IBM Systems Journal
Abstracts
1962-1994

Volume 1, September, 1962

A program for optimal control of nonlinear
processes by R. A. Mugele, p. 2. At present, there are
many industrial processes of a nonlinear character for
which it is difficult to develop an effective industrial
process control system because no efficient math-
ematical method is known to carry out the opti-
mization procedure.

This paper presents a flow chart description of a
computer program incorporating a new optimization
technique which will resolve many such problems.
Although the mathematical basis for the technique
is suggested, details and proofs are omitted—these
will appear in a subsequent paper.

The technique has been successfully tested on a
number of problems. Testing was conducted using
a control system (IBM 1710) as well as both small
and large computers (IBM 1620, 7090).

A general purpose systems simulator by G. Gordon,
p. 18. Systems engineers have come to recognize
simulation as a valuable tool in their work. However,
writing simulation programs can be a difficult, time
consuming task requiring intricate and extensive
programming. For simulation to be most useful, it
must be possible to carry out a simulation quickly
and be possible to change the simulation easily as the
system design proceeds.

This paper describes a general purpose simulation
program designed to simplify the task of simulating
systems. It is applicable to a wide variety of impor-
tant problems. The program features a simple block
diagram language with which to describe the system
to be simulated. Given this description, the program
will automatically simulate the system.

Simulation in systems engineering by E. C. Smith,
Jr., p. 33. The author assumes that the reader is fa-

590 ABSTRACTS 1962-1994

miliar with the content of the preceding paper, “A
General Purpose Systems Simulator,” by G. Gordon.
Two dissimilar examples are provided to illustrate
various aspects of simulation in the systems engi-
neering process. One example involves the study of
an IBM 7040—IBM 7090 computer complex for
scientific applications. The other concerns an IBM
1410 Tele-processing system for a stock brokerage
house.

In addition to illustrating the paper, both examples
are of intrinsic interest. The first presents a new
philosophy of multiprocessing. The second examines
a method of integrating communication facilities with
an information processor.

Tables, flow charts, and program logic by M.
Montalbano, p. 51. “Decision” tables are introduced
with reference to business data processing. A method
of verifying both the completeness and consistency
of a problem description is given.

The conversion of tables to computer programs is
considered and a technique of obtaining a computer
program which minimizes the branching requirements
with respect to both memory and execute time is in-
cluded. Program debugging and program modifica-
tion are also discussed.

A multiprocessing approach to a large computer
system by F. R. Baldwin, W. B. Gibson, and C. B.
Poland, p. 64. This paper examines the machine
utilization and job turnaround problems of a large
computer center by analyzing the information han-
dling and queuing problems occurring between jobs.

A system designed to overcome these difficulties is
described and the results of simulating the system
are reported. The system design includes the inter-
connection of input-output computers with large scale
processors by means of commonly shared disk files.

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

Although this paper deals with a study which is not
yet completed, the techniques developed and the re-
sults obtained to date are of general interest.

Note—The trim problem by R. E. Gomory, p. 77.

Note—On modifying the 1620 ADD table by G.
Gerson, p. 82.

Volume 2, March, 1963

Economic evaluation of management information
systems by D. F. Boyd and H. S. Krasnow, p. 2. A
method of representing the gross characteristics of
an information system within a dynamic model of the
firm is presented.

The performance of the firm and, indirectly, that of
the information system is measured in accordance
with usual financial accounting practice.

The procedure is demonstrated by simulations (pro-
grammed using a general purpose simulator) con-
ducted with a specific model of a hypothetical
manufacturing firm.

Computer construction of minimal project net-
works by B. Dimsdale, p. 24. Computer techniques,
now employed by management in the planning,
scheduling, and control of projects, generally rely on
the formulation of project “networks” as input to the
computer programs.

This paper discusses a computer procedure for im-
proving the input by obtaining networks with certain
minimal properties.

With this improvement in input, the overall efficiency
in using existing programs can be increased.

Sequential data processing design by V. P.
Turnburke, Jr., p. 37. This paper outlines a systematic
method of designing a data processing tape system
utilizing currently available types of equipment.

Primary effort was devoted to obtaining a procedure
which would approach an “optimal” system design.

The method presented is an iterative procedure which
tends to focus special attention on the critical system
functions and the critical relations between functions.

Optimum response analysis by C. F. Kossack, p.
49. This is the first of a series of expository papers,
to appear periodically, dealing with selected statistical
techniques which can be conveniently applied with
the use of a digital computer to a substantial range
of practical problems.

The present paper discusses a technique, developed
by G. E. P. Box and K. B. Wilson, which permits
solution of the problem of finding an optimum (or
minimum) value without first finding the underlying
mathematical model.

Applications of the method and the accompanying
programming problem are also considered.

Programming considerations for the 7750 by
Nicholas Sternad, p. 57. The design of real-time
commercial data processing systems includes special

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

computers serving as communications control de-
vices.

These special purpose stored-program “data
exchange” computers, used in conjunction with
standard data processors, permit significant simplifi-
cation of the system's programs as well as an increase
in the overall system efficiency.

This paper considers the new concepts involved in
programming a particular data exchange computer.

Recovery for computer switchover in a real-time
system by Harry Nagler, p. 76. A programming
technique is presented which permits switching from
central to stand-by computer in case of failure.
Switchover is accomplished automatically and with-
out loss of data or interruption in service.

The technique is applicable to a large class of com-
mercial real-time systems which must function in an
uninterrupted manner.

During the normal periods when both computers are
operable, the programming system permits the second
computer to be utilized independently for other data
processing.

Volume 2, June, 1963

File organization and addressing by W. Buchholz,
p- 86. The principal approaches to random-access file
organization and addressing are reviewed in this pa-
per. The review is general, in the sense that it is
relatively independent of specific equipment. In the
case of a number of unsettled questions, the author's
evaluations of alternatives are included.

The relation between sorting and random-access file
addressing is clarified by reviewing both as belonging
to a common class of ordering operations. Basic
considerations of both sequential and random-access
approaches, arithmetical key-to-address transforma-
tion methods with their overflow problems, and table
lookup methods are discussed.

Results of an experimental analysis of key transfor-
mation techniques are presented.

Note on random addressing techniques by W. P,
Heising, p. 112. Formulas are derived for the average
number of record references required to retrieve a
record from a file (a) in case the records are loaded
without regard for relative frequency of reference and
(b) in case each set of records with a common home
address is arranged in order of decreasing frequency
of reference.

The formulas are first derived under the assumption
that the mapping from keys to addresses is
“random.” Finally, an informal argument is given
which suggests the formulas will also hold under a
familiar “pseudo-random” mapping based on the use
of division, provided the keys have a certain property
commonly encountered in practice.

Programming notation in systems design by K. E.
Iverson, p. 117. The function of programming nota-

ABSTRACTS 1962-1934 §01

tion in systems design and the characteristics of a
suitable language are discussed.

A brief introduction is given to a particular language
(developed by the author and detailed elsewhere)
which has many of the desired properties.

Application of the language is illustrated by the use
of familiar examples.

On the location of supply points to minimize
transportation costs by F. E. Maranzana, p. 129.
An algorithm applicable to the problem of locating
supply points optimally with respect to transportation
costs is given.

Although the algorithm may fail to converge to an
optimal solution, repeated application with judicious
selections of alternative starting values will assure a
good, if not optimal, solution.

The algorithm has been tested and some sample re-
sults are included.

Statistical classification techniques by C. F.
Kossack, p. 136. This paper reviews the procedure
of evolving statistical classification rules.

Selection of variables, methods of classification, se-
lection of a decision rule, and the problem of ana-
lyzing effectiveness of the technique are considered.

The procedure is demonstrated computationally by
means of an example.

Design of an integrated programming and oper-
ating system, Part I: System considerations and
the monitor by A. S. Noble, Jr., p. 153. The present
paper considers the underlying design concepts of
IBSYS/IBJOB, an integrated programming and op-
erating system.

The historical background and over-all structure of
the system are discussed.

Flow of jobs through the IBJOB processor, as con-
trolled by the monitor, is also described.

Design of an integrated programming and oper-
ating system, Part II: The assembly program and
its language by R. B. Talmadge, p. 162. Integrated
system design leads to the inclusion of certain features
in the assembly language for the convenience of
compilers, and others for the convenience of program
segmentation.

This paper discusses motivation for the inclusion of
these features, and traces their influence upon the
internal structure of the assembly program.

Volume 2, September-December, 1963

An intrinsically addressed processing system by
J. E. Griffith, p. 182. This paper, motivated by the
classical work of Bush, discusses the possibilities of
designing an information processing system based
on intrinsic addressing techniques.

The primary design objective is to develop a system
with increased capability for non-numerical infor-
mation processing.

5092 ABSTRACTS 1962-1994

Suggestions for the physical and programming system
logic are outlined from a macroscopic point of view
and some applications of the system are indicated.

Project evaluation and selection by B. Dimsdale and
H. P. Flatt, p. 200. A criterion is formulated which
will permit project selection corresponding to man-
agement's statement of objectives and their relative
importance.

An algorithm is developed to implement the criterion.
The accompanying programming problem is exam-
ined and experience gained in executing the algorithm
is described.

Application of the algorithm is demonstrated by de-
tailing the solution of a problem.

A directly coupled multiprocessing system by E.
C. Smith, Jr., p. 218. Interconnecting processors is
one approach to organizing a computer facility to
better serve its users.

The objective of such system organization is to reduce
the elapsed time a job resides in the system (turn-
around time) while simultaneously increasing the
workload the equipment can handle (throughput).

Alternative philosophies of multiprocessing are dis-
cussed and, in particular, a concept which enables
coupling an IBM 7090 and an IBM 7040 to meet this
objective. In this system the smaller machine per-
forms supervisory and input-output functions while
the larger one performs program assembly and com-
putation.

Dynamic storage allocation for a real-time system
by B. I. Witt, p. 230. An algorithm for dynamic storage
allocation of variable-sized programs and records is
described. The algorithm is designed for real-time
systems in which core is assigned for data and pro-
grams in a completely unscheduled manner as, for
example, in reservation systems.

The objective is to make efficient re-use of available
core with minimal movement of data or programs
after entry.

The procedure given depends on the frequency dis-
tributions of program usage and of data block sizes.
However, the distributions need not be specified since
the system will adapt to these distributions and,
equally important, to any changes in them that may
occur.

The algorithm has yet to be simulated or tested within
an operating system.

A computer-operated laboratory data-taking sys-
tem by H. Cole, Y. Okaya, and F. W. Chambers, p.
240. This paper discusses the use of a computer to
control data-taking in the laboratory—including the
case of “closed-loop” control.

Illustration is provided by describing a particular
system involving computer control of an x-ray
diffractometer.

A pattern identification system using linear deci-
sion functions by J. S. Griffin, Jr., J. H. King, Jr.,

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

and C. J. Tunis, p. 248. This paper is concerned with
application of linear decision functions to the pattern
identification problem and describes an experimental
pattern recognition system for the magnetic ink
character font now used in the banking industry.

The system is based on a linear decision function
determined by means of a variant of an “adaptive
training” technique due to Rosenblatt.

The system has been partially implemented (in part,
through simulation with aid of a digital computer and,
in part, by hardware) and experimental results in using
the system are reported.

Requirements generation, explosions, and bills of
material by F. L. Church, p. 268. This paper intro-
duces the principal data processing procedures now
applied within many manufacturing industries to the
“requirements generation” problem.

The procedures discussed take into consideration
certain related problems in production planning and
inventory control.

The nature of the various problems is illustrated and
flow charts for the principal procedures are included.

Generation of input data for simulations by S.
Yagil, p. 288. An algorithm is given to generate ad-
ditional input data for simulations when some, but
insufficient, historical data are available. The addi-
tional data generated are statistically “similar” to the
historical.

Motivation and application of the algorithm are
demonstrated by means of a problem related to the
monthly water inflow to Lake Tiberias which had to
be resolved in connection with the “Israeli Integrated
Water Supply” project now under construction.

The algorithm is a variant of a method previously
used by Thomas and Fiering in hydrological studies.

Design of an integrated programming and oper-
ating system, Part III: The expanded function of
the loader by R. Hedberg, p. 298. This paper outlines
the structure and operation of the system's loader.

The new system functions which affect the loader
are related to the additional functions which the loader
performs.

Descriptions of the algorithms employed by the loader
for symbolic unit assignment and buffer allocation
are included.

Design of an integrated programming and oper-
ating system, Part IV: The system's FORTRAN
compiler by R. Larner, p. 311. This paper describes
the system's 7090/94 FORTRAN compiler. Comment
is made on the design problem and objectives.

The general structure and operation of the compiler
are examined.

Indexing procedures for array reference and iteration
control within the object programs produced by the
compiler are detailed.

Design of an integrated programming and oper-
ating system, Part V: The system's COBOL com-

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

piler by R T. Dorrance, p. 322. The general
considerations underlying the design of the system's
COBOL compiler are discussed.

A brief outline of the operation and structure of the
compiler is included.

Finally, attention is focused on certain techniques
which are incorporated within the compiler.

Volume 3, Number 1, 1964

Storage requirements for a data exchange by I
Delgalvis and G. Davison, p. 2. A computational
procedure is derived analytically to evaluate the
input/output buffer storage requirements in a data
exchange.

Validity of the analysis is substantiated by
comparing—in a typical instance—the analytical re-
sults with those obtained by simulation.

Systems simulation with digital computers by K.
Blake and G. Gordon, p. 14. The general nature of
digital simulation of a system is discussed.

A machine-independent examination of the associated
programming problem is conducted and illustrated
by means of an example.

Finally, the nature and application of simulation
languages are noted.

A general purpose digital simulator and examples
of its application, Part I: Description of the sim-
ulator by R. Efron and G. Gordon, p. 22, This part
of the paper describes GPSS II, a general purpose
digital systems simulation program based on a block
diagram language.

The program is a result of incorporating improve-
ments dictated by extensive experience in the appli-
cation of an earlier version. However, this article is
self-contained.

Development and application of the language are il-
lustrated by means of an example.

A general purpose digital simulator and examples
of its application, Part II: Simulation of a tele-
phone intercept system by C. R. Velasco, p. 35. The
simulator is employed to determine a set of parame-
ters defining a telephone “intercept” system with
appropriate characteristics.

The intercept system is automatic and involves
standard data processing components—data ex-
change, disk files, and audio response units.

A general purpose digital simulator and examples
of its application, Part III: Digital simulation of
urban traffic by A. M. Blum, p. 41. This part discusses
use of the simulator for problems associated with
urban traffic studies.

Included are simulation methods for intersections and
networks, vehicular characteristics and input, and the
network traffic control mechanism.

The general purpose simulator is used to write a
general traffic program which is used with data cards
specifying the geometry, signal settings, statistical

ABSTRACTS 1962-1994 593

distributions, and other details of the particular net-
work selected for simulation.

A general purpose digital simulator and examples
of its application, Part IV: Simulation of an inte-
grated steel mill by D. F. Boyd, H. S. Krasnow, and
A. C. R. Petit, p. 51. An approach to the simulation
of an industrial enterprise for the purpose of evalu-
ating alternative decision algorithms is illustrated.

As an example, simulation of an integrated steel mill
is discussed in sufficient detail to display program-
ming techniques.

A description of the SIMSCRIPT language by B.
Dimsdale and H. M. Markowitz, p. 57. This paper
describes the SIMSCRIPT system simulation lan-
guage and the philosophy of system structure on
which it is based.

Application of the language to programming both
discrete and continuous models is indicated and il-
lustrated with examples.

SIMSCRIPT processing is described and statistics
regarding operating characteristics are given.

The SIMSCRIPT system was developed at The
RAND Corporation by a group including the second
author.

A character computer for high-level language in-
terpretation by J. E. Meggitt, p. 68. This paper dis-
cusses the design of an experimental
character-processing computer for the interpretive
execution of higher-level language programs.

The design specifies a 100-nsec instruction cycle for
the microprogram instructions stored in a read-only
memory, a fast memory for intermediate “scratch
pad” computation, and input/output through a con-
ventional computer coupled to a 2-Lsec main mem-
ory. The object program to be interpreted is stored
in the main memory.

As a part of the research, the design was simulated
on standard equipment.

Design of an integrated programming and oper-
ating system, Part VI: Implementation on the
7040/44 data processing system by B. White and J.
Trimble, p. 79. This paper compares factors governing
the implementation of the IBSYS/IBJOB operating
systems for the 7090/94 and 7040/44 processing
systems.

Operation of the 7040/44 system's monitors and the
means of communication between them are described.

Familiarity with the content of the previous five pa-
pers of this series is assumed, though for the most
part, the paper can be read independently.

Algorithm for a gear-train problem by H. G.
ApSimon, p. 95. An algorithm for the numeric solution
of a common gear-train problem is developed.

A number-theory approach, relatively novel in current
engineering practice, is used in deriving the algo-
rithm.

594 ABSTRACTS 1962-1994

The form of the algorithm obtained is suitable for
programming on a digital computer.

A concordance generator by K. F. Scharfenberg,
P. H. Smith, Jr., and R. D. Villani, p. 104. The struc-
tural design of a general purpose program for con-
cordance preparation is described.

Options in the input format, the operating mode, and
the output edit provide wide flexibility in organizing
data in a form convenient for many analytical pur-
poses.

An experimental program was written, and some re-
sults obtained in testing the program are included.

Volume 3, Numbers 2/3, 1964

The structure of SYSTEM/360, Part I: Outline of
the logical structure by G. A. Blaauw and F. P.
Brooks, Jr., p. 119. A general introductory description
of the logical structure of SYSTEM/360 is given in
preparation for the more detailed analyses occurring
in the other parts of the paper.

The functional units, the principal registers and for-
mats, and the basic addressing and sequencing prin-
ciples of the system are indicated.

The structure of SYSTEM/360, Part II: System
implementations by W. Y. Stevens, p. 136. The per-
formance range desired of SYSTEM/360 is obtained
by variations in the storage, processing, control, and
channel functions of the several models.

The systematic variations in speed, size, and degree
of simultaneity that characterize the functional com-
ponents and elements of each model are discussed.

The structure of SYSTEM/360, Part III: Process-
ing unit design considerations by G. M. Amdahi, p.
144. Considerations underlying the design of the
central processing unit are discussed.

Particular emphasis is placed on addressing, se-
quencing, and monitor control functions as well as
provisions for arithmetic and logical operations.

The structure of SYSTEM/360, Part IV: Channel
design considerations by A. Padegs, p. 165. The or-
ganization of the input/output section and the control
of input/output operations in SYSTEM/360 are de-
scribed.

Emphasis is on the philosophy of control and on the
reasons for choosing the particular logical and phys-
ical organization.

For each machine feature, the types of tasks requiring
the facility are outlined and the significance of the
solution is shown.

The structure of SYSTEM/360, Part V: Multisys-
tem organization by G. A. Blaauw, p. 181. Operation
of several systems as one multisystem to obtain in-
creased availability, improved cost/performance, or
both, is considered.

System requirements for various applications are
formulated, and the multisystem capabilities of
SYSTEM/360 are discussed in context.

iBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

A formal description of SYSTEM/360 by A. D.
Falkoff, K. E. Iverson, and E. H. Sussenguth, p. 198.
All SYSTEM/360 functional characteristics having
programming significance are completely and con-
cisely described.

The description, which is formal rather than verbal,
is accomplished by a set of programs, interacting
through common variables, used in conjunction with
auxiliary tables.

The language used in the programs involves operators
and notation selected from mathematics and logic,
together with additional operators and conventions
defined to facilitate system description.

Although the formal description is complete and
self-contained, text is provided as an aid to initial
study.

Examples to illustrate the application of the formal
description are given in an appendix.

Volume 4, Number 1, 1965

An interpretive program for matrix arithmetic by
F. H. Branin, Jr., L. V. Hall, J. Suez, R. M. Carlitz,
and T. C. Chen, p. 2. The structure and use of an in-
terpretive program for matrix operations is treated.

The discussion emphasizes the nature of the pro-
gramming language and the method of storage allo-
cation. The system provides automatic storage
allocation for external disk storage as well as for core
memory.

Algorithm for computer control of a digital plotter
by J. E. Bresenham, p. 25. An algorithm is given for
computer control of a digital plotter.

The algorithm may be programmed without multi-
plication or division instructions and is efficient with
respect to speed of execution and memory utilization.

An analysis of floating-point addition by D. W.
Sweeney, p. 31. This paper analyzes the addition op-
eration of floating-point systems.

The analysis of a million executed floating-point
additions is presented as an aid in optimizing design
and measuring performance.

The frequency of the various shifts for floating-point
additions with different radices was derived from the
basic data so that designs with various radices may
be evaluated.

On the reliability of pelymorphic systems by P.
D. Welch, p. 43. The reliability aspects of poly-
morphic systems are examined within the confines
of a simple failure and repair model.

Emphasized are the derivation and use of easy-to-
calculate approximations to the unavailabilities of
system capacity levels.

A technique to control waiting time in a queue by
S. Shapiro, p. 53. This paper describes a control
technique for regulating the waiting times of jobs in
a discrete manufacturing process.

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

The technique is based on the second method of
Lyapunov, which has been extensively used for
deterministic processes. Two illustrations of the
method are included.

Experimental evidence of the effectiveness of the
technique is indicated.

Notes on testing real-time system programs by M.
G. Ginzberg, p. 58. Procedures for program testing
associated with implementation of a large complex
real-time system are discussed step by step.

The discussion includes testing both in a simulated
environment and in real time.

Final testing and monitoring of system performance
are also briefly considered.

Serial compilation and the 1401 FORTRAN com-
piler by L. H. Haines, p. 73. This paper discusses a
compiler organization in which phases act sequen-
tially on a source program held in core storage.

A brief description of each phase of the 1401
FORTRAN compiler is given to illustrate the general
scheme.

Volume 4, Number 2, 1965

Fabrication and assembly operations, Part I: The
outlines of a control system by C. T. Baker, p. 87.
The structure of a comprehensive control system for
the fabrication and assembly industries is outlined.

The system consists of several major functional
components that are interconnected as an integrated
whole.

Component functions are described and relevant
methodologies mentioned.

Fabrication and assembly operations, Part II:
Long-range planning techniques by A. B. Calica,
p- 94. An approach to the preparation and evaluation
of preliminary plans for a discrete manufacturing
enterprise is outlined.

Some major data processing problems arise in this
type of long-range planning. Mathematical tech-
niques applicable to the solution of these problems
are discussed.

Fabrication and assembly operations, Part III:
Matrix methods for processing configuration data
by P. G. Loewner, p. 105. This discussion presents a
unified method for organizing the configuration data
of manufacturing files, and for generating and re-
trieving essential quantities from the files. The re-
quired processing operations, which include various
requirements and engineering-change computations,
are explained with the aid of matrix algebra.

An important objective of the method is to permit a
reasonably optimal balance between the bulk-storage
requirements and the amount of time required for
processing.

Fabrication and assembly operations, Part IV:
Linear programming in production planning by
B. P. Dzielinski, p. 122. In many industries, production

ABSTRACTS 1962-1934 595

planning involves the allocation of various resources
in the joint production of similar products. Inventory
levels, labor decisions, and an economic choice of
lot sizes are all influential in the planning process.

Formulated in terms of mathematical programming,
the economic and mathematical facets of production
planning are discussed. A feasible computation
technique is suggested.

The construction of discrete dynamic program-
ming algorithms by M. Held and R. M. Karp, p. 136.
Certain sequencing and scheduling problems are
formulated as shortest-route problems and treated in
a uniform manner by dynamic programming. Com-
putational considerations are discussed.

Algorithms for traffic-signal control by L A
Yardeni, p. 148. Algorithms for the design of
traffic-signal progressions for fixed-time control are
described.

Least-squares and minimax fits are used to derive
solutions for given volume requirements within
specified limits of speed and cycle time.

The algorithms have been programmed for processing
on a digital computer, thus reducing the initial design
time considerably and leading to solutions that are
superior to manually derived designs.

Computer channel interference analysis by W.
Chang and D. J. Wong, p. 162. This paper develops
a queuing model that analyzes the capabilities of a
low speed data channel for real-time data inputs. The
model yields estimates of waiting, service, and overall
transit times.

Low speed channel throughput can be increased by
multiplexing low speed devices. It is assumed that
the multiplexing operation employs common regis-
ters, the contents of which are saved at initiation and
restored at completion of service for all outstanding
requests. The model takes into account preemptive
interference from high speed data channels.

Volume 4, Number 3, 1965

GPSS Ili—an expanded general purpose simula-
tor by H. Herscovitch and T. H. Schneider, p. 174.
Significant improvements in the modeling capability
and storage flexibility of the General Purpose Systems
Simulator are described in this paper.

Increased versatility and ease of use as well as new
debugging aids are also discussed.

The additions and changes to the simulator are il-
lustrated by examples.

On dynamic program relocation by W. C. McGee,
p. 184. A general statement of the problem of dynamic
program relocation is presented as an aid in describing
specific relocation principles.

The main purpose of the paper is to review a number
of typical methods of meeting the expanding need
for dynamic program relocation. Although no attempt
is made at evaluation, the methods are discussed in

596 ABSTRACTS 1962-1994

the context of selected computer systems for tutorial
concreteness.

A computer-aided linkage analysis system by F.
Bitonti, D. W. Cooper, D. N. Frayne, and H. H.
Hansen, p. 200. An experimental system for the
kinematic analysis of two- and three-dimensional
mechanical linkages is outlined.

The structure of the programmed system, the input
language, and the method of storage allocation are
described.

The class of problems treated by the system is dis-
cussed in brief, as are the basic vector equations used
in obtaining solutions for position, velocity, acceler-
ation, and force of linkage elements.

Fabrication and assembly operations, Part V:
Production order sequencing by A. B. Calica, p. 225.
The sequencing of several project networks on limited
facilities is discussed under the assumption that the
projects and resources have already been specified
by a higher scheduling function.

A priority function is proposed which uses both the
local and global properties of the project network.

The resulting schedule is then converted into a net-
work on which useful alterations can be made.

Fabrication and assembly operations, Part VI:
Parameter values for sequencing control by S.
Gorenstein, p. 241. This document adapts the se-
quencing control reported in Part V of this paper to
individual plant requirements and goals.

A regression model is used to relate measures of plant
performance to certain control parameters. This re-
lationship is periodically recomputed using statistical
analysis of operational data.

A pertinent decision rule is derived by optimal control
theory.

Fabrication and assembly operations, Part VII:
Adaptive control in production planning by S.
Shapiro, p. 250. This paper discusses a control method
for reducing the operating costs of a production sys-
tem by continual modification of the planning oper-
ations.

The method improves resource allocations by ad-
justing the mathematical model of the production
system to actual system performance.

The results of some preliminary experimental work
with a simulated fabrication shop are presented.

Volume 5, Number 1, 1966

The functional structure of 0S/360, Part I: In-
troductory survey by G. H. Mealy, p. 3. A brief
outline of the structural elements of OS/360 is given
in preparation for the subsequent sections on
control-program functions.

Emphasis is placed on the functional scope of the
system, on the motivating objectives and basic design
concepts, and on the design approach to modularity.

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

The functional structure of 0S/360, Part II: Job
and task management by B. I. Witt, p. 12. This part
of the paper discusses the control-program functions
most closely related to job and task management.

Emphasized are design features that facilitate diver-
sity in application environments as well as those that
support multitask operation.

The functional structure of 0S/360, Part III: Data
management by W. A. Clark, p. 30. Concepts
underlying the data-management capabilities of
0S/360 are introduced; distinctive features of the
access methods, catalog, and relevant system
macroinstructions are discussed.

To illustrate the way in which the control program
adapts to actual input/output requirements, a real
operation is examined in considerable detail.

Volume 5, Number 2, 1966

Macro language design for SYSTEM/360 by D.
N. Freeman, p. 62. The macro language design dis-
cussed in this paper provides a systematic means by
which the SYSTEM/360 assembler-language pro-
grammer can develop macroinstructions, thereby ex-
panding the set of machine-oriented instructions that
serve as the basis of the assembler language.

Also treated is the format of macro definitions, the
design of a macro generator, and the principal con-
siderations that governed the design of the system
as a whole.

A study of replacement algorithms for a virtual-
storage computer by L. A. Belady, p. 78. This study
is based on a virtual-storage concept that provides
for automatic memory allocation.

Several algorithms for the replacement of current
information in memory are evaluated.

Discussed is the simulation of a number of typical
program runs using differing replacement algorithms
with varying memory size and block size. The results
are compared with each other and with a theoretical
optimum.

Computation of ex with the use of large tables by
K. Spielberg, p. 102. A procedure is given for com-
putation of ex using tables of coefficients of the
economized approximating polynomial over a range
of positive and negative x. A related procedure that
uses continued fractions is also discussed.

The exponential function was selected to test the ef-
fectiveness of table lookup methods in the computa-
tion of elementary functions. The number of
multiplications or divisions required of standard
methods is compared with the number required when
table lookup is employed.

A queuing model for a simple case of time sharing
by W. Chang, p. 115. This paper discusses a queuing
model for a non-priority time-sharing environment
in which all active tasks fit in a homogeneous main
storage. Design parameters such as queue length and
response time, as well as their distributions, can be

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

estimated with the aid of the model. The model
provides a basic frame of reference for the develop-
ment of more complicated models.

Volume 5, Number 3, 1966

On teleprocessing system design, Part I: Charac-
teristic problems by W. P. Margopoulos and R. J.
Williams, p. 134. For analytical purposes, a telepro-
cessing system can be characterized as a digital
computer with unscheduled inputs from a number
of remote points. In the design of such a system,
various queuing problems arise as a consequence of
the unscheduled inputs, and the necessity of linking
remote points to the central computer leads to a
problem in combinatorial mathematics.

To show the origin of these problems, a functional
classification of teleprocessing applications is given,
a schematic of a basic teleprocessing system is in-
troduced, and the relative merits of mathematical
analysis and digital simulation are discussed.

On teleprocessing system design, Part II: A
method for approximating the optimal network
by L. R. Esau and K. C. Williams, p. 142. A tele-
processing system may include many low-speed ter-
minals at great distances from the computing center.
Specification of a communication network for con-
necting the remote terminals to the central computer
constitutes an important design problem.

An iterative method for obtaining an approximate
solution to an optimum network is presented. The
method assumes that an acceptable line utilization
factor is given.

On teleprocessing system design, Part III: An
analysis of a request-queued buffer pool by J. P.
Bricault and 1. Delgalvis, p. 148. The problem of al-
locating main storage for a message-segment buffer
pool is considered. A queuing model that approxi-
mates the most typical mode of operation is formu-
lated. Solutions for the number of buffers by the pool
are obtained. Although the solutions require iterative
computational methods, they are not difficult to pro-
gram.

Inasmuch as the model and solution methods both
involve approximations, the validity of the approach
was checked by simulating a typical set of operating
conditions. Although the computational results were
found to be conservatively biased, the method is
clearly adequate for most design purposes.

On teleprocessing system design, Part IV: An
analysis of auxiliary-storage activity by P. H.
Seaman, R. A. Lind, and T. L. Wilson, p. 158. Queues
of requests for access to auxiliary storage play a major
role in every teleprocessing application. Assuming
that access requests are randomly distributed, a
queuing model is formulated; formulas are obtained
for the mean and variance of the response-time dis-
tribution, as well as for the utilization factors of the
access channel and the storage modules.

Samples of analytical and simulation results are given.

ABSTRACTS 1962-1994 597

On teleprocessing system design, Part V: A tech-
nique for estimating channel interference by T.
W. Gay, Jr., p. 171. In typical teleprocessing appli-
cations, a large number of terminals communicate
with the main-storage unit of a centrally located
computer. The communication activities may reduce
the processing capacity of the computer by claiming
a significant number of main-storage access cycles.

If the number of cycles to be claimed is partially
dependent upon channel-busy and request-pending
conditions, the problem involves a probability anal-
ysis. Using a simple queuing model as a starting
point, a usefully accurate solution method is devel-
oped. The SYSTEM/360 multiplexor channel is an-
alyzed as an example.

On teleprocessing system design, Part VI: The role
of digital simulation by P. H. Seaman, p. 175. As a
tool for quantitative investigation, digital simulation
is especially suited to the study of stochastic processes
having many interdependent variables. Not only can
a simulation model be modified to reflect structural
changes in a process, but it can be used to gain in-
sights during the design of the process. These prop-
erties recommend the use of digital simulators in the
design of complex teleprocessing systems.

This paper comments on the main considerations in-
volved in choosing between general-purpose and
special-purpose simulators.

Volume 5, Number 4, 1966

A computer program for the statistical analysis
of series of events by P. A. W. Lewis, p. 202. This
paper discusses general considerations that arise in
the statistical analysis of point stochastic processes
(series of events) and a computer program called
SASE designed to implement such an analysis.

The program is written as a sequence of independent
subroutines. The computations performed in each
subroutine are described and an example of an anal-
ysis of a series of events is presented and discussed.

Merge-sort analysis by matrix techniques by C.
E. Radke, p. 226. Previous work, which analyzed
certain merge-sorting methods with the aid of dif-
ference equations, is extended to include a wider
range of methods. Matrices are introduced to repre-
sent the set or sets of difference equations associated
with a merge-sort. Two or more matrices are required
to define a Class II method, whereas a Class I method
can be defined with one matrix. The merge-sorts of
most interest fall into a special subclass called Class
Ia.

It is shown that an asymptotic solution to the set of
difference equations for a Class Ia merge-sort is
readily obtainable. Carter's analysis of cascade and
polyphase merge-sorts is generalized and extended
to include, among other things, the compromise
merges. Various properties of the Class Ia merge-
sorts, including relative performance measures and
explicit merge patterns, are shown to be obtainable

598 ABSTRACTS 1962-1994

by matrix multiplication. Although the analysis em-
phasizes Class Ia merges, suggestions are given for
applying the matrix technique to other merge-sorts
of Classes I and IL

Kernel analysis of elliptic partial differential
equations by S. G. Hahn and E. V. Hankam, p. 248.
The extrapolated Liebmann method for solving partial
differential equations is selected for study. With
typical computer characteristics in mind, several
schemes for organizing the requisite data flow are
discussed.

To show the potentialities of timing formulas, as well
as their limitations and the problems encountered in
their construction, one of the data-flow schemes is
treated at length. Kernel programs are included, and
timing formulas needed in making comparisons of
various configurations of two computers are devel-
oped.

Volume 6, Number 1, 1967

Function and design of DOS/360 and TOS/360 by
G. Bender, D. N. Freeman, and J. D. Smith, p. 2. The
functions of disk and tape operating systems for
SYSTEM/360 configurations with as little as sixteen
thousand bytes of main storage are discussed. The
two related systems are designed to provide a range
of services that include input/output control,
stacked-job control, symbolic device assignments,
and library maintenance. A set of language transla-
tors, a set of sort/merge programs, and various other
programs go far toward minimizing the effort required
of program preparation.

Design objectives, system definitions, and functional
capabilities are stressed. The design of the control
program is discussed in some detail.

Data management concepts for DOS/360 and
TOS/360 by A. R. Cenfetelli, p. 22. The data man-
agement function is discussed in the specific context
of DOS/360 and TOS/360, the disk and tape operating
systems for intermediate SYSTEM/360 configura-
tions.

Explained are the processing routines of the data
management facilities, collectively referred to as the
input/output control system.

Techniques that keep the routines small in size, effi-
cient in operation, and simple to use are emphasized.

Internal data management techniques for
DOS/360 by D. H. Ricour and V. Mei, p. 38. A tech-
nique for individual preassembly and linkage of
input/output program sections, which reduces overall
assembly time, is described.

Also discussed are two techniques used in generating
channel programs for direct-access devices. One of
the techniques is designed for random addressing of
records, the other for indexed sequential addressing.

The developmental work that led to these techniques
was heavily influenced by the objective of effectively
minimizing the amount of main storage required for

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

the input/output control functions in DOS/360, the
disk operating system for SYSTEM/360 configura-
tions with intermediate amounts of main storage.

Real-time systems in perspective by J. D. Aron, p.
49. The more important characteristics of real-time
systems are listed, discussed in an historical context,
and illustrated by remarking on relevant features of
typical applications. Because the intent of the paper
is to provide a general survey, no attempt is made
at a truly rigorous definition of the term “real-time.”
The point of view taken is a functional one, viz., that
the distinguishing properties of most real-time sys-
tems stem directly from the distinctive needs of five
different classes of applications: control, command
and management information, time-shared comput-
ing, remote batch computing, and data acquisition.

A number of general references are included for the
reader who is interested in more detail on the various
aspects of real-time systems.

Volume 6, Number 2, 1967

An application-oriented multiprocessing system,
Part I: Introduction by J. F. Keeley, p. 78. The
purpose of this short introduction is to provide
background for a discussion of an application-
oriented multiprocessing system.

An application-oriented multiprocessing system,
Part II: Design characteristics of the 9020 system
by G. R. Blakeney, L. F. Cudney, and C. R. Eickhorn,
p. 80. The equipment that comprises the IBM 9020
multiprocessing system is described, emphasizing
capabilities not appearing in the standard
SYSTEM/360 line.

System characteristics are related to availability re-
quirements for program-controlled reconfiguration
capabilities. With these capabilities, subsystems can
be formed from system elements as the need arises.

Other discussed functional capabilities center on re-
covery by program control, shared storage, and mal-
function alerting.

An application-oriented multiprocessing system,
Part III: Control program features by J. A
Devereaux, p. 95. The described control program
dynamically schedules the operational activities per-
formed by the IBM 9020 multiprocessing system.
Scheduling is based on program execution require-
ments and allows dynamic switching of Computing
Element assignments.

Storage resources are dynamically allocated by the
control program to guard against the mutual inter-
ference of concurrent operations.

The trace capability of the control program is de-
scribed because of its importance to the checkout and
evaluation of multiprocessor systems.

An application-oriented multiprocessing system,
Part IV: The operational error analysis program
by D. C. Lancto and R. L. Rockefeller, p. 103. The

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

described program analyzes and isolates equipment
faults concurrently with regular processing.

If necessary, the program replaces system elements
by realigning communication and control paths.

Dependence of the program's replacement decisions
upon the recording of extensive error statistics is also
discussed.

An application-oriented multiprocessing system,
Part V: The diagnostic monitor by R. Suda, p. 116.
Off-line diagnostic programs for system test, accep-
tance test, and field maintenance of the IBM 9020
multiprocessing system are executed under control
of the monitor under discussion.

The structure of the monitor is based on seven
functional components which are examined in detail.

A discussion of the debugging experience during the
development of the monitor is included.

An application-oriented multiprocessing system,
Part VI: Programs for the intended application
by F. K. Seward, p. 124. The multiprocessing system
is viewed within the frame of the intended air-
traffic-control application.

Functions of the five application-oriented programs,
as well as the main features of the input/output en-
vironment, are discussed.

Volume 6, Number 3, 1967

Evaluation of redundancy in a parallel algorithm
by G. S. Shedler and M. M. Lehman, p. 142. Com-
puters with parallel computing capabilities may be-
come generally available in the future. Some
implications for the field of numerical analysis are
indicated. An analogue of the bisection algorithm for
root determination, employing redundancy in com-
putation as a means of developing parallelism, is
presented. An evaluation of the effect of redundant
parallel computation on the speed and efficiency with
which results are obtained is given for this algorithm.

Aspects of the Gemini real-time operating system
by J. H. Mueller, p. 150. This paper describes the
major elements of a programmed operating system
for a complex of five computers employed at the
Gemini Mission Control Center. The system was
designed for an application environment that includes
real-time space missions, simulated real-time exer-
cises, and extensive job-shop operations. Relation-
ships among programs, input/output control, and
various operational techniques are described. The
characteristics of a statistics-gathering routine are
outlined.

High-speed calculation of the critical paths of large
networks by M. Montalbano, p. 163. Discussed is the
design, implementation, and detailed operation of an
experimental IBM 7090 program that calculates the
critical path as well as early and late start times for
a project network.

The program accepts suitably coded information
about activity durations and precedence relationships

ABSTRACTS 1962-1994 509

and constructs an internal representation of the net-
work. Results are printed out in either one of two
formats: one for the consistent case and the other for
the inconsistent case.

A formal descriptive language is used to describe the
basic algorithm. The specific storage and indexing
techniques employed in the program are useful in a
wide class of directed-graph applications.

An automatic dictionary and the verification of
machine-readable text by E. J. Galli and H. Yamada,
p. 192. The possibility of applying an experimental
dictionary and a digital computer to a proofreading
application was investigated. Because technical ab-
stracts yield a high concentration of proofreading
difficulties, a sample of such text was used for study
purposes.

The general features of the dictionary, as well as the
main algorithms used for dictionary search and text
processing, are discussed. Methods for classifying
input words and flagging output words are described.
Approximately nincteen thousand words of key-
punched abstracts were experimentally processed,
with results that are discussed. The verification al-
gorithms are evaluated in light of the results obtained,
and recommendations for additional improvements
and refinement are then presented.

Volume 6, Number 4, 1967

Microprogram control for SYSTEM/360 by S. G.
Tucker, p. 222. This paper describes the kind of
microprogram control that has been used in several
models of SYSTEM/360. A microprogramming
language, as well as some of the main techniques used
in *“assembling” and testing microprograms, are dis-
cussed. Applications of microprogram control to the
design of emulators, to compatibility features, and to
special modifications are summarized.

Two continuous system modeling programs by R.
D. Brennan and M. Y. Silberberg, p. 242. The moti-
vation, history, and basic concepts of user-oriented
languages for digital simulation of continuous sys-
tems are presented. Reference is made to two illus-
trative programs, the IBM 1130 and SYSTEM/360
Continuous System Modeling Programs (CSMP).

Both programs accept user-oriented input statements
for constructing simulation models and controlling
simulation runs. The 1130 CSMP also allows on-line
interaction by the user. An engineer or scientist at
the console can alter the model or change run con-
ditions based on direct observation of simulation
outputs. The SYSTEM/360 CSMP is intended for
batch-mode operation. It has extended facilities for
describing the model and for obtaining automatic
program control of successive simulation runs.

Conventions for digital data communication link
design by J. L. Eisenbies, p. 267. A definitive set of
conventions has been established for the automatic,
synchronous transmission of digital data over half-
duplex (nonsimultaneous) communication links.

600 ABSTRACTS 1962-1994

Provision has been made for communication between
different device types and between computer pro-
cessing units. Although one transmission code must
be used on a given data communication link, a speciat
feature permits digital data in any form to be trans-
mitted, including encrypted data and compiled com-
puter programs.

This paper describes the Binary Synchronous Com-
munication (BSC) conventions, which prescribe the
encoding of data, the procedures for synchronizing
stations, the methods for controlling the data links,
transmission message formats, and error detection and
correction methods. The presentation is sufficiently
detailed to indicate the kinds of design decisions that
are involved in setting up automatic data communi-
cation links.

Volume 7, Number 1, 1968

Structural aspects of the System/360 Model 85,
Part I: General organization by C. J. Conti, D. H.
Gibson, and S. H. Pitkowsky, p. 2. A basic design
objective for the Model 85 was to add a computer
to the SYSTEM/360 line that offers high performance
over a wide range of job types. Simulation studies
indicate that the Model 85 will provide an average
three- to five-fold increase in internal performance
with main storage capacities of up to four million
bytes.

This part of the paper discusses the major elements
of the Model 85 within the architectural context of
SYSTEM/360, including the addition of a high-speed
buffer, called a cache.

Also summarized are the simulation studies that led
to use of the cache, selection of its parameters, and
verification of internal performance of the system.

Structural aspects of the System/360 Model 85,
Part II: The cache by J. S. Liptay, p. 15. The cache,
a high-speed buffer establishing a storage hierarchy
in the Model 85, is discussed in depth in this part,
since it represents the basic organizational departure
from other SYSTEM/360 computers.

Discussed are organization and operation of the cache,
including the mechanisms used to locate and retrieve
data needed by the processor.

The internal performance studies that led to use of
the cache are described, and simulated performance
of the chosen configuration is compared with that
of a theoretical system having an entire
80-nanosecond main storage. Finally, the effects of
varying cache parameters are discussed and tabulated.

Structural aspects of the System/360 Model 85,
Part HI: Extensions to floating-point architecture
by A. Padegs, p. 22. The repertoire of SYSTEM/360
instructions has been expanded in the Model 85 by
introducing facilities for extended-precision
floating-point arithmetic. This part describes the new
instructions, discusses their need, and considers the
design factors that influenced their choice.

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

An economic lot-sizing technique, Part I: The
part-period algorithm by J. J. DeMatteis, p. 30. As
a lot-sizing technique for minimizing the sum of or-
dering and inventory costs, the algorithm described
is based on some simple dimensions. By dividing the
ordering and setup costs by the inventory holding
costs per part per time period, the ordering costs are
expressed in part-periods. This value is used to de-
termine lot size.

First a simplified version is shown for demand sets
that do not vary widely between periods. For large
variations in demand, significantly greater overall
accuracy is achieved with simple look-ahead and
look-back tests which are also discussed.

Two of the more important economic lot-sizing al-
gorithms are compared with the Part Period Algo-
rithm.

An economic lot-sizing technique, Part II: Math-
ematical analysis of the part-period algorithm by
A. G. Mendoza, p. 39. The Part Period Algorithm
discussed in Part I is compared with optimal solutions,
determining the maximum deviations possible. Op-
timality of the algorithm is established for the case
of constant demand.

Performance characteristics are compared with those
of the Least Unit Cost algorithm.

A multi-item economic lot-sizing problem by J. F.
Pierce, p. 47. A multi-item economic lot-sizing
problem is considered wherein, as a consequence of
a joint ordering or production setup cost, the ordering
policies for individual items are interdependent.

The problem is to determine an optimal ordering plan
in which the sum of the costs of carrying inventories
and the costs of ordering are minimized and in which
the known demands for each item in each time period
are satisfied.

Two algorithms are presented for solving such
problems. The first is a direct algorithm which yields
periodic solutions and applies to problems in which
demand occurs uniformly over time. The second is
a dynamic programming algorithm which yields op-
timal solutions, whether periodic or aperiodic, and
which applies to dynamic problems as well as to
problems with constant demands.

Volume 7, Number 2, 1968

Avoiding deadlock in multitasking systems by J.
W. Havender, p. 74. Designers and users of multi-
tasking operating systems must be alert to the problem
of task deadlock, which prevents the affected tasks
from being completed.

This paper describes the conditions that can result in
task deadlock in any multitasking systems. Also
discussed are techniques for avoiding deadlock in
both operating system and application program de-
sign. Finally, it is shown how these techniques were
applied in the design of the SYSTEM/360 Operating
System job initiator, the part of the system that allo-
cates major resources needed to execute jobs.

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

Statistics gathering and simulation for the Apollo
real-time operating system by W. I. Stanley and H.
F. Hertel, p. 85. Since each Apollo manned space
flight makes new demands on the computer config-
uration and operating system, data processing effi-
ciency is tested before each flight by simulation
described in this paper.

Discussed is the dynamic gathering of operating
system performance data during real-time simulation,
achieved by incorporating appropriate routines in the
Apollo control program. The data thus collected is
used as input to improved system models.

The effect of the statistics gathering routine on sys-
tems performance can be measured.

Turnaround time for messages of differing prior-
ities by C. Hauth, p. 103. Queuing theory and statis-
tical methods are used in this paper to derive formulas
for determining average turnaround time in tele-
processing systems that handle messages on a priority
basis. This information is needed to ensure, for ex-
ample, that messages are processed within acceptable
time limits and that efficient use is made of system
resources.

Factors considered in arriving at the formulas de-
scribed here include waiting time in message queues,
message processing time, I/O waiting time, and delays
for higher priority processing. Results conform
closely with those obtained from simulation studies.

