Managing business
processes as an
information resource

The relevance of business processes as a major
asset of an enterprise is more and more
accepted: Business processes prescribe the way
in which the resources of an enterprise are used,
i.e., they describe how an enterprise will achieve
its business goals. Organizations typically
prescribe how business processes have to be
performed, and they seek information technology
that supports these processes. We describe a
system that supports the two fundamental
aspects of business process management,
namely the modeling of processes and their
execution. The meta-model of our system deals
with models of business processes as weighted,
colored, directed graphs of activities; execution
is performed by navigation through the graphs
according to a well-defined set of rules. The
architecture consists of a distributed system with
a client/server structure, and stores its data in an
object-oriented database system.

Organizations typically prescribe how busi-
ness processes have to be performed, espe-
cially those processes that represent complex
routine work, that involve many persons (both
concurrently and sequentially), and that are in
general frequently performed. Examples of such
processes are manifold: program development in
the software business, credit allocation in the
banking business, customer enrollment in the
health insurance business, or expense allowance
processing in the administration business.

The relevance of business processes as a major
asset of an enterprise is being accepted more and
more. Business processes prescribe the way in
which the resources (e.g., data, capital, human

326 LEYMANN AND ALTENHUBER

by F. Leymann
W. Altenhuber

beings) of an enterprise are used, i.e., they de-
scribe how an enterprise will achieve its business
goals. The quality of the business processes will
influence the quality of the performance of an en-
terprise. Thus, business processes themselves
represent important information resources of an
enterprise, and techniques or systems to manage
and support business processes are always in de-
mand.

The 1BM program product called FlowMark* sup-
ports the management of business processes.
Both fundamental aspects of process manage-
ment, namely the modeling of processes (build
time) and the execution of processes according to
a process model (run time), are facilitated. Flow-
Mark may be perceived especially as a repository
for business processes. Within the 1BM Informa-
tion Warehouse* framework (of which some as-
pects are discussed elsewhere in this issue),
FlowMark is positioned as the work flow man-
agement component.

Current approaches. Today, there is no generally
accepted methodology for modeling business pro-
cesses. Petri nets are traditionally used to de-
scribe and analyze concurrent systems.' Never-
theless, it has been recognized that Petri nets are

©Copyright 1994 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must
be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

not currently succinct and manageable enough to
become useful in modeling business processes.?
For this reason high-level Petri nets have been
intensively studied during the last couple of
years. In particular, predicate/transition nets?
and colored Petri nets* have been applied in var-
ious application areas. But other methodologies
have also been proposed and applied. It depends
on the emphasis one puts on the usage of pro-
cesses as to whether they are described as Petri
nets, trigger systems, forms, case plans, or even
collections of formulas of temporal logic, for ex-
ample.

If one focuses on the pure data manipulation as-
pects of a process, process models are viewed as
vehicles for ensuring database integrity. Guyot®
shows that Petri nets are allowing database ad-
ministrators to control and constrain the execu-
tion of activities that manipulate a database.
Temporal logic has proved to be remarkably suc-
cessful in describing parallel programs and in
studying their properties;® the management of
parallel components of a program has some sim-
ilarities to managing transactions concurrently
accessing databases. Thus, Lipeck and Saake’®
discuss how temporal logic is applied to describe
valid sequences of database states and consisten-
cy-preserving transactions, which is in certain sit-
uations the major intent of a process model. Par-
tial orders on event spaces are also considered to
model consistency-preserving sequences of data-
base actions.’

Process models may also be perceived as a means
to extend and complement facilities known from
conventional transaction processing monitors. A
process model is viewed as the specification of
the flow of control and the flow of data separate
from the collection of routines performing the
proper computations of an individual application.
Applications are represented in Garcia-Molina
and Salem' simply as sequences of related trans-
actions ensuring either the successful execution
of all transactions in the chain or its compensa-
tion. Predicate/transition nets are pursued in
Wichter and Reuter'! to model networks of
“steps” (and “compensation steps’) that repre-
sent the “scripts” of an application. A network of
“activities,” which are triggered by “events,”
which are sent along “arcs” connecting activities,
is exploited in Hsu et al.'? for that purpose. A
very generic and abstract approach (“spheres of
control”) especially for managing flows, includ-

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

ing their recovery, is presented in Davis.” Tar-
geting in the modeling of long transactions, Kotz’
proposes the use of event/trigger systems.

With the support of office work in mind the fol-
lowing has been suggested: To model office pro-
cedures, Behrmann-Poitiers and Edelmann'* are
proposing “case plans.” In cases where the office
system reveals specific object-oriented character-
istics, life-cycle diagrams and composed activi-
ties are pursued.’® If a process can be described
as the processing of a form, a corresponding pro-
posal is given by Tsichritzis. ¢

The commonality among processes in the areas of
software development,'™® office work, and ad-
ministration has been worked out by Chroust and
Leymann.” A methodology apg)licable in these
areas is described by Leymann.? It strives espe-
cially for a formalization of processes and their
models in these problem areas that is even more
succinct and “user-friendly” than in Genrich®
and Jensen.* It encompasses, for example, the
case plans of Behrmann-Poitiers and Edelmann™
and in addition allows the definition of parameter-
controlled work flows in their problem domain. In
this paper the methodology of Leymann?® is
enhanced by introducing PM-graphs (Process
Model graphs) in order to fulfill additional require-
ments posed by FlowMark.

Our presentation. First, we show that today pro-
cess models are treated as information resources
in a rudimentary manner; also, we sketch the po-
tential embedding of process models into an
IRDS (information resource dictionary system?).
Next, we discuss the meta-model of FlowMark
for processes. We provide and motivate a collec-
tion of constructs that have to be used in order to
define the model of a process to FlowMark. Then,
the architecture of FlowMark is sketched. It is a
distributed system with a client/server system
structure. All relevant data are stored in an ob-
ject-oriented database system. The graphical end-
user interfaces for defining and executing pro-
cesses are sketched. Activities represented by
executables complying to a certain invocation
paradigm are invoked by FlowMark. In the final
section, we give a mathematical formulation of
the syntax and the semantics of the meta-model.
Mathematically, a process model is represented
as a special weighted, colored, directed graph of
activities (called a PM-graph); the semantics of
the meta-model are defined operationally, exe-

LEYMANN AND ALTENHUBER 327

cuting a process as an instance of a process model
by navigating through the PM-graph according to
a well-defined set of rules.

Process models as information resources

Along with the classical production factors of
land, labor, and capital, enterprises are consid-
ering information more and more as an important
resource, i.e., as one of their assets. This infor-
mation includes data about all resources needed
to reach the goal of the enterprise. It is generally
accepted that this information should be repre-
sented in a formal manner as much as possible.
The collection of actions needed to achieve this
goal is referred to as “enterprise modeling.”

Enterprise models. The conceptual base for en-
terprise modeling is sometimes called a hyper-
semantic data model.” Producing the model of a
concrete enterprise by using a hypersemantic
data model results in an enterprise model. Such
an enterprise model consists of two components:
the data model and the knowledge model.”

The data model describes the structure of all re-
sources of the enterprise and is thus somewhat
like the syntactical component of the enterprise
model; in this sense, the data model describes
what can be used by the enterprise to reach its
goal. Today, enterprises are building data models
based on semantic data models (for example, the
entity/relationship model; for an overview of dif-
ferent semantic data models see Peckham and
Maryanski®*).

The knowledge model describes the use of re-
sources and their connections; it is the semantical
component of the enterprise model. In this sense,
the knowledge model describes how the enter-
prise uses its resources in order to reach its goal.
The knowledge model encompasses constraints,
heuristics, and procedures. Constraints define the
local and global consistency of the resources; if
the resources are stored in a database, constraints
fix the valid database states. Heuristics describe
how to derive data. Procedures define events and
correlated actions, set sequences of actions, and
describe business processes. The model of a bus-
iness process can be used to define, for example,
valid sequences of state transitions in a database
(intertransaction integrity®!!') as well as se-
quences of work steps, whereas executing a bus-

328 LEYMANN AND ALTENHUBER

iness process could be described as context-
dependent. "%

Documents as process models. Process models
represent knowledge about an enterprise. Usu-
ally, this knowledge is found today in the format

The knowledge model describes
the use of resources and their
connections.

of textual processing instructions. The handling
of each single business process according to these
processing instructions then corresponds to a
process, i.c., an instance of the process model as
defined via the instructions.

Process models in the format of textual process-
ing instructions are very inflexible. Enterprises
cannot react with sufficient speed to changes in
their environment. Changes in the processing in-
structions are communicated by distributing doc-
uments, thus, the time to activate these changes
is dependent on when the corresponding docu-
ments arrive; in distributed organizations these
documents will arrive at different points in time,
resulting, in turn, in consistency problems. Sup-
port for handling individual processes is only en-
abled in a limited way via the textual processing
instructions. Precise compliance with the instruc-
tions cannot be enforced directly.

