
Managing  business 
processes  as  an 
information  resource 

The  relevance of business processes  as  a  major 
asset of an enterprise is more  and  more 
accepted: Business processes prescribe the way 
in which the resources of an enterprise are  used, 
Le., they describe how an enterprise will achieve 
its business goals. Organizations typically 
prescribe how business processes  have to be 
performed,  and they seek information technology 
that supports these  processes. We describe a 
system that supports the two fundamental 
aspects of business process management, 
namely the modeling of processes and their 
execution. The meta-model  of our system deals 
with models of business processes  as  weighted, 
colored, directed graphs of activities; execution 
is performed by navigation through the graphs 
according to a  well-defined  set  of  rules.  The 
architecture consists of  a distributed system with 
a clientherver structure, and stores its data in an 
object-oriented database  system. 

0 rganizations typically prescribe how busi- 
ness  processes  have  to  be  performed,  espe- 

cially those  processes  that  represent  complex 
routine  work,  that involve many  persons  (both 
concurrently and sequentially), and that  are in 
general  frequently performed. Examples of such 
processes  are manifold: program development in 
the  software  business,  credit allocation in the 
banking business,  customer enrollment in the 
health  insurance  business, or expense allowance 
processing in the  administration  business. 

The  relevance of business  processes as a major 
asset of an  enterprise is being accepted  more and 
more. Business  processes  prescribe  the way in 
which  the  resources (e.g., data,  capital, human 
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beings) of an  enterprise  are used, i.e., they  de- 
scribe how an  enterprise will achieve  its  business 
goals. The  quality of the  business  processes will 
influence the  quality of the  performance of an  en- 
terprise.  Thus,  business  processes  themselves 
represent  important information resources of an 
enterprise, and techniques  or  systems  to manage 
and  support  business  processes are always in de- 
mand. 

The IBM program product called FlowMark*  sup- 
ports  the management of business  processes. 
Both fundamental  aspects of process manage- 
ment, namely the modeling of processes (build 
time) and  the  execution of processes  according to 
a  process model (run time), are facilitated. Flow- 
Mark  may be perceived especially as a  repository 
for business  processes. Within the IBM Informa- 
tion Warehouse*  framework (of which  some  as- 
pects  are  discussed  elsewhere in this issue), 
FlowMark  is positioned as the  work flow man- 
agement component. 

Current approaches. Today,  there is no generally 
accepted methodology for modeling business  pro- 
cesses.  Petri  nets  are traditionally used to de- 
scribe and analyze  concurrent  systems. ' Never- 
theless, it has  been recognized that  Petri  nets are 
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not  currently  succinct and manageable enough to 
become useful in modeling business  processes. 
For this  reason high-level Petri  nets  have  been 
intensively studied during the  last couple of 
years. In particular,  predicatehransition nets3 
and colored  Petri nets4 have  been applied in var- 
ious application areas. But other methodologies 
have  also been proposed  and applied. It depends 
on the  emphasis  one  puts on the usage of pro- 
cesses  as  to  whether  they  are  described  as  Petri 
nets, trigger systems,  forms,  case plans, or even 
collections of formulas of temporal logic, for ex- 
ample. 

If one  focuses on the  pure  data manipulation as- 
pects of a  process,  process models are viewed as 
vehicles  for  ensuring  database integrity. Guyot’ 
shows  that  Petri  nets  are allowing database  ad- 
ministrators  to  control and constrain  the  execu- 
tion of activities  that manipulate a  database. 
Temporal logic has  proved to  be remarkably  suc- 
cessful in describing parallel programs and in 
studying their properties;6  the management of 
parallel components of a program has  some sim- 
ilarities to managing transactions  concurrently 
accessing  databases.  Thus,  Lipeck and Saake7,’ 
discuss how temporal logic is applied to describe 
valid sequences of database  states  and  consisten- 
cy-preserving  transactions, which is in certain  sit- 
uations  the major intent of a  process model. Par- 
tial orders on event  spaces  are also considered to 
model consistency-preserving  sequences of data- 
base  actions. 

Process models may  also be perceived as a  means 
to extend and complement facilities known from 
conventional  transaction  processing  monitors.  A 
process model is viewed as the specification of 
the flow of control  and  the flow  of data  separate 
from the collection of routines performing the 
proper  computations of an individual application. 
Applications are represented in Garcia-Molina 
and  Salem” simply as  sequences of related trans- 
actions  ensuring  either  the  successful  execution 
of all transactions in the  chain  or  its  compensa- 
tion. Predicatehransition  nets  are  pursued in 
Wachter  and Reuter”  to model networks of 
“steps”  (and  “compensation steps”)  that repre- 
sent  the  “scripts” of an application. A network of 
“activities,” which are triggered by  “events,” 
which are  sent along “arcs”  connecting  activities, 
is exploited in Hsu  et al. l2 for  that  purpose.  A 
very generic  and  abstract  approach  (“spheres of 
control”) especially for managing flows, includ- 
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ing their  recovery, is presented in  Davis.13 Tar- 
geting in the modeling of long transactions, Kotz9 
proposes  the  use of eventhrigger  systems. 

With the  support of office work in mind the fol- 
lowing has  been suggested: To model office pro- 
cedures,  Behrmann-Poitiers  and Edelmann14 are 
proposing “case plans.” In  cases  where the office 
system  reveals specific object-oriented  character- 
istics, life-cycle diagrams and composed activi- 
ties are pursued. ’’ If a  process  can be described 
as  the  processing of a  form,  a  corresponding  pro- 
posal is given by Tsichritzis. l6 

The commonality among processes in the  areas of 
software development,’7”9 office work,  and ad- 
ministration has  been  worked out by Chroust  and 
Leymann.20  A methodology applicable in these 
areas is described by Leymann.  It  strives  espe- 
cially for  a formalization of processes and their 
models in these problem areas  that is even  more 
succinct  and  “user-friendly”  than in Genrich3 
and J e n ~ e n . ~  It encompasses,  for example, the 
case  plans of Behrmann-Poitiers  and Edelmann14 
and in addition allows the definition of parameter- 
controlled  work flows in their problem domain. In 
this  paper  the methodology of Leymann21 is 
enhanced by introducing PM-gruph (Process 
Model graphs) in order  to fulfill additional require- 
ments posed by FlowMark. 

Our presentation. First,  we  show that  today  pro- 
cess  models  are  treated as information resources 
in a  rudimentary  manner; also, we sketch  the po- 
tential embedding of process  models  into an 
IRDS (information resource  dictionary  system22). 
Next, we discuss  the  meta-model of FlowMark 
for  processes. We provide and motivate  a collec- 
tion of constructs  that  have  to  be used in order  to 
define the model of a  process  to FlowMark.  Then, 
the  architecture of FlowMark  is  sketched. It  is  a 
distributed  system with a  clientherver  system 
structure. All relevant data  are  stored in an  ob- 
ject-oriented  database  system.  The graphical end- 
user  interfaces for defining and executing  pro- 
cesses  are  sketched.  Activities  represented  by 
executables complying to a  certain invocation 
paradigm are invoked by FlowMark.  In  the final 
section, we give a  mathematical formulation of 
the  syntax and the  semantics of the meta-model. 
Mathematically, a  process model is represented 
as  a special weighted, colored,  directed graph of 
activities (called a PM-graph); the  semantics of 
the  meta-model  are defined operationally,  exe- 
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cuting  a  process as an  instance of a  process model 
by navigating through the PM-graph according  to 
a well-defined set of rules. 

Process models as information resources 

Along with the classical production  factors of 
land,  labor,  and  capital,  enterprises  are  consid- 
ering information more and more  as  an  important 
resource, i.e., as  one of their  assets. ‘This infor- 
mation includes  data  about all resources  needed 
to reach  the goal of the  enterprise.  It  is generally 
accepted  that  this information should be  repre- 
sented in a formal manner as much as possible. 
‘The collection of actions  needed to achieve  this 
goal is referred to  as  “enterprise modeling.’’ 

Enterprise models. The  conceptual  base  for  en- 
terprise modeling is sometimes called a hyper- 
semantic data  model. 23 Producing the model of a 
concrete  enterprise by using a  hypersemantic 
data model results in an enterprise model. Such 
an  enterprise model consists of two components: 
the data model and  the knowledge model.23 

The  data model describes the  structure of all re- 
sources of the enterprise and is thus  somewhat 
like the  syntactical  component of the  enterprise 
model; in this  sense,  the  data model describes 
what can  be used by  the  enterprise to  reach its 
goal. Today,  enterprises  are building data models 
based on semantic data  models (for example,  the 
entityhelationship model; for an  overview of dif- 
ferent  semantic  data models see  Peckham and 
MaryanskiZ4). 

The knowledge model describes  the  use of re- 
sources  and  their  connections; it is the  semantical 
component of the  enterprise model. In this  sense, 
the knowledge model describes how the  enter- 
prise uses  its  resources in order  to  reach  its goal. 
The knowledge model encompasses  constraints, 
heuristics,  and  procedures.  Constraints define the 
local and global consistency of the  resources; if 
the  resources  are  stored in a  database,  constraints 
fix the valid database  states.  Heuristics  describe 
how to  derive  data.  Procedures define events and 
correlated  actions,  set  sequences of actions, and 
describe  business  processes.  The model of a  bus- 
iness  process  can  be  used  to define, for  example, 
valid sequences of state transitions in a  database 
(intertransaction integrity7,8J1) as well as  se- 
quences of work  steps,  whereas  executing  a  bus- 
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iness  process could be  described as context- 
dependent. ’’,’’ 
Documents as process models. Process models 
represent knowledge about  an  enterprise.  Usu- 
ally, this knowledge is found today in the  format 

The  knowledge model describes 
the use of resources and  their 

connections. 

of textual  processing  instructions.  The handling 
of each single business  process  according  to  these 
processing  instructions  then  corresponds  to  a 
process,  i.e., an instance of the  process model as 
defined via the  instructions. 

