Maximizing leverage
from an object database

With increasing frequency, object database
management systems (ODBMSs) are being
used as a persistent storage framework for
applications. This paper shows that ODBMS
frameworks provide a natural repository for
supporting object-oriented systems, because
they store and manage objects as their atomic
units. In addition, these frameworks can offer a
great deal of leverage to the developers of
applications with the integration of two distinct
paradigm shifts: the object-oriented development
model, and the direct-reference storage model.
Software developers who understand the
implications of both paradigm shifts are more
likely to use the technology effectively and
realize most or all of the potential leverage.
Highlighted is ObjectStore™ from Object Design,
Inc., which is available as part of the IBM object
database solution.

Over the past five years, developers of com-
plex software systems have turned, with in-
creasing frequency, to object database man-
agement systems (ODBMSs) to satisfy their
requirements for persistent storage management.
Today there are many deployed applications that
are based on ODBMS technology. These appli-
cations span a wide range of problem domains,
including engineering design, geographical in-
formation systems, office automation, and tele-
communications, to name a few. In addition, a
large percentage of commercial software devel-
opment companies today either have a funded de-
velopment project that incorporates this technol-
ogy, or are in the process of evaluating this
technology for use in an upcoming project.

This paper discusses each of the underlying par-
adigm shifts upon which today’s 0ODBMS technol-
ogy is built and focuses on the properties of ap-

280 ALFRED

by C. Alfred

plications that this technology serves best. The
first section briefly introduces the concepts of ob-
ject-oriented modeling, database management
systems, and paradigm shifts. The section “Ob-
ject Model Sources of Leverage” explores how
the principles of object-oriented modeling sup-
ported by an ODBMS provide benefit, and the
section “Direct-Reference Storage Model”
discusses how the storage model used in
ObjectStore** offers extra leverage. The “Com-
parison of Storage Management Technologies”
section examines the synergy between these two
sources of leverage, and draws a contrast be-
tween relational database management system
(RDBMS) and ODBMS technologies. The object-ori-
ented development model and the direct-refer-
ence storage model are available in the Object
Design, Inc. product, ObjectStore, as part of the
IBM object database solution for its customers.
Finally, the section “Impact of ODBMS on Soft-
ware Development Process” helps to examine the
impact on the overall development process of us-
ing a direct-reference, object-oriented, persistent
storage framework.

Paradigm shifts and their leverage

This section describes what an object database
management system is, and identifies the para-
digm shifts on which the technology is based.

©Copyright 1994 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must
be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

Object databases as a source of leverage. A storage
management system is a facility that provides per-
sistent storage for data items used by one or more
computer applications. A database management
system (DBMS) is a type of storage management
system that manages the logical definition and
physical structure of that data and provides read
and update access to the data. A DBMS helps man-
age distributed data by making the physical loca-
tion of the data accessed by an application trans-
parent to that application. Finally, a DBMS
protects the referential integrity (the consistent
application of changes to relationships) of the
data from hardware or software failures, or from
conflicting access by multiple concurrent appli-
cations.

Objects are program entities that have identity
and play one or more roles in some larger system.
They have responsibilities that are consistent
with those roles, and collaborate with other ob-
jects (requesting and providing services) to carry
out those responsibilities. Objects have a life cy-
cle; they are created, they are moved through one
or more well-defined states, and they are de-
stroyed. Objects also store information about
themselves and about the identity of other related
objects.

An ODBMS is a database management system that
stores and manages objects as its atomic units. An
ODBMS framework is an object database manage-
ment system that is embedded into an application
(or set of related applications) by linking in a cli-
ent library. This library has an application
programming interface (API)—that is, a set of
methods on related classes, or a set of related
free-standing functions—that is called by the
application in order to access services from the
ODBMS.'

ODBMS frameworks such as ObjectStore, Objec-
tivity/DB**, Versant**, and GemStone**, to
name a few, provide a very significant source of
leverage to developers of complex applications.
Frameworks like these provide a persistent stor-
age mechanism that fully supports the object
model as a way of representing a computer sys-
tem. In other words, objects are the unit of per-
sistent storage, and objects that reside in the da-
tabase are full-fledged entities that can be used in
application programs, just like their counterparts
that reside in transient storage (i.e., a data seg-

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

ment, stack, or dynamically allocated storage for
a process).

ObjectStore, in particular, offers another source

of leverage. Almost all other database systems
are based on a read/write storage model. The Ob-

ObjectStore extends the
domain to be any computer
attached to a network.

jectStore Virtual Memory Mapping Architecture
(VMMA)? is based on a direct-reference storage
model where object layout in memory is mapped
directly onto a disk (the concept used with the IBM
Application System/400* [AS/400*] architecture).
Typically, operating system support for direct-
reference storage has been limited to the domain
of processes that execute on the same computer.
ObjectStore takes this concept and extends the
domain to be any computer attached to a net-
work. In other words, client application pro-
cesses can execute on any node in a network,
access one or more databases that reside on any
node in the same network, and map regions of
those databases directly into the virtual address
space of their process.

In addition to this, client applications under Ob-
jectStore Release 3.0° running on entirely differ-
ent machine architectures can have shared access
to the same objects, as long as the two applica-
tions were compiled by compilers that use the
same object layout. This means, for instance, that
an application running under Operating Sys-
tem/2* (0S/2*) on an Intel 80486**-based com-
puter can transparently share data with another
client application running under Advanced Inter-
active Executive* (AIX*) on a RISC System/6000*
system.

Leverage and paradigm shifts. At this point, it is
appropriate to point out that ObjectStore (like any
other framework) offers its potential leverage to
application developers, not end users. This lever-
age magnifies the strength of the developers and
amplifies the power of their efforts. In this way,

ALFRED 281

Table 1 Paradigms, paradigm shifts, and paradigm mismatches

Paradigm

Paradigm Shift

Paradigm Mismatch

According to Steven Covey, “the
word paradigm comes from the
Greek. It was originally a scientific
term, and is more commonly used
today to mean a model, theory,
perception, assumption or frame of
reference. In a more general sense,
it’s the way we ‘see’ the world—not
in terms of our visual sense of sight,
but in terms of perceiving, under-
standing, interpreting . . . a simple

A paradigm shift is triggered by a
significant technological or
sociological breakthrough that
enables a whole new frame of
reference. The invention of the
computer, the advent of the
airplane, and the Civil Rights
Movement are all examples of
breakthroughs that triggered massive
paradigm shifts in our society during
the past century.

A paradigm mismatch occurs
whenever a breakthrough triggers a
paradigm shift, but the pre-
breakthrough frame of reference is
retained. An example would be
trying to operate an airplane as if it
were an automobile. (Imagine
someone headed from New York
City to Atlantic City for the
weekend, taxiing a twin-engine
plane down the high-speed lane of

way to understand paradigms is to
see them as maps.” (The Seven
Habits of Highly Effective People,
Simon & Schuster, NY, 1989, p. 23.)

the highway, and approaching a toll
plaza.) An equally humorous
example would be trying to develop
a computer system using an
ODBMS as if it were an RDBMS.

it is like the car jack in the trunk of an automobile.
When used correctly, a small amount of effort
(perhaps the effort needed to lift 30 pounds to a
height of six inches above the ground) is trans-
formed into the power to lift 3,000 pounds to the
same height.