Control programs as process models. Today, com-
puter assistance for handling processes is achieved,
for example, by programming the corresponding
procedural instructions. Each single work step can
be supported via “generic programs™ (i.e., via tools
or service routines), via special applications (i.e.,
via programs considering the individual needs of an
enterprise), or simply via help texts (i.e., via elec-
tronically documented work instructions). A spe-
cial control program determines the individual se-
quence of work steps dependent on the concrete
context of the individual business process. In this
sense, the control program represents the formal-

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

ized process model, and an instance of the control
program corresponds to a concrete, individual pro-
cess. But such control programs also do not allow

A process model may be seen
as a template for a class of
similar business processes performed
within an enterprise.

for highly dynamic reactions. Changing the knowl-
edge embedded in the control program involves a
great deal of effort (redesign, coding, compiling,
etc.).

Separate representations for process models. For
this reason, extracting the knowledge represent-
ing the process from the control program and
forming a separate representation of this knowl-
edge as its own syntactical unit is extremely de-
sirable. As a consequence, these syntactical
units—which now represent the process model—
have the flexibility and comprehensibility to in-
stitute the required dynamics. A process inter-
preter receiving such a process model as input
(along with other information) can instantiate the
process model and determine the individual se-
quence of work steps, depending on the context
of the instantiation of the process model.?

IRDS and process models. Process models de-
scribe (apparently) different functions such as the
production of a part in a production line, the set-
tlement of a damage case within an insurance
company, the treatment of a form for making al-
lowances for expenses, the procedure in devel-
oping a program, or valid sequences of transac-
tions. In these situations, each individually
executing process can be perceived as a separate
instance of the process model.® The process
model is the processing instruction for a concrete
process to be executed (and is thus a processing
model). Computer assistance thus means both the
support for defining the process model (modeling)
and the support for performing each individual
process (execution).

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

Computer assistance for defining process models
should be enabled via a language that provides
constructs that can be embedded canonically in a
dictionary A dictionary concept that strives for
integrating data models and process models is
pursued and thus contains all information re-
sources. It follows the International Organization
for Standardization (1S0) conceptualization prin-
ciple,? according to which as much knowledge
about an application area as possible is moved
from the programs to the dictionary of an enter-
prise. Such a language then encompasses a model
for process models, i.e., a meta-model for pro-
cesses; instances of the meta model are process
models. In turn, the instances of the process mod-
els are the proper representations of process ex-
ecutions. Meta-model and process model, and
process model and process, respectively, are
building intension-, extension-pairs® that thus
comply conceftually to the 150 Dictionary Archi-
tecture IRDS. * The integration of process models
into the IRDS together with the already available
data modeling capabilities then allows very flex-
ible enterprise modeling based on a dictionary.
For that purpose one has to describe our meta-
model in terms of the fundamental modeling lan-
guage of the IRDS.

FlowMark allows process models to be defined
according to our meta-model described below.
Each process model is an instance of the meta
model. Process models are instantiated and exe-
cuted by interpreting the instances of the types of
the meta-model. The interpretation is performed
by navigating through each individual instance
(process) in accordance with the underlying pro-
cess model.

The meta-model

A process model may be seen as a template for a
class of similar business processes performed
within an enterprise. It is a schema describing all
possible variants of the (dynamic!) execution of a
particular kind of business process. Each individ-
uval process is an instance of a process model, and
it represents a concrete, specific execution of a
variant prescribed by the process model.

The fundamental building block of the meta-
model is the activity. An activity represents a bus-
iness action that is a semantical unit at a certain
phase of modeling effort. It might have a fine-
structure, which is then represented in turn via a

LEYMANN AND ALTENHUBER 329

process model, or the details of it might not be of
interest at all from a modeling perspective. It is
important to note that these fine-structures allow
both a bottom-up and a top-down approach to
process modeling.

As an example, suppose a process model for
credit allocation contains an activity called Sol-
vency. For the modeler of credit allocation it is
not of interest how Solvency is checked, but
rather to make sure that this check will take place.
The refinement of the activity Solvency as a pro-
cess model again (if required) can be done (or may
have already been done) by a different modeler.

In general, the work represented by an activity
produces results. Within the meta-model the
types of results of this work are associated with
the activity as parameter types. Now, activities
generally access types of results of other activi-
ties, or require information about the context of
the current activity; such parameter types can
also be associated with an activity. In general, an
activity is associated with both input parameter
types and output parameter types (in cases in
which no misunderstanding will occur, the suffix
“type” is omitted).

The collection of all input parameters of an ac-
tivity is referred to as the input container of that
activity, and the collection of all of its output pa-
rameters is referred to as the output container.
Since process models may serve as fine-struc-
tures of activities, each process model itself is
associated with both an input container and an
output container; note that the input or output
container of a process provides some sort of
“global context” for all activities contained
within this process. A concrete execution of an
activity (also called an activity instance) is thus
accessing the instances of the input parameter
types from its input container and will produce
instances of the output parameter types from its
output container. Because of this, activities are
considered to be mathematical maps.

In practice, only the “process-relevant” param-
eters of an activity are explicitly defined (i.e., ex-
ternalized) rather than all parameters affected by
an execution of the activity. For example, an ac-
tivity generally modifies data that are not defined
inits associated containers because these data are
not of interest to other activities within the pro-
cess; or an activity might obtain (additional) input

330 LEYMANN AND ALTENHUBER

from sources different from its input container
(e.g., database reads).

As a result, it is pragmatic to recommend captur-
ing an activity as a relation between its input con-
tainer and its output container (for example, be-
cause additional input as mentioned before might
result in nondeterministic behavior of the activity
with respect to its input container). In fact, choos-
ing whether activities are “maps” instead of “re-
lations™ is not crucial to our meta-model, and the
model could be easily made to accommodate a
choice. Nevertheless, for simplicity we treat ac-
tivities as maps because we consider this treat-
ment to be more suited to the perception of pro-
cess modelers.

In general, the activities of a process may not be
executed in an arbitrary manner. Some activities
are necessary for a process to start, some activ-
ities might only be run when others are finished,
and so on. In other words, the activities of a pro-
cess form a network with arcs that point from a
given activity to its successor activities. Since a
process model has to reflect all possible valid ex-
ecutions of a specific business procedure, each
activity within a process model must be con-
nected to all of its potential follow-on activities.
A process model may be perceived as a directed
graph having nodes that are the activities of the
process and having edges that connect an activity
with its potential successors. Since an edge rep-
resents the potential control flow from one activ-
ity to another, it is also referred to as a control
connector.

As an example, suppose the credit allocation pro-
cess model contains the activities Solvency,
Reject, Accept, BranchManagerApproval, and
Notify. The potential follow-on activities of Sol-
vency are Reject, Accept, and BranchManager-
Approval. BranchManagerApproval has the po-
tential successors Reject and Accept. The activ-
ity Notify is the successor of both Reject and
Accept.

When a process model is executed (or instanti-
ated) it depends on the concrete situation in
which the process is run as to what subset of the
set of all potential follow-on activities of a par-
ticular activity is really executed once this par-
ticular activity is terminated successfully. A
“concrete situation” is captured by the collection

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

of all values actually associated with the param-
eter types of the various containers of the model.

The dynamics of subsetting potential follow-on
activities are added to our meta-model by allow-
ing Boolean functions to be associated with each
edge that connects two activities; these Boolean
functions are called flow conditions or transition
conditions. Each of the Boolean functions has an
input container associated with it, its parameter
types stemming from the output containers of the
predecessor activities or from the input container
of the process model itself. Potential follow-on
activities of a successfully terminated activity are
considered for execution in the concrete situation
only when they are reachable from the terminated
activity via an edge having a flow condition that
returns “true” based on the actual parameter val-
ues in its container. By adding Boolean functions
to the edges of the directed graph the perception
of a process model within our meta-model is that
of a weighted, directed graph.

Activities are in general long running, and it must
be permissible to interrupt them. Thus, when an
activity terminates, it has not necessarily per-
formed its task successfully. But only success-
fully terminated activities are relevant when de-
termining follow-on activities. To capture this
situation, our meta-model permits assigning a
Boolean function to each node in the graph which
represents the exit condition or end condition of
the activity. The Boolean function representing
the exit condition of an activity again has an input
container associated with it that has parameter
types stemming from the containers of the activ-
ities or from the container of the process model
itself. An activity terminates “successfully” if its
associated exit condition returns ““true” based on
the actual parameter values in its container. By
adding Boolean functions to the nodes of the
weighted, directed graph, the perception of a pro-
cess model within our meta-model is that of a
weighted, colored, directed graph.

In general, activities within a process will be ex-
ecuted in parallel. (This occurs when processing
allowances for expenses, for example. After the
activity CheckBill, both the payroll department
as well as the bookkeeping department can work
on the bill for expenses in parallel.)

Parallel execution is enabled by a process model
via an activity having outgoing edges weighted by

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

Boolean functions that can be “true” concur-
rently. After having terminated successfully,
such an activity will function as a “fork.” The
activities along the different branches can, in gen-
eral, be worked on in parallel.

An activity having more than one incoming edge
can function as a “join.” For that purpose our
meta-model associates a Boolean expression with
each activity in the Boolean functions that weight
the incoming edges of the respective activity; this
expression is called a synchronization expres-
sion. If the synchronization expression is the con-
junction of all the Boolean functions weighting
the incoming edges, the corresponding activity
can only be executed if the Boolean functions
have been evaluated and the Boolean expression
in the returned values is “true.” An activity of the
latter kind thus works as a “join.”