Process models in the  format of textual  process- 
ing instructions  are very inflexible. Enterprises 
cannot  react with sufficient speed  to  changes in 
their environment. Changes in the processing in- 
structions  are communicated by distributing doc- 
uments,  thus,  the time to  activate  these  changes 
is dependent on when  the  corresponding  docu- 
ments  arrive; in distributed  organizations  these 
documents will arrive  at different points in time, 
resulting, in turn, in consistency  problems.  Sup- 
port for handling individual processes  is  only  en- 
abled in a limited way via  the  textual  processing 
instructions.  Precise compliance with the  instruc- 
tions  cannot  be  enforced directly. 

Control programs as process models. Today, com- 
puter assistance for  handling processes is achieved, 
for example, by programming the corresponding 
procedural instructions. Each single work  step can 
be supportedvia ”generic programs” (i.e., via tools 
or service routines), via special applications (i.e., 
via programs considering the individual needs of an 
enterprise), or simply via help texts (Le., via elec- 
tronically documented work instructions). A spe- 
cial control program determines the individual se- 
quence of work  steps dependent on the concrete 
context of the individual business process. In this 
sense, the control program represents the formal- 

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994 



ized process model,  and an instance of the control 
program corresponds to  a concrete, individual pro- 
cess. But such control programs also do  not allow 

A process model  may  be seen 
as a template for a  class of 

similar business processes performed 
within  an enterprise. 

for highly dynamic reactions. Changing the knowl- 
edge embedded in the control program involves a 
great deal of effort  (redesign,  coding,  compiling, 
etc.). 

Separate representations for process models. For 
this  reason,  extracting  the knowledge represent- 
ing the  process from the  control program and 
forming a  separate  representation of this knowl- 
edge as its own syntactical unit is extremely  de- 
sirable. As a  consequence,  these  syntactical 
units-which now represent the process model- 
have  the flexibility and comprehensibility to in- 
stitute  the required dynamics. A process  inter- 
preter receiving such  a  process model as input 
(along with other information) can  instantiate  the 
process model and determine  the individual se- 
quence of work  steps, depending on the  context 
of the instantiation of the  process  model.20 

IRDS and process models. Process models de- 
scribe  (apparently) different functions  such  as  the 
production of a  part in a  production line, the  set- 
tlement of a damage case within an insurance 
company,  the  treatment of a form for making al- 
lowances  for  expenses,  the  procedure in devel- 
oping a program, or valid sequences of transac- 
tions. In these  situations,  each individually 
executing  process  can  be  perceived as a  separate 
instance of the  process  The  process 
model is the  processing  instruction for a  concrete 
process  to  be  executed  (and is thus  a  processing 
model). Computer  assistance  thus  means  both  the 
support for defining the  process model (modeling) 
and  the  support for performing each individuaI 
process (execution). 
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Computer  assistance for defining process models 
should be  enabled  via  a language that  provides 
constructs  that  can be embedded canonically in a 
dictionary A dictionary  concept  that  strives for 
integrating data models and process models is 
pursued and thus  contains all information re- 
sources. It follows the  International  organization 
for Standardization (KO) conceptualization prin- 
~ i p l e , ' ~  according to which as much knowledge 
about  an application area as possible is moved 
from the  programs  to  the  dictionary of an enter- 
prise. Such  a language then  encompasses  a model 
for process models, i.e., a metu-model for pro- 
cesses;  instances of the  meta model are  process 
models. In turn,  the  instances of the  process  mod- 
els are  the  proper  representations of process  ex- 
ecutions. Meta-model and  process model, and 
process model and process,  respectively,  are 
building intension-,  extension-pairsZ6  that  thus 
comply  conce tually to  the ISO Dictionary  Archi- 
tecture IRDS. "The integration of process models 
into  the IRDS together with the  already available 
data modeling capabilities then allows very flex- 
ible enterprise modeling based on a  dictionary. 
For  that  purpose  one  has  to  describe  our  meta- 
model in terms of the  fundamental modeling lan- 
guage of the IRDS. 

FlowMark allows process models to  be defined 
according to  our meta-model described below. 
Each  process model is an  instance of the  meta 
model. Process models are  instantiated and exe- 
cuted by interpreting the instances of the  types of 
the meta-model. The  interpretation is performed 
by navigating through each individual instance 
(process) in accordance with the underlying pro- 
cess model. 

The  meta-model 

A process model may be  seen  as  a  template for a 
class of similar business  processes performed 
within an  enterprise.  It is a  schema describing all 
possible variants of the (dynamic!) execution of a 
particular kind of business  process.  Each individ- 
ual process is an instance of a  process model, and 
it represents  a  concrete, specific execution of a 
variant  prescribed by  the  process model. 

The  fundamental building block of the  meta- 
model is the activity. An activity  represents  a  bus- 
iness  action  that is a  semantical unit at a  certain 
phase of modeling effort. It might have  a fine- 
structure, which is then  represented in turn  via  a 
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process model, or  the details of it might not be of 
interest  at all from a modeling perspective.  It is 
important to note  that  these  fine-structures allow 
both  a  bottom-up and a  top-down  approach to 
process modeling. 

As  an  example,  suppose  a  process model for 
credit allocation contains  an  activity called Sol- 
vency.  For  the modeler of credit allocation it is 
not of interest how Solvency is checked,  but 
rather  to make  sure  that  this  check will take  place. 
The refinement of the  activity  Solvency as a  pro- 
cess model again (if required)  can  be  done  (or  may 
have  already  been  done) by a different modeler. 

In general, the  work  represented by an  activity 
produces  results. Within the  meta-model  the 
types of results of this  work  are  associated with 
the activity as parameter  types.  Now,  activities 
generally  access  types of results of other activi- 
ties, or require information about  the  context of 
the  current  activity;  such  parameter  types  can 
also  be  associated with an  activity.  In  general,  an 
activity is associated  with  both input parameter 
types and output parameter  types (in cases in 
which  no  misunderstanding will occur,  the suffix 
“type” is omitted). 

The  collection  of all input parameters of an  ac- 
tivity  is  referred to  as  the input container of that 
activity,  and  the collection of all of its  output pa- 
rameters is referred  to as  the output container. 
Since  process models may  serve  as  fine-struc- 
tures of activities,  each  process model itself is 
associated  with  both  an input container  and  an 
output  container;  note  that  the input or  output 
container of a  process  provides  some  sort of 
“global context” for all activities  contained 
within this  process.  A  concrete  execution of an 
activity (also called an activity instance) is  thus 
accessing the instances of the input parameter 
types from its input container and will produce 
instances of the  output  parameter  types  from  its 
output  container.  Because of this, activities  are 
considered to  be mathematical maps. 

In practice,  only  the  “process-relevant”  param- 
eters of an  activity  are explicitly defined (i.e., ex- 
ternalized)  rather  than all parameters affected by 
an execution of the activity. For example, an  ac- 
tivity generally modifies data  that  are  not defined 
in its  associated  containers  because  these  data  are 
not of interest  to  other  activities within the  pro- 
cess;  or an  activity might obtain  (additional) input 
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from sources different from its input container 
(e.g., database  reads). 

As  a  result, it is pragmatic to recommend  captur- 
ing an  activity as a relation between  its input con- 
tainer and its  output  container (for example,  be- 
cause additional input as mentioned before might 
result in nondeterministic  behavior of the  activity 
with respect  to its input container). In fact,  choos- 
ing whether  activities  are  “maps”  instead of “re- 
lations” is not  crucial to our meta-model, and the 
model could be  easily  made to accommodate  a 
choice.  Nevertheless,  for simplicity we treat  ac- 
tivities as maps  because we consider  this  treat- 
ment to  be more  suited  to  the  perception of pro- 
cess modelers. 

In general, the  activities of a  process  may  not  be 
executed in an  arbitrary  manner.  Some  activities 
are  necessary for a  process  to  start,  some activ- 
ities might only  be  run  when  others  are finished, 
and so on. In other  words,  the  activities of a  pro- 
cess form  a  network with arcs  that point from a 
given activity to its  successor activities. Since  a 
process model has to reflect all possible valid ex- 
ecutions of a specific business  procedure,  each 
activity within a  process model must  be  con- 
nected  to all of its potential follow-on activities. 
A  process model may be perceived as a  directed 
graph having nodes  that  are  the  activities of the 
process  and having edges  that  connect  an  activity 
with its  potential  successors.  Since  an edge rep- 
resents  the  potential  control flow from one  activ- 
i t y  to  another, it is also referred to  as a control 
connector. 

As an example,  suppose the credit allocation pro- 
cess model contains  the  activities  Solvency, 
Reject, Accept,  BranchManagerApproval,  and 
Notify. The  potential follow-on activities of Sol- 
vency  are Reject, Accept, and BranchManager- 
Approval.  BranchManagerApproval  has  the po- 
tential successors Reject and  Accept.  The  activ- 
ity Notify is the  successor of both Reject and 
Accept. 

When a  process model is executed  (or instanti- 
ated) it depends on the  concrete  situation in 
which the  process is run as  to what  subset of the 
set of all potential follow-on activities of a  par- 
ticular activity is really executed  once  this  par- 
ticular activity is terminated successfully. A 
“concrete  situation” is captured  by  the collection 
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of all values  actually  associated  with  the param- 
eter  types of the  various  containers of the model. 