Hierarchical control programs for systems evalu-
ation by D. D. Keefe, p. 123. Today's complex oper-
ating and computing systems make systems testing
a difficult task. Major problems arise when one at-
tempts to measure the performance of a system in a
multiprogram environment and to evaluate the inter-
faces between computer elements, programs, and
operator.

Historically, testing devices were first developed to
monitor system activity and to produce test data.
Separate computer systems were next used to permit
on-line data reduction and generation of appropriate
test conditions.

The purpose of this paper is to describe a hierarchical
control program design which incorporates the major
capabilities of the previous solutions without requir-
ing a separate computer. This low-cost, flexible
technique has been applied in the measurement of
various performance characteristics, in generating
simulated error conditions, and in simulating machine
devices and features.

Volume 7, Numbers 3/4, 1968

Interactive Graphics in Data Processing: Princi-
ples of interactive systems by C. 1. Johnson, p. 147.
Present considerations in interactive display activity
are brought into perspective.

Emphasizing programming aspects, varying ap-
proaches are considered with respect to system con-
cepts and peripheral graphics processors, as well as

ABSTRACTS 1962-1994 601

complex data structures, high-level languages, and
image-generation techniques. Many of the problems
discussed are not unique to graphics systems but are
common to interactive systems in general.

The requirements for a conversational system to
support programmers and application users are listed
in the Appendix. An extensive bibliography has been
added as basic reference for this issue.

Interactive Graphics in Data Processing: Aspects
of display technology by A. Appel, T. P. Dankowski,
and R. L. Dougherty, p. 176. In providing background
information on display technology, this paper dis-
cusses cathode-ray tube characteristics and interactive
devices as they affect the user.

Described are the display functions of the IBM 2250
display console, which is used in many applications.

Some elementary aspects of image generation are
presented, and the current and potential capability
of displays is discussed.

Interactive Graphics in Data Processing: Geom-
etry for construction and display by D. V. Ahuja
and S. A. Coons, p. 188. Matrix notation is used to
develop geometric concepts for computer-controlled
graphics.

This natural form of geometric expression leads to
homogeneous coordinates which form the basis of
an algorithm used for geometric construction. In this
way, three-dimensional objects and other pictures can
be displayed on a graphics console.

The paper also briefly discusses the notation and
development of functions for the construction of
surfaces.

Interactive Graphics in Data Processing: An al-
gorithm for generating spline-like curves by D. V.
Ahuja, p. 206. Discussed is a method of drawing
curves of arbitrary shape on a graphic display screen.

An algorithm for the design of free-form curves is
developed by using rational polynomials and the
notation of homogeneous coordinates. With this al-
gorithm, spline-like curves can be generated through
arbitrarily placed points in a plane or in space.

Interactive Graphics in Data Processing: A
multilevel modeling structure for interactive
graphic design by H. B. Baskin and S. P. Morse, p.
218. In the past, a common data structure, or model,
has been used for all phases of a computer graphics
design system. This has meant that the model used
during conversational interaction was the same as the
model used in the subsequent analysis operations,
usually resulting in poor overall performance. This
paper suggests the use of separate models for each
phase, providing a general model for the conversa-
tional drawing phase which is suitable as a front end
in many different application areas.

Described are data structures and programs for both
phases: a conversational display image manipulation
program (DIM) and its interconnections with an ex-
isting analysis application program (IBM 1130 Con-

602 ABSTRACTS 1962-1994

tinuous System Modeling Program). Examples of the
use of this particular multilevel modeling design fa-
cility are included.

Interactive Graphics in Data Processing:
Aucxiliary-storage associative data structure for
PL/ by A. J. Symonds, p. 229. A recent approach to
representing relations between entities in a graphics
data structure has been to store information as triples
in the form Attribute (Object) = Value.

This paper describes an associative technique for
holding a universe of triples on auxiliary storage and
then accessing a triple in response to an inquiry.

The paper also shows how relational operations have
been performed—on an experimental basis—with
PL/ as the language for the controlling program,
using machine-language subroutines to perform only
the basic functions on associative storage.

Interactive Graphics in Data Processing: A sub-
routine package for FORTRAN by A. D. Rully, p.
248. A basic objective in the design of a package of
general-purpose graphics subroutines was to make
them accessible to FORTRAN programmers while
circumventing some of the limitations of that lan-
guage for graphics applications.

This paper discusses how observation of graphics
applications led to the establishment of design criteria
for a subroutine package to facilitate the generation
of interactive displays. It outlines how application
programmers would use the package, including pro-
visions for communication between the console and
the program. Many of the fundamental concepts that
characterize the package are described, including
provisions for display modification and animation.

Interactive Graphics in Data Processing: A system
for implementing interactive applications by F. C.
Chen and R. L. Dougherty, p. 257. This paper dis-
cusses a system designed for interactive problem
solving by use of a graphic display console. Existing
application programs can readily be modified for use
with a graphic display device, and the graphics pro-
gramming can usually be done in a higher-level lan-
guage. Based on intermediate results, the order of
execution of application modules can be controlled
from the console.

The system description emphasizes the structure and
generation of display formats for displaying output,
for accepting user-defined commands, and for ac-
cepting data that is made accessible to the application
modules. Also described is a generalized data
structure and a set of experimental routines designed
to adapt the structure to particular needs.

Interactive Graphics in Data Processing: Conver-
sational job control by S. H. Brown, p. 271. A graphic
job processor enables nonprogrammers to introduce
application programs conversationally from a display
console. Although not restricted to graphics appli-
cations, the processor makes the same display console
available for both job definition and interaction with
a graphics application program.

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

This paper discusses some of the factors considered
in designing displays to elicit information from the
user. The structure of the processor is then described,
including its interface to the operating system under
which it functions. It also discusses communication
among the system operator, the console user, and the
application programmer.

Interactive Graphics in Data Processing: A con-
versational display capability by F. W. Gagliano,
H. W. Thombs, and R. E. Cornish, p. 281. This paper
discusses a system called DISPLAYTRAN that
interpretively executes FORTRAN statements entered
at a display console, allowing graphics users to per-
form unanticipated computations and to more easily
debug graphics application programs.

The relationships among the operating system, the
display terminal, and the computing system are dis-
cussed, and the major components of this system are
described. A command language, the FORTRAN IV
subset, and the graphics language provided for users
are presented. Internal operation of the graphic fa-
cility is outlined.

Interactive Graphics in Data Processing: A lan-
guage for three-dimensional geometry by P. G.
Comba, p. 292. This paper argues that there is a need
for a problem-oriented language to handle three-
dimensional geometric information, and proposes a
set of language facilities that illustrate how this need
should be met.

The emphasis is on the facilities needed for describing
solid objects and their placement in space, and for
defining and operating on configurations of objects.

Interactive Graphics in Data Processing: Modeling
in three dimensions by A. Appel, p. 310. Discussed
are two computer programs for generating and real-
istically plotting any view of a three-dimensional
object from the same object description, thereby
simulating the viewpoints of a person moving around
the object. Although the programs have been
implemented—on an experimental basis—for digital
plotting, the use of the underlying concepts for
graphic display is contemplated.

Involved in the SIGHT program are approaches to
some of the most difficult problems in three-
dimensional graphics—the hidden-line problem, ap-
proximating curved solids by polyhedra, and
simulating degrees of surface transparency.

The description of the program LEGER emphasizes
the design of data storage for the object description.
This scheme allows the use of the same data for
generating all views of the object. The data structure
can be modified to adjust the dimensions of the scene
and the relative orientations of the component parts.

Interactive Graphics in Data Processing: Interac-
tive aspects of crystal structure analysis by Y.
Okaya, p. 322. In demonstrating the advantageous
use of graphics in a heuristic approach to problem
solving, the deciphering of unknown crystal structures

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

is used as an environment. The interactive graphic
console lends concreteness to the crystallographer's
abstract perception of three-dimensional structures.

This paper describes how the crystallographer uses
graphics in determining crystal structure by matching
a known spatial molecular model with an exper-
imental crystallographic model and by direct theore-
tical procedures when no model is available. Also
presented are computer rendering techniques that
make the man-machine relationship more productive.

In conclusion, the author ponders the possibilities of
more efficient and productive scientific research
through the evolution of computer-aided data li-
braries.

Interactive Graphics in Data Processing: Ge-
ometric relationships for retrieval of geographic
information by J. D. Jacobsen, p. 331. Reported is
an experimental technique that has been developed
for retrieving, by geometrical means, information
related to city maps.

This paper emphasizes the analysis needed to translate
a retrieval query into relationships among points,
vectors, and polygons. An illustration of the tech-
nique is given.

Interactive Graphics in Data Processing: Analysis
and display of physics data by W. C. McGee, H. R.
Penafiel, and S. K. Howry, p. 342. A group of pro-
grams, called SUMX, is used for statistically ana-
lyzing high-energy physics data by batch-processing
techniques.

Against this background, the paper discusses the first
phase of a project directed toward placing the SUMX
user on-line via a display console. On-Line SUMX
provides a helpful interactive mode of computer use
in an inherently difficult application area.

The experimental environment of the data source is
discussed. Presented are functions of component
programs as well as the types of statistical analyses
performed.

Interactive Graphics in Data Processing: Neutron
cross-section evaluation by R. J. Creasy, p. 355.
Evaluation, storage, and retrieval of neutron cross-
section data are of major concern to the international
community of low-energy physicists. Discussed is
an experimentally evolving program, called SCORE,
designed to perform these services.

The overall concept of the SCORE program and the
programming environment are presented. Cross-
section data entry, evaluation, and curve generation
are discussed.

Interactive Graphics in Data Processing: Cam
design on a graphics console by J. M. Lafuente, p.
365. This paper describes a generalized program for
the analysis and design of plate cam and follower
mechanisms using a graphic display console. The
experimental program was developed to study the
use of interactive graphics systems for solving me-
chanical design problems.

ABSTRACTS 19621994 603

The program can handle almost all types of plate cam
and follower mechanisms. A wide selection of mo-
tion curves permits the designer to specify any desired
motion of a point of interest by synthesizing several
curves into a displacement diagram.

Interactive Graphics in Data Processing: Imple-
mentation and usage by C. W. Day and L. L.
Zimmerman, p. 373. The present status of interactive
graphic displays in the application environment is
reviewed.

Although graphics data processing is still largely
experimental, several applications have come into
productive use—especially in the areas of data and
design analysis. The primary benefit from enhancing
such applications with graphic displays is the savings
in calendar time.

Before surveying several application areas, user as-
pects and application characteristics are discussed.

Volume 8, Number 1, 1969

Hierarchical structure for data management by
W. R. Henry, p. 2. This paper describes an approach
to data management that is based on a hierarchical
organization of the data management control function
and makes use of list processing concepts.

Discussed are the separation of the logical and
physical control functions as well as the data-element
and operating-system controls. This hierarchical ap-
proach establishes a common basis for the creation,
maintenance, and retrieval of data in direct-access
storage. Logical functions express the control and
management of generalized physical data structures;
the physical level typically includes strings for data
retrieval and maintenance.

Undirected graphs, and matrices derived from them,
illustrate the data management relationships within
the physical level. The same type of analysis may
be used to show relationships between the hierarchical
levels.

GPSS/360—an improved general purpose simula-
tor by R. L. Gould, p. 16. Increased adaptability,
versatility, and ease of use are significant advantages
offered to the user of the General Purpose Simulation
System in this latest version as described in this paper.

Modeling capability is especially enhanced by such
improvements as new entities and block types and
extended features.

Also discussed are improved input specifications and
an output editor.

A teleprocessing approach using standard equip-
ment by R. D. Wade, G. P. Cawsey, and R. A. K.
Veber, p. 28. This paper describes an operational
teleprocessing system that allows both low-speed
conversational data entry and high-speed remote job
entry and output. At the same time, the multipro-
cessing system provides conventional batch process-
ing.

604 ABSTRACTS 1962-1994

The total system configuration, which consists of
standard equipment, is briefly introduced. Then the
teleprocessing control program, the major program-
ming support developed for the system, is described
in detail. This program functions as the interface
between the teleprocessing lines and the input/output
streams of the batch processing system. The final
topic is the terminal program, which is provided for
the central processing units at the terminals.

Coding for error control by D. T. Tang and R. T.
Chien, p. 48. Tutorially presented are theoretical and
practical concepts that underlie error-control coding
for data computing, storage, and transmission sys-
tems.

Emphasis is on cyclic codes, the most deeply studied
and widely used of the many available codes. Op-
erations of typical binary shift registers illustrate the
encoding and decoding processes.

Strategic considerations for applying coding to
computer-communication systems are discussed.
Actual applications further exemplify the basis for
code selection.

Volume 8, Number 2, 1969

Some principles of time-sharing scheduler strate-
gies by H. Hellerman, p. 94. Fundamental consider-
ations in time and space scheduling for time-sharing
systems are reviewed. Workload components are
classified as trivial and nontrivial foreground, and
background. Each has certain resource-use and re-
quired response properties. A central issue in
scheduling is the degree of advance knowledge
available to the scheduler about calls on system re-
sources. This provides a theme for classifying several
algorithms.

A response figure of merit believed to be helpful in
understanding time-sharing schedulers is defined.
Simulation results using a very simple workload and
system model are included in the discussion. A
summary is given of some major issues in scheduling
for time-sharing and virtual systems.

An auxiliary processing system for array calcu-
lations by J. F. Ruggiero and D. A. Coryell, p. 118.
The IBM 2938 Array Processor discussed enhances
the processing power of SYSTEM/360 Models 44,
65, and 75 for operations on vectors and matrices.
As an integrated channel-I/O device, the array
processor responds to standard I/O instructions.

Discussing the overall flow of control between the
central processing unit, main storage, and the array
processor, the relationship between the SYSTEM/360
Operating System and the array processor's pro-
gramming support is emphasized. The twelve math-
ematical processing operations embodied in the 2938
are described in terms of their algorithms.

Several methods for measuring array processor per-
formance are shown together with actual timing re-
sults.

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

A pseudo-random number generator for the
System/360 by P. A. W. Lewis, A. S. Goodman, and
J. M. Miller, p. 136. A particular pseudo-random
number generator is described that uses the full 31-bit
capacity of the registers in the IBM SYSTEM/360
computers.

Experience with the generator in obtaining random
permutations of sequences is discussed, and results
of statistical tests applied to evaluate the generator
are given. The generator has been found to be highly
satisfactory.

An assembler language program of the generator is
included.

A network algorithm for empty freight car allo-
cation by W. W. White and A. M. Bomberault, p. 147.
Distributing empty freight cars throughout a railroad
system in anticipation of future requirements is an
allocation problem. The actual movement of cars can
be examined in terms of a space-time diagram. An
inductive network flow algorithm for solving this
problem utilizing the network underlying the space-
time diagram is developed and illustrated by an ex-
ample.

A computer program implementing this algorithm is
discussed, along with the context in which it might
be used. Possible extensions are also presented.

Volume 8, Number 3, 1969

A three-value computer design verification system
by J. S. Jephson, R. P. McQuarrie, and R. E.
Vogelsberg, p. 178. Described is an experimental
system for verifying logic designs in the development
of a computer before a commitment to produce the
computer is made.

The system simulates logic activity with both known
(0,1) and unknown (X) values. The use of the third
value facilitates the generation of tests and the de-
tection of circuit hazards.

Internal sorting with minimal comparing by L. J.
Woodrum, p. 189. An ordering operator that leads to
the development of an algorithm for internal sorting
is described. An analysis of the algorithm is pre-
sented, together with a discussion of the number of
comparisons necessary for sorting.

It is shown that the number of comparisons is close
to the theoretically obtainable number. The sorting
algorithm is a variant of the two-way merge.

Problem formulation using APL by H. G. Kolsky,
p. 204. Much of the arbitrariness of conventional
program solutions to large-scale scientific problems
can be removed by the approach presented in this
paper. The logical formulation of such problems can
be improved by using the programming language
APL, which is mathematically compact and explicit.
The language also allows the system much freedom
in producing computed results.

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

A meteorological problem is discussed as an illus-
tration of APL-augmented programming. Two ap-
proaches to programming the solution are compared.

Determining economic sampling plans by E. W.
Stacy, L. E. Hunsinger, and J. F. Price, p. 220. Bach
stage in multistage manufacturing processes raises a
question of how much inspection is appropriate for
quality assurance. Sampling procedures usually
provide the least expensive way to maintain quality.

In this paper, a method for use on a computer is de-
veloped for evaluating single sampling plans on the
basis of economics.

Volume 8, Number 4, 1969

A perspective on system performance evaluation
by M. E. Drummond, Jr., p. 252. A historical summary
of the growing complexities in computing systems
and the effect of these complexities on system per-
formance evaluation are presented.

The paper outlines basic approaches. It considers the
application of test results and the test data itself. Two
general approaches to gathering performance data are
discussed.

Simulating operating systems by P. H. Seaman and
R. C. Soucy, p. 264. A simulator is discussed that
provides a language and a structure specifically de-
signed for modeling computer systems to evaluate
their performance.

The simulator provides general equipment models,
and the authors discuss their experience in developing
a general submodel of a multiprogramming operating
system. The user assembles a system from the
equipment models, specifies parameters to allow
simulation of his operating system functions, and
provides models of his application programs.

Trace-driven system modeling by P. S. Cheng, p.
280. A trace-driven modeling technique for computer
system evaluation is discussed. This approach intends
to solve the inherent dilemma in computer systems
modeling of too many simplifying assumptions or
of too much detail.

An experimental model based on this technique is
also discussed. The objective of the model is to study
the effect on performance of various multiprogram-
ming and multiprocessing system design choices.
Model implementation is focused on those aspects
of the system contributing substantially to total sys-
tem performance. While the operating system is
conceptually modeled, detailed logic and timing are
supplied in the job-trace profile, reducing modeling
effort and improving model flexibility.

Using system monitor output to improve per-
formance by A. J. Bonner, p. 290. Computing systems
are analyzed from a system performance profile,
which shows usage of the different system compo-
nents, such as channels and central processing units.
Component usage data are obtained by a system
monitor.

ABSTRACTS 1962-1994 605

The profile indicates where a system configuration
or a program might be modified to improve per-
formance. The profile also suggests areas where more
detailed monitoring and analysis appear promising.

Measurement of system operational statistics by
W. L Stanley, p. 299. This paper discusses program-
ming techniques for continuously gathering per-
formance data in a complex multijobbing
environment. The program takes advantage of com-
puting system and support program characteristics to
count and time data processing activities.

The data gathered by the program enables installation
managers to measure the effects of modifications to
equipment and programming support configurations
and to define work loads.

A synthetic job for measuring system performance
by W. Buchholz, p. 309. A technique for measuring
and comparing the performance of existing computer
systems is to devise a synthetic job that is simple
enough to be programmed with a modest effort in
different languages and on dissimilar machines, so
as to be run and timed on each of the systems.

The job described here is a greatly simplified file
maintenance procedure, which exercises both the
central processing unit and major input/output de-
vices, with activity parameters being specified in a
manner independent of the system. A complete PL/I
version is shown as an example. It is conjectured that
such a synthetic job may evolve into a practical
standard of performance.

Effects of storage contention on system perfor-
mance by C. E. Skinner and J. R. Asher, p. 319. This
paper presents a mathematical model to measure the
amount by which a computer's speed is reduced when
it time-shares storage with other computers and I/O
channels. The method can be applied to any number
of processors and/or channels and storage units, al-
though the complexity of the solution does increase
rapidly as the number of processors increases. Ex-
plicit formulas and numerical results are given for
several special cases.

The results of a simulation of a shared-memory
multiprocessor are presented, showing how closely
the mathematical model fits the operation of a sim-
ulated system.

Volume 9, Number 1, 1970

On-line inquiry under a small-system operating
system by K. Darga, p. 2. Operating systems for small
computers are more restricted in their capabilities than
those used on larger computers and are generally not
designed for multiprogramming. However, some
facility is needed to permit such actions as inquiries.

This paper discusses an option to a small operating
system that permits interruptions of a job, execution
of a program to handle an inquiry, and return to the
interrupted job. A description of the operating system
serves as a basis in discussing the characteristics of
the option.

606 ABSTRACTS 1962-1994

Trajectory control programs in support of Apollo
missions by D. R. Quarles, p. 12. Once the trajectory
of a spacecraft in flight has been predicted, control
measures are required to ensure that the trajectory
data is applied in a consistent manner when calcu-
lating the many trajectory-related parameters required
by the flight controllers of the space flight.

This paper describes the queue control techniques
used in generating the predicted trajectory and the
subsequent use of the trajectory data. The queue
control logic that is discussed requires a minimum
amount of main storage while a task is waiting to
be performed.

A structure for real-time Stenotype transcription
by J. W. Newitt and A. Odarchenko, p. 24. Computer
transcription of Stenotype code offers the possibility
of producing English text from speech via the
Stenotype keyboard in real time. Reported are ex-
periments directed toward designing a time-shared
Stenotype transcription system that makes use of
earlier work in Stenotype dictionaries and language
processing.

A content-addressing algorithm for direct-access
storage, requiring a single access per retrieval, is
presented. An existing experimental Stenotype dic-
tionary program is used to implement on System/360
this algorithm and a dictionary-compaction technique.
Transcription analysis indicates that the experimental
design can reduce the average transcription error rate
to six percent.

Single-server queuing processes in computing
systems by W. Chang, p. 36. Reviewed are applica-
tions of queuing models that may be economically
useful in computing system analysis.

With emphasis on terminal-oriented systems with
priorities, methods are given for estimating such av-
erage quantities as service time, waiting time, and
response time.

Examples illustrate these methods and their ranges
of efficiency, beyond which simulation techniques
may be preferable.

Volume 9, Number 2, 1970

Evaluation techniques for storage hierarchies by
R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger,
p. 78. The design of efficient storage hierarchies
generally involves the repeated running of “typical”
program address traces through a simulated storage
system while various hierarchy design parameters are
adjusted.

This paper describes a new and efficient method of
determining, in one pass of an address trace, per-
formance measures for a large class of demand-paged,
multilevel storage systems utilizing a variety of
mapping schemes and replacement algorithms.

The technique depends on an algorithm classification,
called “stack algorithms,” examples of which are
“least frequently used,” “least recently used,” “opti-

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

mal,” and “random replacement” algorithms. The
techniques yield the exact access frequency to each
storage device, which can be used to estimate the
overall performance of actual storage hierarchies.

A model of floating buffering by L. J. Woodrum,
p. 118. Discussed in this paper is the effect of floating
buffering on the execution time of a program.

An analytic model of floating buffering is developed
and discussed. It is shown that with use of the model
it is possible to compute the run time of a program
as a function of the number of floating buffers it uses.

Interactive Saturn flight program simulator by J.
H. Jacobs and T. J. Dillon, p. 145. Space vehicle
control, guidance, and navigation require onboard
computers. Mission safety and success demand high
program reliability without preliminary in-flight
testing.

Interactive Saturn flight simulation discussed in this
paper tests all normal and perturbed launch vehicle
interactions with the mission computer and programs
to find and correct programming problems. Using a
graphics console, flight analysts execute mission
programs, make programming changes, and observe
and document the simulated reactions of the launch
vehicle.

Volume 9, Number 3, 1970

Code-generation technique for large-language
compilers by M. Elson and S. T. Rake, p. 166. A
solution is proposed to the problem of optimizing
code generation by a large-language compiler.

A high-level definitional language is used to define
the code mappings, and an interpreter executes the
routines in this language during the one-pass, text-
driven code-generation phase.

The technique might also be applied to extendable
languages and shared-component compilers.

A heuristic approach to task dispatching by K. D.
Ryder, p. 189. This paper describes an experimental
algorithm for allocating use of a central processing
unit to perform separate data processing tasks in a
multitasking system. The algorithm, which may
control only a subset of the tasks being performed
by the system, appears to improve run time for some
work loads.

Tasks with a recent history of using input/output fa-
cilities are given preference. This heuristic treatment
of tasks is carried over to the algorithm itself, which
modifies its own characteristics based on its overall
effectiveness in handling the tasks under its control.

A virtual machine time-sharing system by R. A.
Meyer and L. H. Seawright, p. 199. Time-sharing has
resulted in the development of methods to increase
the utilization of computers. In this paper, one such
method employing the concept of the virtual machine
is discussed.

Described are the design objectives of CP-67/CMS,
a multi-access system that manages the resources of

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

a computer set up for time-sharing such that each user
appears to have a complete, dedicated computer at
his disposal. Also discussed are the system operation
and some of its applications.

Interactive aeronautical charting by J. H. Luetje,
p. 219. Discussed is an interactive graphic system for
compiling air navigational data on aeronautical charts.

Eliminating many tedious manual updating oper-
ations, chart manuscripts can be interactively created
and revised at a graphic console. Emphasized are
design details of the graphic files, which are specific
digital compilations of aeronautical data for individ-
ual charts.

Voiume 9, Number 4, 1970

Automatic generation of test cases by K. V. Hanford,
p. 242. Discussed is the “syntax machine,” a program
for automatically generating syntactically correct
programs (test cases) for checking compiler front
ends.

The notion of “dynamic grammar” is introduced and
is used in a syntax-defining notation that provides for
context-sensitivity.

Examples demonstrate use of the syntax machine.

The authorization problem in shared files by T.
D. Friedman, p. 258. The problem of sharing infor-
mation while protecting proprietary data in large
computer files is reviewed.

The author suggests certain guidelines for data pro-
tection in general-purpose, time-sharing systems, and
develops a model of a secured shared file. Operation
of the system based on these guidelines is discussed.

Compiler assignment of data items to registers by
W. H. E. Day, p. 281. This paper formulates as integer
programming problems three methods for assigning
data items to registers in the compilation process—the
one-one, many-one, and many-few global assignment
methods.

Three algorithms are described for obtaining feasible
solutions to the many-one and many-few global as-
signment problems. One provides an optimal solu-
tion. The others, which provide good approximations,
appear to be sufficiently fast for inclusion in an op-
timizing compiler.

Volume 10, Number 1, 1971

The application of formal logic to programs and
programming by C. D. Allen, p. 2. The use of first-
order predicate calculus in proving correctness and
other properties of programs is shown to be possible
in practical situations.

The necessary concepts and theory are explained, and
some practical examples worked through.

FORTRAN extended-precision library by H. Kuki
and J. Ascoly, p. 39. This paper discusses a
FORTRAN subprogram library developed primarily
to support extended-precision floating-point arith-

ABSTRACTS 1962-1994 §07

metic. The general strategy, which makes limited
use of guard digits, is developed to achieve high ac-
curacy with reasonable execution time and storage
space.

In addition to describing some previously unpublished
algorithms, the authors present subprograms for
simulating extended-precision arithmetic and for in-
put and output conversion.

Interactive scheduling system by A. C. Brewer, p.
62. Discussed are design principles, file structures,
and programming techniques of a scheduling system
that approximates the overall magnitude and com-
plexity of an airline scheduling system.

Used worldwide by the National Aeronautics and
Space Administration to schedule its manned and
unmanned space flight missions up to one year in
advance, the system operates in either batch or
interactive modes to produce, modify, and observe
actual and simulated schedules.

Volume 10, Number 2, 1971

The formal description of programming languages
by E. J. Neuhold, p. 86. This paper presents a formal
method for describing programming languages inde-
pendently of machine architectures and compiler
implementations. The method, which was developed
to describe PL/1, is being applied to other program-
ming languages and to compilers and operating sys-
tems.

The definitional techniques are demonstrated using
a simple programming language (SPL). The paper
has been written so that little knowledge of math-
ematics or formal logic is required.

Simulation of a model of paging system perfor-
mance by G. S. Shedler and S. C. Yang, p. 113. Ex-
plored by simulation is the performance of a
probabilistic model of a multiprogrammed single-
processor computing system operating under demand
paging.

Results of experiments on statistical methods for
improving the efficiency of the simulation are pre-
sented.

Estimates of the response variables in the simulation
are reported for a variety of conditions of system
overhead, queuing delays, and transient response.
Sensitivity of these factors to the assumptions of the
mode] are discussed.

An analysis of the machine interference model by
A. E. Ferdinand, p. 129. Discussed in this paper are
asymptotic properties of the classical machine inter-
ference model, the simplest of queuing models. In
systems analysis, the judicious use of such asymptotic
properties can result in significant savings in time
and effort.

Included in the paper is the solution of the generalized
machine interference model.

A computer graphics system for block diagram
problems by L. A. Belady, M. W. Blasgen, C. J.

608 ABsTRACTS 1962-1994

Evangelisti, and R. D. Tennison, p. 143. An exper-
imental on-line network design system is proposed.
Called DESIGNPAD, it consists of a small computer
with graphic display equipment connected to a
time-sharing computer and includes the necessary
programming support for the equipment.

The system is designed to accept problems covering
a broad spectrum of applications in the form of la-
beled block diagrams. The input/output medium, the
man-machine interface, and the supporting data
structures, particularly the cellular structure, are dis-
cussed.

Volume 10, Number 3, 1971

Program restructuring for virtual memory by D.
J. Hatfield and J. Gerald, p. 168. Program reference
patterns can have a more profound effect on paging
performance in a virtual memory system than page
replacement algorithms.

This paper describes experimental techniques that can
significantly reduce paging exceptions in existing,
frequently executed programs. Automated procedures
reorder relocatable program sectors, and computer
displays of memory usage facilitate further opti-
mization of program structure.

Performance criteria and measurement for a
time-sharing system by Y. Bard, p. 193. The per-
formance of a complex time-sharing was monitored
under actual operating conditions during a period in
which changes in system configuration (both hard-
ware and software) took place. Various techniques
for assessing the impact of those changes on per-
formance are discussed.

Real-time traffic flow optimization by B. C. Black
and D. C. Gazis, p. 217. Discussed are methods
underlying the real-time monitoring and controlling
system of a critical traffic link.

Algorithms were developed for recognizing the length
patterns of vehicles passing over detectors and using
these for precisely computing traffic density in several
sections of the Lincoln Tunnel. Vehicle control was
adjusted by the system to optimize tunnel throughput.

Programming for economic lot-sizes with prece-
dences between items by S. Gorenstein, p. 232.
Discussed is an optimal programming model for lot-
size, inventory, and work-force planning over a finite
planning horizon for assembly-type production. The
object is to prepare a minimum cost lot-size and
work-force plan that meets the deterministic demands
within the resource constraints. Planning for end-
items, components, and overtime is included.

The main feature of the model is the ability to plan
for assembly production having precedences with
nonlinear (set-up) costs using essentially linear pro-
gramming computations.

A guided bibliography to sorting by H. Lorin, p.
244. This bibliography attempts to help the reader
select from the rich body of sorting literature that

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

which is in accord with his interests, needs, and prior
training.

Historical trends within the field are briefly outlined,
and subspecialties are identified. Critical comments
and classification of the cited works are intended to
help the reader to avoid wasted effort.

Volume 10, Number 4, 1971

A large-scale interactive administrative system by
J. H. Wimbrow, p. 260. Through a nationwide network
of interactive terminals in a teleprocessing config-
uration, users perform over twenty major business
functions by sharing a single large and varied data
base.

Emphasized are system design principles of the cen-
tral complex whereby terminal message processing
and data-base management are independently yet
cooperatively performed.

Also discussed is system security, which includes user
authorization and data-base reconstruction and au-
diting.

Analysis of free-storage algorithms by B. H.
Margolin, R. P. Parmelee, and M. Schatzoff, p. 283.
Dynamic management of free storage in a time-
sharing operating system was studied empirically by
the techniques of monitoring, emulation, and on-line
experimentation.

A new algorithm, based on observed usage patterns
of different block sizes, was implemented and eval-
uated. On-line experiments demonstrated that
supervisor time spent in free-storage management
was reduced by seven or eight to one.

Modeling for computing center planning by F.
Hanssmann, W. Kistler, and H. Schulz, p. 305. A
probability-based, theoretical model of a multipro-
grammed computing system is suggested for planning
future computing center requirements.

Validation of the planning model is attempted with
respect to the theoretical model and applications to
short-range and long-range planning.

Volume 11, Number 1, 1972

Evaluation of an interactive-batch system network
by W. 8. Hobgood, p. 2. Discussed is a computer
network experiment designed to study a method of
making the computing power of a high-speed batch
system available to the interactive terminal system
user. Commands for effecting the intersystem linkage
and network operations are presented. Emphasized
are system measurements and system tuning tech-
niques for increasing efficiency.

Readings in microprogramming by P. M. Davies,
p. 16. This guide to the literature on microprogram-
ming is preceded by an exposition intended for the
less knowledgeable reader.

Microprogram control is seen as a form of simulation
in which primitive operations are combined and se-

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

quenced so as to imitate the characteristics of a de-
sired machine. Discussed are such design
considerations as microword formats, performance,
writable control stores, and the relationship between
microprogramming and software reliability.

System aspects of large-problem computation and
display by J. E. Fromm and D. E. Schreiber, p. 41.
Techniques for using the System/360 Operating
System for implementing a large fluid dynamics
program are discussed as a prototype for the solution
of other coupled nonlinear partial differential
equations.

Presented also are methods for real-time interaction
with the problem solution.

A graphic analysis program for producing computer
animated motion pictures is outlined.

Chief programmer team management of pro-
duction programming by F. T. Baker, p. 56. Seeking
to demonstrate increased programmer productivity,
a functional organization of specialists led by a chief
programmer has combined and applied known tech-
niques into a unified methodology.

Combined are a program production library,
general-to-detail implementation, and structured pro-
gramming. The overall methodology has been ap-
plied to an information storage and retrieval system.

Experimental results suggest significantly increased
productivity and decreased system integration diffi-
culties.

Accounting control of data processing by R. C.
Rettus and R. A. Smith, p. 74. An objective of a
corporate-wide data processing service is to distribute
its costs equitably among its users.

Aimed toward more realistically meeting this objec-
tive is an accounting system—general ledger, budget,
and data processing resource utilization
system—based on a cost-center configuration.

Discussed are techniques for accurately measuring
data processing resource utilization in a multipro-
gramming environment and coordinating cost center
expenses with the general ledger and the budget.

Volume 11, Number 2, 1972

Virtual storage and virtual machine concepts by
R. P. Parmelee, T. I. Peterson, C. C. Tillman, and
D. J. Hatfield, p. 99. This paper reviews virtual stor-
age and virtual machine concepts, consolidating and
updating earlier discussions. The manner in which
actual virtual storage and machine systems have been
implemented, and certain problems of current im-
plementations, are described. To better illustrate the
material, the virtual machine system CP-67 for the
IBM System/360 Model 67 is considered at some
length. An annotated bibliography is included.

Virtual machine computing in an engineering en-
vironment by M. McGrath, p. 131. Enhancement of
the computing in an engineering environment by the
installation of a virtual machine time-sharing system

ABSTRACTS 1962-1994 609

is discussed. This installation has been particularly
useful in allowing the engineer to make the computer
an integral part of a design cycle through the inter-
active use of graphic displays.

Described is a CP-67 system implementing the virtual
machine concept. By using an operating system of
his choice in his own virtual machine, the engineering
user has great flexibility in the development of ap-
plications.

Numerical control for machining complex surfaces
by D. B. Almond, p. 150. The art of machining com-
plex, doubly curved surfaces has been advanced by
experimental extensions to the Automatic Pro-
grammed Tool Language (APT) and its numerical
control program.

Described are mathematical programming procedures
and language extensions for directing the cutting path
of a machine tool over a ship's propeller, which serves
as an example.

Ilustrative of an area for future development is the
possible extension of interactively designed
surfaces—using graphic displays—to interface with
an APT processor.

A general management business simulation in APL
by P. N. Wahi, p. 169. Described is a management
game that is programmed for use on a computer.
The game provides participants the opportunity to
make decisions regarding production, marketing, fi-
nance, and planning in a competitive industry. This
game, implemented in APL utilizes interactive com-
puting, giving participants more flexibility in the use
of one of the most recent techniques in management
gaming.

Volume 11, Number 3, 1972

Channel and direct access device architecture by
D. T. Brown, R. L. Eibsen, and C. A. Thorn, p. 186.
System dependence on channel and direct access
device architecture was addressed with the introduc-
tion of System/370. Discussed are the alternatives
to this problem and their evaluation by a channel
architecture program simulator.

Also presented is the solution, a block multiplexer
channel and sector addressing in devices, which re-
sulted in more efficient channel utilization and re-
duced programming overhead.

Uses of virtual storage systems in a scientific en-
vironment by P. H. Callaway, J. P. Considine, and
C. H. Thompson, p. 200. Some ways in which the
virtual storage systems TSS/360 and CP-67/CMS
have been used in a research environment are de-
scribed emphasizing the features of each of these
operating systems found to be most useful. De-
scriptions of research projects employing the systems
are given with the discussion centering on the reasons
for choosing a particular system in each project.

Cost-benefit evaluation of scientific computing
services by D. N. Streeter, p. 219. Discussed is an

610 ABSTRACTS 1962-1994

approach to evaluating and comparing system costs
and benefits (value) to the user and to his employer
in a scientific environment.

Necessarily a semiquantitative measure, value to the
user implies a departure from usual system efficiency
measures such as system throughput.

Evaluated are usage policies based on single-stream
and dual-stream batch systems, and terminal-oriented
time-sharing systems.

A guide to programming tools and techniques by
J. W. Pomeroy, p. 234. Current programming tools
and techniques facilitating program development and
maintenance under Operating System/360 and /370
are collected and discussed.

These aids are categorized and defined according to
their function. Abstracts of some of the available
programs are also presented.

Queuing simulation using a random number gen-
erator by R. N. Rechtschaffen, p. 255. Among the
system performance predictive techniques available
to the systems engineer are those of theoretical
analysis and simulation.

One method of simulation uses the random number
generator to simulate the probability distribution of
events.

Introduced are principles of random number generator
simulation together with examples, the results of
which are compared with theoretical results.

Volume 11, Number 4, 1972

Encoding verbal information as unique numbers
by W. D. Hagamen, D. J. Linden, H. S. Long, and J.
C. Weber, p. 278. The representation of verbal infor-
mation as single numbers using APL functions can
optimize main storage, peripheral storage, and data
transmission.

Presented in tutorial form are the concepts of the
encoding and decoding process. Applications in-
cluding text processing and instructional systems are
also discussed.

Techniques for developing analytic models by A.
L. Anthony and H. K. Watson, p. 316. Techniques for
developing analytic models of computer systems and
subsystems relate to establishment of the level of
system detail, to selection of significant parameters,
to definition of analytic expressions, and to validation
of model results.

This paper emphasizes the use of discrete-event
models in the development of analytic models, par-
ticularly with respect to identification of key param-
eters and to correlation of results. Described are two
analytic models of computer systems, the analytic
techniques employed, their relationship to corre-
sponding discrete-event models and their advantages
as performance evaluation tools.

Design features of a real-time check-clearing sys-
tem by J. A. Banham and P. McClelland, p. 329.

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

Banking operations often require complex facilities
for their data processing. The application required a
multiprocessor configuration controlled by a single
job step running continuously for many hours a day.
Discussed are the special access methods and recov-
ery procedures designed for this environment. The
paper also describes a particularly efficient sorting
technique evolved for handling large volumes of pa-
per documents.

Volume 12, Number 1, 1973

Net change material requirements planning by
Joseph A. Orlicky, p. 2. Material requirements plan-
ning, a principal approach to manufacturing inventory
management, is discussed.

Defined and evaluated are concepts and character-
istics of net change, a method that facilitates replan-
ning and provides timely response to change in a
transaction-oriented system.

Data structures and accessing in data-base sys-
tems, Part I: Evolution of information systems by
M. E. Senko, E. B. Altman, M. M. Astrahan, and P.
L. Fehder, p. 30. Presented in three parts is a de-
scriptive analysis of data-base information systems.

Part I reviews the evolution of data-base systems to
reveal the direction of their growth and applications.
Emphasized are the two primary functions of data-
base systems: storage and maintenance of structured
information; and presentation of structured output
information.

Part II discusses the structuring of information, and
introduces a new fundamental approach to this
structuring. The approach provides a stable infor-
mation oriented terminology for relating the concep-
tual frameworks of existing systems and future
systems.

Part III presents a framework, the Data Independent
Accessing Model (DIAM), for describing information
and its stored representations. The generality of this
framework allows the model to describe most stored
representations of existing systems in detail. Over
the long term, it can provide a conceptual basis for
systematic migration to systems with new improved
capabilities.

Data structures and accessing in data-base sys-
tems, Part II: Information organization by M. E.
Senko, E. B. Altman, M. M. Astrahan, and P. L.
Fehder, p. 45. A new approach to information struc-
turing is presented.

Basic to the structure is the notion of an Entity—an

object, concept, or event—and associations among
Names for Entities.

Discussed on the basis of these concepts is an Entity
Set Model for information structuring.

Data structures and accessing in data-base sys-
tems, Part III: Data representations and the data
independent accessing model by M. E. Senko, E. B.
Altman, M. M. Astrahan, and P. L. Fehder, p. 64.

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

Presented is the Data Independent Accessing Model
(DIAM)—a complete model for the representing,
storing, and retrieving of structured information.

DIAM is a hierarchy of models formed by the Entity
Set Model and three lower modeling levels—the
String Model, the Encoding Model, and the Physical
Device Level Model.

Protocol for a computer network by D. B. McKay
and D. P. Karp, p. 94. Computing system networks
hold promise of increasing system efficiency through
the sharing of resources, programs, and files.

Required is a protocol that performs for the network
a function analogous to that performed by control
blocks for operating systems.

Described are basic message-handling concepts and
a protocol that are compatible with a broad range of
network designs.

Volume 12, Number 2, 1973

Concepts of financial medels by P. L. Kingston, p.
113. The use of financial models can assist in com-
pany business planning processes. This paper pre-
sents introductory concepts and considerations of
financial models with emphasis on their structure and
general design methodology.

A guide to financial planning tools and techniques
by B. P. Dzielinski, p. 126. Current financial planning
tools and techniques facilitating development of fi-
nancial planning systems are summarized. Also
presented are abstracts of some available programs
that employ these techniques.

Planning-data systems by H. F. Lande, p. 145. Fac-
tors inhibiting the development of planning-data
systems are now being resolved in part by the avail-
ability of planning-oriented programming languages.
Discussed are types of planning and the processing
of planning data. Emphasized is the use of a planning
systems generator—a planning-oriented language fa-
cilitating data bank definition and data entry, logical
computations, and formatting of statistical or graph-
ical reports.

Financial modeling on small systems by R. J.
Gordon, p. 161. The implementation of financial
models on small systems is discussed.

Presented are methods for card systems and direct
access (FORTRAN and non-FORTRAN) systems.
Financial plans are produced, similar to those gener-
ated by large-system methods.

Interactive simulation for banking by J. F. Brown
and D. W. Low, p. 172. Current bank modeling sys-
tems are generally based on sets of equations that
place limitations on the flexibility of the applications
and the predictive ability of the model.

The experimental system discussed in this paper uses
a three-fold approach to the simulation of actual
banking activities. A generalized bank modeling
system is presented from which a subset is selected

ABSTRACTS 1962-1994 611

for use. The user interacts with the modeling system
via an interactive simulation language. The compo-
sition of the desired model is determined interactively
via a terminal and an interactive model generator.

Research results indicate that representative models
can be generated by using these techniques.

Forecasting techniques by M. Aiso, p. 187. Fore-
casting, the evaluation of effects of various strategies,
is discussed. Emphasized are the quantitative tech-
niques used in forecasting and the formulation of
equations to represent functional relationships.

Also presented are two example forecasting
applications—demand analysis of a consumer product
and a financial forecasting model.

Volume 12, Number 3, 1973

User program performance in virtual storage
systems by J. E. Morrison, p. 216. Factors that affect
the paging characteristics of user programs in virtual
storage systems are presented in tutorial form.
Measures are suggested that can be taken to exploit
the virtual storage concept at the source language
level in assembler, COBOL, FORTRAN, and PL/I.

An interactive graphics system for analysis of
business decisions by J. Ravin and M. Schatzoff, p.
238. Described is an experimental system that enables
the user, through an intelligent graphics terminal, to
construct, modify, analyze, and store decision trees.
With this system, business decisions under uncer-
tainty can be analyzed. This paper discusses the
system and its capabilities. Included is a brief dis-
cussion of decision analysis, which represents an as-
pect of financial modeling.

Describing data in computer networks by D. H.
Fredericksen, p. 257. Discussed are three major
classes of data descriptor messages—for language
processors, for input/output devices, and for resource
allocation—required by computer networks where the
details depend on the variety of systems in a network
and on file complexity.

Three classes of networks are also discussed—remote
job entry networks with compatible operating systems
and computers, networks for transmitting arbitrary
data sets between systems that have the same internal
data representation but different hardware and oper-
ating systems, and networks for transmitting arbitrary
data sets between arbitrary systems. The first two
classes are illustrated by IBM networks and the third
by an interuniversity network.

Requirements for the three classes of networks are
compared. Further details of networks of systems
with the same internal structures but different hard-
ware and operating systems are given.

Centralization or dispersion of computing facilities
by D. N. Streeter, p. 283. Cost factors involved in
computing centers that tend to motivate the centrali-
zation as opposed to the decentralization of comput-

612 ABSTRACTS 1962-1994

ing services are evaluated, and a cost-minimization
solution is presented.

Proposed and evaluated is a strategy for linking large
regional service centers that perform standard pro-
duction services with satellite centers that perform
local personalized services.

Emphasized are techniques, including user waiting,
for evaluating the two characteristic service types.

Experimental evaluation of system performance
by Y. Bard, p. 302. The performance of different
features of system software can be compared effi-
ciently by means of rapid, on-line switching between
the versions. This technique of on-line switching has
been applied to determine the effects of page re-
placement algorithm, time-slice length, and user pri-
ority setting in the CP-67 time-sharing system.

Design of a checkout compiler by B. L. Marks, p.
315. The PL/I Checkout Compiler was designed to
emphasize programmer productivity in developing
programs, even at the expense of consuming extra
machine resources. We explain the choices in the
design of the compiler that resulted from this em-
phasis. The design is constrained by the requirement
that a subroutine developed using this checkout
compiler should be capable of executing in conjunc-
tion with code generated by a more conventional
compiler. The execution environment that supports
this operation is described.

Volume 12, Number 4, 1973

Data Dictionary/Directories by P. P. Uhrowczik, p.
332. A Data Dictionary/Directory System can provide
centralized control over data resources and data
management. This paper presents introductory con-
cepts of data dictionaries, their capabilities, and an
example implementation approach.

Indexing design considerations by R. E. Wagner,
p. 351. This paper deals with the structure and use
of indexes that facilitate the retrieval and storage of
records based on a specific value, value range, or
value sequence of a given field of a record within
one or more data sets. Specifically, it examines
general index structures, maintenance, index entry
compression, and complex indexes as considered in
the basic design of VSAM (Virtual Storage Access
Method). Under complex indexes, indirect secondary
indexes and indexes to multiple data sets are con-
sidered.

Functional structure of IBM virtual storage op-
erating systems, Part I: Influences of dynamic
address translation on operating system technol-
ogy by M. A. Auslander and J. F. Jaffe, p. 368. Pre-
sented are early developments of storage management
techniques, particularly those used in OS/360. In-
novations introduced by systems that use dynamic
address translation are traced. The impact of these
techniques on current IBM System/370 Operating
Systems is described.

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

Functional structure of IBM virtual storage op-
erating systems, Part II: OS/VS2-2 concepts and
philosophies by A. L. Scherr, p. 382. The largest IBM
programming effort since the introduction of 0OS/360,
the virtual storage operating system OS/VS2-2 has
been designed to integrate efficient support for
interactive, data base, and data communications ap-
plications.

Discussed from the point of view of its designers are
tradeoffs, options, and objectives of the architectural
features related to system parallelism, main storage
exploitation, system resource allocation, and system
recovery.

Functional structure of IBM virtual storage op-
erating systems, Part III: Architecture and design
of DOS/VS by J. P. Birch, p. 401. An addressing
space larger than main storage—virtual storage—in
System/370 challenges the operating system architect
to design a disk operating (DOS/VS) for superior
program execution performance.