If the Boolean function of an edge is evaluated as
“false,” the endpoint of that edge might never
become executable. The Boolean functions of the
edges leaving a node that can never be executed
will never become evaluated functions. In the
case where the endpoint of an edge having a Bool-
ean function that will never be evaluated is a “join
node,” the corresponding process will never ter-
minate.

In order to avoid this situation, the “forward tran-
sitive closure until joins™ of the endpoint of an
edge with a “false” Boolean function is com-
puted. This means that all directed paths origi-
nating at the subject node are traversed until a
join node is reached. All Boolean functions of
edges in this closure are considered as “evaluat-
ed” with a return value of “false” (dead path
elimination). In case all of the incoming edges of
a join node reached during dead path elimination
are already evaluated, its synchronization expres-
sion is computed, and if it results in “false,” dead
path elimination is performed for that join node.
This is because the join node is never executed,
thus leaving the process in doubt unless dead path
elimination is not performed.

When allowing parallel execution of activities, we
must be sure that an executing activity does not
generate results that will be produced by another
executing activity or that were required as input
by another executing activity (the Bernstein Cri-
terion®’). Although there are different well-known
techniques (e.g., “locking”?*) to ensure the ful-

LEYMANN AND ALTENHUBER 331

fillment of this criterion on a per parameter value
base, we pursue a more restrictive approach: The
instances of the parameter types of an activity’s
input and output container are treated as the local
context of each particular activity.

As a consequence, shared instances have to be
defined explicitly. It is done when providing the
process model by connecting a particular param-
eter type of the output container of an activity
with a particular parameter type of the input con-
tainer of another activity via a directed edge (data
connector). Data connectors are only allowed be-
tween containers having activities that can be
reached along a directed path; this ensures that an
activity does not expect data as input when the
data could not be produced by a preceding activ-

ity.

It is also allowed to define a data connector point-
ing from the input container of the process to the
input container of an activity as well as to define
a data connector pointing from the output con-
tainer of an activity to the output container of the
process. Thus input can be passed to an instance
of a process model once it is started and output
can be passed from the process instance once it
terminates.

The implementation

Currently, the FlowMark product is available to
implement most of the meta-model described
above; we will point out the few constructs that
are not implemented in their generality. Built for
the Operating System/2* (0S/2*) 2.1 environment,
FlowMark is—with the exception of the anima-
tion part written in Prolog—completely written in
C+ + using object-oriented components and tech-
nologies (like its underlying object-oriented data-
base system) that only recently have become
available.

System structure. At the highest level, FlowMark
essentially consists of two parts: build time and
run time. The syntactical aspects of the meta-
model are implemented in the build-time part, and
its operational semantics are covered by the run-
time part. Each of these parts is itself split into a
client component and a server component.

The functionality provided by build time (Figure
1) comprises the blocks Animation, Process Def-
inition, Staff Definition, Program Registration,

332 LEYMANN AND ALTENHUBER

and Data Structure Definition. The build-time
part allows a process modeler to define and main-
tain all the information necessary for a FlowMark
process to be executable. As the process is being
defined, the animation facility lets the modeler
examine the behavior of the model. After a pro-
cess model is completed by its definer, it is trans-
lated into a startable process also called a process
template.

Build time exploits the client/server structure
of the underlying database for seamless access
to the definitional objects of FlowMark. The com-
munication layer is used by the definition com-
ponents to exchange notification messages for up-
dating their views on data in case of modifications.

The run-time functions seen by the end user are
Process Execution, Process List, Work List Han-
dling, Local/Remote Program Execution, and
Process API (application programming interface).

The client parts (build time and run time) provide
the graphical end-user interface to all of the Flow-
Mark functions. The server parts of FlowMark
control and synchronize access to the FlowMark
data and moreover synchronize all work main-
tained by FlowMark. Users can concurrently de-
fine processes (to be more precise: “describe pro-
cess models”) and store them in the database and
at the same time execute an arbitrary number of
ready-to-run processes. The number of processes
and users is only constrained by the system re-
sources available. The run-time server compo-
nent of FlowMark is implemented as a hot pool.
A hot pool in this context is a set of operating
system processes each of which has the structure
depicted in Figure 2. Each client request is dis-
patched to an idle server process; if all server
processes are busy, the request waits to be
served. The number of server processes can be
configured by the user.

The work areas shown in Figure 2 are FlowMark-
maintained 0S/2 folders (for information on 0872
see, e.g., References 29, 30, and 31) that organize
all of the FlowMark information. The build-time
work area contains a folder for each of its func-
tional components. Thus a user finds all of the
process models with which he or she is authorized
to work in the process folder of his or her build-
time work area. The run-time work area contains
the work list folders of a user and a folder showing
all startable processes, as well as the processes

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

Figure 1 FlowMark build-time system structure

0oDB
SERVER

COMMUNICATION
LAYER

-
(OODB DATA STRUCTURE BUILD-TIME
CLIENT DEFINITION WORK AREA
AUTHENTICATION/
AUTHORIZATION

PROGRAM
REGISTRATION

STAFF
DEFINITION

PROCESS
DEFINITION

e

| FLOWMARK
OBJECTS
| DATABASE

ANIMATION

the user has started or the running processes for
which the user has administration rights. Flow-
Mark requires the user to be identified at startup
of either run time or build time for authorization
purposes. Depending upon his or her authoriza-
tion, a user can run either build time or run time
(or both) concurrently.

The run-time work area starts a separate process
for local program execution at startup time. Local
program execution takes care of program invo-
cation as well as data passing between FlowMark
and the invoked program. The process APIis used
by programs that want to start, stop, restart, sus-
pend, and resume FlowMark processes. These
calls are directly executed by the FlowMark run-
time server.

The communication layer shields the FlowMark
components from the specifics of the underlying

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

transport protocols. It is implemented as a mes-
saging service supporting synchronous and asyn-
chronous message handling.

FlowMark has an import and export utility for
maintenance and exchange of definitional infor-
mation. It also alleviates the loading of existing
enterprise information such as personnel data
into the FlowMark database.

Process definition. Process definition is the most
significant component as it lets a modeler graph-
ically define a process model. According to the
meta-model, a process model is presented as a
weighted, colored, directed graph of activities.
An activity is linked to other activities by control
connectors or data connectors, i.e., both the con-
trol flow and the data flow are shown by edges of
the directed graph.

LEYMANN AND ALTENHUBER 333

Figure 2 FlowMark run-time system structure

SERVER
il ——
00DB Il | ‘RUNTIME (- 2 N H | commun- |
SERVER || | SERVER | OODB PROGRAM {1 CATION
, cuent || execution | 1| {aver
' | SERVER i1
PROCESS
EXECUTION
WORK LIST
‘ SERVER
\. J /
CLIENT
DiL
FLOWMARK
OBJECTS oMD [T
DATABASE
| PROGRAM EXE [
I F 3
. Y h. 4 . 3
COMMUNI- | II¥e
CATION proGRAM | [ProaraM | H1 [RUN-TIME
LAYER EXECUTION | | API 11 | work Area
; > g AUTHENTICATION/
W] AUTHORIZATION
PROCESS
LIST ‘
[WORK LIST] ~,
HANDLER
N J
PROGRAM EXE
PROCESS AP
CMD
DLL
The edges representing data connectors define @. Thus, a data connector edge pointing from A
the data connector map A of the meta-model as to B indicates that a map from the output con-
follows: A data connector edge is drawn between tainer of 4 to the input container of B exists; this
two activities 4 and B in the graphical represen- map (i.e., each member d = (vy, v,) € A(A, B))
tation of a process model if and only if A(A4, B) # is specified separately. Each container is charac-

334 LEYMANN AND ALTENHUBER IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

terized by one of the defined data structures.
Since the data structures linked by a data con-
nector may be distinct, the data connector also
carries a mapping between those, if necessary.
The mapping has to be done by the modeler who
has to provide the necessary name and type
matching between the corresponding data items
to be passed (for identical data structures, Flow-
Mark does the mapping automatically).

As previously described, a control connector pic-
tures the sequence of the activities as well as the
condition (transition condition) that has to be met
for continuing navigation along the connector.
The condition p weighting a control connector
has to be specified as a Boolean expression eval-
uated at run time. A transition condition can sim-
ply be the constant Boolean value “true.” This
value is the default if the modeler does not specify
it otherwise. For error or exception situations
FlowMark offers the modeler a special control
connector (“otherwise” connector) that is fol-
lowed when no transition condition of the regular
control flow connectors is fulfilled.

FlowMark supports three types of activities: pro-
gram, block, and process. Each type has a dif-
ferent implementation. A program activity is im-
plemented by a registered program. The program
can either be a legacy application or a FlowMark
specific application that makes use of the Flow-
Mark programming interface to access the con-
tainer data. The block activity is a construct that
recursively allows nesting of activities to an ar-
bitrary level. The block activity is only known
within the process where it is created. It gives the
modeler the opportunity to locally structure a
process. It also provides a layering capability for
refining the details of the implementation. More-
over, by using the editing functions of the process
editor (clipboard functions), a block can easily be
reused. A process activity is implemented by an
already defined and existing process. The process
that is referenced is dynamically started when the
process activity is executed. The process activity
ends when the referenced process finishes. Thus
process models can be built and maintained in a
very modular and incremental fashion. A pro-
gram activity and process activity can either be
manual or automatic. The execution of manual
activities is initiated by a user, whereas automatic
activities are immediately executed by Flow-
Mark.