Technological breakthroughs, such as the direct-
reference storage model and the object-oriented
development model, produce paradigm shifts. In
other words, they change the technical ground
rules so significantly that they require a new way
of looking at things. Trying to incorporate the
technological breakthrough while retaining an old
frame-of-reference is called a paradigm mis-
match. In the best case, a paradigm mismatch
results in the loss of most or all of the potential
leverage. In the worst case, the paradigm mis-
match can result in “reverse leverage™ that mag-
nifies undesirable effects into serious problems.
Returning to the car jack example, if the car is
stopped on a hill (with the front of the car facing
uphill) and blocks are not placed behind the
downhill tires, the effort needed to lift 30 pounds
can be transformed into the power necessary to
launch a runaway, unmanned 3,000-pound pro-
jectile downhill. Table 1 summarizes the thoughts
about paradigm shifts and paradigm mismatches.

Object model sources of leverage

In the previous section, I asserted that full sup-
port for the object model in an ODBMS was a major

282 ALFRED

source of its potential leverage. In this section, I
offer four reasons to help justify this position.

Complexity. There are several effective ways to
model complex, static systems. Modeling com-
plex, dynamic systems is a much more challeng-
ing problem. Please note the emphasis on the
word dynamic, which clearly implies motion and
change over time. Without an effective way to
understand a system’s dynamic behavior, a series
of interdependent external events and the result-
ing impact of these events on subcomponents of
a system can be quite confusing.

Consider a team sport like ice hockey as an ex-
ample. When the teams are lined up for a “face-
off,” the individual players and their interrela-
tionships are apparent, even to someone
watching the game for the first time. Once the
puck is dropped and play begins, the resulting
motion can seem like a chaotic blur. The differ-
ence between a spectator who is a novice and one
who is experienced is the ability to understand the
roles of the respective players, and how the mem-
bers of a team collaborate within the context of
their roles to forward the purpose of their team
(i.e., score more goals than their opponent). The
accompanying sidebar on the object model ex-
plores this notion in more detail.

In my view, the real strength of object-oriented

modeling is that it is a programming paradigm that
reflects how people think, as opposed to how

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

computers work. While this benefit is far more
intangible than tangible, its importance should
not be underestimated. A development process
that is organized around a model that mimics how
people think about complexity, will improve the
quality of communication among its participants.
End users and developers can discover a common
language for describing the requirements and
overall behavior of a system. Two developers can
more easily exchange ideas about how the system
might be structured. Also, as developers are re-
placed over time, the presence of a well-defined
object model makes it easier to understand the
intent of the original developers.

Stability. Over time, the functions of a system are
likely to change significantly, while the high-level
objects in the problem domain remain relatively
constant. For instance, a favorite word processor
might add spelling and grammatical checking, but
it still remains organized around documents,
paragraphs, and format styles.

A system that has its foundation built on top of
stable aspects will be more able to withstand
change. Quality improves when developers are
able to localize their changes to small, relatively
independent parts of a complex system. Another
way of stating this is that as the scope of a change
widens, the risk of error increases, often at a
faster rate. This is because one or more of the
areas needing change might be forgotten, or the
change might have undesirable side effects.

It is important to keep in mind that use of an
object-oriented development process is an impor-
tant, but not sufficient step toward improving the
stability of a system over time. In order to achieve
maximum stability, a system must be designed
properly and make effective use of two related
concepts: abstraction and encapsulation.

Abstraction supports the definition of classes that
represent (or model) concepts in the real world,
by focusing on essential properties while ignoring
inessential details. Encapsulation exposes the es-
sential behaviors of an abstraction, while hiding
the implementation details of those behaviors and
the internal structure of the abstraction’s data at-
tributes. Encapsulation also helps to reduce cou-
pling between interdependent components of a
system.

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

Abstraction within a system typically occurs at
multiple levels. One example of this is the notion
of vertical layering. A system can be decomposed
into a set of subsystems, each of which is a dis-
tinct entity that has specific responsibilities and
plays a well-defined role at a high level of ab-
straction. In turn, each subsystem can be further
decomposed into its own distinct modules, at
lower levels of abstraction. Each component at
each level of abstraction presents an external in-
terface that represents the services it provides to
support its responsibilities, and hides the details
of how it carries out those services from its col-
laborators. This tactic serves to reduce unneces-
sary coupling between components of a system.
A second example of multiple levels of abstrac-
tion is closely tied to the concept of polymor-
phism, which literally means “many things.” This
notion will be discussed in more detail in a later
section.

Wirfs-Brock* describes a design methodology
called “responsibility-driven design that focuses
on the definition of the external interface to a
class (or subsystem) as a set of contracts. These
contracts, in turn, are composed of a set of related
methods (services) offered by that class as part of
its external interface. Each contract represents an
agreement between the class and some subset of
its collaborators, regarding the responsibilities of
both parties. Over time, a class may enter into
new contracts, or may amend its contracts by
agreeing to provide additional services, but
should never renege on an existing contract.

In essence, contracts between classes define a
stable interface protocol. For example, the Ob-
jectStore collections class library offers contracts
for:

e Collection maintenance (insert, remove, re-
place, etc.)

¢ Querying (query, query_pick, exists, etc.)

e Status inquiry (cardinality, empty, has_index,
etc.)

¢ Index maintenance (add_index, drop_index,
has_index)

Note that the relationship of methods to contracts
is many-to-many. A contract usually is composed
of several methods, and a method (i.e., has_in-
dex) may be part of more than one contract.

ALFRED 283

The object model reflects how people think about complex,

n the late 1970s, T. Chen introduced an entity/ PROJECT TEAM
n relationship modeling method that provided an

effective way to represent the static structure of data
(Entity Relationship Approach to Systems Analysis
and Design, North Holland, Amsterdam, 1979). Using
this method, information analysts identified a set of
entities and modeled their semantic relationships.

The end products of this method (E/R diagrams)

were useful as the logical data mode! for a set of
related application programs. Entities were represent-
ed as a row in a relational table, attributes were
represented as columns in the table, and relationships
highlighted the requirement for foreign keys needed to
join related tables.

Iso in the late 1970s, E. Yourdon and
A T. DeMarco introduced structured
analysis methods designed to model the
dynamic behavior of a system as a network
of interconnected processes, where each
process transforms one or more input data
streams into one or more output data streams
(T. DeMarco, Structured Analysis and System
Specification, Yourdon Press/Prentice Hall, Engle-
wood Cliffs, NJ, 1978). In the mid1980s, D. J. Hatley
and |. A. Pirbhai extended these methods to be
suitable for real-time control applications by adding
control flows and process state, and linking state
transitions to process activation (Strategies for Real-
Time System Specification, Dorset House, New York,
1987). In both cases, entities and their interrelation-
ships were represented either as labels on data flows
or invisible components of one or more data stores. It
was quite difficult to represent or visualize the connec-
tion between dynamic, process-oriented behavior and
static, data-oriented entities and relationships.

re recently, object-oriented modeling helps
ms to package the concepts of entities, their
behaviors, and the chain reaction of events that
drives these behaviors. It does this by focusing
attention on entities and their roles, responsibilities,
behaviors, attributes, associations, and states. It
merges data-oriented, function-oriented, and event-
oriented decomposition methods into a single,
unified approach to modeling the behavior of large,
complex systems.

' PROJECT - .
" MANAGER -

PROGRAMMER

PROJECT
LEADER

TECHNOLOGY
SPECIALIST

PROBLEM
DOMAIN .
EXPERT

1 s evidence that people naturally think about
1 A the dynamic behavior of a system in an object-
oriented way, consider the way that you think about a

software development organization. A software devel- some set of intended users. The software development
opment organization is a part of some larger corpora- organization employs a number of people, who collabo-
tion, and it receives requests to design and develop rate in a (mostly) coordinated way to respond to these

computer software to solve some set of problems for requests for service.

