-
ented approaches utilize in-process metrics that
measure whether specific process objectives (or
goals) are being achieved. First, let us review the
advantages of process feedback based on at-
tribute focusing, which are known already. Ref-
erences 2 and 10 show that the use of attribute
focusing results in several advantages over the
other techniques:

¢ Efficiency. Causal analysis of a large number of
defects is a manual and time-consuming pro-
cess. Hence, if a large number of defects are
detected, only a subset of defects will be ana-
lyzed. In contrast, the overhead of using at-
tribute focusing is two hours per set of defects,
independent of the number of defects. Hence,
the entire population of defects can be ana-
lyzed.
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¢ Applicability. Goal-oriented approaches often
rely on the availability of historical measures to
define the goal. For instance, the goal may be
that the number of defects per lines of code
found in a component lie within a pre-specified
range that is set based on historical data. In
contrast, attribute focusing uses measures of
interestingness that need not rely on historical
expectations. Since in practice such expecta-
tions are seldom available, this is a major ad-
vantage.

In this paper the above advantages are not re-
emphasized. Instead a deeper understanding of
the differences between the use of attribute fo-
cusing and the use of other techniques is gained.
Note that the advantages above suggest that feed-
back based on attribute focusing is especially use-
ful when the number of defects is large and his-
torical expectations are not available, since the
other techniques may not apply under these cir-
cumstances. Here, to get a deeper understanding
of the difference, the circumstances under which
causal analysis and goal-oriented approaches do
apply are considered. Hence, it is assumed that
all defects undergo causal analysis and reliable

BHANDARI ET AL. 199




Figure 12 Impact of a defect type for Project C
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historical expectations are available, and the ex-
amples of process correction described in pre-
ceding sections are studied to establish if the
other methods could have been used to make sim-
ilar corrections. It is next shown that feedback
based on attribute focusing complements the
other techniques since it identifies and corrects
problems that cannot be addressed by the other
methods.

Causal analysis. During causal analysis'”*® a se-
lect set of defects is studied one at a time. While
the causal analysts will undoubtedly notice obvi-
ous trends in the defects, it is hard for people to
spot the more complicated patterns with this man-
val process. For instance, consider the problem
section, “Not distinguish types of execution.”
Three trends must be noticed before the problem
can be identified. From the written descriptions of
the defects, the analysts must note that:

1. Capability defects tend to require in-place cor-
rection.
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2. Capability defects tend to be found by straight-
forward function test cases.

3. Timing and serialization problems tend to im-
pact capability.

It is quite difficult for a causal analyst to notice
even one such trend. Consider what must be done
to notice Trend 1 in the list above. First, the de-
scription of a defect must be read and understood
in terms of capability and fixes that are corrected
in place. This is difficult since it requires that, of
all the myriad ways that could have been chosen
to understand the defect, it is understood partic-
ularly in these terms. As is clear from the many
experiences presented in preceding sections,
there are many different trends that can prove
useful in detecting a process problem, and a
causal analyst would have to check every defect
for all these trends. Second, the first step must be
repeated for the next such defect while remem-
bering the prior pattern. This second step must be
repeated for a set of defects before concluding
there is a trend. Such a process is difficult for
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people to apply. Therefore, it seems less likely
that causal analysis will detect complicated
trends such as those in the referenced prior sec-
tion. In contrast, attribute focusing finds the
trends automatically.