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

As previously described, multiple control con-
nectors emanating from an activity (forking of
control flow) easily expresses parallelism of ac-
tivities within FlowMark. The semantics of mul-
tiple control connectors joining into one activity
can be defined by the process modeler. At the
moment, the two possible synchronization
choices are: Execution can continue if at least one
of the joining connectors evaluated to “true,” or
only if all of them have become “true.” Thus, the
synchronization expressions supported by Flow-
Mark are

k k
d’A:[VPjs /\Pj]

j=1 j=1

for each activity A € Nwith P (A) ={p, . . - »Di}-

For each activity an end condition can be speci-
fied. The general meta-model allows end condi-
tions to have an arbitrary input container; within
FlowMark an end condition is a Boolean expres-
sion over the data items of the output container of
its activity, i.e., the input container of the end
condition p is always a subset of the output con-
tainer of its activity A: «(p) € o(4). Data con-
nectors that target the output container of an end
condition are thus not needed in this situation.

Within FlowMark, the set N' C N of start ac-
tivities always consists of all activities that have
no incoming control connector, i.e.,, N' = {4 €
N|VBENVYp€EP:(B,A,p) & E}. Activities
without an outgoing control connector are called
end activities; i.e., the set of all end activities is
givenby{4 EN|VBENVYp EP: (4, B, p)
& E}. A process ends regularly as soon as at least
one end activity has been carried out success-
fully, no further control flow path can be taken,
and the end condition of the process is met.

Resource definition. In order to allow the execu-
tion of activities at run time, FlowMark facilitates
the definition of the following kinds of resource
information: assignment data (i.e., data about or-
ganizations, roles, or persons), program registra-
tion data, and data structure information. This
information can be bound to the activities of a
process model.

Tasks. The syntax and semantics of the meta-
model deal with the logic of a process model, i.e.,
they describe the potential flows of control and

LEYMANN AND ALTENHUBER 335

data berween activities within each process in-
stance. From an enterprise point of view the flow
of activities itself between agents is of similar im-
portance, i.e., the logistics of a process model
have to be specifiable. Within an enterprise dif-
ferent activities of a running process are usually
executed by different persons (the executing
“agents” or staff members). In general, one and
the same activity (instance) within different pro-
cess instances will be executed by different per-
sons; thus, it must be possible to couple activities
not only to concrete persons but to abstract re-
sources that will execute the bound activity.

FlowMark allows each activity to be coupled with
such a resource. The resulting pair models a task.
A task represents a concrete run-time work re-
quest to a particular person to perform a specific
activity. The resources are the key within Flow-
Mark to distributing the activities to the right peo-
ple in the sequence the process prescribes.

Although the concept of a task is not apparently
visible in FlowMark, activities have task-related
information used at run time attached to them.
Each activity has an assigned resource who is
responsible for carrying out the work; this assign-
ment either becomes specific by associating a par-
ticular person with the activity or becomes ab-
stract by associating a role or an organization with
the activity. Also, each activity may have addi-
tional information for its expected average
duration. Optionally, every activity may specify
whether someone should be notified in case the ac-
tivity is not completed within the given amount of
time. This event is called escalation. Duration and
escalation can be defined for a process, too.

Organization, role, person. How staff assign-
ments should be bound to activities is defined at
modeling time along with the definition of the pro-
cess itself. The essential entities for modeling the
personal resource structure are organization,
role, and evidently, person. For the relation of
those entities FlowMark provides a simple but
powerful model.

An organization is a grouping of people within a
given enterprise and can be hierarchically struc-
tured, thus reflecting the organization chart of the
entire enterprise. A role is seen as a functional
position within an organization or an enterprise
and may have certain skills as a prerequisite.
Skills again can be qualified in terms of grading

336 LEYMANN AND ALTENHUBER

levels. More than one person can play the same
role within one organization or within different
organizations. Organizations as well as roles have

At run time FlowMark resolves
the relation between organization
or role and person.

one manager, respectively, and one coordinator.
All of the above information along with data about
each FlowMark user is stored in the FlowMark
database.

At run time FlowMark resolves the relation be-
tween organization or role and person. If several
persons qualify for performing an activity, all of
them receive the work request at their worksta-
tions. As soon as one person in a group takes the
work request, FlowMark withdraws the request
from all other workstations of the group.

For assignment purposes the modeler also can
refer to the anonymous person who eventually
starts the process, to the manager of the person
who starts the process, to the process adminis-
trator, or to the manager of the process adminis-
trator. Thus it is, for instance, possible to have
the first activity performed by the user who starts
a process.

Programs. Program activities are carried out by
running the associated application or tool. The
application is the interface by which the user per-
forms work on the given request represented by
the program activity. However, applications that,
so to speak, implement a program activity are not
restricted to an interactive program but can also
be unattended programs started automatically by
FlowMark. The information describing the appli-
cation, together with its input and output data
structure, is kept in the program registration
database of FlowMark. The input and output data
structure of the program are identical to the input
and output container structure of its activity. Pro-
grams can be executed locally on the workstation

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

of the end user (which is the usual case for inter-
active tools like word processors or spreadsheet
programs and the like) or on any remote computer
that hosts a FlowMark program execution pro-
cess.

Data structures. FlowMark obviously has the
need to maintain and interpret container data of
activities since these data may be used within
transition conditions and end conditions. In order
to fulfill this need FlowMark incorporates its own
data structure definition facility. The supported
elementary data types are string, long, and float,
and arbitrary but fixed-size arrays of the elemen-
tary types. Existing data structures can be aggre-
gated to build new user-defined data structures
(nesting of structures). The nested data structures
are not referenced by the parent structure but be-
come part of it.

Animation. The definition of a medium-to-large
process model calls for an iterative approach
combining definition with verification. FlowMark
includes an animation part that lets the modeler
run a process model in animation mode. Anima-
tion enables the debugging of process models, the
analysis of the impact of changes to a process
model, and so on.

It is possible to select an arbitrary set of activities
(not necessarily startup activities) as a starting
point for animation. The modeler can step for-
ward and backward through the process model
watching its presumed behavior in terms of work
assignments and navigation between activities.
All work lists of concurrent assignees can be
viewed simultaneously.

Animation does not require a process model to be
completely defined; also program activities need
not be coded for animation purposes. As anima-
tion navigates through the activities, the modeler
is prompted for missing pieces of information. To
alleviate the task of manually feeding data to the
animation facility, all of the input data can be
saved for reuse later.

Sample scenario. Figure 3 shows the FlowMark
diagram of a credit allocation process modeled
with FlowMark. Control flow connectors are
shown as solid lines, and data connectors are
shown as dashed lines. The two different connec-
tor types can be selectively hidden or shown. The
same option is applicable to transition and end

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

conditions. In the diagram only transition condi-
tions are shown.

The scenario in the figure assumes that a loan
clerk starts the process from the FlowMark run-
time work area and initially is prompted for some
customer data. These customer data are put into
the process input container before the first activ-
ity can be started. For sake of simplicity the as-
sumption in our process model is that the cus-
tomer data just consist of a customer number
(CustNo). The customer number is used as input
in each activity. Therefore, data connectors are
leading from the symbol representing the process
input container to all other activities.

The first step of the process is to check the sol-
vency of the customer by use of the process ac-
tivity Solvency. Solvency receives the customer
number as input and returns two information
items in its output container. One item indicates
whether the solvency check was passed or not
and the other whether the customer is already
known to the bank or not. The results of Solvency
are stored in the process output container that is
depicted by the corresponding data connector
leading to the process output container symbol.
Depending on the results of Solvency, three fol-
low-up activities are possible: Accept, Branch-
ManagerApproval, and Reject. BranchManager-
Approval lets a branch manager override the
Solvency results for known and trustworthy cus-
tomers. Accept and Reject are automatic activi-
ties that handle the administrative aspects and
database updates. Notify is the final step for pro-
ducing printouts and notification letters.

Execution. As mentioned in the beginning of this
section, the server part of FlowMark is the co-
ordinator and synchronizer for work requests.
The core part of the server process consists of the
process execution component and the work list
management component.

A process model becomes a startable process by
translating it into the executable format. During
translation the process model is checked for con-
sistency and completeness; e.g., compliance with
the syntax of the meta-model is verified. The
startable process is an entity separate from the
model and therefore is also unaffected by any
changes to the model afterwards.

LEYMANN AND ALTENHUBER 337

Figure 3 Credit allocation process

-=| Process Definiion— Credit—Allocation Sample

Process Edit Options Seftings Help

<l |-

| B

Process instances can either be started via the
graphical end-user interface by clicking on the
appropriate startable process icon or via the call-
able program interface (API). The algorithm for
process execution in essence is encapsulated in
each process instance itself and in its activity in-
stances. When a new process instance is created,
it is copied from the startable process blueprint.

The first step in running the process consists of
finding its start activities N', distributing them
according to their bound personal resources and

338 LEYMANN AND ALTENHUBER

allowing them to be executed (i.e., £y = N'). The
activation condition of start activities (i.e., the
value returned by their synchronization expres-
sions) is “true” by definition. For all nonstart ac-
tivities the activation condition is checked when
all incoming control connectors either have been
evaluated or have been marked by a recursive
procedure called “dead path elimination.”