284 ALFReD IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

dynamic systems

Je make sense of the behavior of the system (the

W work flow of the software development organi-
zation) by decomposing it into component parts (i.e.,
project teams, departments, etc.) and understanding
the patterns of behavior of these components. As we
study project teams, we notice similarities and differ-
ences among them. Each team is organized a bit dif-
ferently, but most teams seem to be organized
around a similar set of roles. Project manager, project
leader, problem domain expert, requirements analyst,
system architect, technology specialist, and program-
mer are examples of roles that commonly occur in
medium- to large-scale projects.

he main benefit of defining roles is that it helps
T us to understand the dynamic behavior of a

large, complex system by breaking it up into smaller,
more comprehensible pieces. Roles represent pat-
terns of behavior that occur commonly within similar
types of systems or subsystems. Roles also help to
identify collaborations inside the system. Each role is
played by one or more entities (objects) and each enti-
ty may play multiple roles.

n each interaction between a pair of entities, it
n usually is possible to identify the role that each
participant is playing. For example, project managers
ask project leaders for estimated completion dates of
project deliverables; project leaders work with system
analysts to identify component tasks; and project
leaders ask programmers to estimate the time needed
to complete one or more tasks.

ntities that play a specific role carry a set of
responsibilities that are consistent with that role.
Each responsibility can be thought of as a set of relat-
ed behaviors that the entity will exhibit in response to
a request from an entity playing a related role. For
example, a programmer has the responsibility to
develop code for some component of the completed
system. Interaction must occur with designers to
understand exactly what the component must do and
how it interacts with other components, source code
must be written in the chosen programming language,
the source code must be compiled and language syn-
tax errors fixed, and the source code for unit tests
must be written, and so on.

n order to carry out these responsibilities, an

IRl entity must possess knowledge. This knowledge
may be represented by attributes (facts remembered
by the entity) or associations (connections to other
entities that can help when needed). In certain cases,
an entity must maintain knowledge of its own state of
being, especially when this state affects its behavioral
response to a stimulus.

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

Component reuse. One of the often cited benefits
of object-oriented technology is that it facilitates
technology reuse. The principles of abstraction
and polymorphism are important for this. Useful
class libraries define interfaces to and implement
behavior for abstractions such as strings, dates,
collections, vectors, matrices, etc. Since these
abstractions are commonly used in a wide range
of programs, the functionality of the class library
need not be separately implemented in each
one. Examples of popular generic class libraries
that are in widespread use today include
Tools.h++** and Math.h++** (from Rogue
Wave), the NIHCL** libraries (from the National
Institutes of Health), and the Booch Compo-
nents**.

Generic class libraries facilitate small-scale inte-
gration. A developer picks and chooses individual
components that the developer wants to reuse in
his or her application. These individual compo-
nents may be combined to form higher-level con-
structs. For example, a symbol table may be im-
plemented using a Set class and a String class.

Closely related to the concept of a generic class
library is the concept of a framework. Booch®
describes a framework as a “collection of classes
that provide a set of services for a particular do-
main; a framework thus exports a number of in-
dividual classes and mechanisms that a client can
use or adapt.” Booch goes on to point out that
frameworks may either be domain-neutral (they
apply to a wide variety of applications) or domain-
specific. The Microsoft (Corp.) Foundation Class
Libraries** and the ObjectStore class libraries
are examples of domain-neutral frameworks. A
bond price/yield library and a geographical infor-
mation library are examples of domain-specific
frameworks. Where generic class libraries pro-
vide small-scale integration, frameworks facili-
tate large-scale integration. Frameworks usually
are more complex than generic libraries, but they
also provide a great deal of additional leverage.

Simplification. This benefit is closely related to
the previous three. A system that is more under-
standable, stable, and loosely coupled is easier to
enhance. In addition, the principle of polymor-
phism makes it easier for developers to add new
functionality by specializing or extending existing
classes. Taylor® describes polymorphism as “the
ability to hide different implementations behind a

ALFRED 285

common interface, simplifying communications
among objects.”

In an object-oriented model, each object is an in-
stance of some class. Different classes, however,
may be related by inheritance. In other words,
one class (called a derived class) is a specializa-
tion of another more general class (called a base
class). Base classes and derived classes exist at
different levels of abstraction. This distinction is
useful for any object that collaborates with an
instance of the derived class, because it can
choose to interact with the object as an instance
of whichever class provides the appropriate level
of abstraction. This tactic simplifies system en-
hancement by enabling the addition of a new spe-
cialization at some lower level of abstraction,
without affecting the components of the system
that interact with instances of that class at any of
the higher levels of abstraction.

For example, consider a class that represents the
job of sales vice president. This job can be viewed
at several different levels of abstraction, including
that of employee, manager, executive, and vice
president. An instance of this class would repre-
sent a specific sales vice president for a specific
company during a specific interval of time. This
object interacts with several other objects during
its lifetime. Some of these, like the United States
Internal Revenue Service, are interested in inter-
acting with the object as an employee (i.e., by
withholding payroll taxes). Others, such as a
member of the Human Resources department,
may interact with the object as a manager (i.e.,
through communication of equal employment
policies). Still others, like the Corporate Counsel,
interact with the object as an executive (i.e., via
signature authority on contracts).

Direct-reference storage model

In an earlier section, 1 asserted that the use of a
direct-reference storage model in ObjectStore
was a major source of its potential leverage. In
this section, I hope to elabnrate on and justify this
claim.

Read/write versus direct reference. In a read/write
storage model, the memory-resident objects (data
structures in a non-object-oriented paradigm)
have an identity or layout that differs from the
persistent representation in the database. Three

286 ALFRED

variations of this read/write storage model are im-
portant:

» Nondatabase file systems represent the com-
plex in-memory data structures in a much less
general form in persistent storage (than
RDBMSs). Sometimes this form is quite similar to
the in-memory form (to minimize access time).
Other times, it is a highly compressed form (to
minimize storage requirements). In both cases,
a typical access pattern is to read all or part of
a file into memory, update the copies, then
write the results back. Spreadsheet models and
word-processing documents are two common
examples.

e An RDBMS decomposes complex data struc-
tures into representations made up of simple
two-dimensional tables (a process called nor-
malization). Component pieces of the original
data structure are scattered across the various
tables. On access, the original data structure is
reassembled by locating the components by
performing associative lookup operations on
each of the tables, searching for the items that
match a particular attribute value, then com-
bining the table subsets into a single result (a
process called joining). On update, the inverse
occurs.

e Many ODBMSs model the complex in-memory
data structures in a very similar form in per-
sistent storage, but link related objects using
handles instead of pointers. Handles are unique
object identifiers that must be opened or read
before the underlying object can be used.

Direct-reference storage (otherwise known as
memory-mapped file [/0) is a technique that al-
lows a contiguous region of a file to be mapped
directly into the address space of one or more
processes. Updates to a virtual memory address
within this region are translated by the operating
system into updates to the underlying file. In
short, memory-mapped files are used in place of
the swap device, as a named backing store for
virtual memory. This concept will be quite famil-
iar to AS/400 veterans.