Compared are the bases for program execution by
DOS/VS with those of the earlier Disk Operating
System. Increased system versatility is presented in
terms of storage management, channel management,
and program management.

Volume 13, Number 1, 1974

User behavior on an interactive computer system
by S. J. Boies, p. 2. Discussed are observations on the
usage of an interactive computing system in a re-
search environment. Empirical data on user behavior
are discussed that concern the duration and frequency
of terminal sessions, the use of language processors,
user response time, and command usage.

Direct-access device simulation by E. Nahouraii, p.
19. Discussed is an approach to simulating direct-
access devices. An experimental simulator provides
the capability to test newly developed /O supervisors
and to test code for new or proposed devices without
the benefit of the actual device.

This functional simulator performs all of the search,
data-movement, and status-reporting functions of the
device transparently to the user. Data-driven (table)
techniques enable the user to simulate a number of
direct-access devices (one at a time) and measure their
would-be performance. Interactive options of the
simulator enable the user to check for errors and test
the various error routines.

Advanced function extended with tightly-coupled
multiprocessing by R. A. MacKinnon, p. 32. Multi-
processing hardware as implemented on System/370
is presented. With emphasis on tightly-coupled sys-
tems configurations, topics include instructions and
facilities, and a comparison with prior IBM multi-
Processors.

Design of tightly-coupled multiprocessing pro-
gramming by J. S. Arnold, D. P. Casey, and R. H.
McKinstry, p. 60. Selected components of tightly-

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

coupled multiprocessing programming support are
presented. Included are design rationale and reference
to prior multiprocessing systems to give additional
perspective.

Volume 13, Number 2, 1974

Performance analysis for the Skylab terminal
system by R. J. Mancini, p. 94. System performance
analysis techniques have been applied to support the
development of a data-communication, data-base
system. These techniques have been applied contin-
uously from the system planning phase through sys-
tem testing.

Computer simulative models and computer mea-
surement tools were used in this analysis.

Structured design by W. P. Stevens, G. J. Myers, and
L. L. Constantine, p. 115. Considerations and tech-
niques are proposed that reduce the complexity of
programs by dividing them into functional modules.
This can make it possible to create complex systems
from simple, independent, reusable modules. De-
bugging and modifying programs, reconfiguring /O
devices, and managing large programming projects
can all be greatly simplified. And, as the module
library grows, increasingly sophisticated programs
can be implemented using less and less new code.

Synchronous data link control: A perspective by
R. A. Donnan and J. R. Kersey, p. 140. Data link
control requirements are discussed and summarized.
A generalized structure for a data link control capable
of meeting those requirements is presented. Syn-
chronous data link control (SDLC) is given as a
solution, evolving from the generalized structure, to
meet the requirements stated. Finally, the significant
attributes of SDLC are discussed and summarized.

A model for the evaluation of storage hierarchies
by J. Gecsei and J. A. Lukes, p. 163. The design of
the storage component is essential to the achieving
of a good overall cost-performance balance in a
computing system.

A method is presented for quickly assessing many
of the technological and structural possibilities that
exist today for designing storage hierarchies.

The evaluation is based on a cycling queuing model
of the computer system and its programming envi-
ronment, which are taken into account by miss ratio
curves.

Volume 13, Number 3, 1974

VSAM data set design parameters by D. G. Keehn
and J. O. Lacy, p. 186. A general description of the
Virtual Storage Access Method (VSAM) is followed
by a qualitative discussion of performance expecta-
tions. VSAM data-set design parameters are dis-
cussed with respect to performance tradeoffs.
Analytic techniques are developed for relating some
of the VSAM performance sensitivities to data set
design parameters.

ABSTRACTS 1962-1994 §13

0S/VS1 concepts and philosophies by T. F. Wheeler,
Jr., p. 213. Dynamic address translation equipment
is key to the design of System/370 central processing
units, and dynamic relocation is key to the design
of Operating System/Virtual Storage 1.

Discussed are the significance and implementation
of these key facilities in the supervisor and job
scheduler functions of virtual storage operating sys-
tem.

Within the supervisor are presented system initiation,
page management, input/output supervisor, and stor-
age management. Within the job scheduler are dis-
cussed queue management, the job entry subsystems,
and remote job entry services.

Operating system integrity in OS/VS2 by W. S.
McPhee, p. 230. System integrity is a basic require-
ment for operating system security. Presented are
types of system integrity problems and their general
solutions. Techniques used in OS/VS2 Release 2 to
solve these problems are highlighted.

The job entry subsystem of OS/VS1 by J. H. Baily,
J. A. Howard, and T. J. Szczygielski, p. 253. Discussed
is an extended facility of job management for OS/VSIL.
This facility provides spooling and scheduling in a
virtual storage system. Its three major components
are peripheral services, central services, and queue
management.

Volume 13, Number 4, 1974

The OS/VS2 Release 2 System Resources Manager
by H. W. Lynch and J. B. Page, p. 274. Discussed is
a new subcomponent of the control program of the
IBM OS/VS2 Release 2 operating system that has
been designed to use the resources of the system to
satisfy two distinct but potentially conflicting per-
formance objectives, i.e., response and throughput.

Termed the System Resources Manager, the sub-
component controls performance by address space
swapping through the use of a swapping analysis al-
gorithm and a workload management algorithm.

Optimizing program placement in virtual systems
by K. D. Ryder, p. 292. An experimental algorithm
for optimizing program placement in virtual storage
systems is described. Interprogram linkages are
monitored and subsequently analyzed for frequency
and proximity. The algorithm evaluates this infor-
mation within the context of a paging environment.
Program lists that define the optimum program
placements are then generated. Performance gains
are also discussed.

System/7 in a hierarchical laboratery automation
system by H. Cole, p. 307. Described is an imple-
mentation of a three-level computer hierarchy that
provides a high degree of performance, availability,
and ease of use for laboratory automation applica-
tions.

Elements of probability for system design by A.
O. Allen, p. 325. Basic notions of probability theory

614 ABSTRACTS 1962-1994

are applied to problems of performance analysis of
on-line real-time systems.

Frequently used is APL as both an analytical tool and
as a scratch pad in working out the examples.

Volume 14, Number 1, 1975

Overview of the Supermarket System and the
Retail Store System by P. V. McEnroe, H. T. Huth,
E. A. Moore, and W. W. Morris III, p. 3. An intro-
duction to the concepts of the Supermarket and Retail
Store Systems is presented.

Discussed are the objectives of the systems as they
relate to the problems of the merchandiser and the
solution to those problems in terms of specific system
function and the structure chosen to implement that
function. The system design philosophy pertaining
to the terminals, store controllers, host processors,
and specialized I/O devices is also discussed. Specific
requirements of each system are described.

The characteristics and decodability of the Uni-
versal Product Code symbol by D. Savir and G. J.
Laurer, p. 16. Described are the coding and symbol
of the Universal Product Code. The symbol code
structure, format, encodation technique, and charac-
teristics with their technical tradeoffs are discussed.

The symbol is analyzed and evaluated. Decodability
is shown to depend on the structure of the code and
symbol, the size of the symbol, the precision with
which the symbol is printed, the technique of scanning
employed, the accuracy with which measurements
are made, the decoding logic, and the physical oper-
ation of scanning. The relationship between the scan
pattern of a fixed head scanner and symbol size is
shown.

The role of the operator in the Supermarket and
Retail Store Systems by D. C. Antonelli, p. 35. Some
aspects of the role of the operator in the Supermarket
and Retail Store Systems are presented, specifically
with respect to the input of data to the system. Major
differences between the data input requirements of a
system for a supermarket and a system for a retail
store include the volume of data and the rate of entry.
These are discussed in terms of the system require-
ments and the alternative methods of implementation.
Studies of wand entry for the Retail Store System
and fixed optical scanning for the Supermarket Sys-
tem are also discussed.

Store performance studies for the Supermarket
System by W. C. Metz, Jr. and D. Savir, p. 46. Per-
formance of the Supermarket System is measured by
throughput of the shoppers and the response time of
the system to messages generated during checkout.
This paper discusses some system design features
adopted for the purpose of meeting a performance
objective and two models developed for analyzing
the throughput capacity of the system.

Design and performance considerations for the
Retail Store System by M. A. Berk, C. W. Dunbar,
and G. C. Hobson, p. 64. The transactions in a retail

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

system are a comprehensive set of store applications.
These applications include point-of-sale operations
and back-room activities. Store performance is de-
scribed by the throughput rate of transactions and the
delay in the processing of any particular transaction.
Two techniques of performance analysis are dis-
cussed: analytic evaluation and store simulation.
An important consideration is the annual operating
cycle of the store that indicates the amount and types
of demands on the system.

Reliability, availability, and serviceability design
considerations for the Supermarket and Retail
Store Systems by R. O. Hippert, Jr., L. R. Palounek,
J. Provetero, and R. O. Skatrud, p. 81. This paper
discusses system considerations of error recovery,
prevention of data loss, and protection against loss
of function. Back-up techniques, problem determi-
nation procedures, maintenance procedures, and sys-
tem features provided to facilitate their respective
uses are discussed. Avoidance of the interruption of
store operation is emphasized.

Volume 14, Number 2, 1975

A program. generator by W. D. Hagamen, D. J.
Linden, K. F. Mai, S. M. Newell, and J. C. Weber, p.
102, A person-to-computer communication system
for application program writing by nonprogrammers
is discussed.

Called A Program Generator (APG), the interface
system is built upon the authors' previous develop-
ments of a tutorial system that is briefly discussed.

Principles and applications of APG are presented and
illustrated in terms of actual applications.

Performance measurement tools for VM/370 by
P. H. Callaway, p. 134. To support the smooth run-
ning of a VM/370 installation, performance mea-
surements of various types are desirable. This paper
describes a range of measurement facilities that have
been developed for VM/370 for use both on-line and
off-line at the level of the users (general user, oper-
ator, and system analyst) and the installation man-
agement.

Elements of queuing theory for system design by
A. O. Allen, p. 161. Reviewed are fundamental prin-
ciples of queuing in terms that apply to computing
systems.

After laying a foundation of a minimum number of
definitions, the author provides a working familiarity
with extended principles and applications to system
performance estimation through the use of worked
out examples.

Hierarchical approach to computer system integ-
rity by J. J. Donovan and S. E. Madnick, p. 188. Se-
curity is an important factor if the programs of
independent and possibly error-prone or malicious
users are to coexist on the same computer system.
In this paper, we show that a hierarchically structured
operating system, such as produced by a virtual ma-
chine system, that combines a virtual machine mon-

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

itor with several independent operating systems
(VMM/OS), provides substantially better software
security than a conventional two-level multipro-
gramming operating system approach. This added
protection is derived from redundant security using
independent mechanisms that are inherent in the de-
sign of most VMM/OS systems. Such a system can
be obtained by exploiting existing software resources.

Volume 14, Number 3, 1975

An access control mechanism for computing re-
sources by H. M. Gladney, E. L. Worley, and J. J.
Moyers, p. 212. The architecture of an access control
mechanism for the resources of an OS/360 or VS/370
computer system is presented.

The use of this operating system component for data
base security and integrity in a research and engi-
neering environment is described.

The techniques described make possible controlled
access to the system's processing power, controlled
access to the database, decentralized authorization
responsibility, measuring dataset usage, and event
recording for automatic dataset migration, archiving,
and staging.

Generalized audit trail requirements and concepts
for data base applications by L. A. Bjork, Jr., p. 229.
Discussed is a data base audit trail. It is defined here
to be a generalized recording of “who did what to
whom, when, and in what sequence.” This informa-
tion is to be used to satisfy system integrity, recovery,
auditing, and security requirements of advanced in-
tegrated data base/data communications Ssystems.
This paper hypothesizes what information must be
retained in the audit trail to permit recovery and audit
later in time and a scheme of organizing the contents
of the audit trail so as to provide the required func-
tions at minimum overhead.

Introduced are the concepts of types of audit required,
DB/DC audit assumptions, time domain addressing,
time sequences required to support versions of data,
what constitutes an audit trail, and implementation
considerations.

Tuning a virtual storage system by H. A. Anderson,
Jr., M. Reiser, and G. L. Galati, p. 246. A method-
ology for performance-tuning a virtual storage system
is discussed. This methodology encompasses per-
formance measurement, workload characterization,
performance evaluation, and planned experimenta-
tion. Use of the methodology is illustrated by de-
scribing results of a case study involving the IBM
Research Division's TSS/360 system.

The Power Profile—An installation management
tool by J. A. Laird, p. 264. This paper describes a
method used to estimate the electrical power required
for a computer system and the heat generated by it.
The method is a program that serves as an installation
planning tool accessed principally by Installation
Planning Representatives through communication
terminals.

ABSTRACTS 1962-1994 §15

Computing center optimization by a pricing-
priority policy by S. B. Ghanem, p. 272. Included in
the user's price-priority decision is his cost of delay.

Briefly discussed for the general case, and shown in
detail for the two-queue case, is the principle that the
total cost to users of the computing service is mini-
mized in a computing installation that has a price-
priority service policy.

Productivity of computer-dependent workers by
D. N. Streeter, p. 292. Beginning with a description
of various degrees of computer dependency among
workers, a model of the worker-computer process is
constructed. The model demonstrates the character-
istic forms of functional dependencies and suggests
ways in which these dependencies can be evaluated.

Key among the many considerations discussed are
such process characteristics as system congestion,
needs and habits of users, and relative costs.

Volume 14, Number 4, 1975

Computer installation accounting by H M.
Gladney, D. L. Johnson, and R. L. Stone, p. 314. This
paper examines the function and design of an ac-
counting program package for a medium to large
computer installation. A specific implementation is
used to illustrate key points.

Evaluating system changes under uncontrolled
workloads: a case study by H. P. Friedman and G.
Waldbaum, p. 340. When a change to a computer
system is evaluated under workload conditions that
are not controlled, it is necessary to estimate to what
extent system performance has been affected by the
change and to what extent by variations in the
workload. This paper describes a regression-analysis
method by which such an estimate was made for a
particular computer system.

Testing in a complex systems environment by M.
O. Duke, p. 353. The testing problems in a complex
systems environment are described with categori-
zation by purpose of the tests and objectives to be
achieved. The approach to testing and the method-
ology required to adequately test in the various testing
categories are presented.

The methodology described, together with appropri-
ate testing tools, can aid users in the migration to new
operating systems and new versions of subsystems,
as well as to accelerate their own application devel-
opment.

Performance analysis of virtual memory time-
sharing systems by Y. Bard, p. 366. The performance
of VM/370 systems is analyzed in relation to the
multiprogramming level and the user work load.
Saturation conditions are examined, and methods for
locating bottlenecks in the CPU, main storage, paging,
and /O subsystems are given. The paper also de-
scribes the data requirements, along with techniques
for data collection and reduction. The techniques are
illustrated with data from an actual case study.

016 ABSTRACTS 1962-1994

Structured programming for virtual storage sys-
tems by J. G. Rogers, p. 385. The disciplines of
structured programming and programming for virtual
storage are examined to show how they affect each
other.

Considerations and techniques are proposed that,
when applied during the process of structured design
and coding, produce programs that place fewer de-
mands on the computer storage resources.

The techniques are illustrated by example programs.

Volume 15, Number 1, 1976

Systems Network Architecture: An overview by
J. H. McFadyen, p. 4. Recent technological advances
have allowed information processing and data storage
capability to be distributed more easily from a central
computer complex to remote user locations. Systems
Network Architecture provides a unified systems
structure for the contemporary teleprocessing envi-
ronment that resulted from these advances. Using
some current implementations as examples, this
overview introduces the concepts on which the ar-
chitecture is based and broadly describes the basic
components of the structure. Specific architectural
and implementation details can be found in the ref-
erences.

The transmission subsystem in Systems Network
Architecture by P. G. Cullum, p. 24. The components
providing the means to transfer data from one end
user to another within a system incorporating SNA
comprise the transmission subsystem. This paper
discusses the organization of the subsystem, its logical
and physical aspects, and the components involved
in its operation.

The role of the Network Control Program in
Systems Network Architecture by W. S. Hobgood,
p- 39. An integral part of SNA is the scheme for
controlling the communications functions within a
network. This scheme is the Network Control Pro-
gram that resides within a communications controller
of the network. Discussed are the operations of the
major components of the NCP and their relationships.

The Virtual Telecommunications Access Method:
A Systems Network Architecture perspective by
H. R. Albrecht and K. D. Ryder, p. 53. As an access
method, VTAM is influenced by many non-SNA
considerations. However, this paper focuses on the
SNA functions implemented by VTAM, discussing
the components involved in some detail. Also in-
cluded is a brief discussion of the historical factors
that led to the conception of VTAM.

LABS/7—a distributed real-time operating system
by D. L. Raimondi, H. M. Gladney, G. Hochweller,
R. W. Martin, and L. L. Spencer, p. 81. A hierarchical
distributed real-time computing system, LABS/7,
provides facilities for attaching multiple IBM
System/7s to a host System/360 or System/370.
LABS/7 consists of a multiprogramming and multi-
tasking supervisor for the System/7, a host commu-

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

nication facility that supports multiple satellite
System/7s, and a high-level real-time language for
user application development.

LABS/7 is operational in a variety of environments,
including research, development, manufacturing, and
clinical. The functional characteristics of the system
are reviewed, performance is stated for well-defined
situations, and experience with the system is reviewed
with reference to some typical applications.

Penetrating an operating system: a study of
VM/370 integrity by C. R. Atnanasio, P. W.
Markstein, and R. J. Phillips, p. 102. Discussed is a
methodology for discovering operating system design
flaws as an approach to learning system design
techniques that may make possible greater data se-
curity.

Input/output has been found to be involved in most
of the weaknesses discovered by a study team in a
particular version of the system.

Relative design simplicity was found to be the source
of greatest protection against penetration efforts.

Volume 15, Number 2, 1976

Experiments in line quality monitoring by P.
Bryant, F. W. Giesin, Jr., and R. M. Hayes, p. 124.
This paper describes an experimental line quality
monitoring (LQM) system, which has been in regular
operation in several IBM locations. The LQM system
uses a System/7 to gather information about the an-
alog phenomena that occur on telephone data trans-
mission lines. It gathers the information without
taking the lines out of service. Described are the
ways in which the information from the LQM system
is used in daily operations; for example, in one case,
use of the LQM system contributed to an increase in
circuit availability from 82 percent to 99 percent over
a one-month period.

HIPO and integrated program design by J. F. Stay,
p. 143. Discussed is a procedure of hierarchical
functional design by which programming projects can
be analyzed into system, program, and module levels.
It is shown that program design is made more efficient
by applying Hierarchy plus Input-Process-Output
(HIPO) techniques at each level to form an integrated
view of all levels.

Top-down development using a program design
language by P. Van Leer, p. 155. Discussed is a
program design language—a form of
pseudocode—that has been developed and used to
organize, teach, document, and develop software
systems. An example of top-down program design
illustrates the key steps in using the language: de-
termining the requirements, abstracting the functions,
expanding the functions, and verifying the functions.

Syntax and conventions of the language are given in
an appendix.

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

Volume 15, Number 3, 1976

Design and code inspections to reduce errors in
program development by M. E. Fagan, p. 182.
Substantial net improvements in programming quality
and productivity have been obtained through the use
of formal inspections of design and of code. Im-
provements are made possible by a systematic and
efficient design and code verification process, with
well-defined roles for inspection participants. The
manner in which inspection data is categorized and
made suitable for process analysis is an important
factor in attaining the improvements. It is shown that
by using inspection results, a mechanism for initial
error reduction followed by ever-improving error
rates can be achieved.

Composite design facilities of six programming
languages by G. J. Myers, p. 212. Examined are re-
lationships between the methodology of composite
design and six widely used programming languages.
Strengths and weaknesses of composite design facil-
ities of these languages are discussed. Based on this
experience, language facilities for greater use of the
potential of composite design are suggested.

A model of large program development by L. A.
Belady and M. M. Lehman, p. 225. Discussed are
observations made on the development of OS/360
and its subsequent enhancements and releases. Some
modeling approaches to organizing these observations
are also presented.

Volume 15, Number 4, 1976

The Peterlee Relational Test Vehicle—a system
overview by S. J. P. Todd, p. 285. A high-level
data-base system, the Peterlee Relational Test Vehicle
(PRTV), provides flexible, interactive data-base
support and functional extensibility. The user sees
the system primarily through a programming lan-
guage called ISBL, which is designed for manipu-
lating bulk data held in relations. PRTV is not a
full-fledged data-base system, but rather an evolving
prototype which is expected to aid in solving some
of the problems that have been encountered in using
relational data bases. PRTV embodies research both
in data-base language design and in efficient imple-
mentation techniques.

Interactive modeling of computer systems by M.
Reiser, p. 309. This paper provides a nontechnical
introduction to queuing network concepts, a short
introduction to results of research into analytical
modeling methodology, and a set of simple but typical
examples that illustrate the application of that meth-
odology to problems of computer performance.

Service levels: A concept for the user and the
computer center by L. J. Lewis, p. 328. Service levels
represent an important concept that can be applied
toward the solution of difficult problems surrounding
communications between users and providers of data
processing services. In this paper, this concept is
described in terms of the architecture, which defines

ABSTRACTS 1962-1994 §17

the scope and structure of service information. The
paper further translates the architecture into data
processing terminology by presenting the data-base
structure and data elements related to service levels.
The paper also addresses the post-processing of the
data base, a step essential to properly communicating
service-level information.

An APL emulator on System/370 by A. Hassitt and
L. E. Lyon, p. 358. Emulation of an APL machine on
a System/370 is exemplified by the APL Assist, a
microprogram that enables APL expressions and de-
fined functions to be executed at the hardware level.
This paper discusses what the APL Assist does, how
it works, and the way it interacts with System/370
software. Execution times for APL programs with
and without the Assist are compared.

Volume 16, Number 1, 1977

A user-oriented data-base retrieval system by A.
U. Jones, p. 4. Discussed is an experimental, spe-
cialized data-base system developed for users who
do not require the sophisticated resources of the large
data-base systems but do require many of the capa-
bilities they provide. Data manipulation and retrieval
within a data base are made available for the non-
programmer user. The function and design attributes
of the system are described including the reasons for
basing the system on APL functions.

An APL interpreter and system for a small com-
puter by M. Alfonseca, M. L. Tavera, and R.
Casajuana, p. 18. The design and implementation of
an experimental APL system on the small, sensor-
based System/7 is described. Emphasis is placed on
the solution to the problem of fitting a full APL
system into a small computer.

The system has been extended through an I/O auxil-
iary processor to make it possible to use APL in the
management and control of the System/7 sensor-
based 1/O operations.

The IBM 5100 and the Research Device
Coupler—A personal laboratory automation sys-
tem by H. Cole and A. A. Guido, p. 41. A small lab-
oratory automation system has been developed by
using the IBM 5100 Portable Computer in conjunc-
tion with the Research Device Coupler. This compact
system provides a dedicated, high-level-language
computer and a versatile data acquisition and control
interface for experiments in which data rates do not
exceed 9600 baud. Two experiments exemplify the
use of the system.

The Research Device Coupler described in this paper
is a prototype of the IBM 7406 Device Coupler.

A method of programming measurement and es-
timation by C. E. Walston and C. P. Felix, p. 54.
Improvements in programming technology have
paralleled improvements in computing system archi-
tecture and materials. Along with increasing knowl-
edge of the system and program development
processes, there has been some notable research into

618 ABsTRACTS 1962-1994

programming project measurement, estimation, and
planning. Discussed is a method of programming
project productivity estimation. Also presented are
preliminary results of research into methods of
measuring and estimating programming project du-
ration, staff size, and computer cost.

Volume 16, Number 2, 1977

The information management system IMS/VS,
Part I: General structure and operation by W. C.
McGee, p. 84. The first of a five-part series of papers
on IMS/VS, this paper discusses the architecture,
goals, and objectives of that information management
system, the purpose of which is to facilitate Data
Base/Data Communication applications. Subsequent
papers present data base facilities, batch processing,
data communication, and transaction processing in
greater depth.

The information management system IMS/VS,
Part II: Data base facilities by W. C. McGee, p. 96.
The structuring of a data base and its implementation
through the use of several access methods are pre-
sented. A number of implementation methods are
described and compared. Also presented are retrieval,
updating, reorganization, and recovery. Other parts
of this five-part series on IMS/VS include objectives
and architecture, batch processing, data communi-
cation, and transaction processing.

The information management system IMS/VS,
Part III: Batch processing facilities by W. C.
McGee, p. 123. Batch processing is described from
the application programmer point of view. Restart
and recovery techniques are also discussed. Other
parts of the series discuss objectives and architecture,
data base structuring, data communication, and
transaction processing facilities.

The information management system IMS/VS,
Part IV: Data communication facilities by W. C.
McGee, p. 136. Aspects of IMS/VS communication
facilities discussed include networks, terminals, se-
curity facilities, editing, and formatting. Other parts
in this series on IMS/VS include an introductory part
on objectives and architecture, data base facilities,
batch processing facilities, and transaction processing.

The information management system IMS/VS,
Part V: Transaction processing facilities by W. C.
McGee, p. 148. Transaction processing and a further
discussion of communication facilities are presented.
Also discussed are system operations, including
startup and shutdown, restart, and system monitoring.
Other parts in this series present IMS/VS objectives
and architecture, data base facilities, batch processing,
and data communication.

A high-performance DB/DC system by J. E. Siwiec,
p. 169. Discussed is the evolution of a computerized
airline reservation system from its early form up to
the present version. Data base allocation, accessing
techniques, and data communications of the system
are described. The system consists of the Pro-

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

grammed Airline Reservation System (PARS) and its
control program called ACP.

Volume 16, Number 3, 1977

Data structures and data accessing in data base
systems past, present, future by M. E. Senko, p. 208.
A broad range of commercial and research data base
systems are analyzed. Common characteristics are
discussed. These systems, which have roots in older
filing systems and in punched card systems, are
grouped into the three categories of hierarchic, net-
work, and single-level models. Also presented is
work on the standardization of data base systems.
Research toward the discovery of new commonalities
is also discussed. This paper is based on an extensive
published literature.

CICS/VS and its role in Systems Network Archi-
tecture by D. J. Eade, P. Homan, and J. H. Jones,
p. 258. Evolution of the Customer Information Con-
trol System/Virtual Storage (CICS/VS) is discussed,
along with a description of how CICS/VS manages
a pre-SNA teleprocessing network. Following a brief
review of SNA (Systems Network Architecture), the
role of CICS/VS within an SNA environment is de-
scribed. The paper concludes by outlining SNA's
advantages to CICS/VS.

Automated logical data base design: Concepts and
applications by N. Raver and G. U. Hubbard, p. 287.
This paper describes the design effort for an inte-
grated data base and then develops techniques for
automating significant portions of the labor. These
techniques have been incorporated in a program to
provide an effective data base design tool (Data Base
Design Aid) in current use. The processes involved
with this aid are discussed.

Volume 16, Number 4, 1977

Query-by-Example: A data base language by M.
M. Zloof, p. 324. Discussed is a high-level data base
management language that provides the user with a
convenient and unified interface to query, update,
define, and control a data base.

When the user performs an operation against the data
base, he fills in an example of a solution to that op-
eration in skeleton tables that can be associated with
actual tables in the data base. The system is currently
being used experimentally for various applications.

Design techniques for a user controlled DB/DC
system by G. F. Heyne and C. J. Daniel, p. 344. The
flexibility and usefulness of an integrated data base
can be limited by constraints inherent in the data base
management system. One such system, IBM's In-
formation Management System (IMS), has been ex-
tended in terms of data independence, access control,
data integrity, and user communication by a group
of techniques integrated into an IMS application
called the Product Development Communication and
Control (PDCC) system. This paper describes the

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

IMS extensions provided by PDCC and discusses the
system's implementation.

PDCC is the prototype of the IMS Application De-
velopment Facility, an IBM Installed User Program.

Storage and access in relational data bases by M.
W. Blasgen and K. P. Eswaran, p. 363. A model of
storage and access to a relational data base is pre-
sented. Using this model, four techniques for eval-
uating a general relational query that involves the
operations of projection, restriction, and join are
compared on the basis of cost of accessing secondary
storage. The techniques are compared numerically
and analytically for various values of important pa-
rameters. Results indicate that physical clustering
of logically adjacent items is a critical performance
parameter. In the absence of such clustering, methods
that depend on sorting the records themselves seem
to be the algorithm of choice.

MARC: MYVS archival storage and recovery pro-
gram by J. P. Considine and J. J. Myers, p. 378. A
newly designed and implemented automated storage
hierarchy management system that operates under
MVS is described. The needs for economical archival
storage that at the same times makes possible the
efficient retrieval of users' data are reviewed. Dis-
cussed in detail is the fulfillment of this requirement
that is provided by the automated management of
MVS/TSO on-line data storage space that includes
the Mass Storage System (MSS) and other storage
devices in a hierarchy. Experience with the system
is summarized.

An input-output econometric model by X. S. Sarma,
p. 398. A model of the type used to forecast the effects
on an industry of changes in the national economy
is described. The components representing input data
and the type of output from such a model are dis-
cussed.

This paper is intended as a tutorial discussion of an
advanced application in data processing.

Volume 17, Number 1, 1978

IBM's Santa Teresa Laboratory—Architectural
design for program development by Gerald M.
McCue, p. 4. The special needs of the computer
programmer in terms of working space, furniture
design, access to terminals and conference rooms,
and overall working environment led IBM to con-
struct a facility intended to enhance programmer
productivity in a development environment. That
facility is the Santa Teresa Laboratory in San Jose,
California, designed by MBT Associates of San
Francisco. This essay discusses the programmer's
needs, how they were perceived, and the process by
which they led to unique design concepts, as well as
the architectural philosophy underlying the design
process.

A method for the time analysis of programs by S.
L. de Freitas and P. J. Lavelle, p. 26. Discussed is a
technique for investigating the efficiency of compiled

ABSTRACTS 1962-1994 §19

programs. Based on research that uses FORTRAN
as a test subject, the method is more widely appli-
cable. Time analyses show programmers points at
which efficiencies may be increased. Also discussed
are uses of the technique for comparing the effi-
ciencies of compilers and languages, and for making
performance/cost analyses. Presented are validation
data for the method under several sets of conditions.

Measuring programming quality and productivity
by T. C. Jones, p. 39. Discussed is the unit-of-measure
situation in programming. An analysis of common
units of measure for assessing program quality and
programmer productivity reveals that some standard
measures are intrinsically paradoxical. Lines of code
per programmer-month and cost per defect are in this
category. Presented here are attempts to go beyond
such paradoxical units as these. Also discussed is the
usefulness of separating quality measurements into
measures of defect removal efficiency and defect
prevention, and the usefulness of separating produc-
tivity measurements into work units and cost units.

The Extended Control Language of MPSX/370
and possible applications by L. Slate and K.
Spielberg, p. 64. Some large-scale linear and espe-
cially mixed-integer programming problems, and the
underlying practical decision-making situations, have
so far been solved with only limited success. A new
control language for IBM's system MPSX-MIP/370
permits recursive use of the basic system and easy
access to its elements, and therefore appears to offer
great potential for new advances.

The paper first describes the facilities of the language,
called the Extended Control Language, and the
interfaces to the system and gives a number of rep-
resentative illustrative uses. It then considers a
number of basic applications of the system and pos-
sible heuristic and algorithmic approaches to difficuit
problems, often very large problems with structure,
which may now become more easily solvable or
tractable for the first time.

Solving the installation scheduling problem using
mixed integer linear programming by R. Chen, H.
Crowder, and E. L. Johnson, p. 82. The installation
scheduling problem involves finding a program for
installing a large number of sizes and types of items
(e.g., machines) over time so as to optimize some
measure (e.g., initial capital investment), subject to
various resource constraints. Examples of this prob-
lem are scheduling the installation of point-of-sale
terminals in supermarket and retail chains, and teller
terminals in banks.

We have formulated the installation scheduling
problem as a mixed integer linear program and de-
veloped a computer code for solving the model. By
using techniques for exploiting the special structure
of the model, our formulation allows rather quick
solution times.

620 ABSTRACTS 1962-1994

Volume 17, Number 2, 1978

A cryptographic key management scheme for
implementing the Data Encryption Standard by
W. F. Ehrsam, S. M. Matyas, C. H. Meyer, and W.
L. Tuchman, p. 106. Data being transmitted through
a communications network can be protected by
cryptography. In a data processing environment,
cryptography is implemented by an algorithm which
utilizes a secret key, or sequence of bits. Any key-
controlled cryptographic algorithm, such as the Data
Encryption Standard, requires a protocol for the
management of its cryptographic keys. The com-
plexity of the key management protocol ultimately
depends on the level of functional capability provided
by the cryptographic system. This paper discusses a
possible key management scheme that provides the
suppott necessary to protect communications between
individual end users (end-to-end encryption) and that
also can be used to protect data stored or transported
on removable media.

Generation, distribution, and installation of
cryptographic keys by S. M. Matyas and C. H.
Meyer, p. 126. A key controlled cryptographic system
requires a mechanism for the safe and secure gener-
ation, distribution, and installation of its
cryptographic keys. This paper discusses possible
key generation, distribution, and installation proce-
dures for the key management scheme presented in
the preceding paper.

Cryptography architecture for information secu-
rity by R. E. Lennon, p. 138. Information being
transferred from point to point over a public com-
munications carrier or stored on portable media can
be protected, by the use of cryptography, from acci-
dental or intentional disclosure. Control functions
are required to ensure synchronization of the process.
In a communications environment, the control func-
tions become logically part of the network architec-
ture. IBM's Systems Network Architecture (SNA)
has been extended to allow the use of cryptography
when sensitive information is being processed. Ar-
chitectural similarities for the file environment are
discussed.

Administrative control of computing service by
H. M. Gladney, p. 151. The complexity of necessary
administrative controls for computer service exceeds
the capabilities of clerical methods. This paper pre-
sents a practical method for describing the external
administrative environment in a data base which can
be used by the operating system for dynamic
enforcement of limits. An attempt is made to address
consistently the different forms of data processing that
may be concurrent in a single installation; included
are general purpose time sharing, transaction oriented
computing, and scientific computing. Described is
the architecture of an operating system component
that could be regarded as the interface between ad-
ministrative security mechanisms and the security
features of the system software.

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

Running prototypes exist. The long-range intention
is to streamline such computer facility management
functions as controlling access to specific services,
processing power, and storage space; controlling ac-
cess to the system data base; and gathering statistics
needed for planning. Convenience to users is not
degraded by the security mechanisms, but in fact is
enhanced.

Data processing spheres of control by C. T. Davies,
Jr., p. 179. There has long been a need for better
definition of the audit and control aspects of data
processing applications. This paper attempts to sat-
isfy that need and thereby provide a framework for
improving communication between systems analysts
and computer scientists. It introduces the concept
of spheres of control, which are logical boundaries
that exist in all data processing systems, whether
manual or automated. The paper describes their es-
sential properties and portrays them as they relate to
each other in the batch, on-line, and in-line processing
environments. Included are spheres of control that
define process bounding for such purposes as recov-
ery, auditing, process commitment, and algorithm
(procedure) replacement.

Volume 17, Number 3, 1978

Job networking by R. P. Crabtree, p. 206. This paper
discusses the evolution of a facility, generally called
job networking, that permits job-related information
to be sent between programming system components
operating on computing systems that are attached to
a communications network. The capabilities of the
programs that implement this facility are described
along with the events that led to its development, the
value of the facility to the user, and ways in which
it can be extended to work with other forms of
communication networking.

Network job entry facility for JES2 by R. O.
Simpson and G. H. Phillips, p. 221. Job entry sub-
systems have been developed to provide operating
systems with an interface for managing some of the
workload of computing facilities. One of the job entry
subsystems for OS/VS2 has been further enhanced
with the addition of a network job entry facility that
allows full access to a network of computers in a
manner consistent with a local operation. This paper
discusses the design objectives, implementation, and
extensions of that facility.

Experiments in computer-aided graphic ex-
pression by J. F. Musgrave, p. 241. This paper pre-
sents a series of graphic design experiments using
an experimental color graphic display system. Design
principles and capabilities of the experimental color
graphic display system are discussed from a graphic
designer's point of view. The system allows a de-
signer to choose freely among 128 different colors,
various form modes, and collage capabilities, in-
cluding image mixing. The designer need be neither
a programmer nor one who understands the technical
aspects of the system to use it creatively. Exper-

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

imental results are shown visually here, some of
which have been used as cover designs for IBM
publications.

A time-sharing display terminal session manager
by J. M. McCrossin, R. P. O'Hara, and L. R. Koster,
p. 260. Display terminals, although faster than type-
writer devices, do not implicitly create records of the
user's interactive sessions. Based on the premise that
a display terminal session facility that also has the
record-keeping functions of typewriter terminals
would increase productivity, a research project was
undertaken that has resulted in the session manager
discussed. Experience with the system is summa-
rized.

Enhanced problem determination capability for
teleprocessing by J. B. Ford, p. 276. Determining
network problems is an important task that can be
difficult and even tedious. This capability has been
enhanced for teleprocessing users and service per-
sonnel through service aids developed for their use.
The service aids gather error data and provide dis-
plays that assist in analyzing system quality and in
determining specific problems. This paper describes
the evolution and operation of these aids.

Performance tuning in OS/VS2 MVS by T
Beretvas, p. 290. A procedure of observation and
correction is presented for the coarse tuning of an
MVS system by analyzing it into its software and
hardware components and increasing their efficiency
successively. The method involves adjustments to
swapping, the input-output load, the CPU load, main
storage, and the system resources manager. Also
discussed are performance measures necessary to
characterize a system, tools to tune a system, and
various aspects of data gathering and the effects of
adjustments on system parameters. Two illustrative
case histories are also given.

Volume 17, Number 4, 1978

Distributed data processing by A. L. Scherr, p. 324.
Today there is a wide range of choice for configuring
the data processing facilities of an
organization—centralized systems, decentralized
systems, small computers, and networks of commu-
nicating computers—for distributed data processing.
This paper considers the factors that relate to organ-
izations and their data processing requirements and
to the various possible data processing configurations.
Price-performance ratio, organizational needs, and
other factors that recommend the flexibility of dis-
tributed data processing are discussed in detail. Also
discussed are possible distributed data processing
architectures, choice criteria, communications, and
application and operating system design principles.

National Westminster Bank mass storage archiv-
ing by C. M. Gravina, p. 344. The problem of re-
trieving records at random from a very large archival
data base has not previously been effectively soluble
by data processing techniques. This paper describes

ABSTRACTS 1962-1994 621

such an application, in which a large bank in the
United Kingdom uses the IBM 3850 Mass Storage
System for storing and retrieving customer account
statements.

The development of software systems to aid in
physical planning by B. S. Smediey, p. 359. Physical
planning for geographic areas such as cities, counties,
or regions can be greatly simplified if the planner can
display the entity under consideration together with
land-use and socioeconomic data and can interact
easily with that data to modify the presentation and
redisplay it. Presented in this paper are a system and
a language to aid such physical planning and user
experience with the system and language. Further
research on graphic presentation, the incorporation
of models and statistical routines are also discussed.

Data Stream Linkage Mechanism by J. P. Morrison,
p. 383. Using a programming discipline called the
Data Stream Linkage Mechanism (DSLM), a program
can be built by linking program modules to form a
network through which data passes. The network is
specified by the program designer using a mixture
of precoded and custom coded modules. This linkage
technique and the capabilities that result from it
constitute an approach to programming that is radi-
cally different from conventional techniques. It can
increase the productivity of programmers and can
result in programs that are easier to understand and
to maintain.

This paper gives examples based on a specific im-
plementation of DSLM and describes some of the
experience gained from the implementation over the
last six years,

Performance investigations with a DOS/VS-based
operating system model by W. Kraemer, p. 409. This
paper describes an operating system model that is
based mainly on the DOS/VS supervisor but also
reflects various design alternatives, providing a flex-
ible tool for operating system design and tuning. The
model is characterized by the subdivision of I/O ac-
tivity into normal I/O, page /O, and fetch I/0, cor-
responding to the different supervisor services
involved. The model has been evaluated by analytical
queuing methods in a set of APL functions that allow
a flexible specification of the supervisor, the config-
uration, and the workload. Validation has been done
by simulation and by benchmarking of a real system.

The main features of this performance tool are de-
scribed, and its capabilities are illustrated by per-
formance results that show the impact of workload
and various supervisor changes on system perfor-
mance.

A performance model of MVS by Willy W. Chiu
and We-Min Chow, p. 444. Capacity planning, a major
function of computer installation management, has
the objective of determining cost-effective config-
urations to provide acceptable user service and system
performance levels according to workload changes.
The use of a performance predictive model is essential
in the capacity planning process. This paper presents

0622 ABSTRACTS 1962-1994

a research case study of the development of a per-
formance model called PMOD, for the IBM OS/MVS
operating system. The goal of the model is to predict
user response times and system performance for dif-
ferent scheduling parameters, workloads, and
configurations, with reasonably simple input re-
quirements and fast run times. Both the validation
and usage of the model for capacity planning and
system tuning are discussed.

Volume 18, Number 1, 1979

VM/370—a study of multiplicity and usefulness
by L. H. Seawright and R. A. MacKinnon, p. 4. This
paper is an overview of IBM's Virtual Machine
Facility/370. It describes the virtual machine concept
and its capabilities and implementation in VM/370.
Two components of VM/370 are discussed—the
control program and the Conversational Monitor
System. The usefulness of VM/370 in multiple and
diverse environments is covered. New developments
in VM/370 from hardware assists to system exten-
sions, networking, and handshaking are briefly de-
scribed as an introduction to the rest of the papers
in this issue.

The changing virtual machine environment:
Interfaces to real hardware, virtual hardware, and
other virtual machines by R. A. MacKinnon, p. 18.
This paper is a survey of changes to virtual machine
interfaces, implementation, architecture, and simu-
lation techniques as they affect IBM System/370 and
303X (3031, 3032, 3033) processors, the system
control program to which virtual machines interface,
and other virtual machines executing on the same real
computing system or elsewhere. The paper seeks to
summarize such changes and provide a perspective
on the virtual machine environment. New uses of
virtual machine subsystems are discussed as they
relate to inter-virtual-machine communication.

VM/370 asymmetric multiprocessing by L H.
Holley, R. P. Parmelee, C. A. Salisbury, and D. N.
Saul, p. 47. The design and implementation of
VM/370 attached processor support is discussed from
the point of view of adding radical new function to
an existing operating system. Three major design
decisions are described, and performance is analyzed
as it relates to those decisions.

A formal approach for communication between
logically isolated virtual machines by R. M. Jensen,
p. 71. The growing use of the virtual machine concept
has resulted in the necessity for communication be-
tween the virtual machines. The design and operation
of the Virtual Machine Communication Facility is
discussed as an approach to offering such communi-
cation. The facility is an interface allowing a logical
connection between two or more virtual machines.
Potential applications for this facility conclude the
discussion.

Virtual Control Storage—security measures in
VM/370 by C. R. Attanasio, p. 93. The architecture

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

of a virtual machine system has specific advantages
over that of conventional operating systems because
virtual machines are well separated from one another
and from the control program. This structure requires
that a protected, multi-user resource manager be
placed in a distinct virtual machine because the pro-
tection domain and scheduling unit are one entity, the
virtual machine. But cooperation between distinct
virtual machines necessarily entails scheduling over-
head and often delay.

This paper describes an experimental extension to
VM/370 whereby a distinct execution and data do-
main (Virtual Control Storage) is made available to
virtual machines that require access to a resource
managet, without requiring a change in the scheduling
unit. Thus scheduling overhead and delays are
avoided when transition is made between user pro-
gram and resource manager. A mechanism is de-
scribed for exchanging data between execution
domains by means of address-space mapping.

Evolution of a virtual machine subsystem by E.
C. Hendricks and T. C. Hartmann, p. 111. Early in-
vestigation of virtual machine subsystem flexibility
centered on telecommunications support and inter-
computer networking and proceeded in two phases.
The first phase focused on an experimental program
for the virtual machine control program CP-67 that
supported remote work stations and pioneered inter-
computer spool communications. The results of that
effort inspired a second effort in the same area with
some significant redirection. This second phase ul-
timately led to the remote spooling communications
subsystem component of VM/370, the VM/370 net-
working package (VNET), and a large network of
interactive computer systems within IBM. These
phases are discussed along with suggestions for sev-
eral continuing lines of work based on current results.

Managing VM/CMS systems for user effectiveness
by W. J. Doherty and R. P. Kelisky, p. 143. Discussed
in this paper is a computing center management
methodology based on the premise that the computer
user's time and work product are valuable. Experi-
ence in the use of interactive systems in a research
environment from 1965 to the present time is pre-
sented. Current user experience and management of
VM/CMS are emphasized. The use of computers as
tools for extending users' powers of memory and logic
and the development of new methods of managing
VM/CMS are discussed in detail.

State sampling of interactive VM/370 users by W.
H. Tetzlaff, p. 164. Sampling the state of interactive
computer users of hardware and programming in a
time-sharing system leads to an understanding of
delays to users caused by contention for resources.
This paper discusses user state sampling by means
of a program called VM/Monitor on the interactive
time-sharing system, VM/370, although the method-
ology is applicable to other time-sharing systems.
Also discussed are system bottleneck detection and
secondary tuning after bottlenecks have been found.

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

Possible extensions of the technique are also pre-
sented.

Volume 18, Number 2, 1979

Computing and communications—A perspective
of the evolving environment by L. M. Branscomb,
p. 189. Telecommunications regulation is an impor-
tant public policy consideration and is presently the
topic of much debate. The author presented a tech-
nical viewpoint of this topic, particularly with regard
to possible applications and how the data processing
industry could be involved, during the Keynote Panel
Session at IEEE Compcon '78 held on September 6,
1978. His presentation is printed here.

An introduction to network architectures and
protocols by P. E. Green, p. 202. This tutorial paper
is intended for the reader who is unfamiliar with
computer networks, to prepare him for reading the
more detailed technical literature on the subject. The
approach here is to start with an ordered list of the
functions that any network must provide in tying two
end users together, and then to indicate how this leads
naturally to layered peer protocols out of which the
architecture of a computer network is constructed.
After a discussion of a few block diagrams of private
(commercially provided) and public (common carrier)
networks, the layer and header structures of SNA and
DNA architectures and the X.25 interface are briefly
described.

Public data networks: Their evolution, interfaces,
and status by J. R. Halsey, L. E. Hardy, and L. F.
Powning, p. 223. The service history of public data
networks began in 1972. Since that time the number
of such networks and the variety of services they offer
has increased and continues to do so. In this paper,
some of the networks, their characteristics, and the
international network interface recommendations are
briefly described.

SNA and emerging international standards by F.
P. Corr and D. H. Neal, p. 244. Public data networks
are now being designed and implemented to handle
the expansion of data communications. The inter-
action of Systems Network Architecture (SNA) and
the international standards now being developed is
discussed. A provisional architecture model is used
as the basis for discussion, and SNA is compared to
each level of the model.

SNA multiple-system networking by J. P. Gray and
T. B. McNeill, p. 263. Systems Network Architecture
(SNA) has evolved from an architecture that sup-
ported implementation of tree networks rooted in a
System/370 to an architecture that supports mul-
tiple-system networks with capabilities such as al-
ternate paths and parallel links. This paper describes
the major SNA enhancements that have been imple-
mented for multiple-system networks. As network
configurations have become more complex, the
problems associated with network growth, change,
failures, recovery, and flow control have required

ABSTRACTS 1962-1994 §23

solutions that permit continuous network operation.
The SNA enhancements that address these problems
are also discussed.