As described above, the meta-model exploits

three-valued logic when evaluating synchroniza-
tion expressions, i.e., to check activation condi-

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

tions. FlowMark requires that all transition con-
ditions of incoming connectors be evaluated
before the activation condition is checked, thus
circumventing three-valued logic.

Dead paths within a process are subgraphs having
activities that can no longer become startable be-
cause a previous transition condition within the
subgraph evaluated to ‘“‘false.” Activities relying
on input data from ‘“‘dead activities” can be spec-
ified if the user is prompted for the missing input
data, i.e., A(i, A, v) is determined, or an excep-
tion is raised that leads to the termination of the
process.

The steps generally involved in executing an ac-
tivity are:

» Resolving the staff assignment

» Putting work requests on the work lists of the
assigned persons

» Executing activity implementations

» Interacting with the work list handler client to
handle manual (interactive) program invoca-
tions

» Checking the end condition

Resolving staff assignments and keeping track of
the work requests are done by the work list man-
ager. If not specified otherwise, role resolution is
done dynamically within the context of the orga-
nization of the person who started the process.
Such resolution allows for different physical as-
signments at run time based on the same model
information. The assigned work requests stem-
ming from the startable activities are stored in the
FlowMark database. The state of the work flow is
thus persistent, allowing for forward recovery in
case of system failures (fault tolerance with re-
spect to soft crashes). If there is manual activity
and the assigned user is logged on to FlowMark
and connected to the server, the work list man-
ager immediately forwards the new request to the
workstation of the user.

For automatic program activities, the program
execution server takes care of invoking the tool
without any further user interaction. Block activ-
ities and process activities are executed by start-
ing their respective implementations. It is the un-
derlying activity graph for the block, and it is the
newly created instance of the referenced startable
process for the process activity. In both cases the
execution is synchronous in the sense that those

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

activities complete after the underlying block or
the referenced process has finished successfully.

Manual activities are performed when an end user

issues the start request via the work list. On re-
ceipt of such a request the work list server passes

Resolving staff assignments and
keeping track of the work requests are
done by the work list manager.

it through to the program execution server that
handles it.

The end condition of an activity is checked when
its implementation is finished and the output data
are available in the output container. If the eval-
uation of the end condition £(A) of the activity A
returns “true” (i.e., e(A)(‘«(e(A))) = 1), the out-
going control flow connectors are examined. Con-
nectors whose condition evaluates to “‘true’ are
pursued for further execution of their target ac-
tivities. Finally, 3,(A) is computed, resulting in
the corresponding member X, of the execution
family. When no further control paths can be
found, the process is finished. The completion
status is reflected in the process folders of users
who started the process and in the folder of the
corresponding process administrator.

Process list. The process list gives a user access
to all of the process templates that he or she is
authorized to instantiate as well as to all process
instances allowed to be seen. A process instance
is seen by a user either when he or she instantiates
it or when the user is the administrative owner of
the process. The user interface allows filtering
and sorting of process instances according to their
status or to the actual data values within a process
input container.

Work list handler. The end-user interface for a
person working with FlowMark-generated work
requests is called the work list handler. A user can
maintain muitiple work lists in parallel in order to
arrange the work requests according to his or her

LEYMANN AND ALTENHUBER 339

liking. For this purpose FlowMark provides sort-
ing and filtering capabilities for work requests.
The work list handler gives the user all of the
necessary functions for maintaining work lists,
transferring work items to fellow workers, and
starting processes. For each work item the user
also can obtain a graphical view of the current
status of the process from its origination.

All the information visualized by the work list
handler is retrieved from the work list server
when the user logs on to FlowMark. Thus a user
can log on from any workstation and always ob-
tain his or her work lists reflecting the actual sit-
uation; this especially results in fault tolerance
with respect to hardware failures.

In order to work on a request appearing as an icon
on a work list, the user simply double clicks on
the icon. The underlying program is invoked, and
the user interacts with the program until the task
is finished. FlowMark detects when the program

' terminates and consequently passes control to the
server for exit checking and further navigation of
the process.

Depending on the level of authorization given, a
user may have access to the work lists of other
people and transfer work items between them.
Such access can be used to channel all work re-
quests to a supervisor who then distributes the
work requests to the proper people.

Program execution. The program execution serv-
er finds the appropriate target host for executing a
program by retrieving the corresponding program
registration data. The target host for execution may
be the workstation where an end user manually
started an activity via his or her work list (local
program invocation) or may be any other worksta-
tion that has a running FlowMark program execu-
tion process (remote program invocation). Flow-
Mark supports invocation of several program

types:

» 082 command files, executables, and dynamic
link libraries

* Customer Information Control System (CICS*),
Information Management System (IMS), or
Time Sharing Option (TSO) applications via ASF
(1BM Application Support Facility)

ASF uses an 0S/2 stub program for communication
with the CICS, IMS, or TSO environment. This

340 LEYMANN AND ALTENHUBER

makes the invocation of programs in these envi-
ronments transparent for FlowMark.

As mentioned earlier, program execution runs in
a separate 0S/2 process. For each command file or
executable a new 0S/2 process is started. Resyn-
chronization with FlowMark (also rendering the
system return codes) occurs via an 08/2 queuing
mechanism. For each dynamic link library a new
thread is created within program execution for
calling the appropriate entry point.

We distinguish between programs that are Flow-
Mark aware and those that are not. FlowMark-
aware programs exploit the FlowMark API that
allows them to obtain data from the activity input
container and put data into the activity output
container. The data structure of the input and out-
put container can also be queried by means of an
API call, returning names and types of all the data
elements down to the elementary fields.

So-called legacy programs that are not aware of
FlowMark can obtain data from FlowMark via
the command line. The desired data items of the
input container used as command line parameters
have to be specified as substitution variables at
program registration time. FlowMark takes care
of the proper substitution with the corresponding
input container data at run time.

FlowMark currently offers C language bindings
for its API and corresponding REXX language wrap-
pings. REXX procedures often give a modeler a very
versatile and quick way of implementing program
activities.

Audit trail. One of the important functions of ex-
ecuting business processes is tracking the process
in an auditable way. Tracking is done in Flow-
Mark by means of an audit trail that records all
events from starting a process, through working
on activities or transferring activities to other co-
workers, up to the successful completion or ter-
mination of a process. Various reports can be pro-
duced with the information provided in the audit
trail. Process and activity characteristics such as
overall process duration or maximum activity du-
ration can be extracted from such reports. Ana-
lyzing the audit data should lead to identification
of deficiencies in the process, and when they are
consequently addressed, it leads to improved bus-
iness processes.

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

Mathematical formulation of the meta-model

In this section we provide a mathematical formu-
lation of the meta-model. Please note that a per-
son modeling business processes based on Flow-
Mark has no need to understand the mathematics
presented here. But the mathematical foundation
of the meta-model demonstrates the robustness of
the concepts underlying our approach to the man-
agement of business processes.

Process models as weighted, colored, directed
graphs. We introduce a special class of weighted,
colored, directed graphs called PM-graphs (Pro-
cess Model graphs). A PM-graph is a mathemat-
ical abstraction of a process model, i.e., it pro-
vides the syntactical elements of our meta-model.

Activities as maps. Let N denote the set of all
activities that a particular process model consists
of; it is important to note that we explicitly as-
sume that each separate occurrence of an activity
within a process model is uniquely identified. The
set of all parameter types occurring somewhere in
a process model is denoted as V; mainly, V" con-
sists of all input parameter types and output pa-
rameter types of each single activity (1 also en-
compasses the input parameter types of all
Boolean functions of a process model and the spe-
cial parameter types like the maximum time for an
activity to be elapsed before it has to be started,
etc.). Accordingly, there is a map ¢:N — p(V),
associating with each activity 4 € N the set of its
input parameter types «(4) C V, and there is a
map o :N — p(V') associating with each activity
A € N the set of its output parameter types o(A4)
C V (p(M) denotes the power set of the set M).
((A) and o(A) represent the input container and
the output container of 4, respectively. Each pa-
rameter v € V has associated with it a set
DOM(v) as its domain, i.e., DOM(v) is the set of
values the parameter type v may take. Thus, an
activity 4 can be perceived as a map

A: x DOM(v) - x DOM(v)
vE(A) vEo(A)

Let A4 be the activity Increase_Salary. The input
container of this activity consists of the parameter
types Employee#, Salary, and Level, i.e., 1(4) =
{Employee#, Salary, Level}. Since A produces a
new salary, its output container consists of the
parameter type Salary, i.e., o(4) = {Salary}.
Valid employee numbers are character strings of

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

length 10, floating point numbers provide the
values for salaries, and levels are measured via
integer numbers, i.e., DOM(Employee#) =
CHAR(10), DOM(Salary) = FLOAT, and DOM
(Level) = INTEGER. Thus, A is perceived as
the map

Increase_Salary: CHAR(10) x FLOAT

x INTEGER — FLOAT

Control connectors. Once an activity 4 € N ter-
minated successfully, certain follow-on activities
are possible or required. All potentially occurring
follow-on activities A, ..., A, € N of 4 are
connected with A4 via directed edges. Each edge
is directed toward the successors of a given ac-
tivity. The edges (4, 4,), ..., (4, A,) are thus
representing the fact, that 4,, ..., A, are the
potential follow-on activities of A (and the only
potential follow-on activities of 4). In this way, a
set of edges E C N X N is generated. The di-
rected graph G = (N, E), which represents at the
current stage a process model in our meta-model,
reflects the potential work flow of a process
model.