The  dynamics of subsetting potential follow-on 
activities  are added to  our  meta-model by allow- 
ing Boolean functions  to  be  associated with each 
edge that  connects two activities; these Boolean 
functions  are called flow conditions or transition 
conditions. Each of the Boolean functions  has  an 
input container  associated with it,  its  parameter 
types stemming from the  output  containers of the 
predecessor  activities or from the input container 
of the  process model itself. Potential follow-on 
activities of a successfully terminated  activity  are 
considered for execution in the  concrete  situation 
only  when  they  are  reachable from the  terminated 
activity  via an edge having a flow condition that 
returns  “true”  based on the  actual  parameter  val- 
ues in its  container.  By adding Boolean functions 
to  the edges of the  directed graph the  perception 
of a  process model within our  meta-model is that 
of a weighted, directed graph. 

Activities are in general long running, and it must 
be permissible to interrupt them. Thus,  when an 
activity  terminates, it has not necessarily  per- 
formed its task successfully. But only  success- 
fully terminated  activities  are  relevant  when de- 
termining follow-on activities. To  capture  this 
situation,  our meta-model permits assigning a 
Boolean function to each  node in the graph which 
represents  the exit  condition or end condition of 
the  activity.  The Boolean function representing 
the exit condition of an  activity again has  an input 
container  associated  with it that  has  parameter 
types stemming from the  containers of the  activ- 
ities or from the  container of the  process model 
itself. An activity  terminates  “successfully” if its 
associated  exit condition returns  “true”  based on 
the actual parameter  values in its  container. By 
adding Boolean functions  to  the  nodes of the 
weighted, directed  graph,  the  perception of a  pro- 
cess model within our  meta-model is that of a 
weighted, colored,  directed graph. 

In general, activities within a  process will be  ex- 
ecuted in parallel. (This occurs  when  processing 
allowances  for  expenses, for example.  After  the 
activity CheckBill, both  the payroll department 
as well as  the bookkeeping department  can  work 
on the bill for expenses in parallel.) 

Parallel execution is enabled by a process model 
via an activity having outgoing edges weighted by 
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Boolean functions  that can be  “true” concur- 
rently. After having terminated  successfully, 
such an activity will function  as  a  “fork.”  The 
activities along the different branches  can, in gen- 
eral,  be  worked on in parallel. 

An activity having more  than  one incoming edge 
can function as a “join.” For  that  purpose  our 
meta-model associates  a Boolean expression with 
each  activity in the Boolean functions  that weight 
the incoming edges of the  respective  activity;  this 
expression is called a synchronization apres- 
sion. If the  synchronization  expression is the  con- 
junction of all the Boolean functions weighting 
the incoming edges, the  corresponding  activity 
can  only  be  executed if the Boolean functions 
have been evaluated and  the Boolean expression 
in the  returned  values is “true.” An activity of the 
latter kind thus  works  as  a “join.” 

If the Boolean function of an edge is evaluated  as 
“false,”  the  endpoint of that edge might never 
become  executable.  The Boolean functions of the 
edges leaving a  node  that can never  be  executed 
will never  become  evaluated functions. In the 
case  where  the  endpoint of an edge having a Bool- 
ean  function  that will never  be  evaluated is a “join 
node,”  the  corresponding  process will never  ter- 
minate. 

In order  to avoid this  situation,  the  “forward  tran- 
sitive closure until joins” of the  endpoint of an 
edge with a  “false” Boolean function is com- 
puted.  This  means  that all directed  paths origi- 
nating at the  subject  node  are  traversed until a 
join node is reached. All Boolean functions of 
edges in this  closure  are  considered as “evaluat- 
ed” with a  return  value of “false”  (dead  path 
elimination). In  case all of the incoming edges of 
a join node  reached during dead  path elimination 
are  already  evaluated,  its  synchronization expres- 
sion  is computed, and if it results in “false,” dead 
path elimination is performed for  that join node. 
This is because  the  join  node is never  executed, 
thus leaving the  process in doubt  unless dead path 
elimination is not performed. 

When allowing parallel execution of activities, we 
must  be  sure  that  an executing activity  does  not 
generate  results  that will be produced by another 
executing activity  or  that  were required as input 
by another  executing  activity  (the Bemstein Cri- 
t e r i ~ n ~ ~ ) .  Although there  are different well-known 
techniques (e.g., “10cking”~~) to  ensure  the ful- 
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fillment of this  criterion on a  per  parameter  value 
base, we pursue  a  more  restrictive  approach:  The 
instances of the  parameter  types of an activity’s 
input and output  container  are  treated as  the local 
context of each  particular  activity. 

As  a  consequence,  shared  instances  have  to  be 
defined explicitly. It is done  when providing the 
process model by connecting  a  particular  param- 
eter  type of the  output  container of an  activity 
with  a  particular  parameter  type of the input con- 
tainer of another  activityvia  a  directed edge (datu 
connector). Data  connectors  are  only allowed be- 
tween  containers having activities  that  can  be 
reached along a  directed  path;  this  ensures  that an 
activity  does  not  expect  data  as input when  the 
data could not  be  produced by a preceding activ- 
ity. 

It  is  also allowed to define a  data  connector point- 
ing from the input container of the  process  to  the 
input container of an activity as well as  to define 
a  data  connector pointing from  the  output  con- 
tainer of an  activity to  the output  container of the 
process.  Thus input can  be  passed  to  an  instance 
of a  process model once it is  started  and  output 
can  be  passed from the  process  instance  once it 
terminates. 

The  implementation 

Currently,  the  FlowMark  product is available to 
implement most of the  meta-model  described 
above; we will point out the few constructs  that 
are  not implemented in their generality. Built for 
the  Operating  System/2* (OW*) 2.1 environment, 
FlowMark is-with the  exception of the anima- 
tion part  written in Prolog-completely written in 
C+ + using object-oriented  components and tech- 
nologies (like its underlying object-oriented  data- 
base  system)  that  only  recently  have  become 
available. 

System  structure. At  the highest level, FlowMark 
essentially  consists of two  parts: build time and 
run time. The  syntactical  aspects of the  meta- 
model  are implemented in the build-time part,  and 
its  operational  semantics  are  covered by  the  run- 
time  part. Each of these  parts  is itself split into  a 
client  component  and  a  server  component. 

The  functionality  provided by build time (Figure 
1) comprises  the  blocks Animation, Process Def- 
inition, Staff Definition, Program Registration, 
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and  Data  Structure Definition. The build-time 
part allows a  process  modeler  to define and main- 
tain all the information necessary  for  a  FlowMark 
process  to  be executable. As the  process is being 
defined, the animation facility lets  the modeler 
examine the behavior of the model. After  a  pro- 
cess model is completed by its definer, it is trans- 
lated  into  a  startable  process  also called a  process 
template. 

Build time exploits the  clienthewer  structure 
of the underlying database for seamless  access 
to the definitional objects of FlowMark. The com- 
munication layer is used by the definition com- 
ponents to exchange notification messages for up- 
dating their views on data in case of modifications. 

The run-time functions  seen by  the  end  user  are 
Process  Execution,  Process  List,  Work  List  Han- 
dling, Local/Remote Program Execution, and 
Process API (application programming interface). 

The client parts (build time and run time) provide 
the graphical end-user  interface to all  of the  Flow- 
Mark functions.  The  server  parts of FlowMark 
control  and  synchronize  access to  the FlowMark 
data  and  moreover  synchronize all work main- 
tained by FlowMark. Users  can concurrently  de- 
fine processes (to  be more  precise:  “describe  pro- 
cess  models”) and store  them in the  database  and 
at  the  same time execute  an  arbitrary number of 
ready-to-run  processes.  The number of processes 
and users is only  constrained by  the  system  re- 
sources available. The run-time server  compo- 
nent of FlowMark is implemented as a hot pool. 
A hot pool in this  context is a  set of operating 
system  processes  each of which  has the  structure 
depicted in Figure 2. Each client request is dis- 
patched  to  an idle server  process; if all server 
processes  are  busy,  the  request  waits to  be 
served.  The  number of server  processes  can  be 
configured by  the  user. 

The  work  areas  shown in Figure 2 are  FlowMark- 
maintained os12 folders (for information on ow2 
see, e.g., References  29,30, and 31) that  organize 
all of the  FlowMark information. The build-time 
work  area  contains  a folder for each of its  func- 
tional components.  Thus  a  user finds all of the 
process models with which he or  she  is authorized 
to  work in the  process folder of his or  her build- 
time work  area.  The run-time work  area  contains 
the  work list folders of a  user and a folder showing 
all startable  processes, as well as  the  processes 
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Fiaure 1 FlowMark  build-time  svstem  structure 
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the  user  has  started or  the running processes for 
which the  user  has  administration rights. Flow- 
Mark  requires  the  user to  be identified at  startup 
of either  run time or build time for  authorization 
purposes. Depending upon his or  her  authoriza- 
tion, a  user  can run either build time or  run time 
(or both) concurrently. 

transport  protocols.  It is implemented as a mes- 
saging service  supporting  synchronous and asyn- 
chronous message handling. 

FlowMark  has an import and export utility for 
maintenance and exchange of definitional infor- 
mation. It  also alleviates the loading of existing 
enterprise information such  as  personnel  data 
into the FlowMark  database. The run-time work  area starts a  separate  process 

for local program execution  at  startup time. Local 
program execution  takes  care of program invo- 
cation as well as data passing between  FlowMark 
and  the invoked program. The  process API is used 
by programs  that  want  to  start,  stop,  restart, sus- 
pend,  and  resume  FlowMark  processes.  These 
calls are  directly  executed by the  FlowMark run- 
time  server. 