Routing and flow control in Systems Network
Architecture by V. Ahuja, p. 298. Systems Network
Architecture (SNA) has been enhanced to include
features that address the topological, routing, con-
gestion, reliability, and availability problems of net-
works. An important aspect of this new release of
SNA is that it allows multiple active routes between
network nodes. Multiple routing permits sessions
between network users to use alternate routes in case
of unexpected or planned route disruptions. In this
paper, the multiple routing architecture of SNA is
described.

An unrestricted data flow into the network can cause
long delays and buffer depletion. Network congestion
can be avoided by employing flow control mech-
anisms at both the local (node) and global (network)
levels. This paper focuses on global flow control and
describes the adaptive traffic-pacing “window” size
algorithm that is the basis of the global flow control
in SNA.

Evolution of a laboratory communication network
by R. S. Moore, p. 315. This paper describes the IBM
System Communications Division network and, using
that network as an example, discusses some of the
practical problems associated with providing com-
putational and communication services to remote and
local user communities.

Potential technology implications for computers
and telecommunications in the 1980s by W. D.
Frazer, p. 333. This essay looks at some future effects
on computing and telecommunications of some
countervailing technology trends. The projected time
is the mid-1980s, and the technology trends consid-
ered are those of Large Scale Integration (LSI), re-
lated storage technologies such as charge coupled
devices (CCDs) and magnetic bubbles, optical fiber
transmission systems, and satellites. The principal
focus is upon the implications of these trends for
distributed processing and computer networks.

Volume 18, Number 3, 1979

Performance analysis of complex communications
systems by H. M. Stewart, p. 356. This paper discusses
the designing of complex teleprocessing systems us-
ing a discrete simulation modeling tool, the Systems
Network Analysis Program/Simulated Host Overview
Technique (internally and informally called
SNAP/SHOT). This modeling tool aids in designing
computer commmunications systems composed of local
and remote terminals, teleprocessing lines, host
processors that control the teleprocessing lines, and
interconnected communications systems. The model
is capable of analyzing both tree- and mesh-structured
networks.

624 ABSTRACTS 1962-1994

A distributed information system study by K.
Ziegler, Jr., p. 374. This paper is a discussion of a
methodology, a distributable information system
model, and an experiment used to identify potential
problems for supporting such a system. The exper-
imental model was designed and implemented in an
evolutionary manner for the purpose of studying the
feasibility of a system with the postulated attributes.
Incentives for distribution and design of the study
introduce the two main topics—the study model itself
and the implementation of the study model. Results
of the study provide insights into such factors in
distributed information system structural design as
intercomponent communication, system control, and
recovery philosophy.

An office communications system by G. H. Engel,
J. Groppuso, R. A. Lowenstein, and W. G. Traub, p.
402. In developing a prototype of an office commu-
nications system, an office study was first done to
specify requirements for the prototype. The study
focused on the productivity of three groups of em-
ployees: principals, clerical personnel, and secre-
taries. With requirements set by the management of
the office used as a framework, application require-
ments for end users of an office communications
system were established. From a subset of these re-
quirements the prototype was developed.

The prototype system was designed as an exper-
imental learning system to provide managers and
professionals with an easy, fast, and direct method
for handling their business communications. The
prototype was set up on IBM premises for testing and
evaluation. Results of this operation are included in
the discussion.

A research perspective on computer-assisted office
work by A. M. Gruhn and A. C. Hohl, p. 432. The
integrated office system of the future that relies upon
computerized applications for most routine work will
have to be a friendly system that can be used by in-
dividuals with a minimum of training and no previous
computing experience. A discussion of the com-
puter-assisted aids to office work that have evolved
at the IBM Thomas J. Watson Research Center pro-
vides a preview of the possibilities for future office
systems based on computers. We describe tasks that
have been computerized, the environment in which
automated office applications are used, and the re-
actions of people who use the computer for routine
office work.

Automatic programming for energy management
using sensor based computers by M. J. Shah, p. 457.
An automatic programming approach has been de-
veloped for the use of sensor based computers (IBM
System/7 and Series/1) for energy management in
buildings. The purpose is to aid the facilities engineer
who is unfamiliar with programming and who re-
quires a system that can be defined by a sequence
of questions and answers. Programmers can add or
modify application source programs to extend the
system to other user-defined functions.

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

Volume 18, Number 4, 1979

An integrated approach to centralized communi-
cations network management by R. A. Weingarten,
p- 484. Recent technological advances have increased
the size and number of teleprocessing networks as
well as broadened their scope and complexity. This
added size and complexity has magnified the need
for communications network management. One ap-
proach to communications network management is
to provide centralized control which is integrated into
the Systems Network Architecture user network. This
approach is described in this paper by focusing on
two program products that provide centralized oper-
ator control and problem determination capabilities
for a network.

An operating system for distributed
processing—DPPX by S. C. Kiely, p. 507. The Dis-
tributed Processing Programming Executive (DPPX)
is a new, full-function operating system designed to
support distributed processing with the IBM 8100
Information System. The functional requirements of
distributed processing and their solutions in DPPX
are discussed. The structure of the operating system
is outlined, and its advantages are analyzed. High-
lighted are particular characteristics of the DPPX
structure that uniquely support distributed processing.

I/O facilities of the Distributed Processing Pro-
gramming Executive (DPPX) by H. R. Albrecht and
L. C. Thomason, p. 526. This paper introduces the
input/output facilities of DPPX, the Distributed
Processing Programming Executive for the IBM 8100
Information Processing System. Design requirements
and alternatives are discussed, as well as the general
structure of the services that implement the I/O fa-
cilities. Services that support specific /O resources,
such as disk storage and communication devices, are
related to the general structure. The paper considers
some of the problems in designing a general structure
to support a wide range of services, and it briefly
describes the interface architecture used to solve these
problems.

Data Management for the Distributed Processing
Programming Executive (DPPX) by A. K. Fitzgerald
and B. F. Goodrich, p. 547. The Data Management
component of the new IBM 8100 Distributed Pro-
cessing Programming Executive (DPPX) provides for
the storage and retrieval of data on disk and tape.
Its objectives are to support a broad range of functions
and be easy to use, be easily extendible, and entail
minimal cost for the user. The Data Management
component is designed to meet those objectives by
means of a layered structure, an improved concept
of device independence, and the use of catalogs.

Design of the IBM 8100 Data Base and Trans-
action Management System—DTMS by F. C. H.
Waters, p. 565. Transaction applications have spe-
cialized requirements for scheduling and data base
support. This paper describes the procedure by which
those requirements were identified during the design

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

of a data base and transaction management program
for the IBM 8100 Information System. It also pro-
vides an overview of the program structure that
evolved to satisfy the functional requirements.

Distributed processing: An assessment by H. Lorin,
p- 582. Highlighted in this technical essay are dis-
cussions of the nature of distributed systems, design
processes associated with the distribution of pro-
cessing, and the conditions under which benefits ac-
crue. The essay concentrates on some of the major
benefits expected from distributed systems so as to
provide a context in which to judge particular designs
and their benefits. Among the judgment-informing
considerations are the following: centralized man-
agement, historical relationships with on-line systems,
reliability and fail-soft, security and privacy, system
growth and capacity limitations, and fitting the system
to the organizational structure.

Volume 19, Number 1, 1980

Overview of the capacity planning process for
production data processing by L. Bronner, p. 4. An
overview of techniques available to address capacity
planning in the production data processing environ-
ment is presented. The production data processing
system is briefly described and its capacity is quan-
tified. The measurement tools, reports, and data re-
quired to implement a capacity planning program are
discussed. Modeling and prediction are placed in
perspective with the overall objectives of the capacity
planning process. Personnel (managerial and tech-
nical) and organization considerations are also dis-
cussed.

A capacity planning methodology by J. C. Cooper,
p. 28. Discussed is a capacity planning procedure
called USAGE. Various business elements to be in-
dividually measured and tracked are presented.
Outlined are methods for estimating workload
growth. Separate limits of capacity for on-line
workload and batch workload demand are discussed.
A simple graphic presentation procedure is included
to communicate the results of a study to those who
need the information for making business decisions.

System capacity and performance evaluation by
D. C. Schiller, p. 46. The performance of MVS
(Multiple Virtual Storage) systems can be predicted
for changes in workload and environment by an IBM
marketing aid informally called SCAPE (for System
Capacity and Performance Evaluation). Written in
FORTRAN, the programs use simple queuing for-
mulas with empirical modifications. Response times
for complex workloads (IMS, CICS, TSO, and batch)
through the CPU and auxiliary storage are expressed
as functions of application loads and other parameters
that define the system's environment. SCAPE can
predict the effect on performance of different CPU
models, larger memory, additional channels, addi-
tional direct-access storage, larger block sizes, and
alternate workload projections.

ABSTRACTS 1962-1994 §25

Modeling considerations for predicting perfor-
mance of CICS/VS systems by P. H. Seaman, p. 68.
Various aids and tools are used in capacity planning.
One such aid, an analytic model, is discussed in this
paper. Both the decisions made in the development
of an aid and the way the aid is used are examined.
Characteristics of a good planning aid are emphasized
with the analytic model serving as the example.

The role of detailed simulation in capacity plan-
ning by H. C. Nguyen, A. Ockene, R. Revell, and W.
J. Skwish, p. 81. A number of performance prediction
methods are available to IBM marketing personnel.
This paper describes one such method, which predicts
the effects of changes in IBM 3790 and 8100 dis-
tributed processing systems and in teleprocessing
networks. Such changes may involve system features
(such as line protocols), the introduction of new ap-
plications, or volume growth in an otherwise static
system. The technique makes use of a detailed sim-
ulator, informally called FIVE, in conjunction with
a system monitor and data analysis program. Its use
can make substantial performance information avail-
able at relatively low cost.

An MYVS tuning approach by R. M. Schardt, p. 102.
Experience contributes important knowledge in many
procedures. From the experience gained in tuning the
Multiple Virtual Storage (MVS) operating system, a
set of guidelines to help MVS installations avoid
performance problems are suggested, along with an
approach to tuning an MVS system. The guidelines
can help a performance analyst isolate the cause of
a performance problem. Not all possible problems
that might be encountered are included. It is found
that most MVS performance problems are a result
of poor workload management and are often related
to I/O activities.

A sidestream approach using a small processor
as a tool for managing communication systems by
J. R. Leach and R. D. Campenni, p. 120. The term
management implies the achievement of objectives
through effective use of resources. Management style
relates to the various approaches used in pursuit of
those same objectives. There can be various man-
agement tools contributing to an effective manage-
ment solution. In this article we will be discussing
one such tool.

This management tool reflects an approach to com-
munication systems management in which the man-
agement functions are physically separated from the
host computers driving a communications network.
These management functions are packaged on a small
IBM processor base (i.e., sidestream processor) and
designed for use in a centralized network management
center environment. The management functions in-
cluded in this sidestream processor tool relate to
problem management, change management, project
scheduling and tracking, network control, and net-
work configuration.

Systems management by R. A. Bird and C. A.
Hofmann, p. 140. Effective systems management is

626 ABSTRACTS 1962-1994

dependent on two factors—visibility of the data re-
quired for systems management and a structured,
disciplined management system to effectively utilize
this information. Discussed in this paper are two
programs to assist in dealing with these factors. These
host programs use VSAM data bases and are accessed
via CICS/VS or IMS/VS. The programs provide
applications to assist in problem management, change
management, network configuration, and problem
determination. These functional application tools are
described in terms of their content and their re-
lationships with the overall systems management
tasks.

Volume 19, Number 2, 1980

Logical distribution of applications and data by
C. T. Baker, p. 171. A distributed data processing
system is composed of a set of nodes that are inter-
dependent yet capable of operating autonomously.
This paper describes a procedure for controlling the
interdependencies and nodal autonomies with a log-
ical distribution of applications and their data. The
procedure is illustrated with data that were obtained
from an on-line operations planning and control
system at a steel mill.

Distributed processing communications software
support for operation within an SNA network by
E. S. Harrison, p. 192. The Distributed Processing
Programming Executive (DPPX) operating system
has network configuration requirements placed on it.
This paper discusses those requirements and the way
in which they are met, including those that result from
the various configurations possible with a DPPX
system. In addition, the unique way in which terminal
resources are supported in DPPX and the dynamic
approach to resource definition in the DPPX system
are described. Finally, application definition and
application usage of the network configuration ca-
pabilities of DPPX are discussed.

System contention analysis—An alternate ap-
proach to system tuning by A. Yuval, p. 208. Many
existing monitors that are intended to assist in system
tuning are based on the utilization approach which
focuses on the active time of the system resources
and activities and their users. This paper presents
an alternative approach that is based primarily on the
analysis of the contention in the system. The focus
here is on the queuing delay time of the users and
their activities when accessing the system resources.

Utilization and contention are two different ways of
looking at the system. The two approaches comple-
ment each other, yet each may serve a different pur-
pose or address different performance objectives. A
prototype monitor was implemented on MVS (Mul-
tiple Virtual Storage) to produce the information
necessary to continue investigations in contention
analysis.

Data base security: requirements, policies, and
models by C. Wood, E. B. Fernandez, and R. C.
Summers, p. 229. This paper surveys some aspects

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

of data base security, with emphasis on basic princi-
ples and ways to express security requirements. Se-
curity policies and theoretical models are considered
in detail, and the models are used to compare the
security features of some data base management
systems.

The IPS cryptographic programs by A. G. Konheim,
M. H. Mack, R. K. McNeiil, B. Tuckerman, and G.
Waldbaum, p. 253. Cryptographic methods of data
protection have taken on new importance as com-
puters have become faster and as strong cryptographic
algorithms, such as the Data Encryption Standard
(DES), have become available. But a standard
encipherment technique is only the first step in ap-
plying cryptography in a computing center. This
paper discusses the Information Protection System
(IPS), a set of cryptographic application programs
designed to use the DES algorithm in a working
computing center. In designing IPS, several important
augmentations of DES were formulated. IPS was first
implemented to help increase computing-center se-
curity at the IBM Thomas J. Watson Research Center
and is now widely installed at other IBM locations.
IPS is not an IBM product and is not available for
use outside IBM, but many cryptographic techniques
in IPS were incorporated into the IBM cryptographic
products announced in 1977.

Volume 19, Number 3, 1980

Interactive graphics today by R. S. Burchi, p. 292.
Mapped out is the field of interactive computer
graphics technology. The author surveys the range
of applications from the visual arts to the visualization
of theoretical mathematical models to the simulation
of aircraft and ship navigation. Hardware and soft-
ware are explored. Also outlined are interactive
graphics data bases, data structures, and proposed
standards that apply to them.

Software architecture for graphical interaction by
D. L. Weller, E. D. Carlson, G. M. Giddings, F. P.
Palermo, R. Williams, and S. N. Zilles, p. 314. Point-
ing at items on a graphics display is one of the most
useful methods of interacting with a system graph-
ically. This paper examines existing graphical sup-
port and lists requirements for high-level support of
graphical interaction. The architecture of a prototype
system with high-level support for graphical inter-
action is presented. This includes database support
for manipulating graphical data and device-
independent graphical support based on a proposed
standard for graphical interaction. Algorithms are
presented for identifying items selected from a display
by the user. Inclusion of a database management
system in graphical software support is shown to be
helpful in meeting the requirements of interactive
graphical application programs.

Architecture of the IBM 3277 Graphics Attach-
ment by D. F. McManigal and D. A. Stevenson, p.
331. The IBM 3277 Graphics Attachment is an
interactive computer graphics workstation using a

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

dual-screen concept. A storage display monitor is
attached to an IBM 3277 Display Station, the com-
bination providing low-cost, moderate-performance
interactive graphics. This paper describes the archi-
tecture of the Graphics Attachment, both functional
structure and rationale. Nonarchitectural character-
istics are also considered.

Experimental page makeup of text with graphics
on a raster printer by B. J. Shepherd, p. 345. The
economic advantages of printing internal-use docu-
ments on a raster printer have usually been limited
to purely numeric and text documents. This paper
describes an experimental character-graphic art pro-
gram that demonstrates the potential of the IBM 3800
for printing a restricted set of character-graphic art
documents. A special character set is outlined, as
well as an algorithm that selects those characters from
the set that best approximate any straight line. This
character-graphic algorithm permits line art to be
included in formatted text documents. There is no
manual artwork or paste-up in the document output.
The artwork for this paper has been reproduced from
material printed by the technique discussed, although
the body text has been reset from the 3800 output.

A high-resolution computer graphics system by S.
W. Handelman, p. 356. Discussed are a graphics
system and a high-resolution printer that provide
scientists with a means of producing camera-ready
text and graphics. This paper describes techniques
for producing three types of graphics: halftone pic-
tures, line drawings, and solid-filled areas. An
overview of the software system is also presented.

An APL approach to presentation graphics by W.
H. Niehoff and A. L. Jones, p. 367. Producing data in
pictorial form is a type of computer graphics appli-
cation known as presentation graphics. One approach
that has been used for this type of graphics is a
graphic support package using APL as the command
language. Here discussed is the evolution of this
approach up to its currently available forms.

A graphic interactive application monitor by J.
H. Bleher, P. G. Caspers, H. H. Henn, and K.
Maerker, p. 382. The development of interactive
graphic application programs, designed for fast re-
sponse, high productivity, and moderate system load,
is difficult and time-consuming. Therefore, a struc-
tured approach has to be employed using function
distribution in system design and application support
program development.

This paper describes a comprehensive interactive
graphic system that provides an environment for de-
velopment and execution of graphic applications. It
features an interactive graphic command language, a
hierarchical structure of system, semantics, and stor-
age, a set-oriented data concept, and library facilities.

Volume 19, Number 4, 1980

The management of software engineering, Part I1:
Principles of software engineering by H. D. Mills,

ABSTRAGTS 1962-1994 §27

D. 414. Software engineering may be defined as the
systematic design and development of software
products and the management of the software process.
Software engineering has as one of its primary ob-
jectives the production of programs that meet spec-
ifications, and are demonstrably accurate, produced
on time, and within budget. This paper in five parts
discusses the principles and practices used by the IBM
Federal Systems Division for the design, develop-
ment, and management of software.

The general principles of software engineering are
set forth in Part I, in which the author relates software
engineering to the whole field of the system devel-
opment process—system engineering, hardware en-
gineering, software engineering, and system
integration. Presented briefly are overviews of the
major aspects of software engineering—design, de-
velopment, and management.

The management of software engineering, Part I1:
Software engineering program by D. O'Neill, p. 421.
Part II, on the software engineering program, deals
with the architecture of the new discipline. Discussed
is the underlying concept of the software development
life cycle. Based upon this foundation are a series
of formally documented practices that set forth the
specifics of software design, development, and man-
agement methods, which are presented in this paper.
Also presented is an educational program whereby
this discipline with its principles and practices has
been made teachable.

The management of software engineering, Part
III: Software design practices by R. C. Linger, p.
432. Part TII, on software engineering design prac-
tices, deals with activities bounded by requirements
definition on one side and program implementation
on the other. Three levels of design practices are
defined, dealing with construction and verification
of software systems, modules within systems, and
individual programs. At each stage, a new level of
mathematical rigor and precision for creating and
evaluating software designs is introduced.

The management of software engineering, Part IV:
Software development practices by M. Dyer, p. 451.
Part IV, on software engineering development prac-
tices, discusses a methodology for translating designs
into software products. The subject is treated under
two main headings, code management and integration
engineering. These are rigorous methods for building
the parts and integrating them into the whole software
product that meets the design specifications.

The management of software engineering, Part
V: Software engineering management practices
by R. E. Quinnan, p. 466. Part V deals with the
management of software engineering, which is pri-
marily the intellectual control of the whole software
engineering process. Intellectual control is brought
about by a technical review strategy, a cost manage-
ment approach, and a project environment for effec-
tive software development.

628 ABSTRACTS 1962-1994

Application development system: The software
architecture of the IBM Health Care
Support/DL/I-Patient Care System by D. J.
Mishelevich and D. Van Slyke, p. 478. Application
development productivity is a broad-based concern.
A system answering this concern is the IBM Health
Care Support/DL/I-Patient Care System announced
by IBM in late 1977. The system is of general im-
portance because its application development system
architecture is not application specific and thus can
be used for the rapid development of many types of
on-line systems. It has an elegant simplicity, and it
uses the standard facilities of such operating system
components as CICS/VS and DL/I. The application
productivity has been clearly and successfully dem-
onstrated in the real working environment of the
Dallas County Hospital District (Parkland Memorial
Hospital) and other sites. This paper provides an
architectural overview followed by a description with
an example of CRT (cathode ray tube) screen and
print format design and coding and an examination
of a data collection list to demonstrate the power of
that facility.

A system for constructing linear programming
models by S. Katz, L. J. Risman, and M. Rodeh, p.
505. The use of linear programming is impeded by
the effort required to express a model as a matrix and
to collect and handle data. An experimental interac-
tive system called LPMODEL simplifies the devel-
opment of linear programming models. It frees the
user from the necessity of expressing the model as
a matrix. LPMODEL provides a nonprocedural lan-
guage for constructing a model in terminology that
is natural to the problem, using ordinary algebraic
expressions. With this language, the user can express
a model concisely by generic constraints which the
system interprets in conjunction with a data base to
generate a concrete model for optimization.

The design of the system and its terminology and data
base subsystems are discussed. An informal de-
scription is given of the modeling language which
involves both ordinary arithmetic operations and
symbolic operations with associated semantics. Ex-
perience with the system in agricultural modeling is
described.

The Modular Application Customizing System by
R. D. Gordon, p. 521. A system for generating ap-
plication program packages for use on small com-
puters can produce both questionnaire-tailored
packages for individual users and standard packages
for general distribution.

GREENPRINT: A graphic representation of
structured programs by L. A. Belady, C. J.
Evangelisti, and L. R. Power, p. 542. To improve the
readability of programs over existing techniques, a
new program representation termed GREENPRINT
has been developed and is discussed in this paper.
GREENPRINTS (the name taken from the phosphor
fluorescence of certain display terminals and paral-
leling the term blueprints) are tree-structured dia-
grams together with source code statements that

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

represent the control structure of programs. Dis-
cussed in this paper are the diagramming conventions,
control flow methodology, presentation graphics, and
practical experience with GREENPRINTS.

Volume 20, Number 1, 1981

Electronic information interchange in an office
environment by M. R. DeSousa, p. 4. This paper
describes an architectural approach that provides in-
formation interchange across a broad spectrum of user
applications and office automation offerings. Some
of the architectures described herein are currently
implemented in existing IBM products. These and
other architectures will provide the basis for docu-
ment interchange capability between products such
as the IBM 5520 Administrative System, the IBM
System/370 Distributed Office Support System
(DISOSS), and the IBM Displaywriter System.
Specifically described is a document distribution ar-
chitecture and its associated data streams. Transforms
can be utilized to interchange between these data
streams and others.

A general overview of the architectures as opposed
to a detailed technical description is provided. The
architectures described are protocols for interchange
between application processes; they do not address
the specific user interface. The document distribution
architectures utilize SNA for data transmission and
communications control facilities.

A primer on relational data base concepts by G.
Sandberg, p. 23. Basic concepts of relational data base
management systems are described. Characteristics
of the relational approach are identified and compared
with present implementations of hierarchical and
network data base systems. Depending on the ap-
plication, a user may experience one or more of the
following benefits of relational systems described in
this paper: ease of understanding, increased data in-
dependence, ease of use, sound theoretical basis, and
generalized data definition. Types of applications
most suited to hierarchical and network data base
systems are also compared and contrasted.

System R: An architectural overview by M. W.
Blasgen, M. M. Astrahan, D. D. Chamberlin, J. N.
Gray, W. F. King, B. G. Lindsay, R. A. Lorie, J. W,
Mehl, T. G. Price, G. R. Putzolu, M. Schkolnick, P.
G. Selinger, D. R. Slutz, H. R. Strong, I. L. Traiger,
B. W. Wade, and R. A. Yost, p. 41. System R is an
experimental data base management system that was
designed to be unusually easy to use. System R
supports a high-level relational user language called
SQL, which may be used by ad hoc users at terminals
or by programmers as an imbedded data sublanguage
in PL/I or COBOL. This paper describes the overall
architecture of the system, including the Relational
Data System (RDS) and the Research Storage System
(RSS).

RDS is a data base language compiler. Host language
programs with imbedded SQL statements are com-
piled by System R, which replaces the SQL state-

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

ments with calls to a machine-language access
module. The compilation approach removes much
of the work of parsing, name binding, and optimiza-
tion from the path of a running program, enabling
highly efficient support for repetitive transactions.
In contrast, the RSS is a low-level DBMS, supporting
simple record-at-a-time operators, but with rather
sophisticated transaction management, recovery, and
concurrency control.

Processor, I/O path, and DASD configuration ca-
pacity by J. B. Major, p. 63. This paper extends a
particular capacity planning approach to include us-
age accounting by business element of Input/Output
path and Direct Access Storage Device resources.
A simple nonlinear procedure is outlined to size host
configurations that can process workloads at specified
rates. An important feature of the procedure is to take
account of a law of diminishing returns, which is that
doubling the number of components does not double
the amount of work done. Discussed are configura-
tion relationships involving TSO and DB/DC sub-
system sizing, tuning, workload variability, data
considerations, and hardware and software consider-
ations. Typical, but hypothetical, examples are pre-
sented.

User-definable software applied to a real-time
ambient air quality monitoring system by P.
Halpern and J. W. Rettberg, p. 86. With increased
tightening of air quality regulations, more systems
for monitoring air quality became necessary. The
greater use of such systems further stimulated the
development of sensor-based systems that require less
programming effort. The goal was to have a practical,
real-time system with the ability to change the con-
figuration of the sensors without extensively modi-
fying the associated software. Described is a
prototypical system that avoids the necessity of re-
programming every time sensors are changed.

Volume 20, Number 2, 1981

Procedures of the Human Factors Center at San
Jose by R. S. Hirsch, p. 123. The work performed at
the Human Factors Center located at IBM's devel-
opment facility in San Jose, California, is represen-
tative of human factors work being done by groups
of human factors specialists throughout IBM. A few
of the projects that the Center was involved with are
described as examples to show how human factors
concerns are studied in the development of products
and systems. The examples were selected to indicate
the broad nature of the problems studied and include
hardware and software areas. The complete scientific
techniques used in the projects are not discussed in
this paper so that the focus of discussion will be on
the nature, scope, and methodology of the human
factors work. The computing and data collection
systems used for human factors tests are briefly dis-
cussed.

Effects of manual style on performance in educa-
tion and machine maintenance by J. M. Judisch,

ABSTRACTS 1962-1994 §29

B. A. Rupp, and R. A. Dassinger, p. 172. Discussed
is a study of human factors that was designed to
measure the time to perform maintenance using two
types of manuals (format) presented in two media
types, for a total of four conditions. The types of
manuals were the then-current Field Engineering
Maintenance Manual (FEMM) and Field Engineering
Theory of Operation Manual (FETOM) in both hard
copy and microfiche, and a new Graphic Integrated
Manual (GIM) covering the same subject matter, also
in hard copy and microfiche. The objective of the
study was to compare performance in solving prob-
lems on an electromechanical machine, the IBM 5424
Multi-Function Card Unit, through the use of standard
and graphic integrated manuals in both hard copy and
microfiche for that machine. Test results are analyzed
and conclusions are presented. The general conclu-
sion is that the new graphic integrated manuals in
hard copy format lead to better performance both in
education and on the job.

Natural language programming: Styles, strategies,
and contrasts by L. A. Miller, p. 184. College students
who were not familiar with computers were asked to
produce written natural language procedural in-
structions as directions for others to follow. These
directions were solutions for six file-manipulation
problems that also could reasonably be solved by
writing computer programs. The written texts were
examined from five points of view: solution correct-
ness, preferences of expression, contextual referenc-
ing, word usage, and formal programming languages.
The results provide insight both on the manner in
which people express computer-like procedures “na-
turally” and on what features programming languages
should include if they are to be more “natural-like.”

Human factors in the development of a family of
plant data communication terminals by M.
Ominsky, p. 216. Developing a set of terminals for
users who had no computer experience and whose
normal jobs could not be subject to interference in-
volved human factors. Most of the design work fo-
cused on the keyboard and display interfaces of the
terminals. Studies were made, alternative designs
were considered, and tests were performed to ensure
that the equipment was easy to use and provided
acceptable speed and accuracy.

Human factors in communication by J. C. Thomas
and J. M. Carroll, p. 237. One way of conceptualizing
many of the human factors issues in interactive
computing is as issues in communication about
computers. Presented are a framework for this con-

ceptualization and a review of research addressed to

several levels of the communication process. Com-
munication as an ill-structured design process is an-
alyzed and contrasted with a process of algorithmic
encoding and decoding. The design framework is
then applied to examinations of how people name
and refer to entities, how people understand and ex-
press relations (quantifiers and other predicates) be-
tween entities, how more complex communications

630 ABSTRACTS 1962-1994

(business letters) are created, and how preprinted
forms reflect previous knowledge.

Volume 20, Number 3, 1981

Software simulation as a tool for usable product
design by 1. A. Clark, p. 272. A design exercise per-
formed by human factors specialists is described. In
this exercise a front-of-screen simulation of the
Interactive Chart Utility was written before a working
prototype was available in order to draft and test a
series of on-line instructional (HELP) panels for in-
corporation into the final product. Trials were run
in which the keyboard activity and utterances of naive
subjects were recorded for later action replay, before
and after redrafting the simulation. Three objective
measures to detect the resulting improvement are
considered, and the most robust identified.

Improving system usability for business profes-
sionals by G. A. Helander, p. 294. As businesses in-
crease their emphasis on productivity, data processing
departments face rising demand for computer services
from people with no data processing training or
background. To be effective, these services must be
easy to use. This article discusses some usability
considerations and how they were applied in devel-
oping an end user system. It relates experiences and
observations in developing a system that is marketed
in Canada under the name Interactive Extension Fa-
cilities. This system is an extension to VM/370 and
CMS and was developed by the IBM Canada Limited
Laboratory (Toronto) to enhance the ability of busi-
ness professionals to do their work without becoming
data processing specialists.

Improving the usability of programming publica-
tions by F. J. Bethke, W. M. Dean, P. H. Kaiser, E.
Ort, and F. H. Pessin, p. 306. This paper summarizes
the work of a study group on ways to improve the
usability of publications that support programming
products. Task orientation, an approach to providing,
organizing, and packaging information, is covered,
together with innovations to improve the usability
of programming publications: ease-of-use education,
measurement of user opinion, and incorporating us-
ability into the publications development process.

A system for the automated office environment
by P. C. Gardner, Jr., p. 321. A review of the history
of an office system application is presented, high-
lighting the learning process that took place during
its evolutionary development. This office system has
served as the basis for a PRPQ (customized program)
recently announced by IBM and known as the Pro-
fessional Office System (PROFS). The general ap-
plication architecture is discussed, with a specific
focus on the use of virtual machines. Functional
details of the various components are described, and
the key distinction between office systems and office
automation is addressed. The paper also discusses
usage of the system and points up some of the benefits
being realized by current users of a prototype system
in IBM. The application function review details the

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

electronic document distribution capabilities of the
system.

Capacity analysis of the Mass Storage System by
P. N. Misra, p. 346. Performance of the IBM 3850
Mass Storage System (MSS) is analyzed with a view
toward workload planning. Simple analytical models
are discussed. The notion of staging capacity of the
MSS is defined and analyzed. The main result is a
set of staging capacity curves that define the pro-
cessing ability of the MSS to stage and destage data
to support concurrent execution of the user programs.

Volume 20, Number 4, 1981

A perspective on software science by K.
Christensen, G. P. Fitsos, and C. P. Smith, p. 372.
This paper provides an overview of a new approach
to the measurement of software. The measurements
are based on the count of operators and operands
contained in a program. The measurement method-
ologies are consistent across programming language
barriers. Practical significance is discussed, and areas
are identified for additional research and validation.

System Productivity Facility by P. H. Joslin, p. 388.
This paper discusses the purpose and design of a
program called the System Productivity Facility
(SPF). Perspective is provided by means of a brief
summary of the earlier Structured Programming Fa-
cility (also termed SPF) and the requirements that led
to a transformation of the earlier program into a new
cross-system dialog manager. The new control fa-
cilities are explained to illustrate how the dialog
manager supports a wide variety of interactive ap-
plications. Ways in which application development
is simplified in the areas of data handling and display
processing are explored. The purpose of the new table
and file tailoring services is explained, and the error
recovery philosophy is described.

Interactive user productivity by A. J. Thadhani, p.
407. Interactive user productivity is a measure of ef-
fective communication between man and the com-
puter. Explored in this paper is the relationship
between computer response time and user perfor-
mance, and the separation of user cost from system
cost. Strategies for effectively managing installations
are presented and discussed.

The VM/370 Resource Limiter by D. M. Chess and
G. Waldbaum, p. 424. The VM/370 Resource Limiter
(RESLIM), a facility available on the computer sys-
tems of the IBM Thomas J. Watson Research Center,
enables users, user management, and the site's Com-
puting Center to monitor and control usage of various
computing resources. If a user's consumption of a
particular resource exceeds a previously established
limit, RESLIM takes actions designed to improve
system performance and resource availability. Pos-
sible actions include degrading the user's priority,
forcing the user off the system, or simply sending a
warning message to the user and/or other VM users.

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

Volume 21, Number 1, 1982

Strategies for information requirements determi-
nation by G. B. Davis, p. 4. Correct and complete
information requirements are key ingredients in
planning organizational information systems and in
implementing information systems applications. Yet,
there has been relatively little research on information
requirements determination, and there are relatively
few practical, well-formulated procedures for ob-
taining complete, correct information requirements.
Methods for obtaining and documenting information
requirements are proposed, but they tend to be pre-
sented as general solutions rather than alternative
methods for implementing a chosen strategy of re-
quirements determination.

This paper identifies two major levels of require-
ments: the organizational information requirements
reflected in a planned portfolio of applications and
the detailed information requirements to be imple-
mented in a specific application. The constraints on
humans as information processors are described in
order to explain why “asking” users for information
requirements may not yield a complete, correct set.
Various strategies for obtaining information require-
ments are explained. Examples are given of methods
that fit each strategy. A contingency approach is then
presented for selecting an information requirements
determination strategy. The contingency approach
is explained both for defining organizational infor-
mation requirements and for defining specific, de-
tailed requirements in the development of an
application.

Business Systems Planning and Business Infor-
mation Control Study: A comparison by J. A.
Zachman, p. 31. Business Systems Planning (BSP)
and Business Information Control Study (BICS) are
two information system planning study methodol-
ogies that specifically employ enterprise analysis
techniques in the course of their analyses. Underlying
the BSP and BICS analyses are the data management
problems that result from systems design approaches
that optimize the management of technology at the
expense of managing the data. In comparing BSP
and BICS, five similarities and five differences are
selected for discussion, and, finally, the strengths and
weaknesses of each methodology are noted. The
choice between using one or the other methodology
is strongly influenced by the immediate intent of the
study sponsor, tempered by the limiting factors cur-
rently surrounding the BICS methodology.

Supporting Business Systems Planning studies
with the DB/DC Data Dictionary by J. G. Sakamoto
and F. W. Ball, p. 54. Traditionally, Business Systems
Planning (BSP) studies have been conducted using
manual techniques. This paper describes one ap-
proach for computer assistance to such a study. The
Extensibility facility of the IBM DB/DC Data Dic-
tionary is shown to satisfy the requirements for the
capturing of and subsequent reporting on BSP study
data. The possibility of extending this approach to
follow-on software development activities is dis-

ABSTRACTS 1962-1994 B31

cussed. General overviews of the Business Systems
Planning methodology and the IBM DB/DC Data
Dictionary are also provided.

Towards an integrated development environment
by P. S. Newman, p. 81. Problems of application-
system cost, control, and effectiveness can best be
addressed by highly consistent development and ex-
ecution environments. This paper examines some
relevant new approaches (systems description lan-
guages, new data models, application generators, and
very-high-level languages), discusses the need for
additional integration, and outlines a particular inte-
gration direction. This direction is intended to illus-
trate both the kind of consolidation needed and some
of the problems involved.

Enterprise information analysis: Cost-benefit
analysis and the data-managed system by M. M.
Parker, p. 108. Enterprise information analysis studies
have highlighted a gradual change in the data and
information processing environment—a change in
systems design and implementation from stand-alone,
application-oriented systems, supporting primarily the
operational and functional management levels, to
data-base-oriented, data-managed systems, supporting
the total organization. This shift has made many of
the “traditional” financial analysis techniques used
to justify a proposed system inadequate. Although
a management study team that is developing an in-
formation systems proposal can choose from a variety
of enterprise information analysis methodologies to
assist them in the analysis of information needs, no
such choice of associated (and generally accepted)
disciplines or methodologies exists to support the fi-
nancial justification of what has been proposed in the
study team report. This paper explores the problems
associated with moving from a ‘“traditional” (data
processing) financial justification of a system that is
based largely on measurable costs and benefits to a
financial justification of a system based largely on
an assessment of intangible costs and benefits, tech-
nological change, and risk and uncertainty. A
taxonomy is provided which can be used to supple-
ment the value analysis found in the Business Systems
Planning methodology. Extensive references are in-
cluded as a guide to supplementary reading.

Volume 21, Number 2, 1982

Management considerations for an Information
Center by L. W. Hammond, p. 131. This paper dis-
cusses what should be done in setting up an Infor-
mation Center as part of an Information Systems
group within a business organization. The Informa-
tion Center is defined, including a user's viewpoint.
Three key areas—the mission, organization and po-
sition, and staffing—are addressed. A procedure on
how to initiate the center is presented. In general,
the paper shows what an Information Center envi-
ronment can be and how it might fit into a business
organization.

632 ABSTRACTS 1962-1994

How data flow can improve application develop-
ment productivity by W. P. Stevens, p. 162. This
paper presents the technique of data flow and how
it can substantially improve application development
productivity. Flows of data are the only connections
needed between functional components of a computer
program. Components which pass only data are so
independent that they can easily be shared and reused.
Such components can be developed independently,
which substantially reduces the complexity of de-
velopment and makes them much easier and faster
to design, implement, test, and change. Building
programs in this way can yield substantial increases
in productivity over developing monolithic programs
or even structures of called modules. The compat-
ibility of data flow to natural human views of appli-
cations and other parts of data processing, such as
distributed processing and high-performance archi-
tectures, is also presented. Recommendations are
included.

SNA flow control: Architecture and implementa-
tion by F. D. George and G. E. Young, p. 179. To
allow better network utilization, Systems Network
Architecture (SNA), the IBM data communications
architecture, includes flow control procedures to
guard against data overrun to devices and to prevent
network congestion. The measurement of “con-
gestion” used by SNA to regulate traffic flow is
performed by various SNA products. This paper
describes the flow control protocols in SNA and the
implementation of these protocols in the Network
Control Program (ACF/NCP/VS Release 3).

Technique for assessing external design of soft-
ware by R. J. Pearsall, p. 211. Discussed is a meth-
odology of creating and using scenarios to assess
completeness, correctness, consistency, and usability
of the external design of computer software. Sce-
narios are paper tests of the specifications of software
being designed. The approach is an outside-in,
user-oriented evaluation of programs. The technique
requires no machine time to perform the evaluation.
As a result, defects are identified and changes are
recommended early in the design phase of software
development, at the time when defect removal costs
are lowest.

The Document Interchange Architecture: A
member of a family of architectures in the SNA
environment by T. Schick and R. F. Brockish, p. 220.
A wide variety of products for the office is now
available, permitting increased automation of office
procedures. To realize their full potential, these
products must be able to exchange information and
control requests with one another. A family of ar-
chitectures has been defined to satisfy this need. This
paper provides an overview of this family of archi-
tectures, including their relationship to one another.
One member of this family, the Document Inter-
change Architecture, is described in some detail.
An example illustrates use of the family of architec-
tures in an office environment.

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

Volume 21, Number 3, 1982

JANUS: An interactive document formatter based
on declarative tags by D. D. Chamberlin, O. P.
Bertrand, M. J. Goodfellow, J. C. King, D. R. Slutz,
S. J. P. Todd, and B. W. Wade, p. 250. This paper
describes the architecture of an experimental docu-
ment composition system named JANUS, which is
intended to support authors of complex documents
containing mixtures of text and images. The JANUS
system is highly interactive, providing authors with
immediate feedback and direct electronic control over
page layouts, using a special two-display workstation.
Authors communicate with the system by marking
up their documents with high-level descriptive
“tags.” A tag definition language is provided whereby
new tags may be defined and the format of each
tagged object may be controlled.

Office-by-Example: A business language that
unifies data and word processing and electronic
mail by M. M. Zloof, p. 272. The age of the nonpro-
grammer user of computing systems is at hand,
bringing with it the special need of persons who are
professionals in their own right to have easy ways
to use a computing system. Through the program-
ming language discussed in this paper, executives and
other office personnel can perform data and word
processing and communications via terminals. This
language, called Office-by-Example, provides rich
and powerful access to the computing system com-
putation, data base, communication, and display fa-
cilities. Discussed and illustrated by examples are a
two-dimensional screen editor, triggers, and data
bases, as well as word processing, electronic mail,
customized menus, and application development.

The EPISTLE text-critiquing system by G. E.
Heidorn, K. Jensen, L. A. Miller, R. J. Byrd, and M.
S. Chodorow, p. 305. The experimental EPISTLE
system is intended to provide “intelligent” functions
for processing business correspondence and other
texts in an office environment. This paper focuses
on the initial objectives of the system: critiquing
written material on points of grammar and style. The
overall system is described, with some details of the
implementation, the user interface, and the three
levels of processing, especially the syntactic parsing
of sentences with a computerized English grammar.

OPAS: An office procedure automation system by
V. Y. Lum, D. M. Choy, and N. C. Shu, p. 327. This
paper discusses an experimental system being de-
veloped to support office automation. The emphasis
of the paper is on a technology that allows people to
automate their office and business activities. Spe-
cifically, using forms as the interface, the authors
propose a powerful data manipulation and restruc-
turing facility that not only allows users to extract
and manipulate data in the forms, but can be used to
interface between new and existing applications as
well.

Since business and office procedures are not discrete
activities, but a structured sequence of activities, a

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

means to define and execute procedures is required.
Such a means is described in this paper along with
its model and an example of its application.

A case study of office workstation use by C. V.
Bullen, J. L. Bennett, and E. D. Carlson, p. 351. This
paper describes the use of the Office Analysis
Methodology to study a research office environment
in order to determine requirements for an advanced
office workstation. The research site environment is
unique in providing an opportunity to observe a na-
tural growth pattern in the use of advanced technol-
ogy. Specific workstation requirements are identified
and are being implemented. Interesting observations
are reported in the following areas: categories of
secretarial work, use of existing workstations, influ-
ence of a community of users, access to shared ser-
vices, and effects on productivity and organizational
behavior.

Volume 21, Number 4, 1982

The design rationale of the System/38 user inter-
face by J. H. Botterill, p. 384. This paper is a dis-
cussion of the rationale behind the design of the
software user interface of the System/38. It presents
the design approaches used to produce a highly usable
interactive system. The three primary system user
interfaces are also presented, showing how the ap-
proaches were used in their design.

How a computer should talk to people by M. Dean,
p. 424. This essay deals with a very down-to-earth
topic: the things computer programs or systems say
to people—in particular, computer messages for us-
ers. It is the product of the author's experience as a
programmer and technical writer and editor. It puts
together a lot of common-sense insights into the
philosophy of creating good computer messages, how
people think and feel around computers, how to an-
alyze the situations in which people need a message,
what to say in a message and how to say it, why
imagination is invaluable for creating and evaluating
messages, what technical questions must be answered
in order to design and build a program or system that
can talk effectively to people.

Analytic quening model for CICS capacity plan-
ning by M. Deitch, p. 454. In recent years there has
been a growing need to develop techniques and tools
for computer installation capacity planning. This
paper presents both a tool, in the form of an analytic
queuing model, and a methodology for performance
analysis and capacity planning. Although general in
its approach, the model was developed specifically
for the CICS/VS environment.

Modeling distributed processing across multiple
CICS/VS sites by R. D. Acker and P. H. Seaman, p.
471. Modeling is a useful method to aid a planner in
designing the interconnection of a number of systems
for distributed data processing. In the implementation
in this paper, a computer-based model for sites using
CICS/VS is discussed. The model permits the system

ABSTRACTS 1962-1984 633

definition to be adjusted, taking into account such
aspects as the number of sites. their interconnections,
and workloads, so that a satisfactory configuration
can be obtained.

IMS/VS: An evolving system by J. P. Strickland,
P. P. Uhrowczik, and V. L. Watts, p. 490. The Infor-
mation Management System, IMS, began in the
mid-1960s as a batch-only data base system that was
known then as Data Language/I (DL/I). IMS was
introduced in 1969 as IMS/360, a program product
for the System/360. As the System/360 evolved into
System/370, including support for virtual storage, the
operating system evolved into OS/VSI, OS/VS2, and
then MVS. At the same time, IMS evolved to become
IMS/VS. The Information Management System has
continued to be adapted to new requirements, espe-
cially those of interactive, on-line operations that re-
quire data communications. Recent advances in the
following categories of IMS/VS functions are dis-
cussed in this paper: Fast Path, Data Sharing, System
Logging, Data Base Recovery Control, on-line
changes in system environment, Intersystem Com-
munications, MVS Common Services Area usage,
and architectural restructuring.

Volume 22, Numbers 1/2, 1983

A perspective on communications and computing
by A. L. Scherr, p. 5. Presented is an essay on the
dynamics of the relationships between communi-
cations and computing. Movement of computer ap-
plications from the back office to the front office,
from batch to on-line data processing, is illustrated
and conclusions are drawn regarding communications
protocols, network management, application and data
base design, and system generality. The influence
and requirements of several new technologies are
presented, including those of microprocessors and
teleconferencing.

X.25 and related recommendations in IBM prod-
uets by G. A. Deaton, Jr. and R. O. Hippert, Jr., p.
11. This paper describes IBM's use of Recommen-
dation X.25 and related recommendations of the
International Telegraph and Telephone Consultative
Committee. After reviewing the development history
of X.25 and some of the motivations for using it, the
paper gives an overview of packet-switched data
networks. The reader is then given a brief technical
description of Recommendation X.25 and some other
recommendations used in conjunction with X.25.
The architectural relationships between X.25 and
IBM's Systems Network Architecture (SNA) are de-
scribed for packet-switched X.25 connections be-
tween SNA and non-SNA nodes. Specific elements
of Recommendation X.25 used in SNA nodes are
defined. After several IBM products that support
X.25 and some of the related recommendations are
described, IBM's equipment for testing the X.25
interface is discussed.

Teletex—A worldwide link among office systems
for electronic document exchange by D. J. Moore,

634 ABSTRACTS 1962-1994

p. 30. Teletex is a new international telecommuni-
cation service that provides direct electronic docu-
ment exchange between such office text machines
as electronic typewriters and word processors that
are equipped with transmitting and receiving storages.
Teletex is an international standard aimed at inte-
grating office products and worldwide telecommuni-
cation. It represents a major step in the development
of the office of the future. This paper traces the de-
velopment of Teletex, describes its characteristics,
and looks at how this service may be extended in the
future.

A token-ring network for local data communi-
cations by R, C. Dixon, N. C. Strole, and J. D. Markov,
p. 47. Technical innovations such as large-scale in-
tegrated circuit technology and distributed operating
systems have respectively reduced the cost of com-
puting and provided a basis for large networks within
the confines of a single building or cluster of
buildings in close proximity to one another. Local
area networks can provide a systematic approach for
interconnecting personal workstations, control units,
and central processing units, thereby providing a
means for these machines to pass information from
one to the other. This paper describes a local area
network based on the fundamental concepts of a
token-ring. Two main ideas are presented. The first
idea concerns the physical topology of the wiring
network and its star-ring organization. Next, the
logical data flows are overlaid on the physical net-
work to provide control procedures for exchanging
data through the network. The resulting system has
unique features that produce a local area network
with good performance and reliability characteristics.