An ODBMS like ObjectStore, which is based on the
direct-reference storage model, uses the same ob-
ject layout in memory as on disk. In addition, the
persistent and transient objects have the same
identity (i.e., one is not a copy of the other). In-
terobject links are represented with ordinary pro-
gramming language pointers, although the ODBMS

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

Table 2 Domains for information sharing in direct-reference storage models

Application Type

Domain for Accessing Shared Information

Single-threaded application

Multi-threaded application

Two or more single-threaded applications with
shared memory or memory-mapped 1/O

Two or more multi-threaded applications with
shared memory or memory-mapped 1/O

Single-threaded ObjectStore client applications

Multi-threaded ObjectStore client applications

o No sharing

« Single process, single machine
o Each thread has its own stack, but shares a common heap
and data segment

« Cross-process, single machine

« Each process has its own stack, heap, and data segment

« Across processes, sharing is limited to the contents of a
memory-mapped file or some other form of shared memory

« Cross-process, single machine

« Each thread has its own stack

« Threads in the same process share a common heap and data
segment

« For threads in different processes, sharing is limited to the
contents of a memory-mapped file or some other form of
shared memory

« Cross-process, cross-machine

 Each process has its own private stack, heap, and data
segment

« Persistent objects in any database may be shared

« Cross-process, cross-machine

« Each thread has its own stack

o Threads within the same process share their heap and data
segment

« Threads in different processes may share persistent objects
in any database

« Threads in the same process may need to take special action
to ensure concurrency control

may map the pointers between process-specific
and process-neutral form (known as “relocation”
or “swizzling”).

Shared access to persistent objects. As was men-
tioned earlier, a direct-reference storage model
provides shared access to objects by concurrently
running threads of control. The various types of
direct-reference storage models differ from each
other primarily in the domain over which shared
information is accessible. Table 2 shows the dif-
ferent kinds of models along with the domain for
accessing shared information.

Another important point to note here is that Ob-
jectStore treats persistence as another kind of
storage class, not as a behavior to be inherited
from some special base class. This has several
important ramifications. First, it means that any
type of object can be stored persistently, includ-
ing all of the types that are built into the program-
ming language. Second, it means that the decision

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

about whether an object is persistent or transient
is made at the time the object is allocated. In ei-
ther case, the storage layout of the object is the
same. In almost all cases, exactly the same
method code will work on both persistent and
transient instances. The three noteworthy excep-
tions to this rule are:

1. All access to persistent objects must be per-
formed inside a transaction (for multiprocess
concurrency control reasons). Transient in-
stances may be accessed at any time (i.e., in-
side or outside a transaction).

. Persistent objects may not (by definition) point
at transient objects outside of a transaction,
and vice versa.

. Method code for a class that allocates in-
stances of related classes must include a de-
cision about where to locate these instances
(typically, the correct choice is to allocate in
the same area of the database as the parent).

ALFRED

ObjectStore handles access and locking of per-
sistent objects in a very transparent manner.
When ObjectStore initialization occurs, a contig-
uous region of virtual address space for a process
is reserved as the location where persistent stor-
age will be mapped during a transaction. At the
start of a transaction, the access mode of all pages
in this region is set to no-access. When reference
to a pointer into the persistent storage region is
eliminated, a page fault occurs. The ObjectStore
client library handles the fault, and is able to de-
termine the 96-bit-wide database address that cor-
responds to the faulting address. It sends a re-
quest to the appropriate server, seeking to lock
and fetch the desired page. If the page is avail-
able, the server grants the request and returns the
page. The ObjectStore client makes some adjust-
ments to the contents of the page, sets the pro-
tection to read-only, and returns from the fault
handler.

Similarly, when the contents of the page are mod-
ified, another page fault occurs. This time, Ob-
jectStore merely needs to have the server upgrade

the lock. On success, the page protection is
changed to read-write and the fault handler re-
turns. The fact that most of the real work per-
formed by the ObjectStore client library is hidden
inside a page fault handler is what gives the Ob-
jectStore API its nonintrusive “look and feel.”

Database functionality. ObjectStore provides
transparent access to objects in persistent stor-
age, and supplies traditional database functional-
ity to accompany it. This includes:

Locking support to prevent inconsistent up-
dates by concurrently running processes that
access the same data

Transaction commit/abort semantics (i.e., ei-
ther all changes commit or none commit), in-
cluding a two-phase commit protocol to coor-
dinate updates affecting databases spanning
two Or more servers

Automatic failure recovery on server restart,
thereby preserving a transaction-consistent
database

Query-style access using attribute values (i.e.,
associative lookup)

Evolution of the physical object layout in a
database when the underlying schema is
changed

288 ALFreD

In addition, some functions that are not com-
monly required of a DBMS are included as well:

* Ability to store and access multiple versions of
a group of objects in order to preserve the at-
tribute values and interobject associations as of
a particular point in time
Automatic maintenance of both sides of an in-
terobject relationship whenever one side
changes (for example, if John Doe changes from
working at ABC Company and starts a new job
at Xyz Company, a change to the link from John
Doe to his employer will automatically remove
John Doe from the ABC set of employees and
insert him into the XYZ set of employees)

Minimize run-time performance overhead. In a di-
rect-reference storage model, persistent objects
have exactly the same structure as transient ob-
jects. As a result, the processing overhead for
accessing a page of persistent storage exceeds the
raw cost of locking and transferring that page by
just a small percentage. This additional overhead
consists of some minor adjustments made to the
contents of the fetched page by the ObjectStore
client library during the page fault handler. These
include fixing up pointer values from process-
neutral form to correspond to the address space
setup of the accessing process, and matching the
byte ordering and floating-point representation to
the machine architecture requirements of the ac-
cessing process.

By contrast, in a read/write storage model such as
the one used by commercial RDBMS products,
when you access the database, the result is re-
turned as a relational table (or a cursor on a re-
lational table). This is not a form that is useful to
an object-oriented programming language such as
C+ + or Smalltalk. In order to put the data into a
useful form, one or more transient objects must
be allocated and constructed from each row of the
query result. This can be a very expensive trans-
formation, especially if complex interobject as-
sociations must be re-derived from the values of
joined fields.

Caching of objects. As was mentioned earlier, an
ObjectStore application typically accesses a
database by taking a page fault in the region of
virtual address space reserved for persistent ob-
jects. The ObjectStore client library handles the
page fault by having the appropriate server lock
and fetch the page. Once a page has been ac-

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

cessed within a transaction, following any other
pointer onto that page will be just as fast as re-
solving an ordinary pointer to transient memory.
This is a very crucial point to keep in mind for
computationally intensive applications.

In addition to caching pages referenced multiple
times within the same transaction, ObjectStore
also tries to cache pages that are used in succes-
sive transactions. The success rate of this cross-
transaction caching depends on the physical
structure of the database, and the access patterns
of concurrent clients. Read-only pages may re-
main cached as long as no other client process is
trying to update them. Updated pages may remain
cached as long as no other client is trying to read
them.

Comparison of storage management
technologies

In the preceding sections, we have explored the
primary sources of leverage available from an
ODBMS like ObjectStore. A complete coverage of
the sources of leverage available from other stor-
age management technologies, such as relational
databases and Compound Document Architec-
tures, is beyond the scope of this paper. How-
ever, a reader who is familiar with these technol-
ogies is likely to observe that each one is based on
a fundamentally different paradigm. As a result, it
is reasonable to conclude that there are classes of
applications for which different subsets of these
storage technologies are well suited. For some
classes of applications, one of the technologies
will be a significantly better fit than the others.
For other classes of applications, more than one
of the technologies might be capable of providing
an equally acceptable solution.