Process  definition. Process definition is  the  most 
significant component as it lets  a  modeler graph- 
ically define a  process model. According to  the 
meta-model, a  process model is presented as a 
weighted, colored,  directed  graph of activities. 
An activity is linked to  other activities by control 
connectors  or  data  connectors, i.e., both  the  con- 
trol flow and  the  data flow are  shown  by  edges  of 
the  directed  graph. 

The communication layer  shields  the  FlowMark 
components from the specifics of the underlying 
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Figure 2 FlowMark  run-time  system  structure 
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The  edges  representing  data  connectors define (4. Thus,  a  data  connector edge pointing from A 
the  data  connector  map A of the meta-model as to B indicates  that  a  map from the output  con- 
follows: A data  connector  edge  is  drawn  between tainer ofA to  the input container of B exists;  this 
two  activities A and B in the graphical represen- map (i.e., each member d = ( v l ,  v 2 )  E A(A, B ) )  
tation of a  process model if and  only if A(A, B )  it is specified separately.  Each  container is charac- 
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terized by  one of the defined data  structures. 
Since  the  data  structures linked by a  data  con- 
nector  may  be  distinct,  the  data  connector  also 
carries  a mapping between  those, if necessary. 
The mapping has  to  be  done  by  the  modeler  who 
has  to  provide  the  necessary name and  type 
matching between the corresponding  data  items 
to  be passed (for identical data  structures, Flow- 
Mark  does  the mapping automatically). 

As  previously  described,  a  control  connector pic- 
tures  the  sequence of the  activities as well as  the 
condition  (transition  condition)  that  has to  be met 
for continuing navigation along the  connector. 
The condition p weighting a  control  connector 
has  to be specified as a Boolean expression  eval- 
uated at run time. A  transition condition can sim- 
ply be  the  constant Boolean value  “true.”  This 
value is the default if the modeler does  not specify 
it otherwise. For error or exception  situations 
FlowMark offers the modeler a  special  control 
connector  (“otherwise”  connector)  that is fol- 
lowed when no transition condition of the regular 
control flow connectors is fulfilled. 

FlowMark  supports  three  types of activities: pro- 
gram,  block,  and  process.  Each  type  has  a dif- 
ferent implementation. Aprogram activity is im- 
plemented by a registered program. The program 
can  either  be  a legacy application or a  FlowMark 
specific application that  makes  use of the Flow- 
Mark programming interface  to  access  the  con- 
tainer  data. The block activity is a  construct  that 
recursively allows nesting of activities to an  ar- 
bitrary level. The block activity is only known 
within the  process  where it is created. It gives the 
modeler the  opportunity to locally structure  a 
process. It  also  provides  a  layering  capability  for 
refining the  details of the implementation. More- 
over,  by using the editing functions of the  process 
editor (clipboard functions),  a  block  can  easily  be 
reused. Aprocess activity is implemented by an 
already defined and existing process.  The  process 
that is referenced is dynamically started  when  the 
process  activity is executed.  The  process  activity 
ends when  the  referenced  process finishes. Thus 
process  models can be built and maintained in a 
very modular and incremental  fashion.  A  pro- 
gram activity and process  activity  can  either be 
manual or automatic. The execution of manual 
activities  is initiated by a  user,  whereas  automatic 
activities are immediately executed  by Flow- 
Mark. 
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As  previously  described, multiple control  con- 
nectors  emanating from an  activity (forking of 
control flow) easily  expresses parallelism of ac- 
tivities within FlowMark. The  semantics of mul- 
tiple control  connectors joining into  one  activity 
can  be defined by  the  process modeler. At  the 
moment, the  two possible synchronization 
choices  are:  Execution  can  continue if at  least one 
of the joining connectors  evaluated  to  “true,”  or 
only if all  of them  have  become  “true.”  Thus,  the 
synchronization  expressions  supported by Flow- 
Mark  are 

k k 

4 A  = [x PI7 2 Pj} 

for each activityA E Nwith P,(A) = b1, . . . ,Pk}. 

For  each  activity  an  end condition can  be  speci- 
fied. The general meta-model allods end condi- 
tions to have  an  arbitrary input container; within 
FlowMark an end  condition is a Boolean expres- 
sion over  the  data  items of the  output  container of 
its  activity, i.e., the input container of the end 
conditionp is always  a  subset of the  output  con- 
tainer of its  activity A : ~ ( p )  C o(A) .  Data  con- 
nectors  that target the  output  container of an  end 
condition are  thus  not  needed in this  situation. 

Within FlowMark, the  set N’ C N of start  ac- 
tivities always  consists of all activities  that  have 
no incoming control  connector, i.e., N’ = {A E 
N I V B  E N V p  E P: (B,A,p)  $ E}. Activities 
without  an outgoing control  connector  are called 
end activities; i.e., the  set of all end  activities  is 
g i v e n b y { A E N I V B E N V p E P : ( A , B , p )  
9 E}.  A  process  ends regularly as soon as  at least 
one  end  activity  has  been  carried  out  success- 
fully, no further  control flow path  can  be  taken, 
and the  end condition of the  process is met. 

Resource definition. In order  to allow the  execu- 
tion of activities  at  run time, FlowMark facilitates 
the definition of the following kinds of resource 
information: assignment data (i.e., data  about  or- 
ganizations, roles, or persons), program registra- 
tion data,  and  data  structure information. This 
information can  be  bound to  the activities of a 
process model. 

Tasks. The  syntax and semantics of the  meta- 
model deal with  the logic of a  process model, i.e., 
they  describe  the  potential flows of control  and 
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data between  activities within each  process in- 
stance.  From  an  enterprise point of view  the flow 
of activities itself between  agents is of similar im- 
portance, Le., the logistics of a  process model 
have  to  be specifiable. Within an enterprise dif- 
ferent  activities of a running process  are usually 
executed by different persons  (the  executing 
“agents”  or staff members).  In  general,  one  and 
the  same  activity  (instance) within different pro- 
cess instances will be executed  by different per- 
sons; thus, it must  be possible to couple  activities 
not  only  to  concrete  persons  but  to  abstract  re- 
sources  that will execute  the  bound  activity. 

FlowMark allows each  activity to  be coupled with 
such  a  resource.  The resulting pair models  a task. 
A task  represents  a  concrete run-time work  re- 
quest  to  a  particular  person  to perform a specific 
activity.  The  resources are  the  key within Flow- 
Mark to distributing the  activities  to  the right peo- 
ple in the  sequence  the  process  prescribes. 

Although the  concept of a  task is not  apparently 
visible in FlowMark,  activities  have  task-related 
information used  at  run time attached  to them. 
Each  activity  has  an assigned resource  who is 
responsible for carrying  out  the  work;  this assign- 
ment  either  becomes specific by associating a  par- 
ticular person with the  activity or becomes ab- 
stract  by associating a role or an organization with 
the  activity. Also, each  activity  may  have addi- 
tional information for  its  expected  average 
duration. Optionally, every activity may specify 
whether someone should be notified  in case  the ac- 
tivity is not completed within the given amount of 
time. This event is called escalation. Duration and 
escalation can  be defined for a process, too. 

Organization,  role, person. How staff assign- 
ments should be  bound  to  activities is defined at 
modeling time along with  the definition of the  pro- 
cess itself. The essential  entities  for modeling the 
personal  resource  structure are organization, 
role, and  evidently,  person. For  the  relation of 
those  entities  FlowMark  provides  a simple but 
powerful model. 

An organization  is  a grouping of people within a 
given enterprise  and  can  be hierarchically struc- 
tured,  thus reflecting the  organization  chart of the 
entire  enterprise. A role is seen  as  a functional 
position within an  organization or an  enterprise 
and  may  have  certain skills as a  prerequisite. 
Skills again can  be qualified in terms of grading 
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levels. More  than  one  person  can  play  the  same 
role within  one  organization or within different 
organizations. Organizations  as well as roles  have 

At run time  FlowMark resolves 
the relation  between organization 

or  vole and person. 

one  manager,  respectively,  and one coordinator. 
All of the  above information along with  data  about 
each  FlowMark  user is stored in the  FlowMark 
database. 

At  run time FlowMark  resolves  the relation be- 
tween organization or role and person. If several 
persons qualify for performing an activity, all  of 
them  receive  the  work  request at their worksta- 
tions. As soon as  one person in a  group  takes  the 
work  request,  FlowMark  withdraws  the  request 
from all other  workstations of the  group. 

For assignment purposes  the modeler also  can 
refer to  the anonymous  person  who  eventually 
starts  the process,  to  the manager of the  person 
who  starts  the process, to the  process adminis- 
trator,  or  to  the manager of the  process adminis- 
trator.  Thus it is, for instance,  possible to have 
the first activity performed by  the user  who starts 
a  process. 

Programs. Program activities are carried  out by 
running the  associated application or tool. The 
application is the  interface by which the  user  per- 
forms  work on the given request  represented by 
the program activity. However, applications that, 
so to  speak, implement a program activity  are  not 
restricted  to  an  interactive program but  can  also 
be  unattended  programs  started automatically by 
FlowMark.  The information describing the appli- 
cation,  together  with  its input and  output  data 
structure, is kept in the program registration 
database of FlowMark. The input and  output  data 
structure of the program are identical to  the input 
and output  container  structure of its  activity.  Pro- 
grams  can be executed locally on the  workstation 
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of the  end  user (which is the usual case  for  inter- 
active  tools like word  processors  or  spreadsheet 
programs  and  the like) or on any  remote  computer 
that  hosts  a  FlowMark program execution  pro- 
cess. 