To be more specific, the above example does not
indicate that causal analysis cannot easily find the
process problem. The message is that the problem
cannot be found easily in causal analysis by rep-

Feedback based on attribute
focusing complements other
techniques.

licating the identification of trends found by at-
tribute focusing. If the written descriptions of the
defects could have suggested the problem without
the need to notice trends, then there would be no
difficulty in finding the problem in causal analysis.
However, there is another class of process prob-
lems that is clearly hard to detect in causal anal-
ysis simply because there are no defects to ana-
lyze. Consider the experience in Project B in the
problem section “Experience of reviewers not
considered.” A problem was identified because
very few defects had trigger classified as lateral
compatibility, indicating that few defects were
found by thinking about compatibility. To under-
stand why causal analysis may not find this pro-
cess problem, let us consider a situation where no
defects at all are classified lateral compatibility.
Since there are no defects to consider, there are
no written descriptions to study and, hence, the
problem cannot be identified. The difficulty in
finding such problems using causal analysis oc-
curs because the method makes an implicit as-
sumption that none or few defects reflect good-
ness, while many defects indicate a problem.
However, as shown by the experience, none or
few defects can also indicate a problem, namely,
insufficient execution of a required activity. It fol-
lows that causal analysis may not find such prob-
lems. In contrast, an AF chart will highlight the
case if very few or no defects occur in a category.
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Goal-oriented approaches. Many different tech-
niques have been proposed to manage software
production. These include statistical defect mod-
eling approaches that predict the reliability of a
software product (for example, see References
19-21), and feedback techniques that compare in-
process measurements with historical expecta-
tions to determine if the project is on the right
track (for example, see References 22-24). While
these techniques accomplish different useful pur-
poses, they share a common philosophy—they
are goal-oriented, i.e., they utilize specific in-pro-
cess metrics to measure if specific process objec-
tives (or goals) are being achieved. For example,
Goal A is achieved if Metric X lies in the range Z,
else it is not achieved. And therein lies their major
difference with feedback based on attribute fo-
cusing which, while it uses in-process metrics,
does not utilize them to measure whether pre-
defined goals are being met. If a goal-oriented ap-
proach is being used, it must be precisely known
which subset of a set of attributes is going to be
used and exactly how it is going to be used to
provide feedback. When the approach is applied
to different projects, the same subset of attributes
is used in similar fashion to determine if the rel-
evant goals have been achieved.

In contrast, when using AF, a subset of the data
attributes is automatically selected to generate
the 20 AF charts that are used to provide feed-
back. So, even though two different projects may
collect data using the same set of attributes, two
different projects may receive feedback from AF
charts based on different subsets of those at-
tributes. That data-driven (as opposed to goal-
driven) nature allows AF to complement goal-ori-
ented approaches for reasons given next.

Process feedback from defect data begins with the
observation of some pattern in attribute-valued
data. In principle, if one could look for all possible
patterns that can occur, one could provide perfect
feedback. However, the combinatorial complex-
ity of the space is much too large for such obser-
vation to be feasible. For example, in a data set
with 10 attributes, each of which has 10 values,
there are 45 distinct AF charts to show the cross
product of pairs of attributes, and 100 possible
trends that may be observed in a chart. There-
fore, there are 4500 possible patterns that may be
observed by simply considering pairs of at-
tributes. Not surprisingly, goal-oriented ap-
proaches focus only on some predefined patterns
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Figure 13 Trigger and component for Project A
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that are known to be relevant. Hence, a set of
goal-oriented approaches used to provide feed-
back to a project define the set of known patterns
in the data to look for and act upon. On the other
hand, attribute focusing is 2 mechanism to learn
about and act upon unknown yet possibly impor-
tant patterns. In this regard, the two approaches
complement each other. The subtle nature of
some of the process problems that have been de-
scribed, e.g., in the sections describing Project C,
support this viewpoint. After determining the rel-
evance of such trends, they can form the basis for
a goal-oriented feedback technique that can be
used for future projects. However, such trends
may not have been discovered by using a goal-
oriented technique.

In summary, we argue that the causal analysis
and the goal-oriented approaches may not ad-
dress certain kinds of process problems that can
be corrected by using attribute focusing. Hence,
it is not surprising that many of the experiences of
process correction in this paper were detected by
attribute focusing in projects where causal anal-
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ysis and goal-oriented approaches were also used
for process feedback. That result is discussed in
alater section on “Summarizing the experience.”
The reader who is interested in the principles un-
derlying our methodology may skip ahead to that
section. The intervening material consists of ad-
ditional experiences and does not introduce new
principles. It has mainly educational and eviden-
tial value.