Based on this conclusion, it follows that the stor-
age technologies complement each other, and a
system of related applications may use more than
one (if not all) of these technologies in combina-
tion. The purpose of this section of the paper is to
assess the strengths of the respective storage
technologies, with the goal of helping the reader
to assess the suitability of each of the storage
technologies to support the requirements of a spe-
cific kind of application.

How they add value. In order to put the compar-

ison of the different storage technologies into con-
text, I will start with a metaphor. In many ways,

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

the capture and transformation of raw data into
useful knowledge is similar to the capture and
transformation of raw crude oil into useful petro-
leum-based products. These similarities exist in

The use of multiple
storage technologies may
complement each other.

spite of the fact that the former represents the
processing of intangible goods, while the latter
represents the processing of physical commodi-
ties. Since it is often easier to understand tangi-
ble, physical processes, a metaphor such as this
one can add to our understanding of the nature of
less tangible, abstract processes.

The “crude oil” metaphor. Crude oil is a raw ma-
terial that is the primary source of a wide variety
of useful end products. These products range
from fuels such as gasoline and home heating oil,
to lubricants such as grease and motor oil, and to
derived materials such as plastics, synthetic fi-
bers, and other polymers.

It is interesting to note that for some of the types
of end products, the raw material does not pos-
sess the essential characteristics of the derived
product. For example, crude oil in its raw form
cannot be used as a substitute for plastic or a
synthetic fiber. However, for other types of end
products, the raw material also possesses the es-
sential characteristics of the end product. For ex-
ample, fuels are burned to produce energy, and
Iubricants are used to reduce friction. However,
even in these cases, it is useful to note that the raw
material is less effective than the end products for
which it could be a substitute. Crude oil burns,
but not nearly as efficiently as gasoline or home
heating oil. Also, crude oil is slippery, but is also
too sticky to provide the viscosity of motor oil or
grease.

The obvious conclusion here is that while crude
oil is a very valuable natural resource, the vast
majority of its economic value comes from its

ALFRED 289

transformation into some other more useful form.
This added value comes from one of three activ-
ities:

* Processing. This activity represents the steps
that actually transform the raw material into an
intermediate form, or transform any of the in-
termediate forms into another intermediate
form, or a useful end product.

* Transportation. This activity represents the
steps that move the raw crude, or any of its
intermediate or end products, to a more useful
location.

* Storage. This activity represents the contain-
ment of the raw crude, or any of its intermediate
or end products, during the time period between
when it is produced and when it is used or con-
sumed.

Implications. It is useful to observe, at this point,
that the primary source of added value is pro-
cessing. Transportation and storage each provide
secondary value. The value contribution of trans-
portation depends on the extent to which it im-
proves the effectiveness of a related processing or
consumption step. The value contribution of stor-
age depends on the extent to which it improves
the effectiveness of a related transportation, pro-
cessing, or consumption step.

This observation also applies to capture and
transformation of raw data into useful knowledge.
In this set of activities, processing is the primary
source of added value. Intra- or inter-process
transportation and storage add secondary value.
As with crude oil, this value increases to the ex-
tent that the transportation or storage activity in-
creases the effectiveness of the processing it
supports.

The implication of the crude oil metaphor is that
transportation and storage are both means to an
end, rather than ends in and of themselves.

For evidence that this is true, consider the fact
that pumping home heating oil from a storage tank
into an oil truck, transporting it to your home, and
pumping it into the fuel tank that supplies your
furnace is a service worth paying for. By contrast,
transporting raw- crude oil from the wellhead to
your home and storing it in a tank has virtually no
value. This implication also applies to the trans-

290 ALFReD

formation of raw data into knowledge. Storage
management technology should be viewed as a
means to an end, and should not be considered as
an end in itself, in isolation of the types of pro-
cessing that it is intended to support.

Limitations. As with any metaphor, the crude oil
metaphor has its limitations. While the process of
transforming crude oil into useful petroleum-
based products is similar to the process of trans-
forming raw data into knowledge, these processes
are not identical. In particular, the transformation

Raw data are transformed
into knowledge using
filtering, deduction,

organization, synthesis,
and verification.

of raw data into knowledge is not quite as linear
a process. Figure 1 is an oversimplified represen-
tation of the process of how this transformation
occurs. As this diagram illustrates, there is a re-
lationship among six distinct components: raw
data, refined data, concepts, information, mod-
els, and knowledge.

A few points are worth noting at this stage. First,
raw data and refined data have similar properties.
Both have relatively a simple structure, and typ-
ically can be represented by simple, record-ori-
ented structures. By contrast, concepts represent
loosely formed ideas, and frequently are in the
form of textual outlines, prose, or freehand
sketches.

As Figure 1 suggests, information can be seen as
the merging of concepts and refined data; human
beings classify and structure observations about
the world around them, in an initial attempt to
understand the interdependencies among these
observations. Another way of saying the same

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

thing is that information is data with semantic
structure added.

Information and concepts are then synthesized
into hypothetical models that try to represent sys-
tems as hierarchies of related components, and
explain the behaviors of those systems in terms of
cause and effect relationships among the compo-
nents. Finally, models are tested by using them to
predict future events based on known informa-
tion. Once a model is verified, it becomes part of
a larger body of knowledge and is useful in infer-
ence and inductive reasoning to develop new con-
cepts and ideas.

Storage technology comparisons. The discussion
in the previous section about how data and con-
cepts are refined into information and models
helps us to understand how the different storage
technologies support various classes of applica-
tions.

RDBMS storage technology. RDBMS technology
is organized around relations, which are two-di-
mensional tables. The heading of each table is
comprised of an unordered set of primitive at-
tributes, each of which is a column in the table.
Each row in the table is called a tuple and consists
of an attribute-value pair for each attribute in the
heading. A group of one or more attributes is des-
ignated as the primary key for the relation. Each
tuple is required to have a unique value for the
primary key. Relational algebra can be used to
create new relations dynamically using a subset of
attributes from one or more existing relations.
When multiple relations are involved, they are
joined by matching the data values of a column
from tuples in each of the relations.

RDBMS technology is quite well suited for man-
aging raw and refined data, as well as representing
information derived from that data. In particular,
RDBMS technology tends to be the most appro-
priate choice when:

¢ The structure of the data is relatively simple and
can be represented effectively in two-dimen-
sional, rectangular tables

e The structure of the data or the nature of the
inter-relationships among entities is subject to
frequent change

* Applications that access data perform mostly
associative accesses (i.e., query by matching
attribute values)

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

Figure 1 Transformation model for changing raw data
into knowledge

KNOWLEDGE
} INFERENCE)
7 Y
r VERIFICATION w

INFORMATION MODELS
YNTHESIS

L——Sl |
REFINED DATA CONCEPTS

ORGANIZATION

L)

FILTERING DEDUCTION

RAW DATA

» Database access patterns are spread evenly
across several different access paths, or there is
a high frequency of ad hoc access

* Applications have a tendency to access or up-
date small amounts of data in a transaction

¢ Within an application, the same data records
have a low-to-medium probability of being ac-
cessed in a series of successive transactions

e Peak transaction throughput rates are high,
and high-availability features (i.e., protection
against a single point of failure) are necessary

CDA storage technology. Compound Document
Architecture (CDA) technology is most suitable
for managing the storage and access of concepts.
Concepts typically are expressed as textual out-
lines, prose, or unstructured diagrams. Also, ap-
plications that access these concepts typically
provide capabilities to display, edit, print, and

ALFRED 291

transmit an entire document or specific sections
of a document.