Data structures. FlowMark  obviously  has  the 
need to maintain and interpret  container  data of 
activities  since  these  data  may be used within 
transition  conditions  and  end  conditions.  In  order 
to fulfill this need FlowMark  incorporates  its own 
data  structure definition facility. The  supported 
elementary  data  types  are  string, long, and float, 
and  arbitrary  but fixed-size arrays of the  elemen- 
tary  types. Existing data  structures  can  be aggre- 
gated to build new user-defined data  structures 
(nesting of structures).  The  nested  data  structures 
are not referenced by  the  parent  structure  but  be- 
come  part of it. 

Animation. The definition of a medium-to-large 
process model calls for an iterative  approach 
combining definition with verification. FlowMark 
includes  an animation part  that  lets  the modeler 
run  a  process model in animation mode. Anima- 
tion enables  the debugging of process models, the 
analysis of the impact of changes to a  process 
model, and so on. 

It  is possible to select  an  arbitrary  set of activities 
(not  necessarily  startup  activities) as a  starting 
point for animation. The modeler can  step  for- 
ward  and  backward through the  process model 
watching its  presumed  behavior in terms of work 
assignments  and navigation between activities. 
All work  lists of concurrent  assignees  can  be 
viewed  simultaneously. 

Animation does not require  a  process model to  be 
completely defined; also program activities need 
not  be  coded  for animation purposes. As anima- 
tion navigates through  the  activities,  the modeler 
is prompted for missing pieces of information. To 
alleviate the  task of manually feeding data  to  the 
animation facility, all of the input data  can  be 
saved for reuse later. 

Sample  scenario. Figure 3 shows  the  FlowMark 
diagram of a  credit allocation process modeled 
with  FlowMark.  Control flow connectors  are 
shown as solid lines, and  data  connectors  are 
shown as dashed lines. The  two different connec- 
tor  types  can  be  selectively hidden or  shown. The 
same  option is applicable to  transition and end 
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conditions. In the diagram only  transition condi- 
tions  are  shown. 

The  scenario in the figure assumes  that  a loan 
clerk starts  the  process from the  FlowMark run- 
time work  area  and initially is prompted  for  some 
customer  data.  These  customer  data  are  put  into 
the  process input container  before  the first activ- 
ity  can  be  started.  For  sake of simplicity the  as- 
sumption in our  process model is that  the  cus- 
tomer  data  just  consist of a  customer  number 
(CustNo).  The  customer number is used as input 
in each  activity.  Therefore,  data  connectors  are 
leading from the  symbol  representing  the  process 
input container to all other  activities. 

The first step of the  process is to  check  the sol- 
vency of the  customer by use of the  process  ac- 
tivity Solvency. Solvency  receives  the  customer 
number as input and  returns  two information 
items in its  output  container. One item indicates 
whether  the  solvency  check  was  passed or not 
and  the  other  whether  the  customer is already 
known  to  the  bank  or  not.  The  results of Solvency 
are  stored in the  process  output  container  that is 
depicted by  the  corresponding  data  connector 
leading to  the  process  output  container symbol. 
Depending on the  results of Solvency,  three fol- 
low-up activities  are possible: Accept,  Branch- 
ManagerApproval, and Reject. BranchManager- 
Approval  lets  a  branch manager override  the 
Solvency  results  for known and  trustworthy  cus- 
tomers.  Accept and Reject are  automatic activi- 
ties that handle the  administrative  aspects  and 
database  updates. Notify is  the final step for  pro- 
ducing printouts  and notification letters. 

Execution. As mentioned in the beginning of this 
section,  the  server  part of FlowMark is the co- 
ordinator and synchronizer for work  requests. 
The  core  part of the  server  process  consists of the 
process  execution  component and the  work list 
management component. 

A  process model becomes  a  startable  process by 
translating it into  the  executable  format. During 
translation  the  process model is checked for con- 
sistency  and  completeness; e.g., compliance with 
the  syntax of the  meta-model is verified. The 
startable  process is an  entity  separate from the 
model and  therefore is also unaffected by  any 
changes to  the model afterwards. 
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Figure 3 Credit  allocation  process 
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Process  instances  can  either be  started via the 
graphical end-user  interface  by clicking on the 
appropriate  startable  process icon or via  the call- 
able program interface (MI). The algorithm for 
process  execution in essence  is  encapsulated in 
each  process  instance itself and in its  activity in- 
stances. When a new process  instance is created, 
it is copied from the  startable  process blueprint. 

The first step in running the  process  consists of 
finding its  start activities N‘,  distributing them 
according to their bound personal resources and 

allowing them to be  executed (i.e., X0 = N ’ ) .  The 
activation condition of start activities (Le., the 
value  returned  by their synchronization  expres- 
sions) is “true”  by definition. For all nonstart  ac- 
tivities the activation condition is  checked  when 
all incoming control  connectors  either have been 
evaluated or  have  been marked by a recursive 
procedure called “dead  path elimination.’’ 

As described above, the meta-model exploits 
three-valued logic when evaluating synchroniza- 
tion expressions, i.e., to check  activation condi- 
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tions.  FlowMark  requires  that all transition  con- 
ditions of incoming connectors be evaluated 
before the activation condition is checked,  thus 
circumventing  three-valued logic. 

B Dead  paths within a process  are  subgraphs having 
activities  that  can  no longer become  startable be- 
cause a previous  transition  condition within the 
subgraph  evaluated to  “false.” Activities relying 
on  input  data from “dead  activities”  can be spec- 
ified if the  user is prompted  for  the missing input 
data, i.e., h(i, A ,  v )  is determined,  or an  excep- 
tion is raised that  leads to  the termination of the 
process. 

The  steps generally involved in executing  an  ac- 
tivity are: 

Resolving the staff assignment 
Putting work  requests  on  the  work  lists of the 

Executing  activity  implementations 
Interacting with the work list handler client to 
handle manual (interactive) program invoca- 
tions 

B 

assigned persons 

Checking the  end  condition 

Resolving staff assignments  and keeping track of 
the  work  requests are  done by the  work list man- 
ager. If not specified otherwise, role resolution is 
done dynamically within the  context of the orga- 
nization of the person  who  started  the  process. 
Such  resolution allows for different physical as- 
signments at run  time  based on the  same model 
information.  The assigned work requests  stem- 
ming from the startable  activities are stored in the 
FlowMark  database.  The  state of the  work flow is 
thus  persistent, allowing for  forward  recovery in 
case of system  failures (fault tolerance with re- 
spect to soft crashes). If there is manual activity 
and  the assigned user is logged on  to FlowMark 
and  connected to  the  server,  the work list man- 
ager immediately forwards  the new request  to  the 
workstation of the  user. 

For automatic program activities,  the program 
execution  server  takes  care of invoking the tool 
without any  further  user  interaction. Block activ- 
ities and  process  activities  are  executed by start- 
ing their  respective  implementations. It is the un- 
derlying activity  graph  for  the  block, and it  is the 
newly created  instance of the  referenced  startable 
process  for  the  process  activity.  In  both  cases  the 
execution is synchronous in the  sense  that  those 

B 

B 

activities complete  after  the underlying block or 
the  referenced  process  has finished successfully. 

Manual activities  are  performed  when an  end  user 
issues  the  start  request via the work  list. On re- 
ceipt of such a request  the  work list server  passes 

Resolving staff assignments  and 
keeping  track of the work requests are 

done by the work list  manager. 

it through to the program execution  server  that 
handles it. 

The  end condition of an activity is checked  when 
its implementation is finished and the  output  data 
are available in the  output  container. If the  eval- 
uation of the  end  condition &(A)  of the  activity A 
returns “true”  (i.e., E ( A ) ( ~ L ( E ( A ) ) )  = I ) ,  the  out- 
going control flow connectors  are  examined.  Con- 
nectors  whose  condition  evaluates to  “true”  are 
pursued for  further  execution of their  target  ac- 
tivities. Finally, Ci(A) is computed, resulting in 
the  corresponding  member C i  of the  execution 
family. When no further  control  paths  can  be 
found,  the  process is finished. The  completion 
status is reflected in the  process  folders of users 
who started  the  process  and in the  folder of the 
corresponding  process  administrator. 

Process list. The  process list gives a  user  access 
to all of the  process  templates  that he or  she is 
authorized to instantiate  as well as  to all process 
instances allowed to  be  seen. A process  instance 
is seen by a user  either  when  he or  she instantiates 
it or when the  user is the  administrative  owner of 
the  process.  The  user  interface allows filtering 
and sorting of process  instances  according  to  their 
status  or  to  the actual data values within a process 
input container. 

Work list handler. The end-user  interface  for  a 
person working with FlowMark-generated  work 
requests is called the work list handler. A user  can 
maintain multiple work lists in parallel in order  to 
arrange  the  work  requests  according  to his or  her 
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liking. For this  purpose  FlowMark  provides  sort- 
ing and filtering capabilities for work  requests. 
The  work list handler gives the  user all  of the 
necessary  functions  for maintaining work lists, 
transferring  work  items  to fellow workers, and 
starting  processes. For  each  work item the  user 
also  can  obtain  a graphical view of the  current 
status of the  process from its origination. 

All the information visualized by  the  work list 
handler  is  retrieved from the  work list server 
when  the  user logs on to  FlowMark.  Thus  a  user 
can log on from  any  workstation  and  always  ob- 
tain his or  her  work lists reflecting the  actual  sit- 
uation; this  especially  results in fault  tolerance 
with  respect  to  hardware failures. 

In order  to  work on a  request  appearing as an icon 
on a  work list, the  user simply double  clicks on 
the icon. The underlying program is invoked, and 
the user  interacts with the program until the  task 
is finished. FlowMark  detects  when  the program 
terminates  and  consequently  passes  control to the 
server for exit checking and  further navigation of 
the  process. 