More experiences from Project A

In addition to the problems previously described
for Project A, two other problems are discussed
next.

Lack of formal requirements process. The AF chart
in Figure 13 shows the cross product of the at-
tributes trigger, which captures what the inspec-
tor was looking for when the defect was found,
and component, which specifies the software
component of the product in which the defect was
found. The project team explained most of the
associations in the table without discovering a
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Figure 14 Defect type and missing or incorrect error for Project A
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E DEFECT TYPE
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3. FUNCTION MISSING 27 44 15 12 3
4. FUNCTION INCORRECT 27 56 12 15 -3
5. DOCUMENT INCORRECT 47 56 24 27 -3
6. DOCUMENT MISSING 47 44 24 21 3
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process problem. For example, the disassociation
between component Bravo and operational se-
mantics in table Item 9 was attributed to the be-
havior of component Bravo, which was meant to
merely copy blocks of storage and therefore did
not involve complex logic. Hence, most defects in
component Bravo would not be found by thinking
about the flow of logic in the operation of com-
ponent Bravo, since that operation was very sim-
ple. However, the disassociation between com-
ponent India and backward compatibility (table
Item 7) led to the discovery of a process problem.

Cause. Component India must address compati-
bility issues to ensure that customer applications
built upon previous releases of the product run
correctly on this release. However, those issues
were not addressed in component India. Hence,
few defects that pertained to compatibility were
found. Corroboration of the process problem in-
dicated (1) consensus among designers, (2) a com-
patibility requirement for the product, and (3) the
lack of compatibility features in the design of
component India to date.

Implication. Existing customer applications may
fail when the new release is installed.
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Corrective action. Component India was de-
signed for compatibility before proceeding to the
next phase, and the redesigned component India
was inspected for compatibility.

Validation of correction. Similar to the corrobo-
ration of the same process problem.

Benefir. The corrective action removes defects
and is an adjustment that prevents shipping a
product that is incompatible with previous re-
leases. It also identifies a weakness in the process
used to translate requirements to design. The
project team attributed this weakness to the lack
of a formal requirements process already noted
for Project A and, perhaps, a lack of experience
with the product on the part of some team mem-
bers.

Component-level design is incomplete. The AF
chart in Figure 14 shows the cross product of the
attributes defect type and missing or incorrect.
Table Item 3 shows that function defects are as-
sociated with missing.

Cause. This could not be determined by the team
at the feedback session. As per the model of in-
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Figure 15 Defect type during system test for Project D
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1. INTERFACE 37 13 24
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3. DOCUMENT 1 13 -1
4. FUNCTION 3 13 -9
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terpretation,® the team had to investigate that as-
sociation at a later time. The results of the inves-
tigation are given below in “Investigate.”

Implication. While no cause was found, the trend
had a clear implication: The component-level de-
sign may be incomplete. The project should not
exit the CLD phase before ensuring that all major
functionality is covered.

Investigate. The project team read the detailed
descriptions of the defects that had been classified
function and missing to try and understand the
cause of the association. They found those de-
fects pertained to a specific functionality of the
product, namely, its ability to recover from an
erroneous state. This implied that the design of
that function may have been incomplete.

Corrective action. Reinspect component-level
design of the recovery function.

Validation of corrective action. Twelve defects
were found.

Qualitative benefit. The corrective action re-
moves defects, and is an adjustment to make sure
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that the component-level design of the recovery
function is complete before proceeding to the
module-level design stage.

Quantitative benefit. The cost of corrective ac-
tion was 15 person days. The total benefit was
that, based on historical data, most recovery de-
fects that escape design are eventually found in
the field; hence, assuming 10 of the 12 defects
would have been found in the field, the total ben-
efit is 150 person days. The net benefit was 135
person days.