The Microsoft Object Linking and Embedding
(OLE)** framework is an example of a Compound
Document Architecture. OLE 2.0 is becoming a
de facto standard on desktop personal computers
that run Microsoft Windows** 3.1 or Windows
NT. This framework provides a standard API that
allows a document created by one OLE-compliant
application to link to or directly embed a piece of
a document created by another OLE-compliant
application.

In a limited sense, OLE is an example of an object-
oriented storage model. Documents and sections
of documents are treated as objects. The appli-
cation program that creates a document is respon-
sible for providing display, edit, printing, and
storage services for other application programs
that want to link to or embed all or part of that
document. In this way, the application program
that manages a document encapsulates the doc-
ument with a public interface, and hides detailed
knowledge of the internals of the document from
other applications.

In a wider sense, a compound document archi-
tecture (such as OLE 2.0) may not be a fully ob-
ject-oriented storage model. In particular, the
concepts that are represented in a document typ-
ically exist as part of the contents of the document
as opposed to being represented as objects with
attributes, behavior, and links to other related
concepts.

ODBMS storage technology. ODBMS technology
is well-suited for the storage and access of higher
value-added components such as information,
models, and knowledge. In essence, object-ori-
ented modeling provides an excellent way to
structure and classify data entities, and to repre-
sent the semantics of the interconnections be-
tween related entities.

In addition, an ODBMS (like ObjectStore) that uses
a direct-reference storage paradigm allows the
method code for persistent objects to be unified
with the underlying storage representation. In
other words, the ODBMS framework is tightly in-
tegrated with the programming language so that
method code typically need not be aware of
whether it is operating on a persistent or transient
object.

292 ALFRED

ODBMS technology is likely to be a very suitable
choice for applications that have:

* Classes defined at multiple levels of abstrac-
tion, and that make significant use of inheri-
tance and polymorphism

* A need to represent relationships between
classes that are more complex than simple as-
sociative sets (data structures such as lists,
trees, hash tables, and networks are awkward
and inefficient to represent in a two-dimensional
table)

* Object structures that are relatively stable over
time (i.€., they are changed in well-defined soft-
ware release cycles)

¢ A higher frequency of—or greater importance
placed on—repeatable, predictable access pat-
terns than random, ad hoc access patterns

e Complex algorithms that perform optimiza-
tions, simulations, or analyses that access or
update medium-to-large-size networks of re-
lated objects, and have very high-performance
requirements for these types of access patterns

* A medium-to-high likelihood of referencing the
same set of objects in a series of successive
transactions

* Moderate transaction throughput requirements

* Aneed to manage multiple versions of the same
set of objects

Impact on information technology strategies. The
previous section identified the relative strengths
of three of today’s primary storage technologies.
Table 3 summarizes some application classes
where one of the storage technologies has estab-
lished a dominant position. For these classes of
applications, the refinement category of the data
elements and the primary nature of value added
by the application helps to explain why each stor-
age technology holds its dominant position.

Information systems application development.
Over the next five years, there are several appli-
cation classes where the relative advantages of
one storage technology over another will not be
quite as clear. One interesting example is the area
of decision support systems for businesses. The
term decision support means different things to
different people, so let me describe the meaning
I am using in this paper.

Decision support applications analyze large quan-

tities of business operations data, and help filter,
organize, and present them in a way to support

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

Table 3 Dominant storage technologies for selected application classes

Application Class Storage Category Processing Value Added
Mission-critical OLTP RDBMS Raw data High availability and high transaction
throughput rates
Back-office accounting and RDBMS Refined data, Summarize, present, and compare operating
information systems information results and flexible, ad hoc queries
Office automation CDA Concepts Display, edit, transmit, and print multimedia
documents
Engineering design ODBMS Information and High-performance display, edit, and simulation
models of complex, large object networks

tactical or strategic decision making. Quite often,
the outputs of transaction-processing applica-
tions become the main source of raw business
operations data for these decision support appli-
cations.

At its most basic level. a budgeting system can be
classified as a decision support system. A system
of this type analyzes investment, revenue, ex-
pense, and profit contribution on a product line or
organizational unit basis, and compares actual re-
sults to plan. It helps managers make tactical and
strategic decisions by identifying exception con-
ditions (i.e., large variance of actual results
against plan) and highlighting trends in operating
results or key ratios. When viewed this way,
RDBMS and CDA storage technologies complement
each other nicely and are well-suited to managing
the level of data refinement, and the nature of the
value-added processing. RDBMS technology is
useful for capturing the raw data for operating
results at its source, and organizing it in a way to
make it accessible to fourth-generation language
(46L) tools (report writers for comparisons
against plan) and spreadsheet applications (for
forecasting and plan production).

At a more advanced level, however, the nature of
a decision support application changes signifi-
cantly. Consider, as an example, the decision
support requirements of a manager for a brand of
a major soft drink manufacturer. This individual’s
primary responsibility is to devise a marketing
strategy that will keep this brand as the market
leader. This strategy must balance several differ-
ent aspects of the marketing mix such as price,
promotional strategies, packaging, product qual-
ities, and channels of distribution.

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

A much more ambitious example of a decision
support system would be an application that tries
to model consumer buying behavior. This type of
application would require raw sales data, promo-
tion data, and distribution channel data as fol-
lows:

* Raw sales data—For each package-type of this
brand and competitive brands sold in any dis-
tribution outlet, one would need data on the
price and quantity sold. Ideally, this informa-
tion would be available at the granularity of
each sale, including the date and time of the sale
and some demographic information about the
buyer. At a minimum, aggregate totals are
needed for each time period (less than or equal
to a day).

e Promotion data—For each brand, one would
need information about any special promotions,
including advertising campaigns. For national
advertising campaigns there would be a need to
know which ads were run, over what time pe-
riod, how frequently, and in what time spots.
There would also be a need to know what the
ratings were, broken down by demographic cat-
egories, for each show in which a spot was run.
For regional ad campaigns, the same informa-
tion as used in the national campaign is needed,
plus the geographical boundaries of the region
reached by the campaign.

* Distribution channel data—One would need to
know which outlets carry this brand and each of
the competitor’s brands. Also needed would be
the location of each outlet, how much shelf
space is allocated to each brand, what price is
charged for each brand, and what hours the
store is open.

ALFRED 203

As one can sec, there is an overwhelming number
of variables that can have a significant effect on
the sales volume of various brands of soft drinks.
In addition, one also must consider the interac-
tion effect between various combinations of these
variables. For example, what would happen if the
price were reduced by $.10 per 12-ounce con-
tainer in all markets, and an ad campaign were
conducted during each football game televised in
each major market?

Assume that one could gather all of the data de-
sired, and the long-term suitability of RDBMS and
ODBMS technologies were evaluated as the repos-
itory for this marketing information. If the expec-
tation existed that most of the filtering and anal-
ysis work were going to be performed by people,
then the raw data should be stored in a form that
is suitable for human use. On the other hand, if
the expectation existed that most of the filtering
and analysis work were going to be performed by
running sophisticated statistical analysis and pat-
tern recognition algorithms against the raw data,
the data should be stored in a form that is suitable
for programmatical analysis.

Storage technology products. The commercial
storage management software market is a multi-
billion dollar market today. Relational database
vendors are very well entrenched and collectively
have a large share of this market. Inertia is a very
powerful force; many companies have made stra-
tegic investments in relational database technol-
ogy, and would face major investment in tech-
nology and training to switch to object-oriented
database technology on a wholesale basis.