Reflections on VM/Pass-Through: A facility for
interactive networking by N. Mendelsohn, M. H.
Linehan, and W. J. Anzick, p. 63. VM/Pass-Through,
an interactive networking facility, has gained wide-
spread acceptance within IBM and with IBM cus-
tomers. Pass-Through allows a single terminal access
to many different computers, including those at dis-
tant locations. In building Pass-Through, and in ob-
serving its growing use, we have had an opportunity
to study the practical implications of this facility and
of our approach to its design.

This paper is divided into two parts. The first, an
introduction to Pass-Through networking, describes
features of the system, supported configurations, and
use of Pass-Through within the IBM Corporation.
A brief history of Pass-Through's development is also
provided. In the second part of the paper, Pass-
Through is used to motivate a technical discussion
of interactive network technology and virtual machine
subsystems. Topics covered include appropriate use
of the virtual machine environment, choice of routing
strategy, and performance considerations. Although
the introductory portions of the paper presume no
prior knowledge of computer network or operating
system technology, the subsequent technical dis-
cussions do depend on a basic understanding of these
areas.

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

A Satellite Communications Controller by J. W.
Fennel, Jr. and B. D. Gobioff, p. 81. A satellite
communications controller, which is a component of
satellite earth stations, establishes a time division
multiple access structure that provides flexibility and
efficiency in the use of satellite transmission capacity.
The controller blends digital, computer, and com-
munications technology to establish precise timings
required for system synchronization. It also performs
signal conversion and switching necessary to transmit
voice and business machine traffic over the satellite.
This paper discusses a particular satellite communi-
cations system and the architecture and implementa-
tion of the satellite communications controller.

Series/1-based videoconferencing system by D.
Anastassiou, M. K. Brown, H. C. Jones, J. L. Mitchell,
W. B. Pennebaker, and K. S. Pennington, p. 97. Dis-
cussed is a new videoconferencing system that has
been developed and deployed at several IBM lo-
cations. This system transmits high-quality mono-
chrome, freeze-frame images over dial-up telephone
lines between two (or three) dedicated video-
conferencing rooms. There are two main system
components. An IBM Series/1 provides control,
communication, data compression, and storage, and
Grinnell GMR-270 image processing display system
implements image acquisition, processing, and video
buffering functions. Conference participants may
choose either a basically black and white rendering
of an image for fast transmission or a continuous-tone
rendering with a longer transmission time. Details
are given regarding the system configuration, func-
tion, and operation.

NIL: A high-level language for distributed systems
programming by F. N. Parr and R. E. Strom, p. 111.
Network Implementation Language (NIL) is a high-
level programming language currently being used for
the implementation of prototype communication
systems. NIL is designed for writing executable
architecture which can be compiled into efficient code
for the different machines and run-time environments
of a family of communicating products. NIL's
distinctive features include (1) high-level primitive
type families supporting constructs needed for con-
current systems, (2) facilities for decomposition of a
system into modules which can be dynamically in-
stalled and interconnected, (3) compile-time typestate
checking—a mechanism for enhancing language se-
curity without incurring large execution-time over-
head.

Communications Network Management enhance-
ments for SNA networks: An overview by T. P.
Sullivan, p. 129. Hierarchical growth and diversifi-
cation of communications networks have imposed
new requirements on Communications Network
Management. This essay presents the evolution of
support included in IBM's Systems Network Archi-
tecture to meet these needs. Four main provisions
of network management are discussed: (1) the col-
lection and presentation of downstream network data

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

on behalf of network resources by a Threshold
Analysis and Remote Access program; (2) centralized
network operator terminal access to local and remote
systems by a Terminal Access Facility; (3) unsolicited
alerting of the network operator by the presentation
of data from network resources by a Network Problem
Determination Application; and (4) the collection and
presentation of data for the logical network by a
Network Logical Data Manager.

An application of network management at a large
computing service by R. D. Garrigues, p. 143. Pro-
ductive operation of a large computer network serving
multiple user facilities in conjunction with several
host sites requires the use of network management.
As treated here, network management includes an
array of such methods as communication systems
management, problem management, change man-
agement, and inventory management. In this paper
the use of some of the management techniques is
described as they apply in an education support fa-
cility network. The setup of the facility is first de-
scribed; then some of the techniques for managing
its operation are presented.

Volume 22, Number 3, 1983

Abstract design and program translator: New
tools for software design by J. L. Archibald, B. M.
Leavenworth, and L. R. Power, p. 170. Abstract De-
sign And Program Translator (ADAPT) is an inte-
grated set of tools and approaches for the design and
development of software systems. Together they in-
clude a module specification language and a system
design language for specifying module interfaces and
interconnections. This paper explains some of their
major features and illustrates their use in the design
of some examples—a set of reusable software com-
ponents and a generalized editor system. Benefits
of the ADAPT approach are discussed, emphasizing
executable design and modifiability.

The system architecture of EAS-E: An integrated
programming and data base language by D. P.
Pazel, A. Malhotra, and H. M. Markowitz, p. 188.
EAS-E is an application development system based
on an entity-attribute-set view of system description.
It consists of a procedural language for manipulating
data base and main storage entities, and direct (non-
procedural) facilities for interrogating and updating
data base entities. The EAS-E software ijtself was
implemented with the entity-attribute-set view. This
paper reviews some of the EAS-E features and con-
siders some of its implementation details. This paper
is both an introduction to the EAS-E software archi-
tecture and an example of the usefulness of the
entity-attribute-set view.

A simple architecture for consistent application
program design by G. R. Rogers, p. 199. This paper
addresses the architectural design aspects of general
business computer application programs written in
high-level procedural programming languages. It puts
forth design concepts for easily built, maintainable

ABSTRACTS 1962-1994 635

programs and describes a unique approach to program
decomposition.

The Project Automated Librarian by J. M. Prager,
D. 214. The Project Automated Librarian (PAL) is a
tool that has been created to manage the logistical
problems inherent in a medium-sized software de-
velopment project. The main goals of PAL are to
eliminate the problems of simultaneous updates to
software modules, while allowing programmers ac-
cess to the latest possible versions of the software.
PAL also seeks to prevent the software from getting
into an inconsistent state that could prevent users from
proceeding with software development because of
someone else's errors. PAL is a general-purpose tool,
in the sense that it does not care what language or
languages the system is being written in. It makes
backups, keeps version information, and maintains
documentation of changes.

Automatic generation of random self-checking test
cases by D. L. Bird and C. U. Munoz, p. 229. A
technique of automatically generating random soft-
ware test cases is described. The nature of such test
cases ensures that they will execute to completion,
and their execution is predicted at the time of gen-
eration. Wherever possible the test cases are self-
checking. At run-time their execution is compared
with the predicted execution. Also described are
implementations of the technique that have been used
to test various IBM programs—PL/l language
processors, sort/merge programs, and Graphical Data
Display Manager alphanumeric and graphics support.

Full-screen testing of interactive applications by
M. E. Maurer, p. 246. This paper describes the dialog
test functions of the Interactive System Productivity
Facility/Program Development Facility program
product, with emphasis on the full-screen design that
makes it unique. Perspective is provided by a brief
summary of the test facilities available in the prede-
cessor System Productivity Facility program product
(SPF) and the requirements that led to their en-
hancement.

Software reliability analysis by P. N. Misra, p. 262.
Methods proposed for software reliability prediction
are reviewed. A case study is then presented of the
analysis of failure data from a Space Shuttle software
project to predict the number of failures likely during
a mission, and the subsequent verification of these
predictions.

Design and use of a program execution analyzer
by L. R. Power, p. 271. Execution analyzers are used
to improve the performance of programs, operating
systems, and hardware systems. This paper presents
a general overview of these tools, especially those
designed for use by application programmers. The
design tradeoffs of a wide variety of execution ana-
lyzers are examined. In addition, the design and use
of a new execution analyzer are presented; its purpose
is to assist in the optimization of highly modular PL/I
programs.

636 ABSTRACTS 1962-1994

Volume 22, Number 4, 1983

Advanced program-to-program communication in
SNA by J. P. Gray, P. J. Hansen, P. Homan, M. A.
Lerner, and M. Pozefsky, p. 298. Systems Network
Architecture (SNA) defines the behavior of networks
of heterogeneous, loosely coupled processors. This
paper describes the development of program-to-
program communication services in SNA and
introduces Advanced Program-to-Program Commu-
nication (APPC), the culmination of this develop-
ment. It also discusses the use of APPC in the
construction of distributed services and shows that
SNA with APPC and other SNA services can be
thought of as a distributed operating system.

SNA Distribution Services by B. C. Housel and C.
J. Scopinich, p. 319. This paper describes the IBM
SNA Distribution Services (SNADS). Heretofore,
SNA has focused on synchronous data distribution.
Along with the advent of office systems and other
distributed applications has come the requirement to
provide a common architecture for interchanging data
asynchronously among diverse systems and products.
SNA Distribution Services provides a general asyn-
chronous (delayed delivery) data distribution facility
for SNA applications. The initial implementations
are for office systems applications. Discussed are
objectives for an asynchronous data distribution ser-
vice, key architectural concepts, the relationship be-
tween SNADS and SNA synchronous communication
architecture, and the interface between the distri-
bution service and application transaction programs.

Interconnecting SNA networks by J. H. Benjamin,
M. L. Hess, R. A. Weingarten, and W. R. Wheeler, p.
344. Systems Network Architecture (SNA) allows
terminals and application programs to communicate
with one another using SNA entities called logical
units. Until now, these logical units have had to be
in the same network to communicate. This paper
describes recently introduced SNA network inter-
connection functions that allow logical units in in-
dependent SNA networks to communicate with one
another. Each network is configured, defined and
managed separately. By using one or more facilities
called gateways, networks can remain independent
while their logical units initiate, use, and terminate
internetwork sessions, without any changes to them-
selves. A communications user need not be aware
that a session partner is in a separate network.

An experimental address space isolation technique
for SNA networks by K. D. Ryder, p. 367. The in-
tegration of computer networks has led to increasingly
large and complex configurations. This integration
has resulted in concern for the availability of re-
sources for the merged networks. An experimental
technique called TRAP has been developed as a way
to minimize the constraints on such networks. It al-
lows address space isolation between interconnected
networks. This paper discusses the technique and its
fundamental process of network address translation.

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

Logical problem determination for SNA networks
by R. A. Weingarten and E. E. lacobucci, p. 387.
Problem determination on a Systems Network Ar-
chitecture network has dealt mostly with error de-
tection on physical network components. Adequate
logical error-detection mechanisms associated with
the logical network (software-related) errors have
been only recently provided with the announcement
of a new on-line interactive package called the Net-
work Logical Data Manager (NLDM). This paper
discusses the physical and logical network environ-
ments, logical network problems, and functions pro-
vided by the two releases of NLDM for logical
problem determination.

Performance and availability measurement of the
IBM Information Network by R. M. Bailey and R.
C. Soucy, p. 404. A key requirement of a network
service is the management of specified service levels
as perceived by the end user. A capability for
measuring and reporting end user response time and
availability is essential. This paper describes mea-
surement techniques to track these key service-level
attributes in the IBM Information Network (IBM/IN).
These techniques apply to most complex SNA net-
works.

SNA routing: Past, present, and possible future
by J. M. Jaffe, F. H. Moss, and R. A. Weingarten, p.
417. This paper reviews the evolution of routing
mechanisms in IBM's Systems Network Architecture
(SNA) since its inception in 1974 to the present.
Routing mechanisms are related to changes in the
application and communications environment. Also
discussed are possible evolutionary paths that may
be taken in the future to address the problems of large
heterogeneous networks.

Defining routing tables for SNA networks by K.
Maruyama, p. 435. This paper addresses three basic
problems associated with the definition process for
the routing tables of IBM's Systems Network Archi-
tecture (SNA). The paper then introduces a program
called the Routing Table Generator (RTG) and de-
scribes how these problems were solved with RTG.
Also discussed are some approaches on how to use
RTG in managing routing tables for growing net-
works.

Windows in the sky—Flow control in SNA net-
works with satellite links by G. A. Grover and K.
Bharath-Kumar, p. 451. Geosynchronous communi-
cations satellites provide a unique means of high-
speed computer-to-computer transmission of large
volumes of data over long distances. The physical
distances involved in transmitting to and from the
satellites cause relatively long propagation delays for
messages. In order that the high bandwidth be used
effectively, large quantities of data have to be trans-
mitted before pausing for an acknowledgment. This
condition creates a potential for some new and unique
types of traffic jams. This paper discusses these sit-
uations in the context of Systems Network Archi-
tecture (SNA) networks. In particular, the issues

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

related to SNA's flow control and traffic management
facilities in the presence of satellite links are dis-
cussed, along with potential solutions to ensure effi-
cient network operation.

Volume 23, Number 1, 1984

Architecture prototyping in the software engi-
neering environment by W. E. Beregi, p. 4. This
technical essay presents a perspective on the evolution
and problems of the software development craft and
how software engineering techniques show promise
to solve these problems. It introduces architecture
prototyping as a program development technique for
improving software quality. Experience with large
software systems shows that over half of the defects
found after product release are traceable to errors in
early product design. Furthermore, more than half
the software life-cycle costs involve detecting and
correcting design flaws. In this paper, we explore a
disciplined approach to software development based
on the use of formal specification techniques to ex-
press software requirements and system design. As
a consequence, we can use techniques like rapid
prototyping, static design analysis, design simulation,
and dynamic behavior analysis to validate system
design concepts prior to element design and imple-
mentation. We explore how these techniques might
be organized in a software architecture prototyping
facility that would be similar to the Computer-Aided
Design and Manufacturing (CADAM) tools used in
other engineering disciplines. We also examine the
process by which software engineers might use these
facilities to create more reliable systems.

Factors affecting programmer productivity during
application development by A. J. Thadhani, p. 19.
The effects of good computer services on programmer
and project productivity during application program
development are examined. Programmer's terminal
activity and the nature of terminal work are analyzed.
The discussion includes the effects of short response
times, programmers' skills, and program complexity
on productivity.

A comparative study of system response time on
program developer productivity by G. N. Lambert,
p. 36. Skilled programmer time and computer time
and resources are valuable. Earlier studies had shown
that added computer resources can decrease System
response time and increase programmer productivity
significantly. A controlled study has been made to
determine whether that finding is true for the partic-
ular conditions in another program development or-
ganization. That study is reported here. Programmer
productivity increased sixty-two percent with sub-
second system response time. A new finding is that
individual group project offices lead to greater effi-
ciency than large open rooms.

Analysis of free-storage algorithms—revisited by
G. Bozman, W. Buco, T. P. Daly, and W. H. Tetzlaff,
p. 44. Most research in free-storage management has
centered around strategies that search a linked list

ABSTRACTS 1962-1994 637

and strategies that partition storage into predeter-
mined sizes. Such algorithms are analyzed in terms
of CPU efficiency and storage efficiency. The subject
of this study is the free-storage management in the
Virtual Machine/System Product (VM/SP) system
control program. As a part of this study, simulations
were done of established, and proposed, dynamic
storage algorithms for the VM/SP operating system.
Empirical evidence is given that simplifying statistical
assumptions about the distribution of interarrival
times and holding times has high predictive ability.
Algorithms such as first-fit, modified first-fit, and
best-fit are found to be CPU-inefficient. Buddy
systems are found to be very fast but suffer from a
high degree of internal fragmentation. A form of
extended subpooling is shown to be as fast as buddy
systems with improved storage efficiency. This al-
gorithm was implemented for VM/SP, and then
measured. Results for this algorithm are given for
several production VM/SP systems.

Speech filing—An office system for principals by
J. D. Gould and S. J. Boies, p. 65. Business people
spend most of their time communicating, or at-
tempting to communicate, with others. We briefly
describe our ideas about these communication activ-
ities and their resulting problems, and then discuss
an experimental tool we developed to help business
people solve some of their communication problems.
This tool, called the Speech Filing System, allows
users to send messages to anybody in the world. The
system offers powerful editing, filing, retrieval, and
message distribution and control functions, using
pushbutton telephones as the terminals.

Playback: A method for evaluating the usability
of software and its documentation by A. S. Neal and
R. M. Simons, p. 82. Human factors evaluations of
software products and accompanying user publica-
tions must be conducted so that developers can be
certain that the target user population can learn to
use the product with a minimum of difficulty and be
able to perform the intended tasks efficiently. A
methodology is described for obtaining objective
measures of product usability by collecting perfor-
mance data on the user interface without affecting the
user or the system being evaluated. The log of stored
activity is later played back through the host system
for analysis.

Volume 23, Number 2, 1984

An overview of three relational data base products
by S. Kahn, p. 100. This issue of the IBM Systems
Journal focuses on aspects of three recently an-
nounced IBM relational data base products. They
are IBM Database 2, Query Management Facility,
and Data Extract. This essay illustrates the require-
ments that these products were designed to address
and gives a brief overview of their content and his-
tory. Its objective is to provide an introduction to the
more specific and detailed papers that follow.

0638 ABSTRACTS 1962-1994

IBM Database 2 overview by D. J. Haderle and R.
D. Jackson, p. 112. IBM Database 2 (DB2) is a data
base management system that supports the relational
model of data. This paper presents the major features
of DB2 and discusses its architecture and the re-
lationship of DB2 with the host operating system.
These principles are illustrated by an example.

The Query Management Facility by J. J. Sordi, p.
126. Data from a relational data base can be displayed
in reports, changed, and otherwise controlled using
a program called Query Management Facility (QMF).
An overview of this program is presented and is
followed by a discussion comparing equivalent forms
of various queries expressed in two distinctly different
languages. Both languages are designed for use with
relational data and are supported by QMF.

TSO Attach: A multipurpose communication
channel to IBM Database 2 by K. R. Hammond and
M. R. Zimowski, p. 151. TSO Attach provides IBM
Database 2 capabilities in a productive work envi-
ronment that appears as a natural extension of the
Time Sharing Option (TSO) and the Interactive
System Productivity Facility (ISPF). It was designed
and built with careful consideration for the varied and
complex user group for which it was intended. Ease
of use and ease of development and maintenance were
among the significant factors in the design. These
factors and others are addressed in this paper, which
discusses the basic design decisions made in building
the TSO Attachment Facility.

IBM Database 2 in an Information Management
System environment by J. R. Dash and R. N. Ojala,
p. 165. Over the years, the IBM Information Man-
agement System (IMS/VS) has been developed to
meet expanding user needs. During that time, a
parallel development has taken place. The relational
data model grew from Codd's original theory to a
practical data base prototype. Now a new data base
management system, IBM Database 2 (DB2), has
been built on the relational model. This paper dis-
cusses the implementation and design considerations
for the integration of IMS and DB2 from the uset's
viewpoint. It also presents the attachment facilities
from a design perspective.

Data recovery in IBM Database 2 by R. A. Crus,
p. 178. This paper presents the various forms of data
recovery provided by IBM Database 2 (DB2). It
describes the DB2 recovery log, introduces the notion
of a unit of recovery, and discusses the two-phase
commit protocol used by DB2. Furthermore, it de-
scribes what type of information is logged, the DB2
checkpoint process, what a compensation log record
is, and how DB2 handles undo/redo processing, media
recovery, restart after abnormal system termination,
and data unavailability.

IBM Database 2 performance: Design, imple-
mentation, and tuning by J. M. Cheng, C. R. Loosley,
A. Shibamiya, and P. S. Worthington, p. 189. The
larger and more complex a relational data base, the
more efficient the data base management system must

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

be to maintain an acceptable level of performance.
The design and implementation of IBM Database 2
(DB2) have been aimed toward this objective.
Techniques for achieving this key objective in DB2
are the subject of this paper. Presented are
performance-related strategies in query processing
and performance-related design tradeoffs. Data base
and application design options and their resolution
for optimum performance are also discussed. Also
presented are techniques to maintain performance by
application monitoring and tuning and DB2 system
tuning.

Managing IBM Database 2 buffers to maximize
performance by J. Z. Teng and R. A. Gumaer, p. 211.
The relational data base system, IBM Database 2
(DB2), has a component that manages data buffering.
This paper describes the design considerations of the
Buffer Manager and the tradeoffs involved in man-
aging the allocation of DB2 buffers to maximize
performance.

Volume 23, Number 3, 1984

Ease of use: A system design challenge by L. M.
Branscomb and J. C. Thomas, p. 224. While it is be-
coming increasingly obvious that the fundamental
architecture of a system has a profound influence on
the quality of its human factors, the vast majority of
human factors studies concern the surface of hardware
(keyboards, screens) or the very surface of the soft-
ware (command names, menu formats). In this paper,
we discuss human factors and system architecture.
We offer best-guess guidelines for what a system
should be like and how it should be developed. In
addition, we suggest ways in which advances in re-
search and education could result in systems with
better human factors. This paper is based on an ad-
dress by L. M. Branscomb and a publication by the
authors in the Proceedings of the IFIP 9th World
Computer Congress, Paris, France, September 19-23,
1983.

Directions in cooperative processing between
workstations and hosts by B. C. Goldstein, A. R.
Heller, F. H. Moss, and 1. Wladawsky-Berger, p. 236.
Advancements in technology have provided us with
the availability of high-performance processors from
the high end of computing to the personal computer.
In addition, technology growth has enabled us to
envision sixteen megabytes of real storage for a
personal computer.

As a result, we have witnessed not only a tremendous
growth at the high end of the computing spectrum,
but also the development of sophisticated personal
computers (e.g., the IBM PC XT/370) with real
storage capacities approaching those of high-end
computers of a decade ago.

This growth at both ends of the computing spectrum
has given us a choice. We can either allow a clean
separation to grow between personal computer and
host or provide a means by which they cooperate in
providing quality service to the user without the

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

complexity normally associated with high-end sys-
tems. This paper explores what such a cooperation
could mean.

System/370 capability in a desktop computer by
F. T. Kozuh, D. L. Livingston, and T. C. Spillman, p.
245. A desktop computer with System/370 capability
was produced by enhancing the IBM Personal Com-
puter XT with additional hardware and developing
software that provides a compatible interface. The
computer, the IBM Personal Computer XT/370, and
this software allow users to run most System/370
Conversational Monitor System application programs
unaltered in a desktop environment. The evolution
of the development and details of the function of the
hardware and software are described.

A tight coupling of workstations by D. M. Chess,
D- 255. This paper addresses the problem of situations
in which people at physically distant locations must
have access to essentially the same computing envi-
ronment at the same time. That is, each user must
be able to provide input to whatever application or
system is active, and must be provided with all rele-
vant output. Common examples of this situation are
demonstrations, presentations, education, and trou-
bleshooting.

A prototype system has been developed to study ways
of solving this problem in the microcomputer work-
station environment. The prototype allows users at
two IBM Personal Computers to share access to the
computing environment through the keyboard and the
display screen by tightly coupling the computers.

Architecture implications in the design of micro-
processors by R. E. Matick and D. T. Ling, p. 264.
This paper examines how architecture, the definition
of the instruction set and other facilities that are
available to the user, can influence the implementa-
tion of a very large scale integration (VLSI) micro-
system. The instruction set affects the system
implementation in a number of direct ways. The in-
struction formats determine the complexity of in-
struction decoding. The addressing modes available
determine not only the hardware needed (multiported
register files or three-operand adders), but also the
complexity of the overall machine pipeline as greater
variability is introduced in the time it takes to obtain
an operand. Naturally, the actual operations specified
by the instructions determine the hardware needed
by the execution unit. In a less direct way, the ar-
chitecture also determines the memory bandwidth
required. A few key parameters are introduced that
characterize the architecture and can be simply ob-
tained from a typical workload. These parameters
are used to analyze the memory bandwidth required
and indicate whether the system is CPU- or
memory-limited at a given design point. The impli-
cations of caches and virtual memories are also briefly
considered.

Use of images in commercial and office systems
by P. J. Somerville, p. 281. This paper examines some
of the simpler processing techniques that may usefully

ABSTRACTS 1962-1994 639

be performed on bi-level (two-tone) images by a
competent commercial applications programmer if a
few basic (albeit complex internally) tools are pro-
vided. Such processes include storage, indexing,
changing resolution, rotating, trimming, and then
display and printing. These processes can provide
the facilities for an enterprise to incorporate images
and image data into its office systems and into its
main line-of-business data processing applications.

Security considerations for personal computers
by W. H. Murray, p. 297. The wide use of personal
computers and general access to telecommunications
links have intensified the need for computer security.
Security practices as discussed in this paper relate to
protecting an organization's personal computers as
physical property, protecting the organization's data
and applications, and protecting the organization it-
self. These matters are discussed from the point of
view of protection from the improper use of personal
computers.

Volume 23, Number 4, 1984

An overview of computer security by R. C. Sum-
mers, p. 309. Presented is an overview of computer
security, including concepts, techniques, and mea-
sures relating to the protection of computing systems
and the information they maintain against deliberate
or accidental threats. Motivations for security mea-
sures are discussed. Security strategies are consid-
ered. Actions and events that threaten security are
described, along with technical problems that can
prevent the computer from adequately dealing with
threats. Security models are surveyed. Specific
technical and administrative measures for promoting
security are described. Among the technical measures
discussed are design of secure systems, hardware and
operating systems, identification of users, encryption,
and access control packages. Administrative mea-
sures include personnel, physical security of the
computing system, and auditing. Also presented is
the establishment of a security program. Reviewed
are special problems and their solutions, including
communications and networks, data base manage-
ment systems, and statistical data bases. This paper
is based on a paper by the author published in The
Handbook of Computers and Computing, edited by
Arthur H. Seidman and Ivan Flores, Van Nostrand
Reinhold Company, Inc., New York (1984).

The design of the REXX language by M. F.
Cowlishaw, p. 326. One way of classifying computer
languages is by two classes: languages needing skilled
programmers, and personal languages used by an
expanding population of general users. REstructured
eXtended eXecutor (REXX) is a flexible personal
language designed with particular attention to feed-
back from its users. It has proved to be effective and
easy to use, yet it is sufficiently general and powerful
to fulfill the needs of many demanding professional
applications. REXX is system and hardware inde-
pendent, so that it has been possible to integrate it
experimentally into several operating systems. Here

640 ABSTRACTS 1962-1994

REXX is used for such purposes as command and
macro programming, prototyping, education, and
personal programming. This paper introduces REXX
and describes the basic design principles that were
followed in developing it.

An application analyzer by R. Ambrosetti, T. A.
Ciriani, and R. Pennacchi, p. 336. An interactive tool,
aimed at supporting the application user/analyst in
specifying and analyzing a business area, is presented.
The features of the tool, named the Application
Analyzer/Experimental, are described both in their
theoretical foundations and their actual implementa-
tion. A brief description of the architecture of the tool
and its internal structure is given. A review of the
main concepts of the application development area
is also included. The follow-on of the prototype de-
scribed here is the program offering known as System
A.

Performance issues in local-area networks by W.
Bux, p. 351. This paper discusses several important
performance problems in the design of local-area
networks. The questions discussed relate to various
aspects of architecture, design, and implementation:
(1) the delay-throughput characteristics of the medi-
um access protocols, (2) the performance of local-area
networks on which a file server provides file storage
and retrieval services to intelligent workstations, and
(3) timing problems in local-area network adapters.
Since the paper does not primarily address the per-
formance analyst, it is descriptive in nature; analytic
details are omitted in favor of a more intuitive ex-
planation of the relevant effects.

VM/370, Attached Processor, and multiprocessor
performance study by W. H. Tetzlaff and W. M. Buco,
p. 375. This paper discusses performance studies of
Attached Processors, multiprocessors, and VM/370.
A methodology for evaluating performance is dis-
cussed. Performance improvements are explained and
evaluated. These studies played a role in a new option
to the VM/System Product control program that is
called the High Performance Option (HPO).

Volume 24, Number 1, 1985

Standardized graphics on the IBM Personal
Computer by T. B. Clarkson III, p. 3. Although ac-
knowledged to be an effective means of communi-
cating information, graphics has not progressed more
rapidly in the burgeoning use of personal computers
due to the lack of standards for both writing and
running graphics applications. A graphics
standard—the Virtual Device Interface (VDI)—has
been proposed for national use and is in the process
of being adopted. An implementation of the VDI is
currently available for the IBM Personal Computer.
This paper briefly traces the history of graphics as
used with personal computers, explores the difficul-
ties that standardization efforts have met, explains the
VDI model, and shows how this model operates in
the IBM Personal Computer environment to make
graphics a natural extension of the operating system.

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

A professional graphics controller by K. A. Duke
and W. A. Wall, p. 14. The IBM Professional Graphics
Controller and Display were developed to meet the
needs of engineers and scientists for an improved
graphics capability in the Personal Computer envi-
ronment. These units provide graphics systems with
improved function, resolution, and color range, and
at the same time they allow existing productivity
software to be executed in an emulation mode. This
paper describes the function and discusses the design
of the Professional Graphics Controller.

Expanded personal computing power and capa-
bility by P. A. Korn, J. P. McAdaragh, and C. L.
Tondo, p. 26. Discussed is the XENIX™ Operating
System for the IBM Personal Computer AT. The
operating system incorporates capabilities of a
mainframe operating system—multiusage, multitask-
ing, file management and security, program compi-
lation, and networking. The XENIX shell structure
is introduced. Pipes and pipelining are presented.
The XENIX file structure is explained and illustrated
with examples. Software development and text for-
matting are treated in detail. The ability to compile
C program code developed under XENIX and run it
on the IBM Personal Computer Disk Operating Sys-
tem is explained.

The C programming language and a C compiler
by R. R. Ryan and H. Spiller, p. 37. In the last few
years, the C programming language has become one
of the most widely used languages for applications
and systems software on microcomputer systems.
This paper describes the C language and its history.
It then presents a specific implementation of C, the
Microsoft C Compiler, which runs on the IBM Per-
sonal Computer.

Design considerations for IBM Personal Computer
Professional FORTRAN, an optimizing compiler
by M. L. Roberts and P. D. Griffiths, p. 49. An opti-
mizing FORTRAN compiler with power to handle
large applications at execution speeds comparable to
those of large computers has been implemented on
the IBM Personal Computer. This implementation
is described, with emphasis on the design decisions
that were considered in the development of the
compiler.

An APL system for the IBM Personal Computer
by M. L. Tavera, M. Alfonseca, and J. Rojas, p. 61.
This paper discusses the design and building of an
APL interpreter for the IBM Personal Computer.
Discussed is the writing of the interpreter itself, which
required the use of an intermediate language designed
by the authors. This machine-independent language
also made possible the development of APL inter-
preters for two other systems—System/370 and
Series/1. The particularizing of the interpreter re-
quired a compiler, which in the case of the Personal
Computer produced Intel 8088 and 8087 assembly
language code. The matching of the APL interpreter
to the operating system (DOS) required an APL
supervisor, which is also discussed in this paper. The

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

provision of the APL character set presented prob-
lems, the solutions of which are also presented. Other
topics discussed are the display, the keyboard, and
the session manager.

Volume 24, Number 2, 1985

The IBM large-systems software development
process: Objectives and direction by W. S.
Humphrey, p. 76. This paper introduces a special issue
of the IBM Systems Journal on the IBM large-systems
software development process. The issue provides
an overview of the subject and a summary of the key
principles of the IBM software quality and produc-
tivity efforts in large-scale systems programming.
The major topics addressed in this issue are the
software development process, software development
tools and methodologies, quality and productivity
measurements, and programmer education.

A programming process architecture by R. A.
Radice, N. K. Roth, A. C. O'Hara, Jr., and W. A,
Ciarfella, p. 79. The Programming Process Archi-
tecture is a framework describing required activities
for an operational process that can be used to develop
system or application software. The architecture in-
cludes process management tasks, mechanisms for
analysis and development of the process, and product
quality reviews during the various stages of the de-
velopment cycle. It requires explicit entry criteria,
validation, and exit criteria for each task in the
process, which combined form the “essence” of the
architecture. The architecture describes requirements
for a process needing no new invention, but rather
using the best proven methodologies, techniques, and
tools available today. This paper describes the Pro-
gramming Process Architecture and its use, empha-
sizing the reasons for its development.

A programming process study by R. A. Radice, J.
T. Harding, P. E. Munnis, and R. W. Phillips, p. 91.
A programming Site Study group was convened to
look at the work of eight large-system programming
development locations within IBM and to evaluate
them according to a set of process stages. Eleven
attributes were applied to each process stage. The
process of the Site Studies is directly transferable to
software evaluations on any project in the software
industry, and it is believed that the studies are the first
step necessary in the evolution of a consistently re-
peatable and dynamically controllable process of
improvement within the industry. The phases of these
studies and implementation of the studies are de-
scribed.

Automating the software development process by
G. F. Hoffnagle and W. E. Beregi, p. 102, Demand
for reliable software systems is stressing software
production capability, and automation is seen as a
practical approach to increasing productivity and
quality. Discussed in this paper are an approach and
an architecture for automating the software develop-
ment process. The concepts are developed from the
viewpoint of the needs of the software development

ABSTRACTS 1962-1994 641

process, rather than that of established tools or tech-
nology. We discuss why automation of software
development must be accomplished by evolutionary
means. We define the architecture of a software en-
gineering support facility to support long-term pro-
cess experimentation, evolution, and automation.
Such a facility would provide flexibility, tool porta-
bility, tool and process integration, and process au-
tomation for a wide range of methodologies and tools.
We present the architectural concepts for such a fa-
cility and examine ways in which it can be used to
foster software automation.

Quality emphasis at IBM's Software Engineering
Institute by M. B. Carpenter and H. K. Hallman, p.
121. Improvements in quality and productivity in the
development of programs can be obtained by in-
structing the programming development groups in the
use of modern software engineering methodology.
To provide this instruction for its employees, IBM
has established a Software Engineering Institute.
Currently training in the methodology is being offered
through an education program of the Institute known
as the Software Engineering Workshop. This paper
describes the role of the Institute, its background and
offerings, and some results obtained.

PDM: A requirements methodology for software
system enhancements by R. G. Mays, L. S. Orzech,
W. A. Ciarfella, and R. W. Phillips, p. 134. Traditional
requirements processes often do not address the many
problems encountered in the development of software
products. Conventional processes begin with the
structural definition of the proposed system, under
the assumption that the raw requirements are under-
stood. How this understanding is developed is not
formally addressed. The IBM software development
process requires a methodology to develop the ra-
tionale of the requirement, both in terms of its
underlying problem and its business justification,
prior to the development of the functional specifica-
tion. Conventional requirements processes address
a single software application intended for use by a
uniform set of end users. The resulting system is
usually a one-time replacement of some existing
system. Many IBM software products, however,
address requirements received from a large, diverse
set of customers who use the products in a wide array
of computing environments. Product releases are
typically developed as incremental enhancements to
an existing base product. This paper describes the
Planning and Design Methodology (PDM), a re-
quirements planning process that supports the col-
lection, analysis, documentation, and tracking of
software requirements. The process includes re-
quirements collection, definition of the underlying
problems, development of an external functional de-
scription that addresses the problems, and develop-
ment of system and product designs from the external
functional descriptions. PDM has been applied in
three development areas with positive results.

A process-integrated approach to defect pre-
vention by C. L. Jones, p. 150. Recent efforts to im-

642 ABSTRACTS 1962-1994

prove quality in software have concentrated on defect
detection. This paper presents a programming process
methodology for using causal analysis and feedback
as a means for achieving quality improvements and
ultimately defect prevention. The methodology em-
phasizes effective utilization of all error data to pre-
vent the recurrence of defects.

Programming process productivity measurement
system for System/370 by M. J. Flaherty, p. 168.
Discussed in this paper are the underlying principles
of a programmer productivity measuring system. The
key measures (or metrics) are people and lines of
code. Definitions of these metrics are refined and
qualified, according to the conditions under which
they are used. Presented also is a data base design
for retaining and retrieving these metrics under a wide
variety of applications and other circumstances.
Depending on definitions, applications, and other
circumstances, productivity measurements may differ
widely. On the other hand, after suitable productivity
metrics have been defined, consistency of application
of the same metrics yields comparable results from
project to project.

Volume 24, Numbers 3/4, 1985

Worldwide systems engineering by T. G. Peck, p.
182. IBM systems engineering celebrates its 25th
anniversary in 1985. This paper provides a perspec-
tive of the part systems engineering has played in the
success of IBM in the information processing busi-
ness during that 25-year period. The history of sys-
tems engineering is briefly reviewed, and the
similarities and differences in worldwide systems
engineer functions are examined. The relationships
among marketing, systems engineering, and custom-
ers are discussed. Also discussed are career paths for
systems engineers. Expectations and challenges for
systems engineering in the future are explored.

HONE: The IBM marketing support system by
W. Boos, p. 189. The storage, retrieval, and dissem-
ination of data pertaining to a large, complex product
line is made possible by the Hands-On Network En-
vironment (HONE) discussed in this paper. HONE
provides on-line interactive support to marketing,
systems, and administrative personnel, and, most re-
cently, to customers. The evolution of HONE is
presented. Discussed in detail are new HONE dis-
tributed processing capabilities now enabled under
an advanced network architecture. In that environ-
ment, the processing power and data bases of HONE
and other host systems will be interconnected and
support the speed and processing autonomy of IBM
Personal Computers as workstations.

Performance considerations for a distributed data
processing system designed for high availability
by S. Agassi, p. 200. The high-availability require-
ments of computerized systems that are needed to
meet the objectives of the organization are being
acknowledged more and more by the data processing
community. The paper presents the planning process

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

for a distributed data processing system designed to
meet high availability requirements. This process
was performed as a systems engineering activity in
order to assess the feasibility of the presented ap-
proach, which was proposed to a customer.

Information System Model and Architecture
Generator by K. P. Hein, p. 213. The advent of in-
tegrated, shared-data systems has made it increasingly
necessary to address the application development
process from the architectural and manufacturing
perspective rather than from a build-as-you-go job
shop viewpoint. Although the Business Systems
Planning (BSP) methodology provides an
enterprise-wide strategic Information Systems plan,
it is still at an abstraction level that leaves the tradi-
tional gap between “requirements” and implementa-
tions untouched. The Information System Model and
Architecture Generator (ISMOD) tool complements
and enhances BSP by mechanizing the planning
process, thus providing a facility to narrow this gap
by allowing orderly and consistent top-to-bottom ar-
chitectural decomposition of the enterprise environ-
ment. It is an enterprise planning vehicle and not an
implementation system, but it is the first critical
component to support an integrated systems archi-
tecture effort. It automates and, to a large extent,
formalizes a laborious requirements documentation
process preceding code development, and it does this
“top to bottom,” from a global, enterprise-wide, in-
formation requirements viewpoint. This paper dis-
cusses the overall architectural concepts of integrated
data systems development, the place of ISMOD
within it, and the specific facilities, techniques, and
information provided by the system.

A single-system interface using the IBM 3270-PC
by M. M. Ghiotti, p. 236. Many businesses use a va-
riety of terminal types connected to central host
computers. Presented here is a rationale and the ex-
perience gained with a single terminal type—the IBM
3270-PC—interconnected with hosts via the Appli-
cation Program Interface to achieve enhanced user
efficiency.

Strategies for problem prevention by J. Newton, p.
248. A philosophy of preventing problems from oc-
curring in a data processing installation rather than
reacting to problems is becoming increasingly nec-
essary. The institution of comprehensive and
formally managed testing strategies is an important
step in this direction. Such strategies are discussed,
and it is shown that they also support disaster
backup/recovery plans.

Customer Information Control System—An
evolving system facility by B. M. Yelavich, p. 264.
Presented is an overview of the present CICS archi-
tecture. Discussed is the evolution of that original
design as a transaction management system that ac-
commodates data base management, operating sys-
tems, and input and output devices as well as
hardware of increasing numbers and complexity.

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

User needs past and present are analyzed with a view
toward understanding how CICS might evolve in the
future.

An approach to high availability in high-
transaction-rate systems by R. C. Brooks, p. 279. In
business enterprises, it is important that high avail-
ability be maintained in the computer systems used
by the enterprises, particularly in systems that have
high transaction rates. A way of maintaining high
availability is discussed, including the implementa-
tion that should be undertaken and the design issues
involved. Some additional steps for further im-
provements are also offered.

The System Planning Grid: A model for building
integrated information systems by B. R. Buckelew,
p- 294. Information systems have evolved as a result
of technological advances and the increasing demand
for information. Over the past few years, systems that
developed separately are being forced to merge. This
paper describes a model for building a set of inte-
grated architectural guidelines to ensure that a
“system” is being built. The use of the System
Planning Grid as a model for setting product standards
and organization responsibilities will also be dis-
cussed.

An information technology architecture for change
by M. W. Mudie and D. J. Schafer, p. 307. This paper
defines a technology architecture for information
processing in large corporations. It describes a matrix
of processing environments consisting of three pro-
cessing types: production, decision support, and of-
fice; three processing locations: centralized,
departmental, and workstation; and a methodology
for implementing applications in those environments.
Key to the architecture is a supporting framework
comprising the communications network, a data ser-
vice function, an office services function, enabling
software, and support organizations. This approach
is designed to provide an integrated information
system to support organizations whose business en-
vironment is changing, and where flexibility, re-
sponsiveness to change, and cost effectiveness are
vital. The approach is representative of methods used
by systems engineers in assisting customers to decide
on a system configuration that best suits their needs.

Cache-DASD storage design for improving system
performance by C. P. Grossman, p. 316. This paper
discusses three examples of a cache-DASD storage
design. Precursors and developments leading up to
the IBM 3880 Storage Control Subsystems are pre-
sented. The development of storage hierarchies is
discussed, and the role of cache control units in the
storage hierarchy is reviewed. Design and imple-
mentations are presented. Other topics discussed are
cache management, performance of the subsystem,
and experience using the subsystem. It is shown that
a cache as a high-speed intermediary between the
processor and DASD is a major and effective step
toward matching processor speed and DASD speed.

ABSTRACTS 1962-1904 643

Volume 25, Number 1, 1986

The IBM 3090 system: An overview by S. G. Tucker,
p. 4. The first part of this paper places the IBM 3090
system in historical perspective with respect to its
predecessors. Treated briefly are the technology and
the design process, both of which were critical to the
development of the 3090. Presented in detail is the
3090 system itself, with emphasis on its features that
differ from those of prior systems.

IBM 3090 performance: A balanced system ap-
proach by Y. Singh, G. M. King, and J. W. Anderson,
p. 20. The IBM 3090 system represents the highest
level of system performance offered by IBM to date.
To realize the full performance potential of this sys-
tem, it is essential to maintain a balance among its
various components. The major components of the
system are the processor(s), storage, I/O, and the
software that manages the system resources. Their
performance attributes are discussed and their effect
on system performance illustrated by laboratory
benchmark measurements for the MVS and VM op-
erating systems.

Engineering and scientific processing on the IBM
3090 by D. H. Gibson, D. W. Rain, and H. F. Walsh,
p. 36. The IBM 3090 processor implementation of the
System/370 Vector Architecture represents a major
new system design for engineering and scientific
processing, featuring both scalar and vector capability
in a uniprocessor and in a dyadic and four-way par-
allel processing environment. The history of large-
scale scientific processing is reviewed, leading to a
statement of current requirements. The design ob-
jectives for scalar, parallel, and vector capabilities
are identified, followed by a summary of the resulting
3090 features. Selected highlights of the vector
hardware are given, followed by a summary of the
supporting software. The paper concludes with a
discussion of performance, beginning with the iden-
tification of suitable applications. An example is
given of one application utilizing each of the three
capabilities: scalar, parallel, and vector. Several of
the most important performance parameters are
identified.

The IBM System/370 vector architecture by W.
Buchholz, p. 51. Discussed is the instruction-set ar-
chitecture of the IBM System/370 vector facility, a
compatible extension of the System/370 architecture.
Both the base system, which is a general-purpose
System/370 processor, and the optional vector facility
employ a register type of organization. Data formats
are the same, arithmetic operations produce exactly
the same results, arithmetic exceptions are handled
in the same way, and instructions are precisely in-
terruptible for page faults and other causes in the same
manner as those of the base system. This approach
permits substantially increased performance on
vectorizable programs with only a modest increase
in hardware and software, while retaining the ability
to run existing nonvector programs unchanged.

644 ABSTRACTS 1962-1994

Vector system performance of the IBM 3090 by
R. S. Clark and T. L. Wilson, p. 63. Performance of
the Vector Facility of the IBM 3090 processor is
discussed. The paper has two parts, the first pre-
senting factors affecting performance measurement
of the Vector Facility and the criteria for its design.
In the second part, use of the 3090 storage hierarchy
to support the vector processing implementation is
the main aspect of the discussion.

The System Usability Process for Network Man-
agement Products by K. D. Gottschalk, p. 83. This
paper presents an overview of a process for system
usability. The process is a systematic series of ac-
tivities and procedures designed to improve the usa-
bility of software network management products.
The elements of the process are given and future di-
rections for evaluating usability described.

Network management software usability test de-
sign and implementation by L. C. Percival and S.
K. Johnson, p. 92. The approach used at one of IBM's
development sites for usability testing is somewhat
different from methods used elsewhere. The approach
was developed specifically for testing of software
communications products as one aspect of the System
Usability Process. The test design and implementa-
tion are described.

Improving availability of software subsystems
through on-line error detection by L. Koved and
G. Waldbaum, p. 105. A VM/370 program called
Auditor detects faults in the operation of computer
software subsystems and attempts to restore service
as quickly as possible. Through a series of periodic
tests, Auditor diagnoses whether these subsystems
are operating properly. When faults are detected,
service restoration procedures are automatically
called, and the persons responsible for the subsystems
are notified. The various types of faults are recorded
for subsequent analysis.

Workstations and mainframe computers working
together by J. K. Kravitz, D. Lieber, F. H. Robbins,
and J. M. Palermo, p. 116. The history and design
philosophy of a research project that produced a
prototype software package are described. The
package provides cooperation between large-scale
mainframe computing systems and personal desktop
workstations. Also discussed are the features of
PC/VM Bond, the product that grew out of the re-
search project.

Volume 25, Number 2, 1986

Introduction to IBM's knowledge-systems prod-
ucts by A. J. Symonds, p. 134. The industrialization
of artificial intelligence is believed by many to be a
technology that will contribute to a new generation
of “smart” computer systems. Technical managers
who are users or suppliers of computer systems are
trying to understand how the technology can help
them, and they are finding it an elusive subject to
grasp. This introductory paper starts with a technol-

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

ogy overview that aims to address this need for
understanding and provide a suitable background for
the papers that follow.

Knowledge-based systems in the commercial en-
vironment by E. D. Hodil, C. W. Butler, and G. L.
Richardson, p. 147. Knowledge-based systems are
among the first applications of artificial intelligence
to make the crossover from the laboratory to the
real-world commercial environment. Typically, arti-
ficial intelligence systems have been implemented in
the LISP programming language on specialized
hardware. The experimental nature of early systems
has allowed many of them the luxury of having little
or no interface to existing hardware, software, or data.
In this paper, arguments are presented to demonstrate
the feasibility of implementing knowledge-based
systems using traditional hardware and software.
Also, an architecture is proposed for knowledge-
based shell systems that is compatible with the soft-
ware development environment of large commercial
information systems organizations. To demonstrate
these concepts, an example system is shown.

YES/MYVS and the automation of operations for
large computer complexes by K. R. Milliken, A. V.
Cruise, R. L. Ennis, A. J. Finkel, J. L. Hellerstein,
D. J. Loeb, D. A. Klein, M. J. Masullo, H. M. Van
Woerkom, and N. B. Waite, p. 159. The Yorktown
Expert System/MVS Manager (known as YES/MVS)
is an experimental expert system that assists with the
operation of a large computer complex. The first
version of YES/MVS (called YES/MVS I) was used
regularly in the computing center of IBM's Thomas
J. Watson Research Center for most of a year. Based
on the experience gained in developing and using
YES/MVS 1, a second version (YES/MVS II) is being
developed for further experimentation. This paper
discusses characteristics of the domain of large
computing system operation that have been illumi-
nated by the YES/MVS I experience, and it describes
the modifications in the design of YES/MVS II that
are an outgrowth of the YES/MVS I experience.