Experiences from Projects D and E

Problems with the design, test, and inspection
processes are uncovered in the examples from
Projects D and E.

Flawed design and test processes. The AF chart in
Figure 15 shows the distribution for the attribute
defect type, which captures information about the
nature of the error. A process problem was un-
covered when the project team noticed the large
magnitude of defects found at system test (ST)
that were fixed by correcting interfaces, and the
small magnitude of defects found at system test
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that were fixed by correcting timing and serial-
ization problems.

Cause. Function test did not adequately remove
module or component interface defects in many
components. Those defects escaped to system
test, and were overwhelming system testers.
Also, many interface defects were injected during
design and escaped to later stages.

Corroboration of the process problem indicated
that (1) each component team executed function
test for its own components, hence function test
could not adequately focus on interfaces between
component and user interfaces, (2) a low-level
design stage was not part of the formal process,
and (3) component-level design documents con-
tained little or no detail about component inter-
faces.

Implication. Interface defects, timing and serial-
ization, and other defects may remain in the prod-
uct after shipment since the time scheduled for
system test is spent removing interface problems
instead of executing true system test testcases.

Corrective action. System test was halted and
function test was re-entered. Special emphasis
was placed on function test of the components
most associated with interface problems.

Validation of correction. An additional 424 inter-
face defects were removed from the product.

Qualitative benefit. The corrective action re-
moves defects and is an adjustment that prevents
shipping a product which is poorly integrated. It
also identifies a weakness in the design process
and the test process. The process used for the
current release did not have a formal low-level
design stage, and the function test strategy fo-
cused only on component function, and not on the
relationship between components, which was to
be tested during system test. Evidently, that re-
lationship is too complex for such a process. Fu-
ture releases of the product should use a formal
low-level design stage that specifies and inspects
interfaces in detail and tests an integrated product
during function test.

Quantitative benefit. The cost of corrective ac-
tion was 424 person days at a cost of one person
day per defect. The total benefit was 1272 person
days, assuming that all 424 defects were found at
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system test at a cost of three person days per
defect, and the net benefit was 848 person days.

It should be noted, however, that the team was
aware of a project quality problem prior to using
the methodology, but they had not agreed on the
cause of the problem or the corrective action.
Thus it is not clear that the methodology was
solely responsible for all 424 discovered defects.

Inspections did not detect interface errors. The AF
chart in Figure 16 shows an association between
defect type interface and the development phase
unit test, indicating that more such defects were
found in unit test than other phases. In fact, there
is a continued increase in defect type interface as
the development progresses from the module-
level design through code inspection to unit test.
This led to the discovery of the following process
problem.

Cause. The module-level design and code inspec-
tions were not effective at detecting interface de-
fects.

Corroboration of the process problem indicated
that (1) the teams had inspected pseudocode in-
stead of inspecting the code itself. Thus, many
defects detected in code inspections are problems
with the quality of pseudocode being reported
via defect type document (see table Item 3 in Fig-
ure 16), and (2) some teams had treated the
pseudocode inspections as a combined module-
level design and code inspection, omitting inspec-
tion of the actual code and low-level design.

Implication. Function test will have difficulty
completing its scheduled test plan because of in-
terface defects, which should have been removed
earlier.

Corrective action. For subsequently scheduled
components, the inspections for module-level de-
sign and code were decoupled, and the focus dur-
ing the code inspection was completed code in-
stead of pseudocode.

Validation of correction. Defects of type inter-
face were expected to peak at code inspection
and to diminish at unit test.

Benefit. The corrective action should remove de-
fects. It is an adjustment that prevents an adverse
impact to the function test schedule caused by the
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Figure 16 Defect type and phase found for Project E
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7. FUNCTION UNIT TEST 12 42 3 5 -2
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escape of numerous inferface defects into func-
tion test. It also identifies and corrects a problem
with the inspection process, namely, the combin-
ing of module-level design and code inspections
into a pseudocode inspection.