On the other hand, the rapid advances in com-
puter hardware technology and the widespread
availability of powerful, low-cost personal com-
puters and engineering workstations change the
rules of the game. Many businesses view com-
puter technology as an opportunity for strategic
competitive advantage. This is both a “carrot and
a stick” (the reward and the punishment); the in-
centive to innovate comes from the opportunity
to gain a competitive advantage over competi-
tors, as well as from the threat that competitors
will harness the technology sooner.

Today’s entrenched relational database vendors
are, for the most part large, profitable, growing,
and highly competitive companies. There are a
number of different strategies that are unfolding in

294 ALFRED

response to the emergence of ODBMS technology.
Some of the established RDBMS vendors are mak-
ing strategic investments in companies that spe-
cialize in ODBMS technology. The recent invest-
ment by IBM in Object Design and the investment
in Objectivity by Digital Equipment Corporation
are two such examples.

Another strategy is the emergence of extended
relational database technology. Simply stated,
this strategy is an attempt to preserve the core
features of the relational storage model, and aug-
ment it to support requirements of object-ori-
ented modeling such as inheritance, complex data
types as attributes, and multivalued associations.
It is not yet clear how the extended relational and
ODBMS technologies compete with each other
from the point of view of performance, flexibility,
and ease of application development.

Physical and logical data model independence.
Many RDBMS supporters today claim that a direct-
reference storage model cannot possibly support
independence of logical and physical data mod-
els. Conventional wisdom says that the absence
of this critical feature means that ODBMS technol-
ogy is a regression rather than an advancement,
a step backward to the days of hierarchical and
network database technology. As a result, this
technology cannot really be given serious consid-
eration to be used as the basis for an enterprise-
wide data management strategy. Proponents of
this view claim that object-oriented database
management systems are at best a niche technol-
ogy, limited to the small subset of applications
that need high-performance persistent storage,
and are able to sacrifice physical and logical data
model independence.

This argument fails to take into account the syn-
ergy that results from integrating the object-ori-
ented development paradigm with the direct-ref-
erence storage model. As was mentioned earlier,
one of the main principles of the object-oriented
development paradigm is the unification of at-
tributes and relationships (data) with responsibil-
ities and functions (behavior). Another main prin-
ciple of object orientation is encapsulation, the
notion of separating the internal implementation
of a class from its external interface.

Applying these two principles along with a re-

sponsibility-driven design method, one develops
a system as a collection of highly cohesive,

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

loosely coupled classes. Each class offers a set of
contracts to its client classes, where each con-
tract is expressed in terms of a group of opera-
tions (methods) that are part of the public inter-
face of that class. Because the public interface to
a class is limited to functions (organized into con-
tracts), data structure is hidden inside the class as
an implementation detail. In other words, in a
well-designed object-oriented system, whenever
one class depends on another, this dependency is
based on services offered through a well-defined
contract.

Given this, it is not difficult to construct a system
architecture where application programs, which
allocate and use persistently stored instances of
any number of classes, are completely indepen-
dent from the physical layout of the classes.
Merely obeying the rules listed below is sufficient
(Figure 2 illustrates this point):

* Persistent classes are implemented in a sharable
library.

e All contracts are guaranteed to be upwardly
compatible.

* The application program avoids using the class
as a base class, or as the data type for an em-
bedded member (although an embedded pointer
to a separately allocated instance of that class is
acceptable).

* All accesses to object instances within the ap-
plication programs are indirect through pointers
or references (as a corollary the application pro-
gram contains no global [data segment-based]
or local [stack-based] instances).

* In-line method expansion is not used.

Notice that if these rules are followed, then there
is no code in the application program that needs
knowledge of the physical storage layout of the
class. As a result, application programs need not
be rebuilt when a change is made to the object
layout. It is sufficient to install a new (upwardly
compatible) version of the shared library, update
the database schema, and evolve the database to
the new schema. All dependencies on physical
storage layout are localized in the shared library
that implements the class and the database.

There are two additional items about this archi-
tecture that are worth mentioning:

* Most current implementations of sharable li-
braries require that the binding between the ex-

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

ecutable part of the application and the library
be established at the time the application starts
up. Frameworks such as the Common Object
Request Broker from Object Management
Group, a standards organization, allow this
binding to be changed during run time.
Because of the wide variety and type of objects
that can be stored in an object-oriented data-
base, it would be feasible for CORBA-compliant
frameworks to store the library code that im-
plements a set of related classes directly in an
object database. (CORBA is an object-based
client/server interface standard that allows ob-
ject services to be registered with an agent, e.g.,
the Object Request Broker.) This would also
make it possible for the database to maintain
several different versions of the same library to
choose from.

Impact of ODBMS on the software
development process

In previous sections I have suggested that object-
oriented database management systems provide
two primary sources of leverage, and that these
sources have a great deal of synergy with each
other. I also mentioned that leverage, by itself,
provides no benefit; it all depends on how the
leverage is applied.

This section introduces the types of development
process changes that are necessary to get the
most beneficial leverage out of an object-oriented
database management system. Clearly, a com-
plete discussion of this topic would well exceed
the scope of this paper. My hope is that a brief
discussion will provoke enough thought to still be
valuable.

Risk of paradigm mismatch. In my experience,
there are two aspects of the software develop-
ment process that are affected by the paradigm
shifts that underlie an ODBMS like ObjectStore:

» Technical processes used in the analysis and
design phases of the project

¢ Management processes used in the planning
and organizational phases of the project

Each of these areas is discussed in the following
sections.

Analysis and design phases. When using an object-
oriented database that is based on the direct-

ALFRED 205

Figure 2 Object-oriented architecture providing application independence from physical object layout

_| OBJECT DATABASE

| APPLICATION PROGRAMS 1 _| ‘SHARABLE LiBRARIES

SHARED LIBRARY FOR: \-—_—/
USES CLASSES CLASS A -
AANDD ®
CLASS B
(®
USES CLASSES CLASS C \— _’/
CAND D
SHARED LIBRARY FOR:
USES CLASSES
B, E,ANDF
CLASS D
CLASS E
CLASS F

reference storage model, physical database de-
sign is more tightly coupled to overall system
design. This is not a requirement of database
systems that use the read-write model. The rea-
son is that in the read-write model, the application
accesses the database occasionally, and for lim-
ited periods of time. In the direct-reference stor-
age model, the application accesses the database
every time it uses an object that was allocated in
persistent storage.

As a result, extensions to popular object-oriented
analysis (00A) and object-oriented design (OOD)
methods are necessary. As Jacobson’ points out:
“Object DBMSs have been developed to store ob-
jects as such in the database. Different application
areas have different requirements, and many ven-
dors optimize their products for a specific appli-
cation area.”

296 ALFRED

These extensions are not unlike the set of exten-
sions proposed in the mid-1980s by Ward and
Mellor® and Hatley and Pirbhai® to make struc-
tured analysis methods suitable for use on devel-
opment problems in the real-time domain.