The genesis of a knowledge-based expert system
by J. A. Voelker and G. B. Ratica, p. 181. This paper
discusses the genesis, development, and testing of a
knowledge-based expert system called the Contract
Support Services Consultant. This system aids in the
process of estimating, bidding, and preparing agree-
ments for certain services required for the rear-
rangement, relocation, discontinuance, and
reinstallation of IBM equipment. The goals in de-
veloping the prototype of the Contract Support Ser-
vices Consultant were to capture the knowledge and
experience of experts and make them available to
nonexperts in a convenient, consistent way. The re-
sult is a system that improves the accuracy, consis-
tency, and timeliness of the estimates and bids.

Prolog for applications programming by W. G.
Wilson, p. 190. This paper discusses the problems and
benefits of using the Prolog language to write appli-
cation programs. Much attention is currently focused

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

on expert-systems shells, which play a role in artificial
intelligence (Al) systems similar to that of application
generators in more conventional applications. The
Prolog programming language embodies many of the
features found in these shells, while providing a rel-
atively general and complete programming language.
MYVS performance tuning is used as an application
that typifies a broad class of applications suitable for
implementation in this language. Some of the diffi-
culties that had to be overcome to use the language
are presented, with their solutions.

The numeric representation of knowledge and
logic—Two artificial intelligence applications in
medical education by W. D. Hagamen and M. Gardy,
p. 207. MEDCAT (medical diagnosis, consultation,
and teaching) is a program that makes diagnoses from
empiric data stored in patient records, explains its
reasoning in response to questions (consultant mode),
and uses its logical and communicative skills to in-
struct medical students in the proper approach to
medical diagnosis (student mode). MEDCAT's rea-
soning can be modified by free-format discussion
with physicians. CATS (computerized anatomical
teaching system) is an entirely separate program de-
signed to teach gross anatomy. Like MEDCAT, it
has a consultant mode that the student may use to
explore the program's reasoning, and a student mode
in which the program takes the initiative. A promi-
nent feature of CATS is its ability to discover
meaningful general principles that reduce the need
for memorization. Despite important differences in
the subject matter, the data structure and code are
very similar in the two programs. Both use a powerful
natural-language interface that parses the input and
generates the output.

The Portable Inference Engine: Fitting significant
expertise into small systems by N. A. Burns, T. J.
Ashford, C. T. lwaskiw, R. P. Starbird, and R. L.
Flagg, p. 236. The Portable Inference Engine (PIE)
is the nucleus of an expert system that allows the
segmentation of rules in order to utilize large
knowledge bases in limited memory. If the expert-
systems rules can be divided into segments of highly
related rules with little interaction among those seg-
ments, such knowledge-base segments can then be
paged in and out of memory on demand. PIE gathers
information by querying the user and executing ex-
ternal procedures in order to conclude goals.

Computer processing of dates outside the twenti-
eth century by B. G. Ohms, p. 244. This paper pre-
sents practical solutions to problems envisioned in
extending computer processing of dates beyond the
twentieth century. Many data processing managers
are concerned with processing cross-century dates,
and in doing so using existing systems, with a mini-
mum of disruption to normal operations. The use
of existing date formats can eliminate the need for
massive system modifications. Methods of using
existing date formats across century boundaries are
explained. The use of a format termed the Lilian date
format in honor of Luigi Lilio, the inventor of the

ABSTRACTS 1962-1994 §45

Gregorian calendar, is introduced. The requirements
for an effective date-processing algorithm are pre-
sented.

Volume 25, Numbers 3/4, 1986

Systems architecture in transition—An overview
by H. Lorin, p. 256. Systems architecture refers to the
distribution of function and control among elements
of a system. It is primarily a structural concept that
includes the original meaning of the word architecture
in the form of “processor architecture.” This paper
undertakes to describe topics of current interest in the
evolution of computing structures. It discusses vari-
ous unit structures that may emerge as the economics
and capabilities of technology relax more and more
constraints. Of particular interest is the internal
structure of a central computing complex, the relation
of computing elements and I/O elements, and the
maturity of the I/O elements. The paper also suggests
that the structures found within a single computing
unit may be realized across larger elements more
widely dispersed. Hardware and software issues are
addressed.

Impact of memory systems on computer archi-
tecture and system organization by R. E. Matick,
p. 274. The largest part of computer architecture, in
both the central processing unit and the overall sys-
tem, has been and continues to be directly influenced
in one way or another by the types of memory systems
available. This is readily apparent in certain areas
such as 1/O architecture and memory hierarchies.
However, the pervasiveness of this influence
throughout the entire system is not so obvious. This
paper demonstrates this relationship and shows how
it has affected computer architecture over the years.
Two approaches are used, the first being a direct look
at how specific architectures attempt to circumvent
the limitations of the associated memory system. This
includes such topics as the internal architecture of
CPUs: memory hierarchies and virtual memory, I/O
architecture, file structuring, and data base architec-
ture. Second, a gedanken (thought) experiment is
used to predict future trends. It is assumed that very
large-scale integration will evolve to the point at
which we can have nearly any main memory system
we desire, with some reasonable constraints. The
architectural changes that might take place will be
seen to be precisely related to the weaknesses in
current memory systems which various architectures
currently attempt to circumvent.

Computing as a tool for human augmentation by
W. J. Doherty and W. G. Pope, p. 306. The IBM
Thomas J. Watson Research Center in Yorktown,
New York, has experienced a factor of twenty times
increase in the past ten years in the amount of time
its people spend using computers interactively in their
work. This is twice the penetration rate of television
in the 1950s. A similar degree of penetration is ex-
pected to happen in the rest of industry in the next
ten years. That will mean a major departure from
traditional data processing, with computers being

646 ABSTRACTS 1962-1994

used as tools to augment the users' abilities in all
phases of their work. Examples of human augmen-
tation, as seen in the work of several researchers, are
offered in this paper. The integration of large num-
bers of personal workstations into this environment
has given us new understanding of how to work.
The causes, impediments, and consequences of these
changes are described, with emphasis on human re-
quirements for bandwidth, response time, tools, on-
line storage, and computing capacity.

IBM small-system architecture and design—Past,
present, and future by G. G. Henry, p. 321. Small
computer systems have become widespread and im-
portant parts of the computer industry. In this paper,
a selection of IBM's small-system architectures and
design approaches are reviewed. Then current ar-
chitectures are discussed, with an emphasis on the
RT Personal Computer. A brief presentation of trends
in small systems is provided.

Software engineering: An emerging discipline by
R. Goldberg, p. 334. Software engineering is an
emerging discipline whose goal is to produce reliable
software products in a cost-effective manner. This
discipline is evolving rapidly as the challenges faced
by its practitioners keep extending their skills. This
paper gives a quick tour of the main ideas and thrusts
that have driven software engineering in its first 25
years and attempts to look ahead at the next set of
advances.

Tools for building advanced user interfaces by J.
L. Bennett, p. 354. System developers are noticing that
their design decisions strongly affect computer usa-
bility. The design of the user interface has an im-
portant bearing on the knowledge users must have
to accomplish work through the user-computer
interface. Recognition of this fact is leading to the
development of User Interface Management Systems
(UIMSs). A UIMS is a design concept for separating
the details of user interaction from the details of ad-
vanced applications. This paper shows how UIMS
research and research into the representation of user
process knowledge (i.e., user how-to-do-it skills) can
help developers understand issues involving ease of
learning and ease of use. This parallel progress in
UIMS development and in user modeling makes it
easier to build high-quality advanced user interfaces.

Open Systems Interconnection by J. R
Aschenbrenner, p. 369. The subject of Open Systems
Interconnection (OSI) standardization is becoming
increasingly important to the telecommunications and
information processing communities. A number of
OSI standards have been completed, others are near
completion, and initial product offerings by vendors
have begun. This paper briefly defines what OSI is,
the interrelationships of the various standards bodies,
and the goals and benefits to users, vendors, country
post telephone and telegraph bodies, common carri-
ers, and governments. The IBM view of OSI and
how it relates to Systems Network Architecture is
also discussed.

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

An advanced voice/data telephone switching sys-
tem by J. M. Kasson, p. 380. This paper describes a
voice/data circuit-switching system known as the
ROLM CBX II. The paper first discusses what the
ROLM CBX 1II family does, describing the most
important functions and relating them to popular
voice and data applications. The second section de-
scribes how the CBX II works, delineating the ar-
chitecture and giving some details of the system
implementation. The final section offers an assess-
ment of what the CBX II and similar products might
become in the future.

The evolution of printers and displays by A. F.
Mayadas, R. C. Durbeck, W. D. Hinsberg, and J. M.
McCrossin, p. 399. Printer and display technologies
have undergone remarkable changes since the be-
ginning of the computer era. In this paper we trace
the evolution of these two types of I/O devices, from
the middle of the 1940s to the present, and show how
computer system evolution has influenced the designs
and technologies of I/O devices.

Volume 26, Number 1, 1987

Structures for networks of systems by A. L. Scherr,
p. 4. This paper describes how systems will be
interconnected in the future, the roles that they will
play, and the trade-offs that affect these roles.
Starting with a general model for structuring a net-
work of systems, general trade-offs in cost and per-
formance are discussed relative to where functions
are placed in the network. Several general principles
for data and function placement in a network of
systems are derived from these trade-offs. The opti-
mal roles for each of several layers of a network of
systems are discussed. Finally, conclusions are drawn
regarding the design of future networks of systems.

SNA: Current requirements and direction by R.
J. Sundstrom, J. B. Staton III, G. D. Schultz, M. L.
Hess, G. A. Deaton, Jr., L. J. Cole, and R. M. Amy,
p. 13. Since its announcement in 1974, Systems
Network Architecture (SNA) has evolved in terms
of its functional content, configurational flexibility,
and network management services. This paper briefly
traces this progress to the present and examines the
more recent advances in greater detail. It then dis-
cusses known requirements for enhanced application
and transaction services, for additional provisions for
very large networks, for continuing adaptation of
small-system and transmission media advances, for
inclusion of additional management capabilities, and
for further integration of network standards—all of
which will shape future SNA developments.

Prospects and design choices for integrated private
networks by P. E. Green, Jr. and D. N. Godard, p.
37. This paper reviews some of the choices that will
be available in the next few years, as the much-
discussed move toward implementing voice and data
integration within a single wide-area integrated pri-
vate network proceeds. After the term wide-area
integrated private network has been defined, a dis-

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

cussion is given of requirements the network ought
to satisfy for its users. Then two particularly prom-
ising approaches, fast packet switching (FPS) and
hybrid switching (HS), are defined, and specimen
design points for FPS and HS are postulated, so that
the two can be compared. While a definitive com-
parison would require systematic cost and perfor-
mance studies, much insight can be gained from the
qualitative comparison that we present here. We as-
sess some of the arguments that have been put for-
ward in favor of FPS or HS and conclude that,
although today both architectures have promise, and
research on both should continue, FPS appears to be
slightly simpler to implement and operate.

Robetics by J. U. Korein and J. Ish-Shalom, p. 55.
This paper is a survey that is intended to give the
reader an introduction to some issues and problems
in the field of robotics today. The first section dis-
cusses industrial applications of robotics and the re-
quirements they engender, A substantial section is
included on robot programming, including program-
ming languages, motion programming, and tech-
niques. This is followed by a section on trajectory
planning. Issues in both robot-level trajectory plan-
ning and task-level trajectory planning are discussed.
The section on control is divided into three parts:
controller objectives, the system model, and controller
types. Very brief discussions of actuators, sensing,
and end effectors are also included.

Database technology by P. G. Selinger, p. 96. Com-
puters were originally invented and used to ease and
automate the task of computation. As the word
“computer” implies, these early machines were used
for calculations, such as tabulating census data. As
a side effect, the technology needed for storing data
was also invented to provide the computational engine
with input data and allow it to output results. This
means of permanently storing data included punched
cards, tape, and disks. Throughout the 1950s and
most of the 1960s, the management of stored data
was done as required; file systems stored data ac-
cording to user-defined formats and kept a table of
contents. Users shared data by equally ad hoc means,
generally by taking turns accessing the same device.
Over the years, database technology has evolved
through at least three generations to a diverse and
sophisticated set of data management tools, as dis-
cussed in this paper. This paper has three major
sections. Presented first is an introduction to database
technology. Presented next is a description of the
evolution of database technology from early com-
puting to the sophisticated systems of today. The
third section presents a view of both the driving forces
that will influence the database technology of the
future and also the resulting new directions for the
future.

A perspective on the 801/Reduced Instruction Set
Computer by M. E. Hopkins, p. 107. From the earliest
days of computers until the early 1970s, the trend in
computer architecture was toward increasing com-
plexity. This complexity revealed itself through the

ABSTRACTS 1962-1994 §47

introduction of new instructions that matched the
application areas. Microcode was an implementation
technique that greatly facilitated this trend; thus, most
computers were implemented using microcode. In
1975, work began at the Thomas J. Watson Research
Center on an experimental minicomputer. This
project, termed the 801 project, questioned the trend
toward complexity in computer architecture. It was
observed that most of the complex instructions were
seldom used. Thus, a computer could be designed
with only simple instructions without drastically in-
creasing the path length or number of instructions
required to implement an application. This made it
possible to implement a machine without resorting
to microcode, which improved performance. This
paper described the background and evolution of
these ideas in the context of the 801 experimental
minicomputer project.

Data communications: The implications of com-
munication systems for protocol design by B. C.
Goldstein and J. M. Jaffe, p. 122. The construction
of a communication network architecture, specifying
protocols by which systems communicate, is a com-
plex art. Much has been written about the optimal
protocols for theoretical models of systems. This
paper points out that protocol design must depend
on the “nuts and bolts” of the systems which imple-
ment the protocols. Numerous examples are provided
to support this thesis. The paper also briefly discusses
other issues that influence protocol design and draws
lessons for standards activities.

A large-scale computer conferencing system by
D. M. Chess and M. F. Cowlishaw, p. 138. This paper
discusses the relationships between computer-
mediated communications and other forms of com-
munication and describes a particular computer
conferencing system in use within IBM. The system
described is quite large, with over three thousand
contributors and over twenty thousand readers. We
discuss the structure of the system, the actions that
users can take, and the ways in which the system is
being used. Neither the definitions presented nor the
system described are intended to be the last, or only,
word on the subject; as computer-mediated commu-
nications and distribution become more and more
important in the business and professional commu-
nities, we will need more ways of thinking about
communication systems and about information dis-
tribution in general.

Volume 26, Number 2, 1987

OSI-SNA interconnections by K. K. Sy, M. O.
Shiobara, M. Yamaguchi, Y. Kobayashi, S. Shukuya,
and T. Tomatsu, p. 157. As Open Systems Intercon-
nection (OSI) becomes an international standard, it
is gaining support in both industry and government
agencies. One of the major applications of OSI is to
act as an intermediary between heterogeneous net-
works. This paper discusses a scheme for intercon-
necting a Systems Network Architecture (SNA)

648 ABSTRACTS 1962-1994

network with OSI. This scheme is based on a joint
study between IBM Japan and Nippon Telegraph and
Telephone Corporation conducted during 1984,
Fundamental relationships between OSI session and
transport layers and SNA Logical Unit type 6.2 are
explored. An OSI-SNA gateway structure is exam-
ined, and data units, address translation, and exception
handling are discussed.

Visual interpretation of complex data by E. J.
Farrell, p. 174. With increasingly complex digital
simulations and computations, larger volumes of
output are generated, and users must select a congcise
method of displaying the output and extracting rele-
vant information. A set of imaging functions and
display modes is developed to interpret data effec-
tively for a wide range of applications. The imaging
functions are complementary. Each function is useful
for a different aspect of data interpretation. The re-
lationships between variables and the global struc-
tures within the data are obtained with different
display modes such as muitiple windows and ani-
mation. With this set of complementary imaging
functions and display modes, more information is
obtained than with prior imaging methods. Also,
more complex simulation studies are feasible since
the results can now be visualized.

An incidence-matrix-driven panel system for the
IBM PC by P. Halpern, S. M. Roberts, and L. Lopez,
p- 201. A set of programs called TRYLON is dis-
cussed which permits the application developer to
design and create a set of intelligent full-screen
panels. These panels serve as a user interface for
application programs. The panels and the linkages
between them are uncoupled from the application
code, thereby reducing programming effort and de-
velopment time. An incidence matrix is used to de-
scribe the graph of a network composed of the panels.
Because the paths among the panels are specified by
entries in the incidence matrix at panel creation time,
there is no need to program the logical constructs for
the network.

A page-swapping prototype for VM/HPO by W.
H. Tetzlaff, T. Beretvas, W. M. Buco, J. Greenberg,
D. R. Patterson, and G. A. Spivak, p. 215. This paper
discusses a series of changes that were made to a
system running the Virtual Machine/System Product
with the High Performance Option to enhance paging.
The motivation and the background for these en-
hancements are discussed, and the design of a series
of experimental paging subsystems is described and
contrasted with the old design: specifically, the new
algorithms for main memory management, block
paging, working set identification, trimming, pre-
paging, page replacement, page-out device selection,
and page-out slot selection. The performance impact
of these changes is illustrated by results of benchmark
measurements, which are then contrasted to mea-
surements without the enhancements. Some things
learned in running the prototype are discussed and
conclusions drawn.

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

Volume 26, Number 3, 1987

Message-handling systems based on the CCITT
X.400 recommendations by T. E. Schiitt, J. B. Staton
I, and W. F. Racke, p. 235. Message-handling sys-
tems allow the exchange of electronic mail between
computers. The International Telegraph and Tele-
phone Consultative Committee (CCITT) has proposed
a standard for message-handling systems in the form
of the X.400 series of recommendations that has been
widely recognized by computer manufacturers and
communications carriers. This paper provides a tu-
torial on the X.400 recommendations and then de-
scribes. two prototypes developed by the IBM
European Networking Center in Heidelberg,
Germany, in cooperation with its research partners.
The prototypes were demonstrated together with
X.400 prototypes from other manufacturers at the
CeBIT 86 trade fair in Hannover, Germany.

Specification and implementation of an ISO ses-
sion layer by A. Fleischmann, S. T. Chin, and W.
Effelsberg, p. 255. This paper describes a novel
technique for the specification and implementation
of layered communication software. The technique
is called Parallel Activity Specification Scheme
(PASS) and is based on an extended-state machine
model of protocol automata. It allows a convenient
description of the communication behavior of con-
current systems and semiautomatic generation of
programming language code from the specification.
The first large-scale experience gained with this
technique was in the specification and implementation
of an ISO session layer. The code generation process
and the embedding of the session code into a portable
OSI operating system environment are described in
detail.

A framework for information systems architecture
by J. A. Zachman, p. 276. With increasing size and
complexity of the implementations of information
systems, it is necessary to use some logical construct
(or architecture) for defining and controlling the
interfaces and the integration of all of the components
of the system. This paper defines information systems
architecture by creating a descriptive framework from
disciplines quite independent of information systems,
then by analogy specifies information systems ar-
chitecture based upon the neutral, objective frame-
work. Also, some preliminary conclusions about the
implications of the resultant descriptive framework
are drawn. The discussion is limited to architecture
and does not include a strategic planning methodol-

ogy.

The structure of System/88, a fault-tolerant com-
puter by E. S. Harrison and E. J. Schmitt, p. 293. In
recent years, there has been a growing requirement
for continuous processing capability approaching 24
hours per day, 7 days per week. Industries such as
finance, transportation, securities, and telecommuni-
cations have continuous-availability requirements that
can approach downtimes of not more than three

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

minutes per year. This paper describes configurations
of the Stratus/32 continuous processing computer
system that are marketed as the IBM System/88
through an agreement with Stratus Computer, Inc.
The system achieves its fault tolerance via hardware
duplexing coupled with a distributed operating system
that allows system resources to be distributed over
many separate computers while maintaining a single
systems image to the end user. This single systems
image may also be extended across a network of
multiple systems. The way in which software makes
this distribution possible and the way in which system
resources are named to allow transparent distribution
across the system are described in the paper. Also
described are the transaction processing services that
are part of the operating system and allow transaction
programs to be written to operate effectively over the
distributed system, by means of a requester-server
structured approach.

Volume 26, Number 4, 1987

Advanced Interactive Executive (AIX) operating
system overview by L. K. Loucks and C. H. Sauer,
p. 326. The Advanced Interactive Executive (AIX)
is the operating system used in the RT Personal
Computer. It is a portable operating system archi-
tecture that is suitable for a wide range of computer
architectures and customer requirements. Discussed
in this paper are the structure and services of AIX.

The IBM RT PC ROMP processor and memory
management unit architecture by R. O. Simpson and
P. D. Hester, p. 346. The ROMP processor is the
microprocessor used in the IBM RT PC. It is a 32-bit
processor with an associated memory management
unit implemented on two chips. ROMP is derived
from the pioneering RISC project, the 801 Mini-
computer at IBM Research. This paper describes
some of the trade-offs which were made to turn the
research project into a product. It gives an intro-
duction to the architecture of ROMP, including the
addressing model supported by ROMP's memory
management unit. Some of the unique features of the
programming model are explained, with high-level
language coding examples which show how they can
be exploited. ROMP's architecture is extensible, and
the fact that almost all programming for the RT PC
has been in high-level languages means that the RT
PC hardware architecture can be extended as needed
to meet future requirements while preserving the in-
vestment in existing software.

Advanced Interactive Executive program devel-
opment environment by R. Q. Cordell 11, M. Misra,
and R. F. Wolfe, p. 361. The IBM RT Personal
Computer uses the Advanced Interactive Executive
as an operating system. This operating system pro-
vides a distinct environment for the development of
programs. Some of the characteristics of application
development with this operating system, some of its
features that influence application design, and the
basic program development tools are described.

ABSTRACTS 1962-1994 649

AIX usability enhancements and human factors
by F. C. H. Waters, R. G. Bias, and P. L. Smith-Kerker,
p. 383. As microcomputers become capable of run-
ning increasingly large and complex operating sys-
tems, the question of the usability of those operating
systems becomes critical. Most microcomputer users
neither are nor want to be systems programmers, yet
most of the existing large operating systems assume
the existence of a dedicated systems programming
organization to install and maintain system software.
This paper describes the process by which a large
existing operating system was modified to allow it
to be installed, configured, maintained, and used by
individuals with minimal programming knowledge.
We describe the aspects that had to be changed, the
kinds of modifications that were required, the rea-
soning behind those modifications, and the priorities
that constrained our activity. We also describe the
development process by which potential usability
problems were identified and corrections were de-
fined, implemented, and validated.

Box structured information systems by H. D. Mills,
R. C. Linger, and A. R. Hevner, p. 395. The box
structure methodology for information systems de-
velopment is based on a usage hierarchy of data ab-
stractions, in which each abstraction is defined in
three distinct forms, called its black box, its state
machine, and its clear box. Each of these three box
structures defines identical external behavior, but with
increasing internal visibility, to provide a hierarchical
structure which supports the systems development
principles of referential transparency, transaction
closure, state migration, and common services. This
hierarchy of box structures provides, in turn, a basis
for orderly management of information systems de-
velopment by a finite set of analysis and design tasks
in a spiral development process. The methodology
and its use are described.

A perspective on Advanced Peer-to-Peer Net-
working by P. E. Green, Jr., R. J. Chappuis, J. D.
Fisher, P. S. Frosch, and C. E. Wood, p. 414. This
paper is intended to familiarize the reader with the
many reasons for undertaking the design and imple-
mentation of peer networking on small and interme-
diate business machines such as the IBM System/36
family. Such networking function was recently an-
nounced as IBM's Advanced Peer-to-Peer Networking
(APPN) on Release 5 of the System/36. This paper
sets the stage for a companion paper in this same
issue, which discusses the implementation experience
and details of the System/36 APPN product. In the
present paper, the history of System/36 communi-
cation is first reviewed, and it is shown how APPN
was a natural evolution from earlier function. Then
an extensive study of user requirements that was
started in 1982 is summarized. The paper concludes
with a brief technical tutorial on the structure of the
APPN design.

Implementing System/36 Advanced Peer-to-Peer
Networking by R. A. Sultan, P. Kermani, G. A.
Grover, T. P. Barzilai, and A. E. Baratz, p. 429.

650 ABSTRACTS 1962-1984

System/36 Advanced Peer-to-Peer Networking
(APPN) provides highly dynamic, fully distributed
peer networking for low-end processors. It is built
upon existing SNA Logical Unit 6.2 and Node type
2.1 support. APPN presents System/36 users with a
simplified model of communications. The structure
of the APPN subsystem is outlined, with particular
emphasis on the integration of APPN functions with
existing SNA support. The authors describe how
particular aspects of the APPN design have been
tuned to the System/36 operating environment.

Volume 27, Number 1, 1988

SNA network management directions by D. B. Rose
and J. E. Munn, p. 3. Network management is the
process of monitoring and controlling the components
of a communication-oriented network of information
systems in the areas of configuration management,
operational control, problem management, change
management, and performance and accounting man-
agement. This paper discusses the evolution of the
SNA network management architecture and products
that implement that architecture, and describes their
likely future direction.

Utilizing the SNA Alert in the management of
multivendor networks by R. E. Moore, p. 15. Man-
aging multivendor networks is one of the largest
challenges facing vendors and customers in data
processing and telecommunications. This paper fo-
cuses on one aspect of managing multivendor network
environments: problem notification, isolation, and
resolution, via Systems Network Architecture’s Alert.
It describes an extension to the SNA Alert function,
termed the generic Alert, that makes it possible for
various vendors’ products, as well as customer-
written applications, to send Alerts of the same type
to a single Alert receiver. It also describes IBM’s
implementation of the Alert receiver for the
System/370, the NetView™ program product.
Among the facilities that the generic Alert architec-
ture provides to an Alert sender are the following:
(1) code points that index short descriptions of Alert
conditions, probable causes of these conditions, and
recommended operator actions; and (2) vehicles to
carry product-unique text. This text can be used for
further characterizing an Alert condition or specifying
a particular operator action.

NetView/PC by M. Ahmadi, J. H. Chou, and G.
Gafka, p. 32. NetView/PC™ is an IBM program of-
fering that provides the first implementation of a
Systems Network Architecture (SNA) service point
on an IBM Personal Computer. It allows integration
of non-SNA devices such as computerized branch
exchanges or Token Ring local-area networks into a
central SNA network management facility by for-
warding Alert information from these devices to a
host-based network management product such as
NetView™. It also provides some focal point ser-
vices, including logging and display of Alerts and
problem creation and tracking. Non-IBM products

1BM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

may use NetView/PC services via a vendor applica-
tion programming interface (API).

An integrated network management product by
D. Kanyuh, p. 45. The NetView™ program is the
cornerstone of IBM’s network management concept.
It allows enterprises to consolidate their network
operations at a centralized point and is a key element
in providing the function to perform the major dis-
ciplines of network management. This paper de-
scribes how and why the NetView program
originated, the components that make up the product,
the network management functions provided by these
components, such as operations, problem manage-
ment, and performance management, and the con-
tribution of the NetView program to the open network
management direction.

An architecture for a business and information
system by B. A. Deviin and P. T. Murphy, p. 60. The
transaction-processing environment in which com-
panies maintain their operational databases was the
original target for computerization and is now well
understood. On the other hand, access to company
information on a large scale by an end user for re-
porting and data analysis is relatively new. Within
IBM, the computerization of informational systems
is progressing, driven by business needs and by the
availability of improved tools for accessing the
company data. It is now apparent that an architecture
is needed to draw together the various strands of in-
formational system activity within the company. IBM
Europe, Middle East, and Africa (E/ME/A) has
adopted an architecture called the E/ME/A Business
Information System (EBIS) architecture as the stra-
tegic direction for informational systems. EBIS
proposes an integrated warehouse of company data
based firmly in the relational database environment.
End-user access to this warehouse is simplified by a
consistent set of tools provided by an end-user
interface and supported by a business data directory
that describes the information available in user terms.
This paper describes the background and components
of the architecture of EBIS.

Volume 27, Number 2, 1988

The design of Operating System/2 by M. S. Kogan
and F. L. Rawson I, p. 90. The design of Operating
System/2™ (0S/2™) is a result of matching the re-
quirements of IBM and its customers for a new op-
erating system for various models of the Personal
System/2® with the need for continuity with a very
large body of established DOS applications. The
design of OS/2 represented a significant challenge
both in meeting these requirements and in making
efficient use of the hardware. In this paper, the design
characteristics of OS/2 are discussed.

0S/2 EE Database Manager overview and tech-
nical highlights by P. Y. Chang and W. W. Myre, p.
105. Structured Query Language (SQL) has become
an industry standard. It is supported by mainframe
products. This paper describes the OS/2 EE Database

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

Manager, which is based on the relational database
model of E. F. Codd and on the SQL query language.
A functional overview of the OS/2 EE Database
Manager and OS/2 EE is provided; technology ap-
plied to different areas is highlighted.

0S/2 Query Manager overview and prompted
interface by S. L. Watson, p. 119. Operating
System/2™ (OS/2™) Query Manager provides a user
interface for both novice and sophisticated database
users of the OS/2 Database Services. It offers defaults
and standard options for the novice user. Prompting
provides access to the database without requiring
extensive knowledge of Structured Query Language
(SQL), yet it also allows the advanced user to com-
pletely customize screens and reports. Direct keying
of SQL statements is allowed as a fast path for the
knowledgeable SQL user. Functions of OS/2 Query
Manager are described, including details of the user
interface.

Writing an Operating System/2 application by R.
L. Cook, F. L. Rawson III, J. A. Tunkel, and R. L.
Williams, p. 134. This paper illustrates use of the key
facilities of Operating System/2™ (OS/2™). It pro-
vides some guidance on how to use the interfaces and
functions implemented by the system and then in-
troduces the program development environment. Two
examples demonstrate the use of some of the more
interesting capabilities. The paper discusses many
of the significant differences between the functions
of OS/2 and those of the Disk Operating System
(DOS).

COBOL/2: The next generation in applications
programming by R. Sales, p. 158. IBM COBOL/2
is a new compiler and debugger system for the Per-
sonal System/2® product range developed by Micro
Fo cus Group PLC of the United Kingdom. In this
paper, Robert Sales, a software development manager
for Micro Focus who was instrumental in creating the
COBOL./2 system, describes how COBOL/2 breaks
new ground in providing support for many disparate
COBOL language dialects and standards, as well as
in providing support for OS/2™ on the Personal
Computer architecture.

Understanding device drivers in Operating
System/2 by A. M. Mizell, p. 170. To meet its design
goals for multitasking, Operating System/2™ requires
a device driver architecture for interrupt-driven device
management. A device driver in OS/2™ is affected
by the new architecture both in its structure and in
its relationship to the system. An OS/2 device driver
contains components, such as the Strategy Routine
and Hardware Interrupt Handler, which have well-
defined responsibilities. The basic form of these
components is a FAR CALL/FAR RETURN model.
The operating system calls the device driver compo-
nents to handle certain types of events, such as an
application I/O request or a device interrupt. In re-
sponding to these events, an OS/2 device driver must
cooperate with the operating system to preserve sys-
tem responsiveness by helping to manage the multi-

ABSTRACTS 1962-1994 051

tasking of concurrent activities. Since OS/2 uses both
the real mode and the protected mode of the system
processor to support DOS and OS/2 applications,
respectively, the components of an OS/2 device driver
must execute in both modes. In this manner, an OS/2
device driver can be viewed as an installable exten-
sion of the Operating System/2 kernel. Comparisons
between IBM Personal Computer DOS and Operating
System/2 are drawn to illustrate differences between
device management and device driver architecture.

VGA—Design choices for a new video subsystem
by S. Thompson, p. 185. The VGA (Video Graphics
Array) video subsystem is provided as standard on
the system boards of the IBM Personal System/2®
Models 50 and above. VGA was designed to meet
the objectives set for these new systems and to sup-
port compatibility with older IBM offerings, while
at the same time providing greater performance and
increased function. The IBM Enhanced Graphics
Adapter (EGA) was chosen as the compatibility base
for VGA, since EGA had become the video standard
for IBM-compatible computer systems. Six new
modes of operation were designed to meet the needs
of new business and consumer applications and to
improve the ergonomics of the systems. Higher-
performance video presents several design problems,
including electromagnetic interference, physical de-
sign size, and cost. These design problems were
contained by implementing the VGA function in a
single-gate array and by using an analog display
interface. The use of a video digital-to-analog con-
verter (DAC) allows the VGA subsystem to show
any color from a choice of 256K colors when a color
display is used, or 64 gray shades when a
monochrome display is used. The VGA subsystem
was designed to provide a uniform interface for color
and monochrome that allows a color mode to be se-
lected when a monochrome display is used, or a
monochrome mode to be used on a color display.
A color-summing algorithm was designed and im-
plemented in the BIOS (Basic Input/Output System)
software that will allow colors to be shown as shades
of gray on the monochrome display.

The Realtime Interface Co-Processor Multiport/2
adapter by S. C. G. Sykes, p. 198. The Realtime
Interface Co-Processor Multiport/2 is a programma-
ble, multifunction adapter that extends the processing
capabilities of the Personal System/2® and provides
a solution to applications with unique communi-
cations requirements. Customized for speed and
flexibility, the Multiport/2 is fully programmable and
supports asynchronous, byte-synchronous, and bit-
synchronous protocols on its eight communications
ports. This powerful single-slot computer can handle
functions that previously required processing by the
PS/2®. Microcode on the Multiport/2 provides a
real-time multitasking base on which custom appli-
cations can be built. This paper describes the
Multiport/2, its microcode, system support software,
and development tools.

652 ABSTRACTS 1962-1994

An introduction to typographic fonts and digital
font resources by A. W. Griffee and C. A. Casey, p.
206. Type has evolved from blocks of wood or metal
bearing the raised character shape to the many and
varied digitized representations of the character that
are available through computer system technology.
Typography is the art or technique of composing
printed material from type. The evolution of digital
type into the computers of today has opened the door
of typography to people who have had little or no
previous knowledge of the subject. It has also in-
troduced a higher level of complexity to document
composition and presentation service software than
was previously required. Discussed in this paper are
the art of composing printed material, the selection
of an appropriate type design for a given application,
the information required to create and manage a
digital font resource, and the computer system’s use
of digital font resources to produce typographic-
quality documents. These matters are examined in
a way that introduces the reader to typographic fonts,
the additional complexities involved, and the need
for consistency in the definition and application of
digital font resources.

Advanced Function Printing: A tutorial by R. K.
deBry and B. G. Platte, p. 219. Advanced Function
Printing (AFP) is an IBM product for printing mixed
text, image, and graphics in a system-printing envi-
ronment. Described is the AFP printing model. We
demonstrate the way in which this model is used for
existing printing applications, enhanced line printing,
and full advanced-function printing.

Architectures of Advanced Function Printing by
R. K. deBry, B. G. Platte, C. L. Berinato, and J. W.
Marlin, p. 234. Discussed is the use of the capabilities
of all-points-addressable laser (page) printers in ap-
plications involving pages composed of text, image,
and vector data in a device-independent way. Also
presented is the ability to describe and print complex
documents composed of multiples of such pages.
Provision is made for the migration of current line-
printer applications to print using these new page
printers. Three architectures are described
that——along with an Advanced Function Printing
(AFP) model—support these capabilities. Each of
these architectures is described in the context of the
current implementation of the Advanced Function
Printing software.

Volume 27, Number 3, 1988

Introduction to Systems Application Architecture
by E. F. Wheeler and A. G. Ganek, p. 250. Systems
Application Architecture is a framework in which
applications are developed so that they run consis-
tently on major IBM computing systems. This paper
presents the motivation and requirements for this
framework and describes the main elements of its
structure. It also discusses the effect on current
processing technologies and on application develop-
ment.

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

Common Communications Support in Systems
Application Architecture by V. Ahuja, p. 264. Ap-
plication execution in a Systems Application Archi-
tecture (SAA) network depends on the underlying
capability of the network to obtain reliable
connectivity and orderly data exchange among its
system components. The objectives of SAA are
distributed applications, distributed processing, and
distributed data, which are achieved through inter-
connected SAA systems supporting appropriate
interfaces and architectures. The Common Commu-
nications Support of SAA affords this capability by
utilizing a number of Systems Network Architecture
communication architectures and international
standards. These architectures provide useful data
interchange within SAA components by providing
services ranging from managing data links to speci-
fying data streams for user applications. This paper
discusses the role of Common Communications
Support and the means for SAA users to access this
support, and provides an overview of the functions
and roles of various component architectures of
Common Communications Support, along with their
interrelationships.

Common User Access—A consistent and usable
human-computer interface for the SAA environ-
ments by R. E. Berry, p. 281. Systems Application
Architecture (SAA) will allow customers to apply
their investments in their computer operations across
IBM’s three major computing environments that ex-
hibit unique characteristics in terms of architecture,
workstations, operating systems, and system services.
User experience is one of these investments. The
Common User Access (CUA) establishes a degree
of standardization that is compatible with the differ-
ences in the three environments and that supports
transfer of users’ experiences. CUA is based on a
user-interface architecture that identifies fundamental
elements of structure. The intent is to provide a
transfer of users’ conceptual-level learning across
different and evolving technologies. CUA specifies
user-interface components and guidelines to be used
by application designers, and it provides a basis for
programming development tool specifications.

Application enabling in SAA by D. E. Wolford, p.
301. The Common Programming Interface (CPI), one
of the four key elements of Systems Application
Architecture, comprises a growing set of program-
ming languages and services. The CPI indirectly
offers end-user access through the Common User
Access by providing the application developer with
the necessary interfaces. The CPI addresses the ap-
plication development requirement for portability of
applications and programmer skills. As the CPI
continues to expand, it addresses the requirements for
access to host data through intelligent workstations
and for transparent access to remote data and appli-
cations.

Enabling the user interface by S. Uhlir, p. 306.
Presenting a consistent interface to the user is one
of the objectives of Systems Application Architecture

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

(SAA). The development of SAA applications is
simplified by providing enabling interfaces which
help an application developer support the SAA user
interface. Rather than providing a single-level en-
abling interface, SAA offers a spectrum of levels
spread over two interfaces: the SAA Presentation
Interface and the SAA Dialog Interface. This gives
the application developer the freedom to choose the
appropriate level of interface for the application.

Integrating applications with SAA by L A
Buchwald, R. W. Davison, and W. P. Stevens, p. 315.
Advances in computing technology and reductions
in development cost have greatly increased the
number of people who use computers, and have ex-
panded the number and types of applications available
to them. People want their applications to share data
and to be consistent with one another with respect
to terminology and appearance. They also frequently
need access to applications and data on computers
in other locations; the computers may be models and
types that these persons do not normally use. Inte-
grating application functions in a seamless environ-
ment is an important step toward satisfying some of
these requirements. This paper discusses what inte-
grated applications are, why they are valuable, and
how Systems Application Architecture (SAA) can
make it easier to develop them.

Designing SAA applications and user interfaces
by W. P. Dunfee, J. D. McGehe, R. C. Rauf, and K.
O. Shipp, p. 325. This paper describes a framework
for developing applications that conform to Systems
Application Architecture (SAA). The paper shows
a high-level approach to creating a design; it gives
examples of early modeling work with the user
interface; and it appraises SAA through the eyes of
several system designers. The usability of user
interfaces has been evaluated through the modeling
of office tasks. That experience is described, showing
the influence of the SAA Common User Access
(CUA) on the model and the influence of the model
on CUA. Discussed is a design for distributed ap-
plications that fit within the SAA framework and the
influence of SAA on the design of integrated dis-
tributed applications.

Distributed files for SAA by R. A. Demers, p. 348.
Files are still a major way of storing data in computer
systems, and they are a significant part of the infor-
mation to be handled by the distributed processing
networks that are developing. Systems Application
Architecture is supporting distributed files. In this
paper, the goals, benefits, and problems of providing
this support are discussed, along with the role of
Distributed Data Management architecture.

Distributed database for SAA by R. Reinsch, p. 362.
This paper describes, in general terms, distributed
database and its relationship to Systems Application
Architecture (SAA). It shows the importance to ef-
fective distribution of IBM’s Structured Query Lan-
guage (SQL), the database element of the Systems
Application Architecture Common Programming

ABSTRACTS 1962-1994 §53

Interface (SAA CPI). The paper defines five levels
of distribution, showing how each fits real-world
application requirements. Finally, it outlines the
magnitude of the task.

SAA distributed processing by A. L. Scherr, p. 370.
Discussed are motivations for distributed versus
centralized data processing, the relative advantages
of each, and the trade-offs involved as they relate to
Systems Application Architecture (SAA). Presented
is a taxonomy of the various approaches to designing
applications to operate in a distributed manner. SAA
support for these modes is described. The manage-
ment of an enterprise-wide network of systems is
discussed.

The Cross System Product application generator:
An evolution by W. K. Haynes, M. E. Dewell, and
P. J. Herman, p. 384. An application generator is a
generalized application development tool with which
professional programmers develop applications using
a fourth-generation language. This paper describes
the requirements that led to the Cross System Product
application generator, and how the product progressed
from a single-environment product to the current
multienvironment product. Also described are how
the Cross System Product fits within Systems Ap-
plication Architecture and how that may affect the
future of the Cross System Product.

Volume 27, Number 4, 1988

IBM's directions in technical computing by P. L.
Prairie and A. H. Weis, p. 393. Technical computing
comprises hardware systems, software, tools, com-
munications networks, and applications to signif-
icantly increase productivity and competitiveness.
A Technical Computing Structure (TCS) is described
which provides a framework and IBM’s direction to
integrate these elements, including both IBM offer-
ings and industry standards to support the technical
end user. Also discussed are some of the special
studies undertaken to improve development programs
for this environment.

Engineering and Scientific Subroutine Library for
the IBM 3090 Vector Facility by J. McComb and
S. Schmidt, p. 404. The Engineering and Scientific
Subroutine Library (ESSL) provides FORTRAN,
Assembler, and APL2 application programmers with
a high-performance set of mathematical subroutines
which take advantage of the performance gains of-
fered by the IBM 3090 Vector Facility. This paper
describes the contents of ESSL and presents some
of the techniques that were used to develop high-
performance vector subroutines. Other key design
considerations such as accuracy, ease of use, and error
handling are also discussed. This information should
be useful to anyone developing programs for the IBM
3090 Vector Facility.

IBM Parallel FORTRAN by L. J. Toomey, E. C.
Plachy, R. G. Scarborough, R. J. Sahulka, J. F. Shaw,
and A. W. Shannon, p. 416. IBM Parallel FORTRAN

654 ABSTRACTS 1962-1994

is a compiler and library for writing and executing
parallel programs. It provides language extensions
for explicitly programming in parallel, and it also
provides compiler enhancements for automaticaily
generating both parallel and vector code. Parallel
FORTRAN offers a language for parallel program-
ming that is independent of the machine configuration
and the operating system. The combination of Par-
allel FORTRAN and IBM 3090 multiprocessors can
provide a significant reduction in turnaround time for
applications.

Program locality of vectorized applications run-
ning on the IBM 3090 with Vector Facility by K.
So and V. Zecca, p. 436. An instruction-level simu-
lator is used to study the program locality of large
scientific applications. The simulator, which models
an IBM 3090 processor with Vector Facility and a
cache, was developed to help a programmer improve
the performance of an application through better
understanding and use of the Vector Facility and the
memory hierarchy of the IBM 3090 system. Our
main observations on a set of scientific applications
are as follows: (1) although the applications have
different characteristics of memory accesses and
vectorization, their program locality is high enough
to take advantage of conventional cache structures;
(2) the cache hit ratio of the vector execution can be
quite different from (but not significantly lower than)
that of the scalar execution of the same application;
and (3) the application programs that are written to
optimize the use of the memory hierarchy in the
system generally result in higher cache hit ratios than
the others. The cache performance of these applica-
tions with respect to various cache parameters is also
presented. In particular, our study finds that the cache
structure of the IBM 3090 is well suited for large
scientific applications.

Programming style on the IBM 3090 Vector Fa-
cility considering both performance and flexibility
by H. Samukawa, p. 453. To obtain high performance
from the IBM 3090 Vector Facility, we must inves-
tigate vector instruction constructs in terms of the
loop context of the application algorithm. We ex-
emplify the method by linear algebra subroutines for
basic matrix operations and a linear equation solver.
In these examples, we clarify the mathematical
meaning that each loop is computed by analyzing the
loops in terms of a generic algorithm. This analysis
helps us to achieve optimal loop selection. We then
obtain additional performance gain by considering
cache capacity. These procedures suggest that there
are three levels of performance classification. They
also show that program structure yields great benefits
in terms of performance and generality of the pro-
gram.

ICAP 3090: Parallel processing for large-scale
scientific and engineering problems by E. Clementi,
D. Logan, and J. Saarinen, p. 475. Described is the
ICAP/3090 (for loosely coupled array of processors)
parallel processing system. General parallel pro-
cessing performance issues that determine the success

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

of all multiple-instruction/multiple-data-stream par-
allel computing systems are examined in the context
of large-scale scientific and engineering problems.
Experiments with previous 1CAP parallel processing
systems that have made possible the present design
of 1CAP/3090 are also described.

Seismic computations on the IBM 3090 Vector
Multiprocessor by A. Kamel, M. Kindelan, and P.
Sguazzero, p. 510. Computerized seismic prospecting
is an echo-ranging technique usually targeted at ac-
curate mapping of oil and gas reservoirs. In seismic
surveys an impulsive source, often an explosive
charge, located at the earth’s surface generates elastic
waves which propagate in the subsurface; these waves
are scattered by the earth’s geological discontinuities
back to the surface, where an array of receivers reg-
isters the reflected signals. The data recorded are then
processed in a complex sequence of steps. Among
them, seismic migration and stacking velocity esti-
mation represent two characteristic components of the
process solving the inverse problem of recovering the
structure and the physical parameters of the earth’s
geologic layers from echo measurements. A com-
plementary tool in relating seismic data to the earth’s
inhomogeneities is provided by seismic numerical
models, which assume a subsurface structure and
compute the seismic data which would be collected
in a field survey, by solving the direct problem of
exploration geophysics. This paper describes a
vectorized and parallelized implementation of a
two-dimensional seismic elastic model on the IBM
3090 VF Vector Multiprocessor. An implementation
of a parallel seismic migration algorithm is then de-
scribed. The paper also reports performance data for
a vector/parallel implementation on the IBM 3090
of some typical seismic velocity estimation algo-
rithms. The three problems chosen are representative
of a wide class of geophysical computations, and the
results summarized in this paper show their suitability
for efficient implementation on the IBM 3090 Vector
Multiprocessor; combined vector/parallel speedups
in the range 15-25 are in fact observed.

Effective utilization of IBM 3090 large virtual
storage in the numerically intensive computations
of ab initio molecular orbitals by M. Sakaki, H.
Samukawa, and N. Honjou, p. 528. A new level of
storage hierarchy, called Expanded Storage and
available on the IBM 3090 system, is utilized by the
MVS/XA™ operating system as high-speed paging
equipment, allowing a user to hold application data
in large virtual storage. To exploit the large virtual
storage capability of the IBM 3090, a new application
technique was developed for numerically intensive
computations of ab initio molecular orbitals where
high-speed transfer of a vast amount of intermediate
data is a common requirement of most application
programs. An application program running under
MVS/XA was modified so that it could handle a vast
amount of intermediate data in large virtual storage
combined with Expanded Storage, achieving a 4- to
10-fold improvement in turnaround time at a CPU

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

rate-determining step (SCF step) in medium-sized
molecules.