Depending on the level of authorization given, a 
user  may  have  access to  the  work lists of other 
people and transfer  work  items  between  them. 
Such  access  can  be used to channel all work  re- 
quests  to a  supervisor  who  then  distributes  the 
work  requests  to  the  proper people. 

Program execution. The program execution serv- 
er finds the appropriate target host for executing a 
program by retrieving the corresponding program 
registration data. The target host for execution may 
be the workstation where an end user manually 
started  an activity via his or her work list (local 
program invocation) or may be any  other worksta- 
tion that has  a running FlowMark program execu- 
tion process (remote program invocation). Flow- 
Mark supports invocation of several program 
types: 

0s/2 command files, executables,  and  dynamic 
link libraries 
Customer Information Control  System (CICS*), 
Information Management System (IMS), or 
Time Sharing Option (TSO) applications  via ASF 
(IBM Application Support Facility) 

ASF uses  an Ow2 stub program for  communication 
with  the CICS, IMS, or TSO environment.  This 
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makes  the  invocation of programs in these envi- 
ronments  transparent for FlowMark. 

As mentioned  earlier, program execution  runs in 
a  separate  OS!^ process.  For  each command file or 
executable  a new ow2 process is started.  Resyn- 
chronization with FlowMark  (also rendering the 
system  return  codes)  occurs  via  an 0s/2 queuing 
mechanism. For  each  dynamic link library  a new 
thread is created within program execution  for 
calling the  appropriate  entry point. 

We distinguish between  programs  that  are  Flow- 
Mark aware and those  that  are not. FlowMark- 
aware  programs exploit the  FlowMark API that 
allows them  to  obtain  data from the  activity input 
container and put  data  into  the  activity  output 
container.  The  data  structure of the input and  out- 
put  container  can also be queried by  means of an 
API call, returning  names  and  types of  all the  data 
elements down to  the elementary fields. 

So-called legacy programs  that  are  not  aware of 
FlowMark  can  obtain  data from FlowMark  via 
the command line. The  desired  data  items of the 
input container used as command line parameters 
have  to  be specified as substitution  variables  at 
program registration time. FlowMark  takes  care 
of the  proper  substitution  with the corresponding 
input container  data  at  run time. 

FlowMark  currently offers C language bindings 
for its API and corresponding REXX language wrap- 
pings. REXX procedures often give a modeler a  very 
versatile and quick way of implementing  program 
activities. 

Audit trail. One of the  important  functions of ex- 
ecuting business  processes  is  tracking  the  process 
in an  auditable  way.  Tracking  is  done in Flow- 
Mark by  means of an audit trail that  records all 
events from starting  a  process,  through working 
on activities or transferring  activities to  other  co- 
workers,  up  to  the  successful completion or  ter- 
mination of a  process.  Various  reports  can be pro- 
duced  with  the information provided in the audit 
trail. Process  and  activity  characteristics  such  as 
overall  process  duration or maximum activity  du- 
ration can  be  extracted from such  reports.  Ana- 
lyzing the audit data  should lead to identification 
of deficiencies in the  process,  and  when  they  are 
consequently addressed, it leads to improved bus- 
iness processes. 
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Mathematical  formulation of the  meta-model 

In  this  section we provide  a  mathematical formu- 
lation of the meta-model. Please note  that  a  per- 
son modeling business  processes  based on Flow- 
Mark  has  no need to understand  the  mathematics 
presented  here. But the  mathematical  foundation 
of the meta-model demonstrates  the  robustness of 
the  concepts underlying our  approach to  the man- 
agement of business  processes. 

Process  models as weighted,  colored,  directed 
graphs. We introduce  a  special  class of weighted, 
colored,  directed  graphs called PM-graphs (Pro- 
cess Model graphs). A PM-graph is a  mathemat- 
ical abstraction of a  process model, i.e., it pro- 
vides  the  syntactical  elements of our meta-model. 

Activities as maps. Let N denote  the  set of all 
activities  that  a  particular  process model consists 
of; it is  important to note  that we explicitly as- 
sume  that  each  separate  occurrence of an  activity 
within a  process model is uniquely identified. The 
set of all parameter  types  occurring  somewhere in 
a process  model is denoted as V; mainly, V con- 
sists of all input parameter  types  and  output  pa- 
rameter  types of each single activity (V also en- 
compasses  the input parameter  types of  all 
Boolean functions of a  process model and the  spe- 
cial parameter  types like the maximum time for an 
activity to  be elapsed before it has  to  be  started, 
etc.). Accordingly, there  is  a  map L :  N + p(V), 
associating with  each  activityA E N the  set of its 
input parameter  types L(A) C V, and  there  is  a 
map o :N + p(V) associating with  each  activity 
A € N the  set of its  output  parameter  types o(A) 
C V @(M) denotes  the  power  set of the  set M ) .  
&(A) and o(A) represent  the input container and 
the  output  container ofA, respectively.  Each pa- 
rameter v E V has  associated with it a  set 
DOM(v) as its domain, i.e., DOM(v) is the  set of 
values  the  parameter  type v may take.  Thus,  an 
activity A can  be  perceived as a  map 

A :  X DOM(v) + X DOM(v) 
uE@) V w A )  

Let A be  the  activity Increase-Salary. The input 
container of this  activity  consists of the  parameter 
types  Employee#,  Salary,  and  Level, i.e., L(A) = 
{Employee#,  Salary, Level}. SinceA produces  a 
new salary,  its  output  container  consists of the 
parameter  type  Salary, i.e., o(A) = {Salary}. 
Valid employee  numbers  are  character  strings of 
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length 10, floating point numbers  provide  the 
values  for  salaries,  and levels are  measured  via 
integer numbers, i.e., DOM(Employee#) = 
CHAR(10), DOM(Sa1ary) = FLOAT,  and DOM 
(Level) = INTEGER.  Thus, A is perceived as 
the  map 

x INTEGER + FLOAT 

Control  connectors.  Once  an  activityA E N ter- 
minated successfully,  certain follow-on activities 
are  possible or required. All potentially  occurring 
follow-on activities A . . . , A ,  E N of A are 
connected  with A via  directed  edges.  Each edge 
is directed  toward  the  successors of a given ac- 
tivity. The  edges (A,  A . . . , (A,  A , )  are  thus 
representing  the  fact,  that A . . . , A ,  are  the 
potential follow-on activities of A (and the only 
potential follow-on activities ofA). In this  way,  a 
set of edges E G N x N is generated. The di- 
rected graph G = (N, E ) ,  which represents  at  the 
current  stage  a  process model in our meta-model, 
reflects the  potential  work flow of a  process 
model. 

Within the meta-model, the  parameters Vare rep- 
resenting  the  context of the potential  instances of 
the  process model. Because  activities  are  maps 
defined in those  parameters,  thus changing that 
context,  not all potential follow-on activities of a 
certain  activity will be meaningful in each  con- 
text.  The  set of actual follow-on activities  is  con- 
text  dependent.  The meta-model provides predi- 
cates in order  to allow for  the modeling of this 
context  dependency: 

If P denotes  the  set of allpredicates belonging to 
a  process model, there is a  map L : P + p (  V) as- 
sociating with each  predicate p € P its set of 
input parameter  (types) ~ ( p )  L V, representing 
the input container o fp .  A predicatep is then  a 
Boolean function 

p : X DOM(n) + (0, l}, 
V E k ( P )  

where “0” denotes  “false” and “1” denotes 
“true”;  always,  the two constant Boolean func- 
tions “0” and “1” are valid predicates (ql  = 0, q2 
= 1 E P). 
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In  order  to model which follow-on activities are 
possible or required in the actual context (actual 
values of all parameters in V ) ,  the edges  con- 
necting  activities  are weighted by predicates.  The 
set of all edges is thus E C N X N X P .  Let 

Ti, ...i $f1 x . . . x M" + Mi, x . . . x Mi, 

denote  the  projection  map  between  Cartesian 
products ( i l ,  . . . , i k  E (1, . . . , n } ) .  Thenp E 
r 3 ( E )  !Z P is called aflow condition or transition 
condition. The members e E E are called control 
connectors. P,(A): = r 3 ( { e  E E 1 ..,(e) = A } )  
is  the  set of all flow conditions of control  con- 
nectors leaving A ,  and PD, (A) :  = r 3 ( { e  E E I 
r z ( e )  = A } )  is  the  set of all  flow conditions of 
control  connectors entering A .  

Data connectors. Data  connectors specify how 
input containers of activities or predicates  are 
composed of output  parameters of other  activities 
of the  corresponding  process model. The  set of 
data  connectors pointing to  the input container of 
the  activity  (or  predicate) B from the  output  con- 
tainer of the  activityA  is given in our meta-model 
as a set A(A B).  An element d E A(A7 B )  is a pair 
consisting of an element of o(A) and  an  element 
of L(B) .  d = ( v l ,  v , )  E A(A, B )  specifies that at 
run time when B is invoked the  actual  value of u 
of the input container of B is the  current  value of 
u1 from the  output  container of A .  Thus,  there is 
a  map 

A:N X (NU P )  + u p(o(A) X L(B)) 
AEN,BENUP 

called data connector map having the following 
properties: 

1. 4 4 1 ,  A , )  E P(O(A1) x 4 4 2 ) )  

2. ( x ,  z ) ,  ( Y ,  z )  E U A E N  4 4 ,  B )  * x = Y 
3 .  A(Al ,  A 2 )  z (l 3 A ,  reachable from A ,  

We call A reachable from A (A f A , E N) if 
and  only if there is a  directed  path fromA  toA,, 
l.e., 

B 1 ,  * * 7 Bk E N : ( A 1 ,  B1), (B17 B2)7 * * . 7 

(Bk7 A,) E r12(E) 

Condition 3 above  ensures  that  the  data  required 
by a  particular  activity  are really produced by an 
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activity  that  ran  before  and that terminated  suc- 
cessfully; in case  dead  path elimination occurred 
and values from output  containers of traversed 
activities  are  required in the input containers of 
follow-on activities, a  special  function  is  used to 
determine  these  values. The reachability condi- 
tion further  ensures  that  output  produced by a 
particular  activity  cannot  be  expected as input by 
an  activity  that  is running in parallel. Also, results 
that  are  produced  by two activities (within their 
local context) running in parallel cannot be 
mapped to  the same  input  value of a third activity. 
This is ensured  by condition 2 above.  As  a  con- 
sequence,  the  Bernstein  Criterionz7 is fulfilled en- 
suring correct parallel executions. 