Specifically, in the case where persistent objects
are shared by processes distributed across a net-
work, and the storage space occupied by these
objects is large, design of an object-oriented sys-
tem that uses the direct-reference storage model
must:

* Specify how to map usage case scenarios into
database transactions

* Derive access patterns from object interaction
diagrams and object and association represen-
tations

¢ Subdivide the aggregate storage requirements

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

into meaningful partitions, either by ownership
or by class and association, and estimate the
space requirements of each partition

+ Rank order the access patterns based on one or
more criteria that identify their relative impor-
tance

¢ Define an object clustering strategy that is op-
timized for the highest priority access patterns
that are reading or updating the largest amounts
of data in their transaction

s Define a new ranking of access patterns, in sys-
tems with a large number of concurrent users,
based on their level of intrusiveness, where an
intrusive access pattern is one that acquires
locks on highly shared data and holds those
locks for a long duration

¢ Refine the design to minimize the impact of the
most intrusive access patterns on the most im-
portant ones (this may involve changing class
definitions or association representations, re-
clustering objects, refining algorithms, or re-
structuring transaction boundaries)

Figure 3 contains an illustration of an object-ori-
ented analysis and design process that would be
suitable for use with an ODBMS. It should be noted
that these analysis and design extensions are suit-
able for any class of problem that allows direct
concurrent access to shared objects, and needs to
be scalable to large storage requirements (hun-
dreds of megabytes or more} and large numbers of
concurrent users, where two or more are per-
forming updates.

Project organization. As I pointed out in the prior
section, when using an object-oriented database
that is based on the direct-reference storage
model, physical database design is more tightly
coupled to overall system design. This means that
in order to use a framework like ObjectStore ef-
fectively, the overall organization of the project
and the roles of the developers must match the
needs of the work.

First of all, system analysts, system architects,
and database designers must collaborate closely
throughout the development life cycle. Database
designers must be more aware of requirements
analysis and system architecture issues. System
analysts and system architects must be more
aware of ODBMS issues and constraints and how
they impact the high-level design of the system.
This is very much like the shift that occurred

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

when event-driven general user interface (GUI)
frameworks became widely accepted.

Second, for large systems (storage size and num-
ber of users), performance analysis work takes on
a much more significant role. This work must be
started as early in the life cycle as possible. Also,
early prototyping becomes a very important strat-
egy for designing scalable systems. If perfor-
mance tuning is left until the end of the develop-
ment cycle (as is common in many projects)
disastrous consequences can, and often do, re-
sult.

Last, but certainly not least, if application pro-
grams are to be independent of the internal im-
plementation of the classes they use, then much
care must be taken in the object-level design pro-
cess. As Booch points out,’ the key decisions
about overall system architecture (the macro pro-
cess) must be made by a small group of experi-
enced people including problem domain special-
ists and object-oriented design experts. These
architectural decisions include:

« How the overall system is partitioned into sub-
systems, and how pieces of each subsystem are
visible to other subsystems (i.c., as part of the
external interface of the subsystem)

s How the abstractions within a subsystem are
organized into layers with well-defined proto-
cols (i.e., contracts) in order to reduce inter-
layer coupling

s How subsystem layers are packaged in order to
increase the modularity of the completed sys-
tem and increase the potential for component
reuse

Summary

The main premise of this paper is that object da-
tabase management systems provide one source
of leverage by fully supporting the object-ori-
ented software development model. Some object
database management systems, such as Object-
Store, provide additional leverage by using a di-
rect-reference storage model, rather than a read-
write model.

These two sources of leverage are at the heart of
the differences between object database and re-
lational database technologies. How important
these differences are to a given application area
depends largely on how complex is the problem,

ALFRED 297

Figure 3 OOA/OOD process model suitable for use with ODBMS framework

SUBSYSTEMS

REQUIREMENTS
MODEL

USE
CASES

USER
INTERFACE
MOCK-UP

FUNCTIONAL
REQUIREMENTS

o -

BUSINESS
REQUIREMENTS

ANALYSIS
OBJECTS

ANALYSIS
MODEL

INTERACTION
AND STATE
TRANSITION
DIAGRAMS

C:J DELIVERABLES

= INITIAL DATA FLOWS

PROCESSES 4= == REFINED DATA FLOWS

BLOCK AND
CLASS DEFINITIONS

TRANSACTION
STRATEGY

-

----’

©ODBD PHYSICAL

PRIORITIZED
ACCESS
PATTERNS

DYNAMIC ’ \
MODEL CLUSTERING
STRATEGY
OOA = OBJECT-ORIENTED ANALYSIS
0OD = OBJECT-ORIENTED DESIGN

ODBMS = OBJECT DATABASE MANAGEMENT SYSTEMS
O0DBD = OBJECT-ORIENTED DATABASE DESIGN

DATABASE DESIGB

what is the primary source of value added by ap-
plications, how complex, structured, and stable is
the underlying data model, how crucial is system
performance, and how much of the analysis and
filtering work needed to transform raw data into
useful information is done by computer algo-
rithms instead of human interaction.

Because of the wide range of answers to these
questions, it is highly likely that RDBMS and
ODBMS technology will coexist over the foresee-
able future, and bridges between these database
technologies will become increasingly valuable.

Finally, I point out that proper use of the object-
oriented development model allows a system to
be constructed that takes advantage of all of the
leverage offered by ODBMS technology, without
sacrificing either flexibility or configurability.

298 ALFRED

However, in order to accomplish this, project
managers and technical project leaders must un-
derstand the impact of the underlying paradigm
shifts and organize their project teams and devel-
opment processes to exploit their potential fully.

Acknowledgments

The author would like to thank Greg Baryza,
Lorraine Alfred-Cortellessa, Pat O’Brien, Jack
Orenstein, Ian Schmidt, Irv Traiger, and Bob
Walmsley for their comments on an early draft of
this paper.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Object Design, Inc.,
Objectivity, Inc., Versant Object Technology, Servio Corp.,
Intel Corp., Rogue Wave Software Inc., National Institutes of
Health, Grady Booch, or Microsoft Corp.

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

Cited references

1. T. Atwood, J. Duhl, G. Ferran, M. Loomis, and D. Wade,
The Object Database Standard: ODMG-93, R. Cattell, Ed-
itor, Morgan Kaufmann Publishers, Inc., San Mateo, CA
(1994).

2. C. Lamb, G. Landis, J. Orenstein, and D. Weinreb, “The
ObjectStore Database System,” Communications of the
ACM 34, No. 10, 50-63 (October 1991).

3. K. Nash, “Object Design Boosts Its Database Product,”
Computerworld, pp. 69-72 (December 13, 1993).

4. R. Wirfs-Brock, B. Wilkerson, and L. Weiner, Designing
Object-Oriented Software, Prentice-Hall, Inc., Englewood
Cliffs, NJ (1989).

5. G. Booch, Object-Oriented Analysis and Design with Ap-
Dlications, Second Edition, The Benjamin/Cummings Pub-
lishing Company, Redwood City, CA (1994).

6. D. Taylor, Object-Oriented Technology: A Manager’s
Guide, Servio Corporation, Alameda, CA; Addison-Wes-
ley Publishing Co., Reading, MA (1990).

7. 1. Jacobson, M. Christerson, P. Jonsson, and G. Over-
gaard, Object-Oriented Software Engineering: A Use Case
Driven Approach, Addison-Wesley Publishing Co., Work-
ingham, England (1992).

8. P. Ward and S. Mellor, Structured Development for Real-
Time Systems: Introduction and Tools, Yourdon Press,
Englewood Cliffs, NJ (1985).

9. D. Hatley and 1. Pirbhai, Strategies for Real-Time System
Specification, Dorset House, New York, NY (1987).

Accepted for publication February 15, 1994.

Charles Alfred Object Design, Inc., 25 Mall Road, Bur-
lington, Massachusetts 01803 (electronic mail: calfred@odi.
com). Mr. Alfred is the Corporate Education Manager at Ob-
ject Design, Inc., the developer of ObjectStore. His research
and professional interests include object-oriented software
engineering, software development processes, project orga-
nization and management, and team building.

Reprint Order No. G321-5543.

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994 ALFRED 299