Experiences from Projects F and G

Problems with informational messages and the
lack of complete requirements are discussed for
Project F, and untested overlay structures are
noted in Project G.

Existing compiler messages had errors. This proj-
ect team was developing a compiler. The magni-
tude of defects in the AF chart in Figure 17 that
were introduced in the old version (i.e., that are
defects in a previous version of the compiler) led
to the identification of a process problem.

Cause. Even though the relative magnitude of old
defects was small, the developers were con-
cerned that even a small number of latent defects
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would disrupt the current development schedule,
which had not planned for such defects, so they
decided to analyze them further. It was discov-
ered that a majority of the defects were associated
with the problem that developers were unfamiliar
with compiler message development guidelines
and review process. Hence, many such defects
were injected into the compiler messages.

Corroboration of the process problem indicated
that (1) apart from the defects in existing compiler
messages, many defects were injected into com-
piler messages being developed for the current
release, which supported the hypothesis that the
process of message development was suspect (for
example, 54 percent of the defects found in one of
the components being currently developed were
defects in compiler messages, while in another
component the proportion was 60 percent), (2)
most of the defects in the compiler messages were
related to incorrect terminologies used in the mes-
sages and missing description of the error recov-
ery actions of the compiler, (3) correct terminol-
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Figure 17 Phase where error was introduced for Project F
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2. OLD VERSION 13 33 =21
3. REQUIREMENTS 16 33 -17

ogies and necessary parts of compiler messages
were specified in the compiler messages devel-
opment guidelines, and (4) there was no consen-
sus among developers when compiler messages
should be reviewed during the development cy-
cle.

Implication. The compiler messages may contain
incorrect terminologies that customers do not un-
derstand, which affects the usability of the com-
piler. The structure of the compiler messages may
be inconsistent, which affects the perceived qual-
ity of the compiler. Translators may find it diffi-
cult to translate the messages into a different
national language, which will increase the trans-
lation cost of the compiler. And finally, informa-
tion developers will need to spend more time re-
viewing the compiler messages.

Corrective action. A compiler messages kickoff
meeting was held, during which information de-
velopers explained the compiler messages devel-
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opment guidelines and review process to the en-
tire development team.

Validation of correction. Information developers
found fewer defects when inspecting compiler
messages.

Benefit. The corrective action will prevent such
defects from being injected and will improve cus-
tomer usability and reduce language translation
cost. It is a process adjustment as well as a pro-
cess correction. It should improve the quality of
the current product as well as improve the pro-
cess of message development for subsequent re-
leases.

Incomplete requirements. Refer to the AF chart in
Figure 17, which shows data collected during
early component-level design inspections. The
magnitude of defects that were introduced during
the requirements stage, and had therefore es-
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Figure 18 Missing or incorrect error and whete introduced for Project F
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caped the requirements inspection, led to the
identification of a process problem.

Cause. Even though the relative magnitude of re-
quirements escapes was small, the team was con-
cerned that the requirements developers and in-
spectors did not have the appropriate level of
experience.

Corroboration of the process problem indicated
that (1) the developers created the component-
level designs based on the requirements without
even recognizing defects in the requirements, and
(2) consensus among developers who inspected
the requirements was that they had difficulties in
finding defects because the authors of the require-
ments were the more experienced members of the
team, and there is a tendency to be less critical of
the work of experienced colleagues.

The first fact is also captured by the AF chart in
Figure 18, which was generated at the midpoint of
the component-level design inspection (I/0). De-
fects introduced in the requirements stage are as-
sociated with missing in table Item 4. Such de-
fects are more likely to be fixed by introducing
new material in the requirements document than
correcting in place. One would think that the de-
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signers would have recognized that the require-
ments document was incomplete. Such was not
the case. Defects in the requirements were not
found until the component-level design inspec-
tions, which resulted in major rework of the de-
signs.