PAM-CRASH on the IBM 3090/VF: An integrated
environment for crash analysis by P. Angeleri, D.
F. Lozupone, F. Piccolo, and J. Clinckemaillie, p. 541.
PAM-CRASH® is an industrial code developed by
Engineering Systems International (ESI) S.A. and
designed specifically for automotive crashworthiness
analysis. We discuss the problems encountered and
describe the solutions provided for an efficient mi-
gration of the code on the IBM 3090/VF system.
Runs on actual test cases have shown a vector/scalar
speedup between 2.7 and 3.5. Moreover, we present
the program modifications we have introduced in
order to exploit parallel processing using the Multi-
tasking Facility of the VS FORTRAN compiler.
Performance results for 3090/VF systems, from the
Model 200E to the Model 600E, are given. Finally,
we describe the restructuring of the graphic proces-
sors, PRE-3D and DAISY, to allow an effective use
of the IBM 5080 Graphics System capabilities in
providing an integrated design environment for crash
analysis.

Interactive computations and display of charac-
teristics of the radiation scattered by a sphere: A
demonstration for PS/2 Model 80 by P. Halpern
and J. V. Dave, p. 561. The Personal System/2®
(PS/2®) Model 80 with its math coprocessor provides
a considerable amount of computing power which
can be used with advantage to solve technical .prob-
lems interactively at a stand-alone workstation. To
demonstrate this capability, a scientific program
routinely used in diverse disciplines requiring sig-
nificant computing power was modified to run on the
PS/2 Model 80. It computes and displays variations
of the specific intensity and degree of polarization
of the electromagnetic radiation scattered by a sphere
of given refractive index. For a sphere of size pa-
rameter of 100, about 475000 double-precision
floating-point calculations are performed and the re-
sults displayed in graphic format in less than ten
seconds. The selected algorithm is routinely used in
several different disciplines such as astronomy, at-
mospheric optics, chemical engineering, colloidal
chemistry, and remote sensing. Because it requires
the evaluation of spherical Bessel functions with
complex arguments, and derivatives of the Legendre
polynomials, it was selected as a representative
problem of numerically intensive computing.

Volume 28, Number 1, 1989

Large systems and Enterprise Systems Architec-
ture by B. R. Aken, Jr., p. 4. A number of diverse
factors have influenced the development of IBM's
Enterprise Systems Architecture. They range from
the compatibility and migration considerations so
important for preserving customer investments in
existing applications and data, to new functional and
capacity requirements of our customers, to the im-
plications of emerging technologies and the projection
of these into the systems environments of the future.

ABSTRACTS 1962-1994 §55

This paper provides an introduction to a collection
of technical papers in this issue describing the
ESA/370™ facilities. Its purpose is to convey a broad
perspective on important factors that will influence
the large-systems environment of the future, and to
relate those factors to the key elements of the
ESA/370 architectural enhancements. It does not
attempt to address all of the considerations leading
to the development of ESA/370, nor discuss the new
features in any depth. Detailed discussion of the
specific features, facilities, and design considerations
of ESA/370 will be found in other papers in this issue.

Enterprise Systems Architecture/370: An archi-
tecture for multiple virtual space access and au-
thorization by C. A. Scalzi, A. G. Ganek, and R. J.
Schmalz, p. 15. The Enterprise Systems Architecture/
370™ provides a significant step in the IBM
System/370 evolution by providing new capabilities
for virtual addressing and program linkage across
multiple address spaces. This paper reviews the ev-
olution that led to this advance and illuminates the
goals, such as eliminating growth constraints and
improving security, integrity, reliability, and per-
formance, that have guided it. The major architectural
capabilities are discussed, along with the system en-
vironments in which they are useful. The rationale
for design choices is presented and related to issues
of performance, access authorization, and constraints
relief.

Concepts of Enterprise Systems Architecture/370
by K. E. Plambeck, p. 39. Enterprise Systems
Architecture/370™ (ESA/370™) is the next step in
the architectural evolution of IBM's large processors
from System/360 to System/370 to System/370 Ex-
tended Architecture (370-XA). ESA/370 includes all
of the facilities of 370-XA and also significant new
facilities. It greatly increases the amount of apparent
main storage that is readily available for use. It
provides for more efficient secure program linkage,
with increased status saving and restoring, among
hierarchically or nonhierarchically organized pro-
grams. It allows improved control program effi-
ciency.

Storage hierarchies by E. I. Cohen, G. M. King, and
J. T. Brady, p. 62. The storage hierarchy is a natural
structure, given the set of available technologies and
their price and performance characteristics. The
physical structure of the storage subsystem is de-
scribed, and the flow of data through the system is
traced. The concept of a storage hierarchy is dis-
cussed, and the specific components of the IBM
storage hierarchy from the processor high-speed
buffer (HSB) to the on-line DASD configuration are
described in detail. Trade-offs between technologies
and the interactions among the levels of the hierarchy
are discussed. In particular, the importance of the
1/O boundary, processor storage volatility, and data
sharing are highlighted. A continuous increase in
virtual storage capacity can be seen in the evolution
of large-scale operating systems, and MVS/ESA™
now provides the ultimate virtual capacity and func-

656 ABSTRACTS 1962-1994

tion. New virtual structures available in MVS/ESA
are discussed, and their relationship to the storage
hierarchy is studied. The importance of storage to
the performance and cost of a large processing system
leads to a discussion of guidelines for storage con-
figuration and data placement within the hierarchy.

System-managed storage by J. P. Gelb, p. 77. In
early 1988, IBM announced the Data Facility Storage
Management Subsystem (DFSMS™), comprising
functions in MVS/DFP™, other products in the Data
Facility family, and RACF. This announcement
constituted a major step in the realization of
system-managed storage. The need for system-
managed storage was established in the late 1970s
and early 1980s, through growing customer require-
ments in the management of external storage space,
performance, availability, and device installability
within and across systems in these customers' instal-
lations. The concept of system-managed storage is
an evolutionary one, culminating in a resource man-
ager for external storage that separates the logical
view of data from physical device characteristics,
simplifies interfaces for the use and administration
of storage, integrates the functions of storage man-
agement products, and provides a synergy of hard-
ware and software functions to effect complex-wide
management of external storage resources, as dis-
cussed in this paper.

Multiple operating systems on one processor
complex by T. L. Borden, J. P. Hennessy, and J. W.
Rymarczyk, p. 104. As large computing systems
continue to grow in capacity and to offer improved
price/performance, there is an increasing requirement
to consolidate systems onto one processor complex.
This paper describes the reasons why users need to
run multiple operating systems today, provides a brief
history of IBM’s partitioning products, and introduces
the Processor Resource/Systems Manager™, a ma-
chine feature on the IBM 3090 Model E and
ES/3090™ Model S processors that provides users
with a flexible and efficient capability to run multiple
operating systems on a single processor complex.

The facilities and evolution of MVS/ESA by C. E.
Clark, p. 124. As new processors were developed
with new capabilities, the Multiple Virtual Storage
(MVS) operating system was modified and enhanced
to utilize the latest advances. The most recently
available processors are structured on Enterprise
Systems Architecture, and MVS has evolved to be a
part of this architecture as MVS/ESA™., This paper
describes the changes that occurred in MVS and the
facilities that are currently available to support users
of the latest processors.

MYVS data services by K. G. Rubsam, p. 151. The
IBM Enterprise Systems Architecture/370™ vastly
increases the potential virtual addressability available
to both system and application programs. The 1/O
model and the application model of permanent data
are discussed to illustrate how large virtual address-
ability can be used to simplify application programs

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

and improve performance. New MVS services that
exploit the architecture are described. Also described
are data window services, which are callable from
high-level languages and provide the capability to
manage very large permanent and temporary objects
in virtual storage.

VM/XA SP2 minidisk cache by G. P. Bozman, p.
165. Given the growing disparity between CPU power
and the speed of secondary storage, a data cache
exploiting large processor storage has the potential
to improve response time dramatically in many situ-
ations. The VM/XA SP2 minidisk cache facility, the
result of research activity on the characteristics of
interactive file-system activity, uses expanded storage
to cache input/output to minidisks on the Conversa-
tional Monitor System. The size of the cache is dy-
namically adjusted by an arbitration process to
optimize system performance. Several other func-
tions improve the performance of the cache during
periods of unusual I/O loads.

VM/XA storage management by G. O. Blandy and
S. R. Newson, p. 175. The VM/XA System Product
manages the vast amounts of real and expanded
storage available on the new Enterprise Systems
Architecture/370™ processors for both guest use and
support of internal operating system functions. The
management algorithms are examined, and the ra-
tionale for their selection is presented.

Volume 28, Number 2, 1989

Evolution of the DASD storage control by C. P.
Grossman, p. 196. This paper identifies the major
requirements and design points for storage controls
and describes how these requirements have been met
over time. It also describes the interplay of three
critical components of a subsystem: hardware tech-
nology, microcode, and software.

Local-area distributed systems by R. C. Summers,
p. 227. Advances in computing and networking have
led to the use of local-area distributed systems. The
following are example configurations: workstations
and file servers, multiple computers that present the
image of a single computer, and heterogeneous
workstations and mainframes that cooperate loosely.
The paper focuses on the system software. It first
discusses the forces leading to distributed systems
and the obstacles to realizing the full value of the
systems. Discussed also are common current uses
of local-area distributed systems. Concepts and
models are introduced. Requirements for user and
program interfaces and for administration are pre-
sented, as well as major design attributes and design
issues. Systems that represent the main approaches
are described.

System-independent file management and dis-
tribution services by J. C. Ashfield and D. B.
Cybrynski, p. 241. Applications universally require
files to move from one location to another. Although
different applications may use files differently, many

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

of the files are of the same type. The identifying,
fetching, moving, and storing functions are the same
for all applications and can be most efficiently pro-
vided by a common process. Various applications
can invoke the common process, which performs the
required operations independently and notifies the
appropriate applications when they are completed.
In Systems Network Architecture (SNA) networks,
the common process is an SNA/Distribution Services
(SNA/DS) server defined by SNA/File Services
(SNA/FS). The invoking applications are SNA/DS
agents of various types. This paper describes the role
of the agent in invoking the file transfer and the role
of the SNA/FS server in fetching and storing the file.
It also describes the SNA/FS architecture for uniquely
naming files and data objects. One example of an
SNA/DS agent that uses the SNA/FS server is the
change management category of SNA/Management
Services, described in another paper in this issue.

Managing changes in SNA networks by C. P.
Ballard, L. Farfara, and B. J. Heldke, p. 260. Systems
Network Architecture/Management Services
(SNA/MS) has been enhanced to give network users
change management capabilities. The first IBM
products implementing change management are
NetView™ Distribution Manager R2 and the 3174
Control Unit with the Central Site Change Manage-
ment microcode function. This paper describes the
design selected and the functions provided: Retrieve,
Send, Delete, Install, Send-and-Install, Remove, Ac-
cept, and Activate. It also describes how SNA/MS
makes use of another new SNA component designed
for it—SNA/File Services, described in another paper
in this issue. (Although not strictly necessary, it is
recommended that the other paper be read prior to
reading this one.) SNA/File Services, in turn, uses
an enhanced SNA/Distribution Services format to
provide an architecture for file distribution in an SNA
network.

REXX on TSO/E by G. E. Hoernes, p. 274. REXX
is a programming language primarily designed for
ease of use. First implemented on the Conversational
Monitor System (CMS), REXX has been imple-
mented on TSO Extensions (TSO/E) as a new com-
mand language, yet it contains all of the elements
of a full-function language. After a brief definition
of the main elements of the REXX language, the
paper discusses why REXX was implemented on
TSO/E, some alternative designs which were con-
sidered, and how the final design integrates the new
language into the existing TSO/E structure, yet allows
REXX programs to be interpreted in any Multiple
Virtual Storage (MVS) address space, even outside
the TSO/E environment. The paper also introduces
the TSO/E “data stack,” which is similar to the stack
implemented in CMS, and describes how the defi-
nition of the CMS stack had to be extended to allow
REXX programs executing concurrently on different
MVS tasks to either share or not share the data stack.
Throughout the paper, compatibility with other Sys-
tems Application Architecture environments, partic-

ABSTRACTS 1962-1994 657

ularly CMS, and performance considerations are
discussed.

Program understanding: Challenge for the 1990s
by T. A. Corbi, p. 294. In the Program Understanding
Project at IBM’s Research Division, work began in
late 1986 on tools which could help programmers in
two key areas: static analysis (reading the code) and
dynamic analysis (running the code). The work is
reported in the companion papers by Cleveland and
by Pazel in this issue. The history and background
which motivated and which led to the start of this
research on tools to assist programmers in under-
standing existing program code is reported here.

DS-Viewer—An interactive graphical data struc-
ture presentation facility by D. P. Pazel, p. 307.
DS-Viewer is a tool that is the result of a research
project in data structure presentation within a program
state. This tool addresses two distinct issues in this
area: (1) to effectively present data structures them-
selves for a given program state and (2) to present
groups of data structures and their interrelationships
as described by their pointer definitions. Graphical
presentations were developed to address these issues.
For the data structure presentation, the user is pro-
vided a display window for any single data structure
instance formatted with its fields and field values.
Flexibility in display is provided by allowing the user
a choice from the various value formats for each field.
For groups of data structure instances, a graphical
drawing space is provided in which pictures of these
data structure instances and their interrelationships
are drawn as blocks and arrows. The computer assists
the user in drawing such a picture by describing its
components, allowing the user to choose which to
draw and to construct as much of the picture as de-
sired.

A program understanding support environment
by L. Cleveland, p. 324. Software maintenance rep-
resents the largest cost element in the life of a soft-
ware system, and the process of understanding the
software system utilizes S0 percent of the time spent
on software maintenance. Thus there is a need for
tools to aid the program understanding task. The tool
described in this paper—Program UNderstanding
Support environment (PUNS)—provides the needed
environment. Here the program understanding task
is supported with multiple views of the program and
a simple strategy for moving between views and ex-
ploring a particular view in depth. PUNS consists
of a repository component that loads and manages a
repository of information about the program to be
understood and a user interface component that pre-
sents the information in the repository, utilizing
graphics to emphasize the relationships and allowing
the user to move among the pieces of information
quickly and easily.

Technical note—Engineering and Scientific Sub-
routine Library Release 3 for IBM ES/3090 vector
multiprocessors by R. C. Agarwal, F. G. Gustavson,
J. McComb, and S. Schmidt, p. 345. This technical

658 ABSTRACTS 1962-1994

note should be read in conjunction with the paper
by McComb and Schmidt which describes the Engi-
neering and Scientific Subroutine Library through
Release 2. In this technical note, which is an ad-
dendum to that paper, we briefly describe some of
the new features in Release 3 and indicate some of
the techniques used to optimize vector and parallel
performance.

Volume 28, Number 3, 1989

System overview of the Application System/400
by D. L. Schleicher and R. L. Taylor, p. 360. This
paper describes IBM’s recently available general-
purpose midrange computers—the Application
System/400™, the basic intentions of the product, the
significant factors setting forth system requirements,
the primary design themes incorporated in the im-
plementation of those requirements, and a description
of some of the key system components. However,
the paper is not intended to provide a complete system
description.

Design, test, and validation of the Application
System/400 through early user involvement by B.
J. Pine II, p. 376. The Application System/400™
(AS/400™) is the culmination of a development effort
requiring seven million lines of code. Key challenges
to its development were those of ensuring that the
system had been designed correctly and thoroughly
tested, that IBM Business Partners were ready for its
introduction together with their applications, and that
IBM marketing representatives and systems engineers
were trained and knowledgeable on the system. This
paper discusses how these challenges were met
through the involvement of customers, Business
Partners, vendors, and systems engineers in the de-
velopment of the AS/400 system so as to positively
affect its design and quality.

A new development rhythm for AS/400 software
by R. A. Sulack, R. J. Lindner, and D. N. Dietz, p. 386.
Synchronizing the software development process with
hardware development and user involvement pro-
grams yielded a product offering that met the user
requirements with a significantly reduced develop-
ment cycle. This paper emphasizes the key elements
of Application System/400™ (AS/400™) software
development that contributed to synchronization and
project success. It is intended to produce an aware-
ness of the elements that set this project apart from
most others.

Application System/400 performance character-
istics by B. E. Clark and M. J. Corrigan, p. 407. The
operating system for Application System/400™
(AS/400™) provides an unprecedented breadth of
function and system services in a single, integrated
system. The majority of functions are implemented
on top of an abstract, high-level machine interface
in a hardware-independent manner, using many ar-
chitectural characteristics normally associated with
poor performance. Despite these architectural and
functional traits of the operating system, the AS/400

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

exhibits excellent price and performance character-
istics for commercial applications and is a competitive
system in the mid-range commercial application
arena. A number of design and optimization tech-
niques, many of them unique or innovative, were
incorporated into the AS/400 to achieve a combina-
tion of advanced design, function, and performance
and are the main subjects discussed in this paper.

The Application System/400 help facility—design
philosophy and considerations by D. A. Charland,
p. 424. The design of the Application System/400™
(AS/400™) system help facility was based on the
philosophy that users must be able to quickly access
the specific information needed to complete their
immediate task. This philosophy, reinforced by ex-
perience with help information on earlier IBM sys-
tems, resulted in a modular help facility that provides
two major types of assistance discussed in this paper.
Contextual information based on cursor position is
provided for each panel. This contextual help is
supplemented by an index of how-to-do-it and
what-it-means information that can be searched by
users in their own words.

Design rationale of the AS/400 user interface by
J. H. Botterill, p. 443. This paper discusses the design
rationale of the software user interface of the Appli-
cation System/400™ (AS/400™). It presents the de-
sign approaches used to produce the interface of this
interactive system.

Object-oriented programming by R. P. Ten Dyke
and J. C. Kunz, p. 465. Object-oriented programming
involves a new way of thinking about and program-
ming applications. The thought process and tech-
niques are introduced through a discussion of the
language Smalltalk and through an illustrative ex-
ample. These concepts are extended to a hybrid
functional language, object-oriented system, KEE®,
and illustrated through the use of knowledge-based
system examples.

A message management system for personal
computers by L. d'Arielli, p. 479. This paper presents
a design for a message management system that re-
duces the coding effort for the application developer,
gives the user greater control over the treatment of
application messages, and eliminates many problems
of translation. Any message may be directed to one
or more devices (screen, printer) and/or files (log,
activity), with the ability to exclude message elements
(e.g., date and time) from being sent to any output
destination, or to exclude a destination altogether.
Because the message-handling code and message
texts are separated from one another and from the
application code, the developer need only issue a
message identifier and set the associated variable
values. The message identifier contains codes for
both class and severity, and the developer provides
default selection criteria that the user can modify.
These tables of selection criteria provide a simple
yet highly flexible means of determining where each
message will be sent and in what form. The simplicity

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

of including variable information and the separation
of message texts into a master repository (where an
information developer or translator can work on them)
tend to improve the quality of messages to the user
by making them more consistent and informative.

Volume 28, Number 4, 1989

History and contributions of the IBM Scientific
Centers by H. G. Kolsky and R. A. MacKinnon, p.
502. The IBM Scientific Centers are celebrating their
twenty-fifth anniversary. These worldwide Centers
are autonomous organizations that provide IBM with
the ability to respond rapidly to the evolution of
computer technology for IBM and for its scientific
customers. During the past quarter century these
Centers have provided technical leadership in almost
every branch of computer science. Today, the 17
individual Centers continue to explore new technical
areas and provide significant contributions. This
paper has three parts: an introduction to the mission,
scope, and history of the Centers; a description of
each Center’s charter, history, and accomplishments;
and an extended list of selected publications for each
Center.

Visual programming: Perspectives and ap-
proaches by N. C. Shu, p. 525. Visual programming
tackles the problem of bringing computing facilities
to people who do not have extensive computer
training by using visual (i.e., nonlinear) representa-
tions in the programming process. In this paper, we
first define visual programming and briefly discuss
its many facets. The purpose is to lay a conceptual
background so that common understanding can be
established and various aspects of visual program-
ming can be focused on and examined. We then
concentrate on visual programming languages,
namely, languages that enable the users to
“program” with visual expressions. Examples are
used to illustrate three fundamentally different ap-
proaches: diagrammatic, iconic, and form based.
Finally, we show that FORMAL, a system developed
and implemented at the IBM Los Angeles Scientific
Center, not only captures the spirit of visual pro-
gramming languages but also has the capability to
automate a wide variety of common data processing
applications.

The WINSOM solid modeller and its application
to data visualization by J. M. Burridge, B. M. Collins,
B. N. Galton, A. R. Halbert, T. R. Heywood, W. H.
Latham, R. W. Phippen, P. Quarendon, P. Reilly, M.
W. Ricketts, J. Simmons, S. J. P. Todd, A. G. N. Walter,
and J. R. Woodwark, p. 548. The IBM United
Kingdom Scientific Centre’s WINchester SOlid
Modelling system (WINSOM) is a set-theoretic,
constructive solid geometry (CSG) modeller based
on recursive division techniques. It specializes in
handling complex models and provides graphical fa-
cilities intended for engineering applications. This
paper describes WINSOM and some of the many
programs that are linked to it, and gives examples
of their application to problems of data visualization.

ABSTRACTS 1962-1994 659

Data visualization in archaeology by P. Reilly, p.
569. Archaeological field work produces vast
amounts of three-dimensionally recorded data which
can only be analysed using computers. Developments
in data-visualization techniques are continually in-
creasing the volume and complexity of data that can
be studied meaningfully. In particular, three systems
developed at the IBM United Kingdom Scientific
Centre have been applied in a wide variety of
archaeological situations: a graphics-database system
called the Winchester Graphics System (WGS),
IBM’s IAX (Image Applications eXecutive) image
processing system, and the WINchester SOlid Mod-
elling system called WINSOM. It has been shown
that these systems not only permit well-known
problems to be answered in new and interesting ways
but have freed archaeologists to explore previously
undiscovered avenues of research. The techniques
developed using these systems also have major im-
plications for education and training.

GARDEN—An integrated and evolving environ-
ment for ULSI/VLSI CAD applications by A. H.
V. de Lima, R. C. B. Martins, R. Stern, and L. M. F.
Carneiro, p. 580. The design and specification of
efficient and powerful Ultra Large Scale Integration/
Very Large Scale Integration (ULSI/VLSI) com-
puter-aided design (CAD) systems to deal with the
current integrated circuit manufacturing technology
is beyond the capabilities of the usual software de-
velopment methodologies. This paper presents
GARDEN, an integrated ULSI/VLSI design envi-
ronment conceived to cope with problems in the ev-
olution of the computing environment. It also
highlights the utilization of the Vienna Development
Methodology (VDM) for the specification, design,
implementation, and maintenance—in short, all of the
software life cycle—of this CAD system, under de-
velopment at the IBM Brazil Rio Scientific Center.

An Arabic morphological system by T. A. El-Sadany
and M. A. Hashish, p. 600. Nowadays, computers are
used in every field in the Arab countries of the middle
east. Software systems developed for the European
languages are not convenient for the use of Arabic
because of the nature of the language and its writing
system. Problems arise when trying to use existing
software systems, such as spell-checkers and business
and office systems, with the Arabic language. These
problems are attributable to the fact that the difference
between Arabic and the European languages exists
not only in character shapes and direction of writing,
but also in language structure. In order to successfully
use Arabic in software systems, we must, then, ana-
lyze the Arabic language word structure—that is,
carry out a morphological analysis. Most of the
written Arabic texts are nonvowelized, which may
lead to ambiguity in meaning or mispronunciation.
Moreover, vowelization cannot be avoided in many
applications, such as speech synthesis by machines
and educational books for children. A two-way
Arabic morphological system (analysis/generation)
capable of dealing with vowelized, semivowelized,
and nonvowelized Arabic words was developed at the

660 ABSTRACTS 1962-1994

IBM Cairo Scientific Center. The system also has
the ability to vowelize nonvowelized words. This
system consists of three separate modules: computa-
tional lexicon, Arabic grammar model module, and
analyzer/generator module. The grammar module
contains, among others, morphophonemic and
morphographemic rules formulated using the con-
ventional generative grammar. Moreover, the de-
veloped system covers all of the Arabic language.

Designing molecules and crystals by computer by
A. Koide, p. 613. An in-depth overview of com-
puter-aided chemical design is presented through a
discussion of three systems that we developed: the
Molecular Design Support System, MolWorld, and
the Molecular Orbital Graphics System. The first is
considered as an example of the kernel of a simulation
system for industrial research and development. The
chemical formula interpreter and three-dimensional
molecular geometry generator of MolWorld are dis-
cussed as a compact realization of intelligence.
Finally, the use of visualized molecular electronic
structures in relation to chemical reactions is con-
sidered in the discussion of the Molecular Orbital
Graphics System.

S*P*A*R*K: A Kknowledge-based system for
identifying competitive uses of information tech-
nology by P. Gongla, G. Sakamoto, A. Back-Hock,
P. Goldweic, L. Ramos, R. C. Sprowls, and C.-K. Kim,
p. 628. The use of information and information
technology (IIT) as a strategic tool to gain competitive
advantage has become increasingly significant in re-
cent years. Numerous examples of how firms are
using IIT to improve their competitive positions are
highlighted in both popular and academic literature.
Although the potential competitive benefits of IIT
are generally recognized by business and I/S execu-
tives, there is a great gap between recognizing such
value and applying the technology effectively. To
help bridge this gap, a group at the IBM Los Angeles
Scientific Center has developed a knowledge-based
system facilitator, called S*P*A*R*K. The system
is designed to help business and I/S managers identify
competitive applications of IIT to help them be cre-
ative in generating a range of IIT alternatives. This
paper provides an overview of S*P*A*R*K, includ-
ing the conceptual frameworks used for knowledge
sources, the design philosophy, functions, and im-
plementation approaches. Examples from a database
of competitive applications of IIT are also presented
to provide a flavor of the S*P*A*R*K facilitative
processes.

Concurrent computing by sequential staging of
tasks by J. Gazdag and H.-H. Wang, p. 646. Described
is a new approach to parallel formulation of scientific
problems on shared-memory multiprocessors such
as the IBM ES/3090 system. The class of problems
considered is characterized by repetitive operations
applied over the computational domain D. In each
such operation, some fields of interest are extrapo-
lated or advanced by an amount of AT. The inte-
gration variable T may be time, distance, or iteration

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

sequence number, depending on the problem under
consideration. An extensively studied approach to
parallel formulation of such computational problems
is based on domain decomposition, which attempts
to partition the domain of integration into many
pieces, then construct the global solution from these
local solutions. Thus, domain decomposition meth-
ods are confined to D alone at a single T level. An
inquiry into the possibilities of formulating parallel
tasks in T, or more significantly in the D X T domain,
opens up new horizons and untapped opportunities.
The aim of this paper is to detail an approach to ex-
ploit this T domain parallelism that will be referred
to as sequential staging of tasks (SST). Concurrency
is realized by means of ordering the tasks sequentially
and executing them in a partially overlapped or
pipelined manner. The SST approach can yield re-
markable speedup for jobs requiring intensive paging
1/0, even when a single processor is available for
executing multiple tasks. Noteworthy features of the
SST method are demonstrated and highlighted by
using results obtained from computer experiments
performed with a numerical solution method of the
Poisson equation and migration of seismic reflection
data.

Advanced Information Management (AIM): Ad-
vanced database technology for integrated appli-
cations by P. Dadam and V. Linnemann, p. 661. The
Advanced Information Management (AIM) project
is currently one of the main activities at the IBM
Scientific Center in Heidelberg. The main purpose
of the project is to understand the database require-
ments and respective solutions for advanced inte-
grated applications such as computer-integrated
manufacturing and computer-integrated office. These
application areas require an advanced database tech-
nology which is able to manage a large variety of
data of various types in a consistent and efficient
way. The underlying database technology should
support not only simple numbers and simple tables
used in business administration, but also large com-
plex structured objects, including text, image, and
voice data, in a uniform way. This paper describes
the background, goals, and accomplishments of the
AIM project. It also provides an overview of the
design goals, the implementation, and the underlying
concepts of AIM-P, an experimental database man-
agement system under development in the AIM
project.

Technical note—Computer sculpture by W. H.
Latham and 8. J. P. Todd, p. 682. This technical note
illustrates the graphic techniques used to generate the
cover of this issue. It should be read in conjunction
with the paper on WINSOM which describes the
computer program used to generate the computer
sculptures.

Volume 29, Number 1, 1990

Experiences with Defect Prevention by R. G. Mays,
C. L. Jones, G. J. Holloway, and D. P. Studinski, p.
4. Defect Prevention is the process of improving

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

quality and productivity by preventing the injection
of defects into a product. It consists of four elements
integrated into the development process: (1) causal
analysis meetings to identify the root cause of defects
and suggest preventive actions; (2) an action team to
implement the preventive actions; (3) kickoff meet-
ings to increase awareness of quality issues specific
to each development stage; and (4) data collection
and tracking of associated data. The Defect Pre-
vention Process has been successfully implemented
in a variety of organizations within IBM, some for
more than six years. This paper discusses the steps
needed to implement this process and the results that
may be obtained. Data on quality, process costs,
benefits, and practical experiences are also presented.
Insights into the nature of programming errors and
the application of this process to a variety of working
environments are discussed.

Implementing the Defect Prevention Process in the
MYVS Interactive programming organization by J.
L. Gale, J. R. Tirso, and C. A. Burchfield, p. 33. A
process for preventing defects has been gaining mo-
mentum in the IBM Corporation as a way to improve
quality and increase productivity. The Communi-
cations Programming Laboratory in Research Trian-
gle Park, North Carolina (near Raleigh), has been
implementing the process for the past six years and
has realized a 54 percent reduction in errors. This
paper documents experiences at the IBM Myers
Corners Laboratory MVS Interactive programming
area in putting the Defect Prevention Process theories
into practice. This paper begins with the proposal to
adopt the Defect Prevention Process at the Myers
Corners Laboratory in Poughkeepsie, New York, and
our experiences thus far. It is our belief that other
organizations can benefit from our experiences by
understanding how the Defect Prevention Process can
be adapted to best meet the needs of any organization.

Effective application development for Presentation
Manager programs by S. M. Franklin and A. M.
Peters, p. 44. The OS/2™ Presentation Manager™
provides an integrated graphical, windowing user
interface to IBM’s OS/2 operating system. This paper
addresses a primary area of interest for Presentation
Manager application developers: the use and devel-
opment of user controls. A control in the Presentation
Manager environment is a program object with a
programming interface and application function. The
structure and interfaces between controls and the
system are described in order to provide an under-
standing of the correct procedure for programming
the Presentation Manager efficiently.

Using box structures for definition of requirements
specifications by J. E. Odom, p. 59. Box structures
provide a stepwise refinement and verification
methodology for information systems analysis and
design. They are especially useful for recording and
decomposing requirements specifications. The ben-
efits of using the structures center around making the
requirements clear to readers, helping to make the
requirements complete, and providing an artifact that

ABSTRACTS 1962-1994 6§61

will enhance the traceability of the requirements.
This paper describes the methodology of applying
box structures and presents an example of their use
in the definition of requirements specifications.

Implementing tool support for box structures by
B. S. Tagg, p. 79. This paper describes a feasibility
study to implement partial tool support for the
graphical component of the box structure methodol-
ogy (BSM). By following the defined strategy and
process, an existing computer-aided software engi-
neering (CASE) environment has been extended with
a customizer to provide support for the box definition
graphics (BDG) component of BSM. The critical
functions required from a CASE environment are also
described to provide the reader with a background
for selecting one of the various implementations
available today.

Porting DPPX from the IBM 8100 to the IBM
ES/9370: Feasibility and overview by R. Abraham
and B. F. Goodrich, p. 90. The DPPX/SP operating
system was converted from its original implementa-
tion on the IBM 8100 Information System architec-
ture to a new implementation—DPPX/370—on the
System/370 architecture of the ES/9370 Information
System processors. Portability was not an original
design objective for DPPX, and yet the conversion
of the operating system was straightforward and
successful. This paper investigates the design fun-
damentals and technical approaches that led to the
successful porting of DPPX/SP to the ES/9370.

Porting DPPX from the IBM 8100 to the IBM
ES/9370: Migration by C. Goodrich and M. B.
Loughlin, p. 106. This paper explains the development
of the migration process by which applications run-
ning on a network of DPPX/SP systems would mi-
grate to a network of DPPX/370 systems. DPPX/SP
is a centrally managed, distributed processing system
designed to run on the IBM 8100 family of proces-
sors. DPPX/370 is the DPPX/SP system ported to
the IBM ES/9370 family of processors. The paper
outlines the strategies, the technical problems
encountered and their solutions, customer partic-
ipation, and testing. Finally, it provides recommen-
dations on how the process might have been
improved.

Porting DPPX from the IBM 8100 to the IBM
ES/9370: Installation and testing by G. E. Boehm,
A. M. Palmiotti, and D. P. Zingaretti, p. 124. This
paper describes the software tools, testing activities,
and testing methods that were used to port the
DPPX/SP operating system from its original imple-
mentation on the IBM 8100 Information System to
its new implementation on the IBM ES/9370 Infor-
mation System,

REASON: An intelligent user assistant for inter-
active environments by J. M. Prager, D. M.
Lamberti, D. L. Gardner, and S. R. Balzac, p. 141.
The provision of intelligent user assistance has been
an ongoing problem in designing computer interfaces.
Interactive computing environments must support

662 ABSTRACTS 19621994

expert as well as novice users when providing advice
for error correction and answers to questions directed
to a system. To address these issues, we have in-
vestigated the application of fairly well-understood
artificial intelligence techniques in novel ways to
provide intelligent help. This paper describes the
design methodology used to build REASON (Real-
time Explanation and SuggestiON), an intelligent
user-assistant prototype for a windowed, multitasking
environment. REASON’s central component is an
inference engine that solves problems arising from a
user’s activity. When the user makes one of several
different kinds of errors, the inference engine offers
dynamically generated suggestions about what the
user might have intended. The user can also query
REASON using natural language. In addition to
providing suggestions of corrected input or answers
to questions, REASON can provide two comple-
mentary types of explanations of these responses,
derived from the inferences that led to them.

Volume 29, Number 2, 1990

AD/Cycle strategy and architecture by V. J.
Mercurio, B. F. Meyers, A. M. Nisbet, and G. Radin,
p. 170. Over the years, IBM has made progress in
resolving many of the issues that deal with improving
application development (AD) productivity and
quality. Systems Application Architecture™, together
with IBM’s recently announced AD/Cycle™ direc-
tion, provides a platform for even greater progress.
This paper addresses the IBM strategy that supports
AD/Cycle and gives an overview of the major com-
ponents of the AD/Cycle architecture. This paper is
an introduction to other papers that follow in this
issue.

The role of work management in application de-
velopment by G. Chroust, H. Goldmann, and O.
Gschwandtner, p. 189. Quality is probably one of the
most serious concerns of today’s software commu-
nity. For software applications exhibiting a certain
complexity, the quality of a product can only be
guaranteed by a methodological approach, using ap-
propriate administration and tools. The methodology
and administration must be manifested in a well-
defined and well-observed application development
process. The process must integrate the human ac-
tivity, the tools, and the intermediate and final work
products into a coherent flow of actions. In this re-
gard, the development of applications follows patterns
that are well established in other industries where an
application development (AD) process model is de-
fined and then executed via an interpretation mech-
anism. The complexity of the development process
makes it necessary to support and integrate all of its
aspects by means of on-line interactive computer
support. Computer-aided process support in the
general sense we call work management. This paper
explains the concepts of an application development
process model and of work management for appli-
cation development under AD/Cycle™ and its relation
to project management.

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

Repository Manager technology by J. M. Sagawa,
p. 209. IBM’s Repository Manager™ enables spec-
ifications involved in the program application devel-
opment process to be managed. On the basis of the
technology, the Repository Manager/MVS™ was
developed as a product. The primary concepts and
services of the technology are introduced, and specific
aspects of the product and its operation are discussed.
A discussion of what is involved in designing and
implementing a tool is also included.

Data modeling for software development by R. W.
Matthews and W. C. McGee, p. 228. One of the mo-
tivations for the use of a facility such as the Repos-
itory Manager™ in an information processing system
is to centralize the information needed for the de-
velopment of software. What this information is and
how it is interrelated is defined in the underlying data
model. This paper discusses the kinds of information
required for software development and offers some
suggestions on how the data model should be or-
ganized and implemented.

User interface services in AD/Cycle by J. M. Artim,
J. M. Hary, and F. J. Spickhoff, p. 236. Significant
progress has been made in the effort to separate
programmers from the management of data storage.
By comparison, the window of a workstation is still
managed and controlled in great detail by the typical
programmer. In AD/Cycle™ user interface services
defined a set of services that assist in the management
of the displays on the workstation. These services
also help increase the productivity of the tool builder
by enforcing Common User Access rules and guide-
lines, and raise the level of consistency of user dis-
plays of the tools in AD/Cycle.

DevelopMate: A new paradigm for information
system enabling by K. P. Hein, p. 250. This paper
discusses a new approach to the use of information
systems that is based on enterprise information system
modeling concepts. This approach is primarily ori-
ented to the enterprise expert, who is considered to
be the individual most familiar with the functioning
of a particular area of the enterprise information
system. The approach is not primarily oriented to-
ward the data processing professional. The paper
discusses the phases of the approach and how the
DevelopMate™ software product supports some of
those phases.

Cross System Product application generator: Ap-
plication design by M. E. Dewell, p. 265. This paper
describes some techniques that can be used for Cross
System Product/Application Development (CSP/AD)
application design. CSP/AD is an application de-
velopment tool for professional programmers. A
well-designed application is obtained by using proven
principles of structured analysis, structured design,
and structured programming. An understanding of
these principles and the application definition con-
structs provided by Cross System Product/Application
Development is necessary for the CSP/AD application
designer. Application design for CSP/AD is accom-

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

plished by using a combination of techniques for data
design, application design, and application program
design. For each of these design techniques there
exist formal, accepted practices, and methodologies
that may be used. These techniques are described,
and methods that have proven successful for design-
ing CSP/AD applications are presented.

Knowledge-based systems in the AD/Cycle envi-
ronment by D. M. Hembry, p. 274. Knowledge-based
systems technology is a branch of artificial intelli-
gence that deals with the processing of knowledge,
as distinct from other branches of artificial intelli-
gence that deal with topics such as robotics, vision
systems, and speech recognition. This paper describes
how, over the last decade, knowledge-based systems
have evolved into a viable technology for building
commercial data processing applications, and how
increasing attention has been paid to incorporating
these applications into commercial data processing
environments. A logical conclusion of this direction
is the capability to build knowledge-based applica-
tions that are full Systems Application
Architecture™ (SAA™) applications. As this con-
clusion is approached, a requirement emerges that the
knowledge-based development process be integrated
with the application development environment pro-
vided by the other SAA language and service com-
ponents. The integrated environment must provide
high customer productivity in the development of
applications that use knowledge-based technology,
and must support a spectrum of development sce-
narios, ranging from the most basic to those involving
complex applications and large development teams.
This paper explores how knowledge-based products
can address these requirements by integrating their
development facilities with AD/Cycle™.

Segmenting discrete data representing continuous
speech input by R. D. Faulk and F. Goertzel
Gustavson, p. 287. A probabilistic method for seg-
menting continuous speech into lexical units is de-
scribed. The algorithm assumes initial conversion
of the continuous speech signal to a discrete repre-
sentation over some suitable alphabet. The problem
of determining such alphabets is not considered.
Experiments used keyed input in English, French,
German, and Russian. We hypothesize that the low
error rates obtained in the experiments can also be
achieved with data representing actual speech. The
paper discusses an area of linguistic science, and
outlines a method for investigating it.

Volume 29, Number 3, 1990

Operational image systems: A new opportunity
by L. C. Kingman III, R. E. Lambert, and R. P. Steen,
p. 304. Within the span of a few years, image pro-
cessing has evolved from an esoteric, expensive
technology to an indispensable tool used by modern
businesses to manage the overwhelming flood of
paperwork. Some of the background for this evolu-
tion and the development of the IBM system solution

ABSTRACTS 1962-1994 §63

for image processing, ImagePlus™, are described in
this paper.

Introduction to image technology by R. M. Helms,
p. 313. Business today is wrestling with mountains
of paper that must be moved, filed, located, and
moved again from person to person. Often the paper
must be stored for extended periods of time, some-
times as long as seven or more years. The long-term
storage of paper records is becoming more and more
costly. An image system not only makes the docu-
ment capture, retention, and retrieval process more
cost efficient, but also makes it a faster service to the
users. The purpose of this paper is to explain the basic
concepts of image processing in business.

The Image Object Content Architecture by Y.
Hakeda, p. 333. Technical advances to image pro-
cessing and the availability of the resulting technol-
ogies at reasonable cost have helped to promote the
use of images in office, engineering, and scientific
environments. As evidence of this use, a wide variety
of applications and products designed for image
processing have been introduced into the market in
recent years. In order to encompass different appli-
cations and products in a single image processing
system and to allow image data to be exchanged and
interpreted consistently throughout the system, IBM
has introduced the Image Object Content Architecture
(IOCA). This paper discusses requirements for the
architecture, concepts of the architecture, use of the
architecture in the different data stream environments
used by image processing systems, and the IOCA
function sets that have been defined for interchange
within Systems Application Architecture™ environ-
ments.

Large-scale image systems: USAA case study by
C. A. Plesums and R. W. Bartels, p. 343. A large-scale,
optical disk-based, operational image system for
office-size documents has been implemented to sup-
port an insurance customer service application. Im-
ages stored on optical disk can be displayed on any
of the more than 1400 workstations or printed on any
of 22 printers. This systemn was the prototype for the
IBM MVS/ESA™ ImagePlus™ product. Each day
over 25000 pages of incoming mail are scanned,
stored, and delivered to users for processing. In ad-
dition, computer-generated data (soon expected to
reach one million pages per day) are stored for display
or print on image-stored overlay forms. The system
is described in the context of any large-scale office
document application. The discussion includes some
of the business factors that created an environment
for success and the business issues that led to the
development of the system. The paper discusses the
discoveries and lessons learned from use of two pilot
systems. The authors conclude that the present level
of technology makes this a good time to move for-
ward with the installation of large-scale operational
document image systems.

ImagePlus as a model for application solution
development by C. D. Avers and R. E. Probst, p. 356.

664 ABSTRACTS 1962-1994

An early effort by IBM to use system integration
services to assist in solving complex problems for
commercial customers involved developing an image
system for USAA, a large financial services associ-
ation. USAA had well-defined and stringent re-
quirements for a policy services application that
required enhancements to existing products to provide
the necessary function and performance. Key prob-
lems solved included managing a storage hierarchy
to handle image size objects, the use of optical storage
as a low-cost storage medium, and the capability to
compress and decompress images rapidly at a work-
station to allow high-speed paging through docu-
ments. Additionally, the registering and indexing of
documents and management of work flow and re-
covery issues were undertaken. The effort was a good
example of the new role of application solution de-
velopment in that the solution was developed in
conjunction with a specific customer, but has devel-
oped into a product. The particular solution described
in this paper became IBM’s ImagePlus™ MVS/
ESA™ product. Although the specific technical is-
sues were different, the same methodology was used
to develop ImagePlus for the System/36 and Appli-
cation System/400®,

Image system communications by H. M. Morris and
R. H. Orth, p. 371. This paper discusses the commu-
nication requirements to support the IBM
ImagePlus™ system. The analysis and approach
discussed are based on the experience gained in in-
stalling the initial ImagePlus systems at several
business enterprises.

Object storage hierarchy management by W. B.
Harding, C. M. Clark, C. L. Gallo, and H. Tang, p.
384. The Object Access Method (OAM) component
of MVS/Data Facility Product is responsible for the
storage, retrieval, and management of objects in IBM
MVS/ESA™ ImagePlus™ systems and in other ap-
plications. The OAM Storage Management Compo-
nent is the subcomponent of OAM that provides
storage management for objects stored within an
object storage hierarchy. Storage management is a
cyclic procedure which assures that data are stored
in conformity to a policy defined by the data pro-
cessing storage administrator. During a storage
management cycle, the OAM Storage Management
Component (OSMC) selects objects for processing
based on requirements for backup, expiration, or
service level changes. This paper describes the con-
cepts of object storage management using a storage
hierarchy that contains DASD and optical disk stor-
age.

ImagePlus Workstation Program by G. B.
Anderson, B. P. Gross, S. M. Lewis, and J. A. Reimer,
p. 398. IBM’s ImagePlus™ system is designed to
permit the capture, storage, management, and re-
trieval of documents through digital imaging. The
ImagePlus Workstation Program is that portion of the
ImagePlus system that controls the user's workstation.
This paper describes the challenges that were posed
in designing an ImagePlus Workstation, and the ap-

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

proach taken by the development group to solve them.
The primary design goal was to deliver operational
performance for image processing in a cost-effective
workstation, while permitting the user maximal con-
trol in viewing and manipulating scanned documents.
The solution chosen implemented a Personal
System/2® workstation that operates with a
System/36, Application System/400%®, or System/370
Multiple Virtual Storage host.

Personal systems image application architecture:
Lessons learned from the ImagEdit program by
A. Ryman, p. 408. Image applications require complex
processing on large amounts of data. The application
designer is presented with difficult challenges that
are exacerbated on personal systems which have
limited processor speed and constrained memory.
This paper discusses the problems relevant to personal
systems image application architecture and how these
problems were solved in the ImagEdit® program.
A virtual array manager (VAM) consisting of a virtual
memory manager (VMM) and an access scheduler
was used to solve the data management problem.
The VAM divided each image into segments and
transferred them to the VMM for storage. These
segments were swapped between memory and disk
in response to a sequence of access requests, con-
trolled by the access scheduler using performance-
maximizing heuristics. Object-oriented design was
used to address the functional complexity problem.
The processing functions were divided into two
classes. The data-stream class included scanning,
printing, and filing, with each data-stream function
decomposed into a series of demand-driven pipe ob-
jects. The editing class included cut and paste, textual
and graphical annotation, and freehand drawing.

ImagePlus High Performance Transaction System
by R. F. Dinan, L. D. Painter, and R. R. Rodite, p.
421. The need for a cost-effective method for han-
dling, processing, storing, and retrieving transaction
documents combined with the availability of hard-
ware and software technologies capable of satisfying
this need are the basis for the High Performance
Transaction System discussed in this paper. The
particular transactions that are the subject of this
paper are bank checks, the volumes surpassing 50
billion per year and continuing to grow. Other
transactions might be the handling of such documents
as bill remittances, tax documents, mail-order forms,
census forms, and many other similar applications.
This paper discusses the system design, hardware and
software architectures, and performance of the
ImagePlus™ High Performance Transaction System.

Intelligent Forms Processing by R. G. Casey and
D. R. Ferguson, p. 435. The automatic reading of
optically scanned forms consists of two major com-
ponents: extraction of the data image from the form
and interpretation of the image as coded alphanu-
merics. The second component is also known as
optical character recognition, or OCR. We have
implemented a method for entry of a wide variety
of forms that contain machine-printed data and that

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

are often produced in business environments. The
function, called Intelligent Forms Processing (IFP),
accepts conventional forms that call for information
to be printed in designated blank areas, but in which
the information may exceed boundaries due to poor
registration during printing. The human eye easily
accommodates data that impinge on form boundaries
or on background text; however, the same powers
of discrimination applied to machine processing pose
a technical challenge. The IFP system uses a setup
phase to create a model of each form that is to be read.
Scanned forms containing data are compared against
the matching form model. Special algorithms are
employed to extract data fields while removing
background printing (e.g., form lines) intersecting the
data. The extracted data images are interpreted by
an OCR process that reads typical monospace fonts.
New fonts may be added easily in a separate design
mode. If the data are alphabetic, a lexicon may be
assembled to define the possible entries.