Moreover,  our meta-model allows input data  to 
be passed from the input container of the  process 
to the input containers of its  encompassed  activ- 
ities and  predicates,  and allows output  data of the 
activities to be passed to the  output  container of 
the  process. Again, this is achieved  via  data  con- 
nectors provided by  the following process  data 
connector map: 

A:N + u (P(L(G) x 4 4 )  u P ( O ( A )  x o(G))) 
AEN 

where L(G),  o(G) C V denotes  the input con- 
tainer  and  the  output  container of the  process 
model G, respectively.  The  obvious condition 

V A  E N :  A@) E ~ ( L ( G )  X L(A)) 

u P ( O ( A )  x o(G)) 

has  to  be fulfilled. The input and  output  container 
of the  process model G is encompassed in the 
Bernstein  Criterion  via  the following two condi- 
tions: 

1. V B E N :  ( x ,  z ) ,  ( y ,  z )  E P(L(G) x L(B) )  
U U A E N  A(A, B )  3 x = y 

x = y  
2. (x7 z ) ,  (Y7 z )  E U B € N  p(o(B) x o(G)) 3 

Coloring activities. An exit condition or end con- 
dition is a Boolean function  associated  with  a 
nodeA E N used to  check  whetherA finished its 
work  successfully or not. Within our  meta-model, 
exit  conditions  are  associated with activities  via  a 
map E : N +. P. When an  activityA  terminates,  its 
exit condition &(A) is evaluated  based on  the ac- 
tual  values of L( &(A)) .  The termination of A is 
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considered to be successful if and  only if 
&(A)( L( &(A))) = “true.” As long as termination of 
A is not  successful, it has  to  be  worked on at a 
later time, and no navigation is performed starting 
at A .  

In  order  to allow for user-defined synchronization 
of parallel work within processes,  the  meta-model 
allows us  to associate  a  synchronization expres- 
sion with each  activityA E N. This is a Boolean 
expression formed with  the flow conditions of all 
control  connectors  entering A ,  i.e., a Boolean 
expression in P,(A) = r3({e E E I r2(e)  = A } ) .  
With 

+ A : =  [j:l v ill A P : l P : E i p , l P l P € P , ( A ) } }  

our meta-model associates a synchronization ex- 
pression  with  a  node  via  the  map 

@:N -+ u +A,  @(B) E 4B 
A E N  

In  order  to  be  activated  the  synchronization 
expression @(B) of an activityB must  be  “true.” 
Because of this,  synchronization  expressions are 
also  referred  to  as  activation  conditions. It is im- 
portant to note  that  a  conjunction A p  will return 
“unknown” until all affected flow conditions pi 
have  been  evaluated. A flow conditionpi is eval- 
uated  for (A, B, pi) E E once A terminated  suc- 
cessfully, or  the  act of dead  path elimination tra- 
versed A .  If all  flow conditions of at least one 
conjunction Ap,! are evaluated and returned 
“true,”  the whole synchronization  expression 

k ‘, 
j - 1  i=l 

@(B) = V A p: 

will return  “true.” If none of the  conjunctions of 
a  synchronization  expression  returned “true” 
and  at  least  one of its  conjunctions  returned  “un- 
known,” the  synchronization condition returns 
“unknown.” 

Process models:  The formal definition. We are 
now ready  to provide  the formal definition of a 
“process model”; when  the  abstract  properties of 
a  process model are of more  interest we will talk 
about PM-graphs: 

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994 

Definition: A tuple G = (N, E,  P, V, a7 E, A, A, 
N’) is called aprocess model  (or  a PM-graph) :e 

1. N is  a finite set of activities. 
2. V i s  a finite set  ofparameters. 
3. P is  a finite set  ofpredicates. 
4. There  is  a  map 

L : N U  P U {G} + p ( V ) ,  

and  a  map 

0 :N u {G)  +p(T/),  

where L associates with each  element of N U 
P U { G }  input parameter (types) and o as- 
sociates with each element of N U { G }  output 
parameter (types); L(B) and o(B) are  also 
called the  input  container  and output  con- 
tainer of B ,  respectively. 

5 .  Each v E V has  associated with it a set 
DOM(v). 

6. Each  activity A E N is a  map 

A :  X DOM(v) + X DOM(v) 
uEc(A) U E O W  

7. Each  predicatep E P is  a  map 

p :  X DOM(V) -+ (0, l} 
UEL(P)  

8. The set E C N X N x P is unified, Le., 

Ve,  e‘ E E :  rl(e) = rl(e’) A 

r2(e)  = r , (e ’ )  + e = e’; 

a  member of r 3 ( E )  is called aflbw condition. 
9. N’ C N, N’ f 9, is  the  set ofstartactivities. 

10. E : N + P associates with eachA E N an  exit 

11. The  map @ is called a  synchronization map, 
condition. 

@ : N +  u @@)E 4B 
A € N  

where  each member of 

4’4: = v A PllPIEb, 7 P  IP E P,(A)} 
[j:l i:l 1 

is called a  synchronization expression. 
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12. The  map 

A:N X (NU P )  + U p(o(A) X L(B))  
A€N,BENUP 

is called a data connector map having the 
following properties: 

V A , ,  A 2  E N : A ( A , ,   A 2 )  E p(o(A,)  X 

4 4 2 ) )  

* x  = y  

able from A ’ 

V B E N : ( x ,  z ) ,  ( Y ,  z )  E U A E N  A(A, B )  

V A , , A 2  E N : A ( A , , A , )  f 9 + A ,  reach- 

13. The  map 

is called aprocess  data  connector  map hav- 
ing the following properties: 

V A E N: A(A) E p (  L(G) x L(A))  
u p(o(A) x o(G)) 

V B E N : ( x ,  z) ,  ( Y ,  2) E P(L(G) x W )  

(x, 21, ( Y ,  2) E uB€,P(o(B) x 4 G ) )  3 
U U A E N  A(A, B )  * X = y 

x = y  

A  closer lopk at a PM-graph G = (N, E ,  P, V,  
@, e,  A, A,  N’) reveals  that it describes two 
interrelated  graphs.  The first graph  represents  the 
control flow of the  process model G and is de- 
scribed by  the tuple (N, E ,  P ,  V, @, E ,  N’) ;  the 
second  graph  describes  the data flow of the  pro- 
cess_model G and is described by  the  tuple (N, V,  
A, A) .  The control flow is  a  weighted,  colored, 
directed  graph G’ = (N, E ) ,  with maps  as  nodes, 
flow conditions as weights of edges, and  pairs of 
synchronization  expressions  and exit conditions 
as  colors of the nodes. The  data flow is  a 
weighted, directed  graph (N, E )  with edges E C 
N X N xp(V x V )  and (A,  B ,  A(A, B ) )  E E 
A(A, B) f 9, the  weights of which are determining 
the mapping of values  from  output  containers to 
input containers. 

Interpreting activity networks. Instantiating  a  pro- 
cess model, i.e., the  execution of a  process, 
mainly consists of navigating through the  process 
model and the  execution of activities. Activities 
are allowed to  be executed  only if they  are  se- 
lected  beforehand. We describe now the  opera- 
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tional semantics of the  syntactical  elements of our 
meta-model  as provided in the  above definition. 
Thus, we provide  the  rules on how to  interpret 
PM-graphs. 

Activities and their states. The interpretation of 
the  syntactical  elements of a  process model in 
context with the  actual  parameters of the  various 
containers  results in a running process, i.e., in a 
dynamical process  instance.  Interpretation  hap- 
pens at particular  discrete  points in time, for ex- 
ample, once  an  activity  terminates successfully. 
Thus,  the  aspect of time  can  be  covered  by  the  set 
of natural  numbers N. 0 E N represents  the point 
in time in which a new instance of a  process model 
G is started.  Each  activity of a  process  has  as- 
sociated with it at each point in time i E N exactly 
one states E S; the  state  set S includes the  states 
“executable,”  “activated,”  and  “successful” 
(and “evaluated”  and  “not-evaluated,” which are 
relevant  for  predicates only). 

The  map o: N X N + S, which associates at any 
time i E N with eachA E N the  actual  state w(i ,  
A ) ,  is called state  map; via w i ( A ) :  = w(i ,  A )  a 
map mi: N -+ S is  induced for each i E N. The 
map a:  N + p(N),  i I+ 0;’ ({activated}) is called 
(w-)active  map; ai: = a ( i )  is the  set of all cur- 
rently  active  activities at time i (remember  that 
we have  shown  before  that  the  activities in ai are 
satisfying the  Bernstein Criterion). 

A: N + p(N),  i I-, 0;’ ({successful}) is called 
(w-)success&l map; Ai: = A ( i )  is  the  set of suc- 
cessfully terminated  activities at time i (for a  more 
precise definition of this set  see below). 