Implication. The compiler will not provide the
functionalities expected by the customers.

Corrective action. Developers worked with the
authors of the requirements document to ensure
the requirements were complete and correct, then
reiterated component-level design for the affected
areas. The work to ensure the requirements were
complete and correct included reinspecting the
appropriate sections of the requirements docu-
ment, and holding meetings during which devel-
opers explained their interpretation of the re-
quirements from a customer’s perspective.

Validation of correction. Reduction in the num-
ber of escapes from requirements inspection to
later phases was expected. Refer to the AF chart
in Figure 19, showing that escapes from require-
ments were indeed few.
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Figure 19 Phase error was introduced and found for Project F
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Benefit. The second corrective action removes
defects, whereas the first corrective action should
prevent defects from being injected, since the
less-experienced members will have a better un-
derstanding of the requirements. It is a process
adjustment that reduces the risk of shipping a
compiler with incomplete functionality. How-
ever, that risk has not been eliminated since Fig-
ure 19 shows that, while escapes from require-
ments have declined, they did occur all the way
to unit test. A better adjustment would have been
to add experienced staff to the team. This discus-
sion also identifies a weakness in the staffing pro-
cess for the product, namely, that it does not
weight the experience of personnel adequately
when deciding the composition of the team.

Untested overlay structures. The relatively large
magnitude of defects classified side effects in unit
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test data (see AF chart in Figure 20) led to the
identification of the following process problem.

Cause. The previous version of the software con-
tained overlay structures within work areas,
which the unit testers did not understand well.

Corroboration. Several problems escaped unit
testing due to the affected area not being exam-
ined. The overlay was detected with regression test
cases for component areas that were not modified.

Implication. Latent problems may still exist.

Corrective action. Since the old code was difficult
to understand and test, future projects should re-
design, recode, and retest the overlay structures.

Benefit. Exposes a potential problem for the cur-
rent project and identifies a process correction for
future projects.
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Figure 20 Trigger in unit test for Project G
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Table 3 Project interactions
Process Correction Project Number of Causal Number of Number of
Methodology Started Feedback Sessions Analysis Preventions Removals
Component-level design A 2 yes 4 5
B 1 yes 2 2
E 2 yes 1 2
F 3 yes 4 5
Unit test G 2 yes 0 3
Function test C 1 no 0 4
System test D 5 yes 0 14

Summarizing the experience

Table 3 uses the following dimensions to summa-
rize the cost and benefit of using attribute focus-
ing for the different projects in Table 1.

» Phase started, or the phase the project was in
when the team started using the process cor-
rection methodology

* Number of feedback sessions held, where each
feedback session lasts about two hours
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* Formal causal analysis used or not used (yes or
no)

¢ Number of preventions, or the number of issues
that led to defect prevention measures for the
current release

¢ Number of removals, or the number of issues
that led to defect removal measures for the cur-
rent release

What the table indicates is summarized in the fol-
lowing four points.
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1. The methodology identifies and corrects pro-
cess problems in different kinds of projects.
This is the main result discussed in this paper
and is evident from Table 1 and the two right-
most columns of Table 3.

. With regard to the current release, projects
that start earlier benefit by the prevention and
removal of defects, while projects that start
late benefit only by the removal of defects (see
Table 3). All projects benefit by the prevention
and removal of defects in future releases as
evidenced by the experiences in this paper
(read the sections with the heading “Benefit”
for each experience).

. The use of other techniques does not appear to
reduce the effectiveness of the methodology.
See Table 1 (the tracking tools used are sug-
gestive of the kinds of goal-oriented analyses
used by the teams) and Table 3 (see the column
“Causal Analysis”). This supports the argu-
ment in the section of this paper called “Goal-
oriented approaches’ that our methodology
complements other defect-based approaches
for in-process correction.