Within the meta-model, the parameters V are rep-
resenting the context of the potential instances of
the process model. Because activities are maps
defined in those parameters, thus changing that
context, not all potential follow-on activities of a
certain activity will be meaningful in each con-
text. The set of actual follow-on activities is con-
text dependent. The meta-model provides predi-
cates in order to allow for the modeling of this
context dependency:

If P denotes the set of all predicates belonging to
a process model, there is a map ¢: P — p(V') as-
sociating with each predicate p € P its set of
input parameter (types) «p) C V, representing
the input container of p. A predicate p is then a
Boolean function

p: x DOM() — {0, 1},

vEu p)

where “0> denotes “false” and “1” denotes
“true”; always, the two constant Boolean func-
tions “0” and “1” are valid predicates (g, = 0, g,
=1¢€P).

LEYMANN AND ALTENHUBER 341

In order to model which follow-on activities are
possible or required in the acfual context (actual
values of all parameters in V'), the edges con-
necting activities are weighted by predicates. The
set of all edges isthus E € N X N X P. Let

Tiperiy My X oo o XM, > M, X...XM,

denote the projection map between Cartesian
products (iy, ..., i €E{l,...,n}). Thenp €
m:(E) C P is called a flow condition or transition
condition. The members e € E are called control
connectors. P _(A): = m({e € E | m,(e) = A})
is the set of all flow conditions of control con-
nectors leaving A, and P, (A): = m({e € E |
m,(e) = A}) is the set of all flow conditions of
control connectors entering A.

Data connectors. Data connectors specify how
input containers of activities or predicates are
composed of output parameters of other activities
of the corresponding process model. The set of
data connectors pointing to the input container of
the activity (or predicate) B from the output con-
tainer of the activity A is given in our meta-model
asasetA(A, B). Anelementd € A(A4, B) is a pair
consisting of an element of 0(A4) and an element
of «B).d = (vy, v;) € A(A, B) specifies that at
run time when B is invoked the actual value of v,
of the input container of B is the current value of
v, from the output container of 4. Thus, there is
a map

ANNX(NUP) - U ploA) x «B))

AEN,BENUP

called data connector map having the following
properties:

1. A(A,, A;) € plo(4,) X uA,))
2. (x,2), (y,2) €E U ey AA, By > x =y
3. A(4,, A,) # B = A, reachable from A4,

We call 4, reachable from A, (4, # A, € N) if

and only if there is a directed path from A4, toA4,,
i.e.,

iB,,...,B,€N:(A4,,B)), (B}, By), ...,
(B A,) € m(E)

Condition 3 above ensures that the data required
by a particular activity are really produced by an

342 LEYMANN AND ALTENHUBER

activity that ran before and that terminated suc-
cessfully; in case dead path elimination occurred
and values from output containers of traversed
activities are required in the input containers of
follow-on activities, a special function is used to
determine these values. The reachability condi-
tion further ensures that output produced by a
particular activity cannot be expected as input by
an activity that is running in parallel. Also, results
that are produced by two activities (within their
local context) running in parallel cannot be
mapped to the same input value of a third activity.
This is ensured by condition 2 above. As a con-
sequence, the Bernstein Criterion” is fulfilled en-
suring correct parallel executions.

Moreover, our meta-model allows input data to
be passed from the input container of the process
to the input containers of its encompassed activ-
ities and predicates, and allows output data of the
activities to be passed to the output container of
the process. Again, this is achieved via data con-
nectors provided by the following process data
connector map:

A:N > U (p((G) X 1(4)) U p(oA) x o(G)))

AEN

where «(G), o(G) € V denotes the input con-
tainer and the output container of the process
model G, respectively. The obvious condition

VYAEN: AA) € p(1(G) x (A))
U plo(A4) X o(G))

has to be fulfilled. The input and output container
of the process model G is encompassed in the
Bernstein Criterion via the following two condi-
tions:

1.V B € N: (x, 2), (¥, 2) € p((G) X B))
UUsen AA, By > x =y

2. (% 2)s (v> 2) € Upew pl0(B) X 0(G)) >
X =y

Coloring activities. An exit condition or end con-
dition is a Boolean function associated with a
node A € N used to check whether A4 finished its
work successfully or not. Within our meta-model,
exit conditions are associated with activities via a
map &: N — P. When an activity A terminates, its
exit condition &(A4) is evaluated based on the ac-
tual values of «(e(A4)). The termination of 4 is

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

considered to be successful if and only if
e(A)((e(A))) = “true.” As long as termination of
A 1is not successful, it has to be worked on at a
later time, and no navigation is performed starting
atA.

In order to allow for user-defined synchronization
of paraliel work within processes, the meta-model
allows us to associate a synchronization expres-
sion with each activity 4 € N. This is a Boolean
expression formed with the flow conditions of all
control connectors entering 4, i.e., a Boolean
expressionin P (4) = m;({e € E | m,(e) = A}).
With

ko

d.:=1V ADp/|pi€{p, p|pEP,A)}

j=1 i=1

our meta-model associates a synchronization ex-
pression with a node via the map

&N - U ¢,

AEN

O(B) E ¢4

In order to be activated the synchronization
expression ®(B) of an activity B must be “true.”
Because of this, synchronization expressions are
also referred to as activation conditions. It is im-
portant to note that a conjunction Ap; will return
“unknown” until all affected flow conditions p;
have been evaluated. A flow condition p;, is eval-
uated for (4, B, p,) € E once A terminated suc-
cessfully, or the act of dead path elimination tra-
versed A. If all flow conditions of at least one
conjunction Ap| are evaluated and returned
““true,” the whole synchronization expression

~

®B)=V A p;

j=1 i=1

will return “true.” If none of the conjunctions of
a synchronization expression returned “true”
and at least one of its conjunctions returned “un-
known,” the synchronization condition returns
“unknown.”

Process models: The formal definition. We are
now ready to provide the formal definition of a
“process model”’; when the abstract properties of
a process model are of more interest we will talk
about PM-graphs:

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

Definition: A tuple G = (N, E, P, V, ®, &, A, A,
N') is called a process model (or a PM-graph):<

BN -

11.

. N is a finite set of activities.

. V'is a finite set of parameters.
. P is a finite set of predicates.
. There is a map

LN UP UG —p(V),
and a map
0:N U{G}—p(V),

where ¢ associates with each element of N U
P U {G} input parameter (types) and o as-
sociates with each element of N U {G} output
Dparameter (types); «(B) and o(B) are also
called the input container and output con-
tainer of B, respectively.

. Each v € V has associated with it a set

DOM(v).

. Each activity A € N is a map

A: x DOM@)— x DOM(v)
vE(A) vEo(A)

. Each predicate p € P is a map

p: x DOM(v)—{0, 1}

vEY p)

. The set E C N X N X P is unified, i.e.,

Ve,e' €EE:me)=m ()N

me) = mle') D> e=¢';

a member of ;(E) is called a flow condition.

. N'CN,N' # @, is the set of start activities.
10.

e: N — P associates with each A € N an exit
condition.
The map ® is called a synchronization map,

*:N—> U ¢,

AEN

D(B) € ¢p
where each member of

P
=1V /\p”p;E{p,—,plpEP:(A)}]

j=1 i=1

is called a synchronization expression.

LEYMANN AND ALTENHUBER 343

12. The map
ANXNUP)—» U poA) x «(B))

AEN,BENUP

is called a data connector map having the
following properties:

*VA,A, € N:AA,, A;) € plo(A;) X
UA,))

* VB EN:(x,2),(y,z) € Uy A(A, B)
>x =Yy

*VA,,A,EN:AA,,A4,) # @ > A, reach-
able from 4,

13. The map

A:N— U (p(uG) X uA) U
AEN

plo(A) x o(G)))

is called a process data connector map hav-
ing the following properties:

eV AE N:AMA) € p(G) X (A))
U p(o(4) x o(G))

* VB € N:(x, 2), (¥, z) € p(1(G) X «B))
UUyeny A4, B) > x =y

* (x, 2), (¥, 2) € Ugen plo(B) X 0(G)) =
x =y

A closer look at a PM-graph G = (N, E, P, 1,
®, g, A, A, N’) reveals that it describes two
interrelated graphs. The first graph represents the
control flow of the process model G and is de-
scribed by the tuple (N, E, P, V, ®, &, N'); the
second graph describes the data flow of the pro-
cess model G and is described by the tuple (V, V,
A, A). The control flow is a weighted, colored,
directed graph G’ = (N, E), with maps as nodes,
flow conditions as weights of edges, and pairs of
synchronization expressions and exit conditions
as colors of the nodes. The data flow is a
weighted, directed graph (N, €) with edges € C
N XNxp(VxV)and(A4,B, A(4,B)) E €=
A(A, B) # §J, the weights of which are determining
the mapping of values from output containers to
input containers.