Deadpath elimination. Dead  path elimination oc- 
curs  when it is detected  that  a  particular  activity 
can  never  reach  the state  “executable” in the  cur- 
rent  instance of the  process model. The  map Z : N 
X E -+ (0, l} specifies at  each  time i whether  an 
edge e E E was  traversed by  the  dead  path elim- 
ination procedure ( E ( i ,  e )  = 1) or  not ( Z ( i ,  e )  
= 0) .  The  map E induces  a  map 8, : N X N + 
{ O , l } v i a ~ . , ( i , A ) = l ~ N g ~ E N ~ E P : ~ ( i ,  
(A,  B ,  p ) )  = 1. Note  that  the dead path elimi- 
nation procedure  ensures  that E ,  is well-defined. 

Actual values in containers. Let  B E N U P U 
{G}. Then i ~ ( B )  and ‘ o ( B )  (the  latter  exists  only 
for B $Z P) denote  the input container and the 
output  container,  respectively, of B at the time i 
E N, where all formal parameters  are  bound to 
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their  actual  values. If v E L(B)  U o(B)  denotes  a We are now able to give a  precise definition of the 
formal parameter,  its  actual  value  at time i E N (w-)successful map: It  is A E hi : e 
is denoted by i v .  The binding of formal parame- 
ters  to actual  values  respects  both  the  data flow A 1. 3 j < i : w ( j ,  A )  = activated 
between  activities  and  the  data flow A between 2. E(A)( ’+’L(E(A)) )  = 1 
activities  and  the  process  itself 3 .  w ( j  + 1, A )  = - - -  = w( i ,  A )  = successful B 

1. When an  instance of the  process model G is 
started, all input containers  are  considered  to 
be initialized with default values;  the resulting 
input container  is  denoted by OL(B): 

2. The  values for the  parameters in the  output 
container of a  successfully  terminated  activity 

containers of  all other  activities  are  considered 
to  consist of the default values of their speci- 
fied formal parameters.  The resulting output 
container  is  denoted by ‘o(B): 

B are  the  return  values of this  activity;  the  output 

Predicates and their states. At  any point in time 
predicates  have  a state associated  with  them too. 
The  states of the  predicates P are  determined by 
the states of the activities N ;  thus  the  state  map 
w induces the predicate  state map (: N X P + S 
as follows: 

1. At time i = 0 the  state of all predicates  is 
“not-evaluated”: 

V p  E P :  [(O, p )  = not-evaluated 

2. At  times i > 0 the flow conditions of all suc- 
cessfully terminated  activities  are in the  state 
“evaluated”: 

3 .  For times i f 0 the  actual  values of the input 
containers  are  determined by  the  data connec- 
tors; if there is no  data  connector specified to 
determine  the  actual  value of a  particular  for- 
mal parameter,  its default value is taken. In 
cases  where  the  data  connector  originates 
from an activity  traversed  by  the dead path 

actual  value of the affected formal parameters. 
The resulting input container  is  denoted by 

B 

I elimination, a special function determines  the 

L(B)  : 

V B  E N U-P U { G }  V v E L(B):(w, v )  E 
A(A, B )  U A(B)  A Z,(i  - 1 , A )  = 0 + iv  - - i - I w  

* V B E N U ~ P U ( G } V ~ E L ( B ) : ( W , V ) E  
b A(A, B )  U A(B)  A e,(i - 1 , A )  = 1 j 

= A(i ,   B ,  v )  

3. At times i > 0 the flow conditions of all edges 
traversed  via dead path elimination are in the 
state  “evaluated”  (and  returned “false”!): 

v CA, B ,  p )  E (A, B, P I )  = 1 + 5(i ,  P )  
= evaluated 

4. Once  a  predicate  has  been  evaluated it has  the 
state  “evaluated” from that time on: 

V p  E P :   ( ( i ,   p )  = evaluated A j > i 3 

(( j ,  p )  = evaluated 

5. In all other  situations, p E P has  the  state 
“not-evaluated.” 

The  return  value of a  synchronization  expression 
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by  the usual rules of three-valued logic (e.g., 
1 unknown = unknown,  unknown A true = un- 
known,  unknown A false = false, unknown V 
false = unknown, unknown V true = true).  Thus, 
if all conjunctions Ap: encompass  at  least  a flow 
condition p with [ ( t ,   p )  = not-evaluated,  then 
@(B) returns  at time t the  value  “unknown.” If 
there  is  at  least  one  conjunction Ap: in which all 
flow conditions  have the  state  “evaluated”  and 
for all of these  predicates p I it is p I ( ‘  ~ ( p  i)) = 1, 
then @(B) returns at time t the value “1.” 

Actual successors. We first define the  set of all 
follow-on activities of a given activityA which are 
reachable from A at  a  certain point in time along 
control  connectors  the weight of which returns 
“true”  at that time. This is achieved  via  the  map 

u:N x N+p(N) 

( i ,  A )  F+ {B E N  13 (A, B,p)   EE:p( ’&(p) )  = l} 

which  is called formal selection map. The  seman- 
tics of our  meta-model do allow the formal selec- 
tion map to apply only to activities  that  have 
terminated successfully. Moreover,  only  those 
members of u(i, A )  that  satisfy  their  associated 
synchronization  expression @(A)  are  actually  se- 
lected.  Thus we have  to define an additional map 

called a selection map via 

Zi(A): = Z ( i ,  A )  is called the  set of i-actual suc- 
cessors of A .  

The navigation through a  process  consists of both 
the  act of selecting follow-on activities and the act 
of executing selected follow-on activities. This 
strong  distinction  between  selection and execu- 
tion of activities  permits  the delegation and dis- 
tribution of the follow-on activities of success- 
fully terminated  activities,  and reflects the  fact 
that delegated activities  are in general  not  started 
immediately after  their delegation. 
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Executable activities. Once  a navigation step  is 
finished the newly determined  actual  successors 
are  dispatched to  the  resources  that  can  execute 
them. The  corresponding  activities are  “execut- 
able” (also called “startable”). All activities  that 
were  executable  at  an  earlier time and  that  have 
not changed to the  state  successful^' in the 
meantime are still in the  state  “executable,” of 
course. When an  instance of the  process model G 
= (N, E ,  P ,  V,  @, E ,  A,  A,  N ’ )  is started, all  of 
its  entry  activities N ’  can be executed. We de- 
scribe  these  semantics  via  the  set family 
called a (w -)execution family which satisfies the 
following conditions: 

1. Eo: = N‘ 
2. xi: = u u,,, Zi(A) - {A E I q ( A )  

= successful} 

Process instances: The formal definition. Finally, 
we can  now define what  an  instance of a  process 
model is in the  sense of our meta-model, i.e., how 
PM-graphs  are  interpreted: 

Definition: Le t  G = (N, E ,  P ,  V, @, E ,  A ,  A, N ’ )  
be  a  process model. A G-process or a G-instance 
or an execution of G is a tuple G = ( w ,  A, 

ing of a  status  map o: N X N + S, a  dead  value 
map A :  N X N X V + U DOM(w), and the 
families of default values of the  input  containers 
and  output  containers of all activities as well as of 
the  process model G .  

A G-process is thus  determined by a  status  map, 
a  dead  value map, and the default values  for  its 
containers.  According to  our definitions given for 
those  terms, all other  constructs  are  derived from 
that.  Note  that the  status  map w is  both influenced 
by user  interventions (e.g., by starting  the  exe- 
cution of an activity  that  results in a state tran- 
sition from “executable”  to  “active” of the  sub- 
ject activity) and by interventions of the interpreting 
system itself  (e.g., by changing the state of an ac- 
tivity to “successful” if the activity terminates and 
the exit condition results in “1”). 

Summary and future work 

We  described  FlowMark,  a  system  supporting 
both  the modeling and  the  execution of business 
processes.  The  constructs provided by Flow- 
Mark to define process models and  the  opera- 
tional meaning of these  constructs  assumed  when 

( 0 4 ~ ) ) A € N ,  ( O O ( A ) ) A E N ,  O W ,  Oo(G)) consist- 
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executing  instances of a  process model are  de- 
fined via  a meta-model. The  syntax  and  the  se- 
mantics of this  meta model were  presented in an 
abstract  manner showing the mathematical foun- 
dation of FlowMark. Processes are modeled by 
the potential  control flow and  data flow between 
activities of FlowMark. Activities can  be  repre- 
sented  by  programs,  and  they  are bound to  the 
executing  agents of FlowMark which are resolved 
into  work  requests  sent to  users  at run time. 
FlowMark  has  a  clientherver  structure in which 
persistent  data  are maintained by  servers  via  an 
object-oriented  database  system.  The implemen- 
tation  is  fault-tolerant, e.g., FlowMark itself  will 
not initiate abortions of processes;  processes af- 
fected by soft crashes  and  hardware failures will 
be forward recovered. 

Potential  future  extensions of the meta-model en- 
compass additional colors of activities,  and  bus- 
iness  transactions,  for example. One new color 
could be an additional Boolean function that  must 
be evaluated to  “true” when trying to  start  the 
associated activity. This might avoid starting  ac- 
tivities whose  execution  is  no longer desirable  be- 
cause  changes in the  context of the  process  oc- 
curred  before  an  activity is actually  started. 
Business  transactions could add the notion of 
compensation  activities  and  spheres of compen- 
sation  to  process models. 

Apart from these  extensions  FlowMark is con- 
sidered  to  have  been  expanded  to  a  multiserver 
product  capable of servicing  the  business  process 
needs of large enterprises.  A logical step in this 
direction  includes porting FlowMark to a number 
of other platforms besides 0s/2 and exploiting 
other  transport  protocols. 
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