. Let us understand what the above results tell
us about our methodology in the general con-
text of project management and control.
Clearly, a goal of the management of the dif-
ferent projects described in Table 1 was to
identify and correct process problems such as
those presented in this paper. But those prob-
lems remained unidentified and uncorrected
until the attribute focusing feedback sessions.
All projects described in Table 1 were involved
in the actual production of major software
products. We can assume that the project
teams and their management did the best they
could do, and therefore conclude that their ef-
fort is representative of current practices in
project management and control. That conclu-
sion is also justified by the fact that the
projects in Table 1 were drawn from six sites
separated by considerable geographical dis-
tances and engaged in very different lines of
business. Therefore, one may compare our
methodology against the effort of the manage-
ment of the different projects to conclude that
it can complement current practice in project
management and control.

Model of interpretation and correction

Finally, the lessons of experience are incorpo-
rated into the methodology to build a complete
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model of correction. AF, as described in Refer-
ence 9, is a general approach to knowledge dis-
covery that can be applied to domains other than
software engineering. As such, it does not specify
the exact process one uses in the application do-
main to discover knowledge, or to implement an
action in the physical domain once knowledge is
discovered. It merely states that the analyst re-
lates the items in the legends of the selected
charts to the domain—which leads to the discov-
ery of knowledge and the implementation of ac-
tions based on this knowledge. Based on the
experience of using AF as a feedback mechanism,
the following model of correction has evolved for
defect analysis. The steps of the model corre-
spond to the dimensions used to present the ex-
periences in preceding sections, and were illus-
trated in Figure 4.

1. Identify a problem.

* Discuss a trend—the presence or absence of
certain items in the table of one or more
charts.

— Discuss the possible cause of the trend

— Corroborate the cause with the team

— Infer the result if a corroborated cause is
not acted upon

* Possible outcomes
— Problem identified—continue
— Determined cause is not a problem—stop
— The cause could not be determined—sam-

ple defects that correspond to the trend
and study written descriptions to deter-
mine cause

2. Act to correct the problem.

3. Validate a corrective action.

e Did the corrective action have the desired
effect?

— Plan—what is the anticipated change in
analysis of classified defect data? Other ef-
fects?

- Observe the anticipated change

* Outcome
- Change observed—continue
— Change not observed—go back to identify

4. Assess the corrective action in terms of:

¢ Cost—labor, dollars

* Benefit—additional defects discovered or
prevented, cycle reduction

» Nature—does it truly solve the problem or is
it merely expedient?

» Exposure—is the process correction expe-
dient?
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5. Report process corrections and exposures to
appropriate parties:
* Other teams on project
* Lab-wide process team
¢ Management

Step 1 is undertaken during the attribute focusing
feedback session. The people who will carry out
corrective actions or investigate problems are
also identified during this session. The other steps
are carried out after the session, and are usually
coordinated by a member of the project team.

The use of the model is quite intuitive as one step
leads naturally to the next. It is possible to get a
feeling for this by reading the experiences in the
section “Experiences from Projects B and C”” in
conjunction with the model description.

Conclusion

Experiences with a software process correction
methodology that uses machine-assisted data ex-
ploration of classified defect data have been pre-
sented. The experiences were analyzed to under-
stand the scope and value of the methodology. It
was shown that the methodology has been used
successfully by very different projects, thereby
suggesting that it does not impose restrictions on
the kinds of projects that may use the approach.
The projects used the methodology to remove la-
tent defects, to prevent the injection of defects,
and to identify near-term process adjustments
and long-term process corrections. It was shown
that those benefits translate to substantial labor
savings and quality improvement. Finally, the
methodology was shown to address process prob-
lems that are not addressed by current practices.
On the basis of the above evidence, we conclude
that the software process correction methodology
is an important advance that can have a major
impact on software development in the near fu-
ture.
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