Interpreting activity networks. Instantiating a pro-
cess model, i.e., the execution of a process,
mainly consists of navigating through the process
model and the execution of activities. Activities
are allowed to be executed only if they are se-
lected beforehand. We describe now the opera-

344 LEYMANN AND ALTENHUBER

tional semantics of the syntactical elements of our
meta-model as provided in the above definition.
Thus, we provide the rules on how to interpret
PM-graphs.

Activities and their states. The interpretation of
the syntactical elements of a process model in
context with the actual parameters of the various
containers results in a running process, i.e., in a
dynamical process instance. Interpretation hap-
pens at particular discrete points in time, for ex-
ample, once an activity terminates successfully.
Thus, the aspect of time can be covered by the set
of natural numbers N. 0 € N represents the point
in time in which a new instance of a process model
G is started. Each activity of a process has as-
sociated with it at each point in time i € N exactly
one state s € 5; the state set .S includes the states
“executable,” “activated,” and ‘“‘successful”
(and “evaluated” and “not-evaluated,” which are
relevant for predicates only).

The map w:N X N — §, which associates at any
time i € N with each 4 € N the actual state (i,
A), is called state map; via w,(A): = w(i, A) a
map o;:N —> § is induced for eachi € N. The
map a:N — p(N), i > ;' ({activated}) is called
(w—)active map; a;: = a(i) is the set of all cur-
rently active activities at time i (remember that
we have shown before that the activities in «; are
satisfying the Bernstein Criterion).

AN = p(N), i > o' ({successful}) is called
(w—)successful map; A;: = A(i) is the set of suc-
cessfully terminated activities at time i (for amore
precise definition of this set see below).

Dead path elimination. Dead path elimination oc-
curs when it is detected that a particular activity
can never reach the state “executable” in the cur-
rent instance of the process model. The map 5 : N
x E — {0, 1} specifies at each time i whether an
edge e € E was traversed by the dead path elim-
ination procedure (E(i, e) = 1) or not (E(i, e)
= 0). The map E induces a map E5:N X N —
{0, 1}viaB,\(i,A)=1<3IBEN3IpEP:E(,
(4, B, p)) = 1. Note that the dead path elimi-
nation procedure ensures that = is well-defined.

Actual values in containers. Let B€ N U P U
{G}. Then *«(B) and ‘o(B) (the latter exists only
for B & P) denote the input container and the
output container, respectively, of B at the time i
€ N, where all formal parameters are bound to

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

their actual values. If v € «(B) U o(B) denotes a
formal parameter, its actual value at timei € N
is denoted by ‘v. The binding of formal parame-
ters to actual values respects both the data flow A
between activities and the data flow A between
activities and the process itself:

1. When an instance of the process model G is
started, all input containers are considered to
be initialized with default values; the resulting
input container is denoted by °«(B):

VBEeNUPU{G}VveE i(B):"v € DOM(v).

2. The values for the parameters in the output
container of a successfully terminated activity
are the return values of this activity; the output
containers of all other activities are considered
to consist of the default values of their speci-
fied formal parameters. The resulting output
container is denoted by ‘o(B):

Leti = 0 and «(4) = {vq, ..., U,}.

*VAENOA) = A(vy, o, Thy)
VA& NToA) =AW, ..., "vy)

3. For times i # 0 the actual values of the input
containers are determined by the data connec-
tors; if there is no data connector specified to
determine the actual value of a particular for-
mal parameter, its default value is taken. In
cases where the data connector originates
from an activity traversed by the dead path
elimination, a special function determines the
actual value of the affected formal parameters.
The resulting input container is denoted by
“u(B):

«“WBENUPUI{GIVvE L():
A4, B) U AB) A Bn(i ~ 1, A)
i—lw

oY

cm

°VBENUPU{G}VUEL(B)(v)
=A(l,B,v)

where A:N X N X V = U,o, DOMW) is
a partial map defined for (4, v) E N X V
with v € (A4) satisfying A(i, 4, v) €
DOM(v); A is called a dead parameter map.

*VBENUPUI{GIVYvE uB):{(w, v) |

AENN(w,v) € A4, B) U AB)} = @
> iy="0%

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

We are now able to give a precise definition of the
(w—)successful map: Itis 4 € A,: <&

1. 3j <i:e(j, A) = activated
2. e(A)(""u(e (A))) =

3. o(j+1,4) = o(i, A) = successful

Predicates and their states. At any point in time
predicates have a state associated with them too.
The states of the predicates P are determined by
the states of the activities V; thus the state map
w induces the predicate state map ¢:N x P — §
as follows:

1. At time { = 0 the state of all predicates is
“not-evaluated™:

V p € P: £0, p) = not-evaluated

2. At times i > 0 the flow conditions of all suc-
cessfully terminated activities are in the state
“evaluated”:

VAENYpEP (A):i=1> &G, p)

= evaluated

3. Attimesi > 0 the flow conditions of all edges
traversed via dead path elimination are in the
state “evaluated” (and returned “false”!):

VA, B,p)EE:E(, 4, B,p)) =1 £, p)
= evaluated

4. Once a predicate has been evaluated it has the
state “evaluated” from that time on:

VpEP:E(, p)=evaluated A j>i>
&(j, p) = evaluated

5. In all other situations, p € P has the state
“not-evaluated.”

The return value of a synchronization expression

ko
®B)=V A p;
j=1 i=1

is determined based on the setting

Vi<j<kVI1s<is[:&@t, p)
= not-evaluated = p/(“«(p))) = unknown

LEYMANN AND ALTENHUBER 345

by the usual rules of three-valued logic (e.g.,
— unknown = unknown, unknown A true = un-
known, unknown A false = false, unknown V
false = unknown, unknown V true = true). Thus,
if all conjunctions Ap; encompass at least a flow
condition p with £(¢, p) = not-evaluated, then
®(B) returns at time ¢ the value “unknown.” If
there is at least one conjunction Ap; in which all
flow conditions have the state “evaluated” and
for all of these predicates p; it is pi(‘u(p})) = 1,
then ®(B) returns at time ¢ the value “1.”

Actual successors. We first define the set of all
follow-on activities of a given activity 4 which are
reachable from A4 at a certain point in time along
control connectors the weight of which returns
“true” at that time. This is achieved via the map

o:N x N = p(N)

(i,AYr> {BEN |3, B, p) €E:p(u(p)) =1}

which is called formal selection map. The seman-
tics of our meta-model do allow the formal selec-
tion map to apply only to activities that have
terminated successfully. Moreover, only those
members of o(i, A) that satisfy their associated
synchronization expression ®(A) are actually se-
lected. Thus we have to define an additional map

2N XN —p(N)
called a selection map via

1.4 € A > 3, A): = {BEa(i, A) | B(B)
(pf, ..., pd) = 1} with {p?, ..., pf} =
P.(B)

2. A& N> A): =0

Z,(A): = 2(i, A) is called the set of i-actual suc-
cessors of A.

The navigation through a process consists of both
the act of selecting follow-on activities and the act
of executing selected follow-on activities. This
strong distinction between selection and execu-
tion of activities permits the delegation and dis-
tribution of the follow-on activities of success-
fully terminated activities, and reflects the fact
that delegated activities are in general not started
immediately after their delegation.

346 LEYMANN AND ALTENHUBER

Executable activities. Once a navigation step is
finished the newly determined actual successors
are dispatched to the resources that can execute
them. The corresponding activities are “execut-
able” (also called “startable”). All activities that
were executable at an earlier time and that have
not changed to the state “successful” in the
meantime are still in the state “executable,” of
course. When an instance of the process model G
=(N,E,P,V,®, e, A, A, N'}) is started, all of
its entry activities N' can be executed. We de-
scribe these semantics via the set family (Z;);cn
called a (w —)execution family which satisfies the
following conditions:

1. 3p: = N’
2.5: =231 UU en 2A) -4 €2 | 0(4)
= successful}

Process instances: The formal definition. Finally,
we can now define what an instance of a process
model is in the sense of our meta-model, i.c., how
PM-graphs are interpreted:

Definition: Let G = (N, E, P, V,®, ¢, A, A, N')
be a process model. A G-process or a G-instance
or an execution of G is a tuple G = (w, A,
(")) aens ("0(A))4ens “UG), °0(G)) consist-
ing of a status map w:N X N — §, a dead value
map A:N X N x V — U DOM(w), and the
families of default values of the input containers
and output containers of all activities as well as of
the process model G.

A G-process is thus determined by a status map,
a dead value map, and the default values for its
containers. According to our definitions given for
those terms, all other constructs are derived from
that. Note that the status map w is both influenced
by user interventions (e.g., by starting the exe-
cution of an activity that results in a state tran-
sition from “executable” to “active” of the sub-
ject activity) and by interventions of the interpreting
system itself (e.g., by changing the state of an ac-
tivity to “successful” if the activity terminates and
the exit condition results in “17).

Summary and future work

We described FlowMark, a system supporting
both the modeling and the execution of business
processes. The constructs provided by Flow-
Mark to define process models and the opera-
tional meaning of these constructs assumed when

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

executing instances of a process model are de-
fined via a meta-model. The syntax and the se-
mantics of this meta model were presented in an
abstract manner showing the mathematical foun-
dation of FlowMark. Processes are modeled by
the potential control flow and data flow between
activities of FlowMark. Activities can be repre-
sented by programs, and they are bound to the
executing agents of FlowMark which are resolved
into work requests sent to users at run time.
FlowMark has a client/server structure in which
persistent data are maintained by servers via an
object-oriented database system. The implemen-
tation is fault-tolerant, e.g., FlowMark itself will
not initiate abortions of processes; processes af-
fected by soft crashes and hardware failures will
be forward recovered.

Potential future extensions of the meta-model en-
compass additional colors of activities, and bus-
iness transactions, for example. One new color
could be an additional Boolean function that must
be evaluated to “true” when trying to start the
associated activity. This might avoid starting ac-
tivities whose execution is no longer desirable be-
cause changes in the context of the process oc-
curred before an activity is actually started.
Business transactions could add the notion of
compensation activities and spheres of compen-
sation to process models.

Apart from these extensions FlowMark is con-
sidered to have been expanded to a multiserver
product capable of servicing the business process
needs of large enterprises. A logical step in this
direction includes porting FlowMark to a number
of other platforms besides 0S/2 and exploiting
other transport protocols.

Acknowledgment

FlowMark is a team effort; we are very grateful to
each member of the FlowMark development
team. The team made process management in the
sense of this paper a reality.

*Trademark or registered trademark of International Business
Machines Corporation.

Cited references
1. E.Bestand C. Fernandez, “Nonsequential Processes—A
Petri Net View,” EATCS Monographs on Theoretical

Computer Science, Vol. 13, Springer-Verlag, Berlin-
Heidelberg (1988).

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

. High-Level Petri Nets:

Theory and Applications,
K. Jensen and G. Rozenberg, Editors, Springer-Verlag,
Berlin-Heidelberg (1991).

. H. J. Genrich, “Predicate/Transition Nets,” in High-

Level Petri Nets: Theory and Applications, K. Jensen and
G. Rozenberg, Editors, Springer-Verlag, Berlin-Heidel-
berg (1991).

. K. Jensen, “Colored Petri Nets: A High-Level Language

for System Design and Analysis,” High-Level Petri Nets:
Theory and Applications, K. Jensen and G. Rozenberg,
Editors, Springer-Verlag, Berlin-Heidelberg (1991).

. J. Guyot, “A Process Model for Data Bases,” ACM SIG-

MOD Record 17, No. 4, 22-30 (1988).

. F. Kroger, “Temporal Logic of Programs,” EATCS

Monographs on Theoretical Computer Science, Vol. 8,
Springer-Verlag, Berlin (1987).

. U. W. Lipeck, Dynamische Integritiit von Datenbanken,

Springer-Verlag, Berlin (1989).

. U. W. Lipeck and G. Saake, ‘“Monitoring Dynamic In-

tegrity Constraints Based on Temporal Logic,” Informa-
tion Systems 12, 255-269 (1987).

. A. M. Kotz, Triggermechanismen in Datenbanksyste-

men, Springer-Verlag, Berlin (1989).

H. Garcia-Molina and K. Salem, “Sagas,” Proceedings of
ACM SIGMOD (1987), pp. 249-259.

H. Wichter and A. Reuter, “The ConTract Model,” in
Database Transaction Models for Advanced Applica-
tions, A. K. Elmagarmid, Editor, Morgan Kaufmann Pub-
lishers, Inc., San Mateo, CA (1992).

M. Hsu, A. Ghoneimy, and C. Kleissner, “An Execution
Model for an Activity Management System,” Proceed-
ings 4th International Workshop on High Performance
Transaction Systems, Asilomar (September 1991).

C. T. Davies, Jr., “Data Processing Spheres of Control,”
IBM Systems Journal 17, No. 2, 179-198 (1978).

J. Behrmann-Poitiers and J. Edelmann, “A Model to Sup-
port Routine Office-Work,” Proc. GI-Fachtagung Daten-
banksysteme in Biiro, Technik und Wissenschaft, Kaiser-
slautern, FRG (March 1991), Informatik-Fachberichte
270, Springer-Verlag (1991), pp. 72-88.

G. Kappel, “Reorganizing Object Behavior by Behavior
Composition—Coping with Evolving Requirements in Of-
fice Systems,” Proc. GI-Fachtagung Datenbanksysteme
in Biiro, Technik und Wissenschaft, Kaiserslautern, FRG
(March 1991), Informatik-Fachberichte 270, Springer-
Verlag (1991), pp. 446-453.

D. Tsichritzis, “Form Management,” Communications of
the ACM 25, No. 7, 453-478 (1982).

G. Chroust, H. Goldmann, and O. Gschwandtner, “The
Role of Work Management in Application Development,”
IBM Systems Journal 29, No. 2, 189-208 (1990).

G. F. Hoffnagle and W. E. Beregi, “ Automating the Soft-
ware Development Process,” IBM Systems Journal 24,
No. 2, 102-120 (1985).

K. D. Saracelli and K. F. Bandat, “Process Automation
in Software Application Development,” IBM Systems
Journal 32, No. 3, 376-396 (1993).

G. Chroust and F. Leymann, “Interpretable Process
Models for Software Development and Administration,”
Proceedings of the 11th European Meeting on Cybernet-
ics and Systems Research EMCR92, Vienna, Austria,
April 21-24, 1992, World Scientific (1992), pp. 271-278.

F. Leymann, “A Meta Model to Support the Modelling
and Execution of Processes,” Proceedings of the 1Ith
European Meeting on Cybernetics and Systems Research

LEYMANN AND ALTENHUBER 347

EMCR92, Vienna, Austria, April 21-24, 1992, World Sci- tools and then became team leader for FlowMark in 1991.

entific (1992), pp. 287-294. Presently he is responsible for the architecture and design of
22. ISO/IEC 10027: 1990 (E), Information Technology—In- FlowMark. He is a member of the technical committee of the
formation Resource Dictionary System (IRDS) Frame- Work Flow Management Coalition.

work, 1SO, Geneva.

23. W.D. Potter, R. P. Trueblood, and C. M. Eastman, “Hy-
per-Semantic Data Modeling,” Data & Knowledge Engi-
neering 4, 69-90 (1989).

24. J. Peckham and F. Maryanski, “Semantic Data Models,”
ACM Computing Surveys 20, No. 3, 153-190 (1988).

25. Concepts and Terminology for the Conceptual Schema
and the Information Base, Report of ISO
TC97/SC5/WGS, J. J. Griethuysen, Editor, ISO, Geneva
(1982).

26. F. Leymann, “Towards the STEP Neutral Repository,”
Computer Standards & Interfaces 16, No. 2 (1994).

27. J. L. Baer, “A Survey of Some Theoretical Aspects of
Multiprocessing,” Computing Surveys 5, No. 1, 31-80
(1973).

28. J. Gray and A. Reuter, Transaction Processing: Concepts
and Techniques, Morgan Kaufmann Publishers, Inc., San
Mateo, CA (1993).

29. H. M. Deitel and M. S. Kogan, The Design of 0S/2, Ad-
dison-Wesley Publishing Co., Reading, MA (1992).

30. D. Moskowitz and D. Kerr, OS/2 2.1 Unleashed, Sams
Publishing, Carmel, IN (1993).

31. R.Orfaliand D. Harkey, Client/Server Programming with
0S8/2 2.0, Van Nostrand Reinhold Co., Inc., New York
(1992).

Reprint Order No. G321-5545.

Accepted for publication January 21, 1994.

Frank Leymann IBM German Software Development Labo-
ratory, Hanns-Klemm-Str. 45, D-71034 Boblingen, Germany
(electronic mail: frank_ley@vnet.ibm.com). Dr. Leymann
studied mathematics, physics, and astronomy, and received
an M.Sc. (Dipl.Math., 1982) and a Ph.D. (Dr.rer.nat., 1984),
both in mathematics. He joined IBM in 1984 as a system pro-
grammer and database programmer. Next, as a team leader,
he was responsible for the development of a nonstandard
DBMS. Then, he worked out an architecture for systems
facilitating work flow management. After having worked on
enterprise modeling, repositories, and object-oriented data-
base systems, he is now active in the area of database exten-
sions, database tools, and advanced transaction processing.
Dr. Leymann has published papers in various journals and
conference proceedings on subjects such as relational data-
base theory, universal relation model, hybrid DBMSs, DBMS
architectures, meta-modeling, and work flow management;
also, he is coauthor of a textbook on repositories. Since 1990
he has been teaching database courses at universities. He is a
member of the German standards committee DIN NI21.3
(IRDS, RDA, SQL).

Wolfgang Altenhuber IBM Vienna Software Development
Laboratory, Lassallestrasse 1, A-1020 Wien, Austria (elec-
tronic mail: altenhub@vabvml.vnet.ibm.com). Mr. Altenhu-
ber studied computer science and physics at the Technical
University of Vienna and received an M.Sc. (Dipl.Ing., 1982)
in computer science. Before joining IBM in 1988, he worked
in the computing center of the city of Vienna where he was
involved in a number of projects dealing with office automa-
tion, distributed processing, and networking. Within IBM he
first worked in the area of interactive user interface definition

348 LEYMANN AND ALTENHUBER IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