AS/400 ImagePlus system view by M. Addink and
J. J. Mullen, p. 451. Storage space, loss of documents,
misfiled and misplaced documents, and document
retrieval are just a few of the problems of processing
large volumes of paper. High storage costs, lost
productivity, personnel costs, and poor responsive-
ness are some of the results. Until recently, tech-
nology could not provide a cost-effective method for
reducing this paper flow. IBM designed its midrange
ImagePlus™ system to provide an effective and
comprehensive solution to both the paper and the
work-flow problems. The AS/400™ ImagePlus sys-
tem provides an imaging environment for depart-
mental installations of up to 256 workstations. This
system combines the image-handling capabilities of
the IBM ImagePlus Workstation Program, the user
interface and case/folder processing of the AS/400
Workfolder Application Facility, with the image
storage and retrieval capabilities of the optical storage
support subsystem. All together, these facilities
provide a high configurable system capable of han-
dling high volumes of transactions.

Experience gained in implementing ImagePlus by
B. T. Perry, B. A. Wester, W. W. Baker, and J. F.
Kemmis, p. 467. An ImagePlus™ internal use program
(IUP) was established in IBM to assist users inside
the company with their initial application selection
and their training, procedure definition, and prototype
system installation, as well as their initial use of the
system on a regular working basis. This paper dis-
cusses the experience gained from identifying, se-
lecting, and preparing several areas within IBM for
an ImagePlus system. The experience begins with
establishment of IUP objectives and guidelines, con-
tinues through the account nomination and selection
process used to identify and select the application,
and ends with identification of the justification or
business case process and some of the major elements
considered in the justification for the purchase of a
system. A detailed description of several internal
operations that have installed an ImagePlus system

ABSTRACTS 1962-1994 665

is given. In conclusion, ImagePlus as an application
enabler is discussed.

Volume 29, Number 4, 1990

Multimedia presentation development using the
Audio Visual Connection by D. J. Moore, p. 494.
This paper describes the technology behind the cre-
ation of multimedia presentations using a new IBM
program product, the Audio Visual Connection®
(AVC™,), The multimedia approach represents a
major innovation in computer technology involving
new concepts such as the digitization of audio and
video, the involvement of the Musical Instrument
Digital Interface (MIDI), and the creation of a
multimedia story. Two hardware adapters support the
AVC: the Audio Capture and Playback Adapter and
the Video Capture Adapter. When used with these
adapters, the AVC digitizes both stereo audio and
color video, performs powerful edit and synchroni-
zation functions, defines an interactive user environ-
ment, and creates a multimedia presentation using
standard IBM Personal System/2® hardware. Addi-
tional input is available from MIDI song files, screen
capture, and non-AVC image systems. Final results
range from passive presentations to interactive ap-
plications to sophisticated database front ends.

Business/enterprise modeling by R. L. Katz, p. 509.
This paper reports on pertinent aspects of business/
enterprise modeling studies that were conducted with
nine IBM customers using what are now called
computer-aided software engineering (CASE) tools.
Coming shortly after the recent AD/Cycle™ an-
nouncement and the increased focus in IBM on
tool-supported (CASE) business/enterprise modeling,
this description of actual modeling studies should be
especially germane. The model definitions (dimen-
sions) used in the studies correspond exactly to many
of the dimensions wused by AD/Cycle,
DevelopMate™, and the Repository Manager™.
Compelling business reasons for conducting the
studies are identified.

Exponentiation cryptosystems on the IBM PC by
P. G. Comba, p. 526. Several cryptosystems based
on exponentiation have been proposed in recent years.
Some of these are of the public key variety and offer
notable advantages in cryptographic key manage-
ment, both for secret communication and for message
authentication. The need for extensive arithmetic
calculations with very large integers (hundreds of
digits long) is a drawback of these systems.

This paper describes a set of experimental programs
that were developed to demonstrate that exponentia-
tion cryptosystems can be efficiently implemented
on the IBM Personal Computer (PC). The programs
are organized into four layers, comprising procedures
for: multiple precision integer arithmetic, modular
exponentiation, prime number generation and testing,
and cryptographic key generation. The major em-
phasis of the paper is on methods and techniques for
improving execution speed. The items discussed in-

666 ABSTRACTS 1962-1994

clude: the use of a specialized squaring procedure; a
recursive splitting method to speed up squaring and
multiplication; the computation of residues by using
multiplication instead of division; the efficient en-
coding of residue information; and the use of
thresholds to select the most effective primality test-
ing algorithm for a given size number. Timing results
are presented and discussed. Finally, the paper dis-
cusses the advantages of a mixed system that com-
bines the superior key management capabilities
inherent in public key cryptosystems with the much
higher bulk-encryption speed obtainable with the Data
Encryption Algorithm.

Extension of the relational database semantic
processing model by T. Hirao, p. 539. A data model
consists of three parts: (1) a data definition that rep-
resents the information in an understandable manner;
(2) a definition of the constraints that must hold for
the information to be valid; and (3) a definition of
operations that can be performed on the information.
Current database management systems do not allow
explicit specification of all three parts of the data
model. This paper gives an approach that extends
current database management systems through a
technique called pre-precompilation.

Re-engineering software: A case study by R. N.
Britcher, p. 551. In 1986, the Federal Aviation Ad-
ministration formed a contract with three companies
to re-engineer a major portion of the New York ter-
minal approach control (TRACON) application
software—the software that supports air traffic con-
trol in the New York City and Newark, New Jersey,
area. This paper discusses the techniques used to
successfully re-engineer the software to run on an
IBM System/370™, illustrating that real-time soft-
ware can be logically converted from one computer
to another, reliably and cost-effectively.

Guidelines for authors of the IBM Systems Journal
by A. G. Davis, J. R. Friedman, M. J. Haims, and G.
C. Stierhoff;, p. 568. It is important to have guidelines
for the scope and breadth of papers being prepared
for submission to a technical journal. This article
provides information about the IBM Systems Journal
and offers guidelines for prospective authors. The
Systems Journal and its audience are described, and
the processing of papers is discussed, along with
suggestions for content and structure. To further aid
the writer in preparing clear, complete papers of high
quality, a bibliography of technical writing references
is included.

Volume 30, Number 1, 1991

VM/ESA: A single system for centralized and
distributed computing by W. T. Fischofer, p. 4. The
rapid evolution of distributed and personal systems
in recent years has not diminished the importance
of centralized computing. Today, systems at all levels
need to operate in networked configuration to allow
users and applications to access and manipulate data
from anywhere with full integrity and optimal per-

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

formance. Virtual Machine/Enterprise Systems
Architecture™ (VM/ESA™) satisfies this requirement
as a single VM product that has been designed for
both centralized and distributed computing. This
essay describes how VM/ESA builds on IBM’s rep-
utation for virtual machine performance, function,
and flexibility to form an ideal solution base for the
1990s.

VM Data Spaces and ESA/XC facilities by J. M.
Gdaniec and J. P. Hennessy, p. 14. Release 1.1 of the
Virtual Machine/Enterprise Systems Architecture™
(VM/ESA™) operating system introduces a new
function called VM Data Spaces, provided through
a new virtual-machine architecture called Enterprise
Systems Architecture/Extended Configuration
(ESA/XC). ESA/XC is the strategic VM/ESA
virtual-machine environment for Conversational
Monitor System (CMS) users and service virtual
machines requiring large amounts of storage or ad-
vanced data-sharing capabilities. ESA/XC includes
all of the facilities of System/370 Extended Archi-
tecture (370-XA) that are used by CMS or server
programs and is therefore upward compatible for
CMS or server programs currently running in 370-XA
virtual machines. To this 370-X A base, ESA/XC adds
the data space and access-register addressing capa-
bilities previously available only under the Multiple
Virtual Storage/Enterprise Systems Architecture
(MVS/ESA™) operating system. These addressing
extensions can be used to make additional storage
available to large, storage-constrained applications
and can also be used by servers as an efficient way
of sharing data between service virtual machines and
the users that access those servers. As an introduction
to the VM Data Spaces function, this paper describes
the ESA/XC virtual-machine architecture and pre-
sents an overview of the VM/ESA services provided
in support of the ESA/XC architecture.

ESA/390 interpretive-execution architecture,
foundation for VM/ESA by D. L. Osisek, K. M.
Jackson, and P. H. Gum, p. 34. The interpretive-
execution facility of Enterprise Systems
Architecture/390™ (ESA/390™) provides an in-
struction for the execution of virtual machines. This
instruction, called START INTERPRETIVE EXE-
CUTION (SIE), was initially created for virtualizing
either System/370™ or 370-XA architectures, and
was used later for virtualizing ESA/370™ and
ESA/390 architectures. SIE has evolved to provide
capabilities for a number of specialized performance

environments. Most recently it provides for the
unique requirements of Enterprise Systems
Architecture/Extended Configuration (ESA/XC)

virtual-machine architecture. This comprehensive set
of capabilities in the architecture serves as the plat-
form for the ability of VM/ESA™ to provide func-
tions in virtual machines for end users and system
servers. This paper describes the evolution of SIE
and outlines use of the various capabilities in
VM/ESA.

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

VM/ESA CMS Shared File System by R. L. Stone,
T. S. Nettleship, and J. Curtiss, p. 52. Discussed is
work toward satisfying requirements on the Conver-
sational Monitor System (CMS) in the areas of data
sharing and physical DASD space sharing. This work
advances the present CMS file system design that
allows only active read sharing among users on a
single VM system, where each user has a reserved,
private allocation of DASD space for file data. De-
scribed in this paper is the CMS Shared File System
(SFS), which was designed to satisfy the data sharing
and physical DASD space sharing requirements by
providing a pool of DASD space that is shared among
multiple users. DASD space assigned to the pool is
easily extended, and read/write sharing of individual
files is allowed. Also discussed is SFS security, usage
of Virtual Machine/Enterprise Systems
Architecture™ (VM/ESA™) data spaces for single
system performance, and coordinated resource re-
covery to provide file data integrity in the distributed
environment.

Coordinated Resource Recovery in VM/ESA by
B. A. Maslak, J. M. Showalter, and T. J. Szczygielski,
p. 72. A system service for coordinated recovery of
resources is a critical function needed for distributed
processing environments because applications need
to provide for data integrity while the location of the
data and processes are transparent to the application.
VM is the first IBM operating system to provide
Coordinated Resource Recovery as a system service
rather than as a service provided by unique environ-
ments running on the operating system, and the VM
Common Programming Interface-Communications
and Shared File System are the first subsystems to
utilize the service. This paper is an overview of why
and how VM provided Coordinated Resource Re-
covery (CRR). CRR is the implementation of the
Systems Application Architecture™ (SAA™) re-
source recovery interface within Virtual Machine/
Enterprise Systems Architecture™ (VM/ESA™),
This coordinated sync point system service allows
one or more applications or subsystems to update
multiple resources and to request that all updates be
committed or backed out together. The applications
and their respective resources can be local or dis-
tributed. CRR either coordinates the request to
commit or backout immediately, or supports auto-
matic resource resynchronization in case a system
or subsystem fails. When restart is not possible, CRR
allows for intervention by a system operator or ad-
ministrator.

Systems management for Coordinated Resource
Recovery by R. B. Bennett, W. J. Bitner, M. A. Musa,
and M. K. Ainsworth, p. 90. Coordinated Resource
Recovery is a Virtual Machine/Enterprise Systems
Architecture™ (VM/ESA™) function for providing
consistency of changes to multiple resources in en-
vironments that include distributed applications. It
provides a uniform solution for applications to the
problem of resource consistency. Systems manage-
ment of Coordinated Resource Recovery in VM/ESA
(CRR) is the set of system services and interfaces that

ABSTRACTS 1962-1994 667

support both automatic and manual procedures for
managing CRR installation, performance, and re-
covery, as well as resource manager and application
participation. Much of systems management is fo-
cused on application recovery from occasional fail-
ures of the procedures for coordinating consistent
resource changes. This paper describes several key
aspects of CRR systems management, including the
CRR recovery log, facilities for minimizing manual
intervention when failures occur, performance con-
siderations, and application participation in recovery.

VM/ESA support for coordinated recovery of files
by C. C. Barnes, A. Coleman, J. M. Showalter, and
M. L. Walker, p. 107. This paper discusses the con-
cepts and facilities of the Shared File System (SFS)
support for Virtual Machine/Enterprise Systems
Architecture™ (VM/ESA™) Coordinated Resource
Recovery (CRR). It includes background information
on limitations that lead to SFS support for coordi-
nation of file recovery functions. The level of support
provided by the Virtual Machine/System Product
(VM/SP) Release 6 SFS support is identified and
contrasted with the support provided in VM/ESA.
The paper contains an overview of the system struc-
ture and the rationale for the support and is a dis-
cussion from the overall perspective of the total
system environment and system processing for re-
source recovery. After the concepts and structure of
VMV/ESA SFS support are introduced, the paper dis-
cusses the specific technology involved in providing
SES support for Coordinated Resource Recovery.
This includes a discussion of specific facilities used
by SFS and how SFS deals with certain conditions
that can arise. In addition, this paper discusses the
Conversational Monitor System (CMS) compatibility
considerations that contributed to the design of SFS
support for Coordinated Resource Recovery. This
includes compatibility with prior releases and com-
patibility with the CMS file system support for
minidisks. Finally, some of the future directions for
file system support of resource recovery are identified
along with some of the challenges that remain to be
solved.

Volume 30, Number 2, 1991

Common Cryptographic Architecture Crypto-
graphic Application Programming Interface by
D. B. Johnson, G. M. Dolan, M. J. Kelly, A. V. Le,
and S. M. Matyas, p. 130. Cryptography is considered
by many users to be a complicated subject. An ar-
chitecture for a cryptographic application program-
ming interface simplifies customer use of
cryptographic services by helping to ensure compli-
ance with national and international standards and
by providing intuitive high-level services that may
be implemented on a broad range of operating sys-
tems and underlying hardware. This paper gives an
overview of the design rationale of the recently an-
nounced Common Cryptographic Architecture
Cryptographic Application Programming Interface
and gives typical application scenarios showing

668 ABSTRACTS 1962-1994

methods of using the services described in the ar-
chitecture to meet security requirements.

Key handling with control vectors by S. M. Matyas,
p. 151. A method is presented for controlling
cryptographic key usage based on control vectors.
Each cryptographic key has an associated control
vector that defines the permitted uses of the key
within the cryptographic system. At key generation,
the control vector is cryptographically coupled to the
key via a special encryption process. Each encrypted
key and control vector is stored and distributed within
the cryptographic system as a single token. De-
cryption of a key requires respecification of the
control vector. As part of the decryption process, the
cryptographic hardware also verifies that the re-
quested use of the key is authorized by the control
vector. This paper focuses mainly on the use of
control vectors in cryptosystems based on the Data
Encryption Algorithm.

A key-management scheme based on control vec-
tors by S. M. Matyas, A. V. Le, and D. G. Abraham,
p. 175. This paper presents a cryptographic key-
management scheme based on control vectors. This
is a new concept that permits cryptographic keys
belonging to a cryptographic system to be easily,
securely, and efficiently controlled. The new key-
management scheme—built on the cryptographic ar-
chitecture and key management implemented in a
prior set of IBM cryptographic products—has been
implemented in the newly announced IBM Trans-
action Security System.

ESA/390 Integrated Cryptographic Facility: An
overview by P. C. Yeh and R. M. Smith, Sr., p. 192.
This paper reviews the objectives of the Enterprise
Systems Architecture/390™ (ESA/390™) Integrated
Cryptographic Facility. It presents the cryptographic
key-management scheme, summarizes key elements
and unique characteristics of the facility, and de-
scribes the physical security provided by the first
ESA/390 implementation.

Transaction Security System by D. G. Abraham,
G. M. Dolan, G. P. Double, and J. V. Stevens, p. 206.
Components of previous security systems were de-
signed independently from one another and were of-
ten difficult to integrate. Described is the recently
available IBM Transaction Security System. It im-
plements the Common Cryptographic Architecture
and offers a comprehensive set of security products
that allow users to implement end-to-end secure
systems with IBM components. The system includes
a mainframe host-attached Network Security
Processor, high-performance encryption adapters for
the IBM Personal Computer and Personal
System/2® Micro Channel®, an RS-232 attached
Security Interface Unit, and a credit-card size state-
of-the-art Personal Security™ card containing a
high-performance microprocessor. The application
programming interface provides common program-
ming in the host and the workstation and supports
all of the Systems Application Architecture™ lan-

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

guages except REXX and RPG. Applications may
be written to run on Multiple Virtual Storage (MVS)
and PC DOS operating systems.

Transaction Security System extensions to the
Common Cryptographic Architecture by D. B.
Johnson and G. M. Dolan, p. 230. A well-designed
application program interface for a line of crypto-
graphic products simplifies customer use of
cryptographic services by helping to ensure compli-
ance with national and international standards and
by providing intuitive high-level services that may
be implemented on disparate systems. The Common
Cryptographic Architecture is IBM’s strategic cryp-
tographic architecture. The Transaction Security
System implements the Common Cryptographic Ar-
chitecture in full. Furthermore, the Transaction Se-
curity Systern has implemented extensions to the
architecture to address additional customer require-
ments. This paper gives the design rationale for some
of the additional cryptographic functionality in the
Transaction Security System beyond that mandated
by the Common Cryptographic Architecture.

Volume 30, Number 3, 1991

SNA route generation using traffic patterns by S.
C. Baade, p. 250. This paper describes a procedure
used by the IBM Information Network to generate
optimum routes for a complex Systems Network
Architecture (SNA) network by utilizing communi-
cation traffic patterns. The Route Table Generator
and an understanding of customer locations and
available facilities had been the basis for route gen-
eration. However, this approach became over-
whelming as the network grew. The lack of flexibility
required an increasing need to manually override
generated routes. The resulting approach could not
ensure that network delay had been minimized. The
Network Design and Analysis (NETDA) tool devel-
oped at the IBM Yorktown Research Center was used
as a solution. NETDA orders routes based on static
indicators such as number of hops, route distance,
and speed of the path components. However, NETDA
also selects optimal routes based on network traffic
patterns. Traffic data were easily incorporated into
NETDA, and the IBM Information Network has op-
timized its SNA routing using NETDA and actual
traffic data. The process was challenging because
of the number of network components involved and
the difficulty in obtaining portions of the traffic data.
The use of NETDA for route generation is discussed,
and the data collection methodology is described.
Network component utilization and network delay
changes are reviewed as a means of showing the
benefits of such optimizations.

A base for portable communications software by
S. H. Goldberg and J. A. Mouton, Jr., p. 259. The
emerging international standards for interconnecting
computers will be important in IBM’s future plans.
The Open Systems Interconnection (OSI) protocols
are alread% part of IBM’s Systems Application Ar-
chitecture® (SAA™), implying that they will be im-

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

plemented across the dissimilar SAA operating
systems. Building these complex OSI protocols is
costly, and additional expense is involved in verifying
conformance and interoperation with other systems.
“Porting” a common implementation of these proto-
cols to all SAA systems offers major cost savings,
but the difference between systems and the need for
high-performance, robust implementations poses
problems. The OSI/Communications Subsystem Base
solves many of these problems in a general way that
may apply to other layered protocols and other sys-
tems. The Base provides all necessary operating
system services to support the layered communi-
cations protocol machines of OSI and allows access
to the 1/O services of the native operating system as
required. This paper discusses the sophisticated
communications-oriented environment provided by
the OSI/Communications Subsystem Base, which
includes multiple threads, back-pressure flow control,
resource monitoring, layer modularity, and steps to
minimize process switches and data copying. The
paper is addressed primarily to systems engineers and
communications architects interested in OSI and
portability in general.

Perspectives on multimedia systems in education
by S. Reisman and W. A. Carr, p. 280. Although
multimedia or interactive video seemed revolutionary
in the early and mid-1980s, its application to indi-
vidualized instruction followed clearly defined ev-
olutionary paths. Forms of individualized instruction
leading up to multimedia instruction are described,
and a review of the integration of individualized in-
struction into a standard education curriculum is in-
cluded. Discussed is a jointly defined effort between
IBM and the California State University at Fullerton
that demonstrated: (1) the benefits of a parallel
course-development and course-implementation ap-
proach, (2) the superiority of multimedia over tradi-
tional instruction in the subject area tested, and (3)
very low-cost development of quality multimedia
courses. A projection by IBM for its own internal
education program indicates that by the year 2000
not only will individualized instruction become fully
integrated into IBM’s education curriculum, but it
will become the dominant approach, encompassing
within it many aspects of traditional instruction. The
continuing integration of individualized instruction
with other technologies and advances in digital full-
motion capabilities can help make multimedia in-
struction not only independent of time and place, but
more engrossing and enjoyable as well.

FORTRAN for clusters of IBM ES/3090 multi-
processors by R. J. Sahulka, E. C. Plachy, L. J.
Scarborough, R. G. Scarborough, and S. W. White,
p. 296. IBM Clustered FORTRAN is a combination
of software and hardware that allows two IBM En-
terprise System/3090™ (ES/3090™) multiprocessors
to be physically connected as a cluster and allows
FORTRAN jobs to execute in parallel across all of
the processors of the cluster. The FORTRAN com-
piler and library provided as part of Clustered
FORTRAN are used for writing and executing the

ABSTRACTS 1962-1994 669

parallel programs in this hybrid environment of dis-
tributed and shared-memory systems. The compiler
provides language extensions for explicit program-
ming in parallel, as well as the ability to automatically
generate both parallel and vector code. The Clustered
FORTRAN language allows users to write parallel
applications that are independent of the machine
configuration and operating system. This paper de-
scribes the execution environment, compiler, and li-
brary, gives some variations of programming matrix
multiplication, and shows that performance of one
GigaFLOPS can be achieved using Clustered
FORTRAN.

Partial compilation of REXX by R Y. Pinter, P.
Vortman, and Z. Weiss, p. 312. A comprehensive set
of compilation techniques for coping with various
dynamic features of the REXX programming lan-
guage are described. Among them are a novel symbol
table structure, a multiple representation method for
type-free objects, and a number of run-time acceler-
ation techniques. Most of the work can be unified
under the general principle of delayed execution,
which is applicable in other situations as well. Sig-
nificant performance gains were observed in an ex-
perimental setting, and these results led to the decision
to develop IBM’s recently announced REXX com-
piler product.

A C programming model for OS/2 device drivers
by D. T. Feriozi, p. 322. The recent growth in the
number of new and different types of devices for use
with personal computers has challenged software
engineers to plan new and better ways of developing
software to run the devices. For Operating
System/2® (0S/2®) device drivers, an improvement
would be to code in a high-level language rather than
to use assembly language. A practical and proven
method of writing OS/2 device drivers in the C pro-
gramming language is presented here. The C lan-
guage was chosen because of its documented
suitability as a systems programming language and
because of its universal availability for use on small
systems.

A knowledge-based system for MVS dump anal-
ysis by N. G. Lenz and S. F. L. Saelens, p. 336. A new
domain in software problem determination can be
automated by means of this knowledge-based system.
The system imitates a human problem solver by using
the same tools and the same diagnostic approach as
the experts use, including the processing of human-
readable data. The application is fully integrated
within the target Multiple Virtual Storage (MVS)
operating system to ensure user acceptance. A large
variety of knowledge is contained in the system,
ranging from pattern-recognition knowledge to basic
MYVS knowledge and problem-solving strategies. The
diagnostic approach is based on a model of software
problem situations and on diagnostic reasoning
methods adopted from the medical application do-
main. The goal of the project was to solve a signif-
icant part of the problem resolution process

670 ABSTRACTS 1962-1994

automatically, rather than to build yet another tool
for use in software problem determination. This
system is a first step to further automation in this area.

Modeling and software development quality by S.
H. Kan, p. 351. This paper summarizes the models
used by a large software development organization
for estimating software reliability and managing
software development quality. The role of modeling
in software quality improvement is illustrated. Im-
plementation of the models, reliability of the esti-
mates, predictive validity, and the nature of data are
discussed.

Integrated hypertext and program understanding
tools by P. Brown, p. 363. This paper describes some
concepts and issues related to software tools inte-
gration. Questions regarding data integration and
functional integration between tools are identified and
discussed. Some techniques for handling large vol-
umes of data are briefly described. A prototype tool
is described in which hypertext links are automat-
ically created between program analysis data and
hypertext documentation. With this tool, end users
can freely move between source code views and re-
lated documentation. A common annotation feature
lets software developers and information developers
share information and synchronize maintenance ac-
tivities in a single tools environment.

Technical note—The WATINFO face server and
associated utilities by A. Appel, G. A. Cuomo, E. A.
Overly, J. A. Walicki, and R. E. Yozzo, p. 393.
WATINFO is a TCP/IP server that operates at the
IBM Thomas J. Watson Research Center, Yorktown
Heights, New York, to provide VM-based informa-
tion about services and personnel at the IBM York-
town Research site. Client programs have been
written for Operating System/2® (0S/2®) and Ad-
vanced Interactive Executive™ (AIX®). An ad-
vanced feature of WATINFO is the display of images,
when appropriate, in combination with other data.
The images are supported by a face server, which
fetches image data from a library of face images.
The format of the face images is small—256 by 256
by one bit—and is transmitted rapidly to a variety
of displays. The face library can be used for other
purposes: inclusion of images in documents, the
preparation of image labels, and the construction of
an image telephone book.

Volume 30, Number 4, 1991

The IBM family of APL systems by A. D. Falkoff,
p. 416. The developmental history of IBM subfamilies
of APL systems is traced in this paper, focusing on
the inter-relationships among them and the methods
of implementation used by the various groups in-
volved. The language itself, and the way its evolution
was managed, are also considered as factors influ-
encing the development process. A chart is included
that illustrates the evolution of mainframe and small
machine programming products supporting APL,
beginning in 1964 up to the present time.

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

APL2: Getting started by J. A. Brown and H. P.
Crowder, p. 433. APL is a concise and economical
notation for expressing computational algorithms and
procedures. This paper introduces the main ideas of
APL2, an IBM implementation of APL, and illustrates
the programming style with some graphical examples.

Extending the domain of APL by M. T. Wheatley,
p. 446. This paper explores connectivity mechanisms
between APL and other languages and applications
available on a modern computer system. The design,
implementation, and application of APL facilities
such as shared variables, auxiliary processors, ex-
ternal names, file subsystems, and namespaces, as
they are implemented in IBM’s APL2 product, are
discussed and compared.

Storage management in IBM APL systems by R.
Trimble, p. 456. APL systems have traditionally used
specialized storage management schemes that avoid
storage fragmentation by “garbage collection,” mov-
ing live data as needed to collect unused storage into
a single area. This was very effective on systems
with a small amount of real storage addressed directly.
It has become less effective on today’s systems with
virtual addressing and large amounts of virtual stor-
age. Both traditional schemes of storage management
and a recently implemented replacement for them are
described. The focus is on implementations for IBM
mainframe hardware.

Putting a new face on APL2 by J. R. Jensen and
K. A. Beaty, p. 469. APL2/X is an interface between
APL2 and the X Window System®, built at the IBM
Cambridge Scientific Center. This interface enables
the full set of the X Window System Xlib calls and
the related data structures to be used directly from
programs written in APL2, thereby providing APL2
with a true, full-function windowing environment.
The interface also deals with the broader and more
general issue of how to call C programs from APL?2.
The interface and the experience of building it are
described in some detail in this paper.

The APL 1L Interpreter Generator by M.
Alfonseca, D. Selby, and R. Wilks, p. 490. The ob-
jective of the APL IL Interpreter Generator is to solve
the problem of creating APL interpreters for different
machines at a minimum cost. The objective has been
accomplished by writing an APL interpreter in a
specially designed programming language (IL) that
has very low semantics but high-level syntax. The
interpreter is translated to each target machine lan-
guage by easily built compilers that produce high-
performance code. The paper describes IL, the APL
interpreters written in IL, and the final systems gen-
erated for seven different target machines and oper-
ating systems. Some of these systems have been
generated in an extremely short time.

Parallel expression in the APL2 language by R
G. Willhoft, p. 498. This paper reports on an investi-
gation of parallel expression and execution in the
current APL?2 language. The study covers a historical,
theoretical, and empirical viewpoint. The parallel

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

nature of APL is traced from its foundations in the
Iverson notation to current problems in executing
APL on parallel hardware. The paper discusses fea-
tures of the APL language and its current imple-
mentations that limit taking advantage of parallel
expressions. A survey of related topics from the work
on APL compilers is also included. Each APL2
language construct is examined for potential parallel
expression. The operations are grouped based on the
possible parallelism exhibited by each operation, and
the possible implementation of each group is dis-
cussed. Three APL2 applications are explored to
determine the actual parallelism expressed in “real”
APL2 code. These applications are chosen from
distinct areas: graphics, database systems, and user
interactive systems. The actual data passed as argu-
ments to every operation are dynamically examined,
and the information is collected for analysis. The
data are summarized and results of the study are
discussed.

The foundations of suitability of APL2 for music
by Stanley Jordan and Erik S. Friis, p. 513. APL is
commonly used in scientific and quantitative appli-
cations, such as engineering and finance, but there
has been little acceptance so far in artistic and sym-
bolic applications, such as music. This paper dem-
onstrates the suitability of APL2, a dialect of APL,
as a powerful tool for the building of music-oriented
software. The interactive interpreter, flexible built-in
primitive functions and operators, and the indepen-
dence from the details of the hardware are attractive
features for music programmers. With APL2, a user
can interactively create and transform complex in-
formational structures. Thus, it is not only a formi-
dable language for implementing music software, but
also a valuable notation for representing the music
itself.

Verification of the IBM RISC System/6000 by a
dynamic biased pseudo-random test program
generator by A. Aharon, A. Bar-David, B. Dorfman,
E. Gofman, M. Leibowitz, and V. Schwartzburd, p.
527. Verification of a computer that implements a
new architecture is especially difficult since no ap-
proved functional test cases are available. The logic
design of the IBM RISC System/6000™ was verified
mainly by a specially developed random test program
operator (RTPG), which was used from the early
stages of the design until its successful completion.
APL was chosen for the RISC System/6000 RTPG
implementation after considering the suitability of this
programming language for modeling computer ar-
chitectures, the very tight schedule, and the highly
changeable environment in which RTPG would op-
erate.

APL2 as a specification language for statistics by
N. D. Thomson, p. 539. APL has had a dedicated
following for many years among some sections of the
academic and industrial statistical communities. One
of its greatest strengths is its value as a specification
language. Not only can algorithms be described
consistently and unambiguously, but also, given an

ABSTRACTS 1962-1994 71

appropriate interpreter, the specifications can be im-
mediately executed. A group of academic and in-
dustrial statisticians in the United Kingdom
recognized these capabilities and embarked on a
project called ASL (APL Statistics Library) with the
support of the British APL Association. ASL aims
to provide a collection of coherent APL functions for
widely used statistical calculations, thereby creating
standards for the unambiguous expression of statis-
tical algorithms. A natural consequence of this is that
discussions of more complex algorithms and methods
can occur without the need to revisit and redefine
basic functions and the ways in which they interpret
data.

Advanced applications of APL: logic program-
ming, neural networks, and hypertext by M.
Alfonseca, p. 543. This paper reviews the work of the
author on the application of the APL and APL2
programming languages to logic programming, em-
ulation of neural networks, and the programming of
hypertext applications.

Language as an intellectual tool: From
hieroglyphics to APL by D. B. Mcintyre, p. 554.
We learn elementary mathematics before under-
standing the source of its symbols and procedures,
which therefore appear, incorrectly, to have been
decreed ready-made. Language and reason are inti-
mately related, and the embodiment of an idea in a
symbol may be essential to its comprehension. APL
unifies algebra into a single consistent notation; it
allows us to exploit the powerful concepts of func-
tions and operators; and it helps us to escape from
the tyranny of scalars by giving us the tools to think
in terms of arrays, or multiple quantity, as J. J.
Sylvester so eloquently urged us to do a century ago.
APL has an intellectual consistency that is a source
of satisfaction and pleasure. This paper traces the
history of symbols from hieroglyphics to APL.

A personal view of APL by K. E. Iverson, p. 582.
This essay portrays a personal view of the develop-
ment of several influential dialects of APL: APL2
and J. The discussion traces the evolution of the
treatment of arrays, functions, and operators, as well
as function definition, grammar, terminology, and
spelling.

Volume 31, Number 1, 1992 G321-0106

Introduction to the IBM Optimization Subroutine
Library by D. G. Wilson and B. D. Rudin, p. 4. This
essay introduces the IBM Optimization Subroutine
Library (OSL) and seven OSL-related papers that
appear in this issue. Developed as a result of a
partnership between several IBM research and de-
velopment groups, OSL provides a suite of tools for
manipulating the models and solving the resulting
minimization and maximization problems of math-
ematical optimization. The problems that OSL ad-
dresses include: linear, quadratic, mixed-integer, and
pure network programming problems. OSL includes
solvers based on the classical simplex method and

672 ABSTRACTS 1962-1994

on newer interior point methods. Because a user-
supplied driver program coordinates the problem
solution, and because of the “mix and match” phi-
losophy of OSL, a user may, within rather wide limits,
individually tailor a technique to solve a particular
problem. We conclude that OSL is something new
in optimization software.

Implementing the simplex method for the Opti-
mization Subroutine Library by J. J. H. Forrest and
J. A. Tomlin, p. 11. In this paper we describe the
simplex algorithm and briefly discuss the interaction
of the detailed implementation of the algorithm with
the changes in computer hardware over the last 30
years. Then we give one example of the design
changes needed to implement the method efficiently
for the IBM 3090™ vector architecture. For the later
RISC System/6000™ implementation, it was neces-
sary to rethink this yet again. Finally we discuss the
issue of robustness and the steps that were taken to
give maximum reliability in the simplex algorithm
in the IBM Optimization Subroutine Library.

Implementing interior point linear programming
methods in the Optimization Subroutine Library
by J. J. H. Forrest and J. A. Tomlin, p. 26. This paper
discusses the implementation of interior point (bar-
rier) methods for linear programming within the
framework of the IBM Optimization Subroutine Li-
brary. This class of methods uses quite different
computational kernels than the traditional simplex
method. In particular, the matrices we must deal with
are symmetric and, although still sparse, are consid-
erably denser than those assumed in simplex imple-
mentations. Severe rank deficiency must also be
accommodated, making it difficult to use off-the-shelf
library routines. These features have particular im-
plications for the exploitation of the newer IBM
machine architectural features. In particular, interior
methods can benefit greatly from use of vector
architectures on the IBM 3090™ series computers
and “super-scalar” processing on the RISC
System/6000™ series.

A decomposition method for quadratic program-
ming by D. L. Jensen and A. J. King, p. 39. We discuss
the algorithms used in the Optimization Subroutine
Library for the solution of convex quadratic pro-
gramming problems. The basic simplex algorithm
for convex quadratic programming is described. We
then show how the simplex method for linear pro-
gramming can be used in a decomposition crash
procedure to obtain a good initial basic solution for
the quadratic programming algorithm. We show how
this solution may be used as a starting solution for
the simplex-based algorithm.

Besides its ability to obtain good starting solutions,
this procedure has several additional properties. It
can be used directly to find an optimal solution to a
quadratic program instead of simply finding a good
initial solution; it provides both upper and lower
bounds on the objective function value as the algo-
rithm proceeds; it reduces the complexity of inter-

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

mediate calculations; it avoids certain numerical
difficulties that arise in quadratic, but not linear
programming.

A systematic approach to OSL application pro-
gramming by A. S. Minkoff, p. 49. The Optimization
Subroutine Library (OSL) provides powerful tools
for solving mathematical programming problems, and
permits the integration of these tools into larger ap-
plications. In order to access the computational
power, an application must translate data between
forms used in the rest of the application and the form
in which the data can be manipulated by OSL. OSL
does not currently offer tools to aid in this translation.
The purpose of this paper is to provide a systematic
approach for translating symbolic representations of
mathematical programming problems into computer
code that performs all necessary interactions with
both OSL and the rest of the application.

Frontier: A graphical interface for portfolio opti-
mization in a piecewise linear-quadratic risk
framework by D. L. Jensen and A. J. King, p. 62.
“Frontier” is a pilot graphical user interface for
portfolio optimization built for the new IBM work-
station, the RISC System/6000™, out of basic X-
windows and OSL utilities. The program asks the
user to select a piecewise linear-quadratic risk
measure, draws a risk/reward efficient frontier, and
permits the user to examine the efficient frontier using
zoom and histogram display facilities. This paper
describes the interfaces and discusses possible ex-
tensions.

A global approach to crew-pairing optimization
by R. Anbil, R. Tanga, and E. L. Johnson, p. 71. The
problem addressed in this paper is crew-pairing op-
timization in airline flight planning: finding tours
of duty (pairings) that are legal and cover every flight
leg at the least cost. The legal rules and cost of a
pairing are determined by complex Federal Aviation
Agency and contractual requirements. In addition,
the problem is made more difficult by the hub-and-
spoke system used by airlines that multiplies the
possible ways a pairing can link flight legs. The
state-of-the-art crew-pairing TRIP system of Ameri-
can Airlines uses subproblem optimization and, as is
true for other crew-scheduling systems, may not be
able to improve a solution even though a better one
exists. We report on the methodology developed
during a joint study by IBM and American Airlines
Decision Technologies to use the IBM Optimization
Subroutine Library in conjunction with TRIP to im-
prove on crew-pairing solutions by taking a global

approach. The resulting improvements have been a.

reduction of 5 to 11 percent in excess crew cost.
Estimated total savings are five million dollars per
year.

Recent developments and future directions in
mathematical programming by E. L. Johnson and
G. L. Nemhauser, p. 79. Recent advances in math-
ematical programming methodology have included:
development of interior methods competing with the

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

simplex method, improved simplex codes, vastly
improved performance for mixed-integer program-
ming using strong linear programming formulations,
and a renewed interest in decomposition. In addition,
use of vector and parallel processing has improved
performance and influenced algorithmic develop-
ments. Application areas have been expanding from
the traditional refinery planning and distribution
models to include finance, scheduling, manufacturing,
manpower planning, and many others. We see the
acceleration of better methods and improved codes
moving together with faster, lower-cost, and more
interesting hardware into a variety of application
areas, thereby opening up new demands for greater
function of optimization codes. These new functions
might include, for example, more powerful nonlinear
codes, decomposition techniques taking advantage
of network and other problem-dependent structures,
and mixed-integer capability in quadratic and general
nonlinear problems. Stochastic scenario program-
ming and multitime-period problems are becoming
solvable and open up applications and algorithmic
challenges. The IBM Optimization Subroutine Li-
brary has helped to accelerate these changes but will
have to continue to change and expand in ways that
are touched upon in this paper.

Customized systems for engineering applications
by Y. Hazony and L. Zeidner, p. 94. An
APL™-based high-productivity software-develop-
ment environment is shown to enable small teams
of two or three persons to build complex engineering
software systems. The productivity and flexibility
of such small teams, equipped with this environment,
enables them to build customized engineering appli-
cation systems economically. These customized
systems are far more useful for the particular appli-
cations they address than are the generic systems that
are commonly produced by large software-
development groups. A customized engineering ap-
plication system is described, illustrating the
productivity of the two APL2-based computer-aided
software engineering (CASE) tools used for its im-
plementation and long-term software maintenance.
The system is presented in some detail, to demonstrate
its sophistication and thus provide a measure of the
productivity of the software-development environ-
ment. The two CASE tools that comprise this
software-development environment are used to build
interactive graphical application systems, and to build
systems for applications that require or can benefit
from distributed cooperative processing. A list of
some customized application systems built using the
described environment is provided, along with esti-
mates of the implementation efforts. The features
of APL2 that play a key role in the effectiveness of
these tools are also discussed.

A split model for OS/2 SCSI device drivers by D.
T. Feriozi, p. 114. The concept of splitting one logical
device driver into two or more physical units is pre-
sented. = The specific case of an Operating
System/2® (0S/2®) SCSI (Small Computer System
Interface) device driver is used as an example. The

ABSTRACTS 1962-1994 §73

primary reason for splitting the device driver is to
reduce the development effort required to produce
new SCSI device drivers. Common code is isolated
in a separate driver in order to prevent its reinvention
as each new SCSI device becomes available. Addi-
tional benefits are that the overall device driver size
is reduced, and the performance of the SCSI sub-
system is enhanced. The complete separation of the
upper- and lower-level drivers provides the ability to
replace one of the device drivers without affecting
any of the other components of the system. This is
particularly important because it enables backward
compatibility for older device drivers, while allowing
for the support of emerging technology.

Role of the DASD storage control in an Enterprise
Systems Connection environment by C. P.
Grossman, p. 123. This paper compares the Enterprise
Systems Connection Architecture™ (ESCON™), with
its use of fiber optic cables, to the parallel channel
architecture introduced with System/360™. It also
describes many of the reasons for the introduction
of ESCON. The ESCON implementation for the IBM
3990 Storage Control is described in some detail,
including a description of nonsynchronous operation.
The paper concludes with a discussion of some of the
benefits of ESCON for 3990 installation, performance
considerations, and migration considerations.

Volume 31, Number 2, 1992 G321-0107

IBM network management strategy by M. M.
Szabat and G. E. Meyer, p. 154. This essay describes
some major directions at IBM with respect to network
management. It describes the network management
environment and discusses four key initiatives of
IBM's SystemView™ network management strategy.
This strategy provides integrated applications and
services, broadens the scope of network management
products, provides open access to multivendor prod-
ucts, and delivers and supports complete solutions for
customers.

Evolution of an open communications architecture
by R. J. Cypser, p. 161. An overview of the current
IBM communications paradigm for interconnecting
computer networks is presented. Emphasis is on the
incorporation of multiprotocol, multivendor facilities
in an integrated architecture. This paper presents an
overview of key elements of the evolving communi-
cations architecture.

Management of multivendor networks by J. G.
Stevenson, p. 189. Technical advances in multivendor
network management capabilities allow customers to
effectively manage their networks. Packaged offer-
ings such as NetView® Extra simplify the ability to
take advantage of these new capabilities. This paper
describes the multivendor environment, customer
network management requirements, IBM's initial ap-
proach to responding to these requirements, and en-
hancements needed to provide additional management
offerings that automatically handle failures, including

674 ABSTRACTS 1962-1994

detection, bypass and recovery, vendor notification,
and restoration of the repaired resource into service.

Network and system automation and remote sys-
tem operation by B. W. Irlbeck, p. 206. The rapid
growth in the size and complexity of today's infor-
mation system networks highlights the importance
of automation and remote system operation in man-
aging these networks. Version 2 Release 2 of the
NetView® program provides improved facilities in
these two areas to assist enterprises in consolidating
their operations staff in central locations and man-
aging their information systems more efficiently and
reliably. This paper describes the Systems Network
Architecture (SNA) framework for remote system
operation and the NetView remote operations plat-
form, including the LU 6.2 data transport mechanisms
and related management services applications. Ex-
tensions to the NetView automation platform that
permit automation based directly on the receipt of
SNA alerts or other structured data are described.
In addition, enhancements that improve the per-
formance, usability, and functional capabilities of the
NetView automation table are discussed.

NetView Version 2 Release 3 Graphic Monitor
Facility: Network management graphics support
for the 1990s by K. D. Gottschalk, p. 223. The
NetView® Version 2 Release 3 Graphic Monitor
Facility provides an Operating System/2® (0S/2®)
workstation-based graphics user interface for Net-
View that permits an operator to view graphically
and control via generic commands both Systems
Network Architecture (SNA) and non-SNA networks.
This paper describes the major new capabilities of
the NetView V2R3 Graphic Monitor Facility, dis-
cusses its structure at a high level, and describes in
some detail the new support in this release for graphic
views of various types of networks, simplified com-
mands for controlling these networks, and the manner
in which non-SNA networks are supported.

RODM: A control information base by A. J. Finkel
and S. B. Calo, p. 252. Operational management of
computers and computer networks was formerly
performed exclusively by an operator or a team of
operators equipped only with consoles for the display
of status messages. Each system component inde-
pendently determined its own set of such messages,
identifying conditions needing attention. To meet
future challenges, however, a structured approach to
systems and network management and associated
automation will be necessary. The amount and
complexity of the status information needed for
control and coordination will make it unlikely that
operators will be able to keep up with such needs
unaided. This control information must be made
available to a family of systems and network man-
agement applications (including operator display
programs). The NetView® Resource Object Data
Manager (RODM) is designed to facilitate the storage
and retrieval of control information. It provides ser-
vices for defining a structured data model of a com-
puter system. The control information is not kept

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

simply in the form of messages, but instead the data
are organized into units called objects. This allows
the model to effectively capture interrelationships and
dependencies as well as status information.

AIX NetView/6000 by J. H. Chou, C. R. Buckman,
T. Hemp, A. Himwich, and F. Niemi, p. 270. AIX®
NetView®/6000 is a network management system
that manages simple network management protocol
(SNMP) devices developed by IBM and other ven-
dors. It provides configuration, fault, and perfor-
mance applications integrated into an advanced
end-user interface (EUI), which incorporates a
graphic display of network topology and performance
as well as system management functions accessible
from both graphic and character-based devices. An
application builder and event configurator allow users
to generate performance applications and provide
automation of management tasks specific to their
networks. In addition to providing stand-alone dis-
tributed network management, AIX NetView/6000
also provides a bidirectional connection to IBM's
mainframe-based NetView product to enable central
management of the enterprise network from
System/370™ and System/390™ NetView.

Managing session performance using the NetView
Performance Monitor by L. Temoshenko, p. 286.
Managing the performance of network devices and
their interaction with host applications is a complex
task that entails the collection and reduction of in-
formation related to the underlying session. De-
pending on the specific management task at hand,
differing types, correlations, and formattings of ses-
sion performance measurements are required. The
NetView™ Performance Monitor has a flexible set
of facilities that can be used to provide the informa-
tion needed to manage session performance. Its fa-
cilities to collect, correlate, and present session
performance measurement are discussed in relation
to typical network management tasks.

Estimating the fault rate function by T. Jennings,
p. 300. Paging activity can be a major factor in de-
termining whether a software workload will run on
a given computer system. A program's paging be-
havior is difficult to predict because it depends not
only on the workload processed by the program, but
also on the level of storage contention of the
processor. A program's fault rate function relates
storage allocation to the page fault rate experienced
while processing a given workload. Thus, with the
workload defined, the fault rate function can be used
to see how the program's storage allocation is affected
by varying levels of storage contention, represented
by varying fault rates. This paper presents a technique
to represent program workloads and estimate the fault
rate function, and describes how these results can be
used in analyzing program performance.

Architectural directions for opening IBM net-
works: The case of OSI by P. Janson, R. Molva, and
S. Zatti, p. 313. This paper discusses the results of a
research project that developed an architectural

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

framework for integrating non-IBM network archi-
tectures to the reference model and node structures
of IBM's Systems Network Architecture (SNA). The
unique features of the selected integration approach
allow multiple protocol stacks to coexist and inter-
operate within the same computer, to share use of
common physical network ports, links, and switching
nodes, and to be accessed and managed through ho-
mogeneous interfaces. The architectural framework
was developed for the specific purpose of integrating
the Open Systems Interconnection (OSI) Reference
Model to that of SNA, but its basic philosophy and
key aspects turn out to be generally applicable to the
integration of other network technologies as well,
such as TCP/IP or NetBIOS.

SNA Management Services architecture for APPN
networks by M. O. Allen and S. L. Benedict, p. 336.
The introduction of Advanced Peer-to-Peer Net-
working (APPN) provides for a more flexible Systems
Network Architecture (SNA) environment: end-user
systems (physical uvnits, or PUs) at the edge of a
routing network no longer need a predefined re-
lationship with a system services control point (SSCP)
for network control purposes. This new flexibility
creates challenges for SNA Management Services,
however, since the SSCP-PU relationship provided
a vehicle for network management as well as network
control. To meet the needs of this peer-to-peer en-
vironment, the SNA Management Services architec-
ture was extended to provide a management
infrastructure that replaces the previous SSCP-PU
relationship, and at the same time provides for much
greater flexibility. This new infrastructure consists
of a formalization of the focal-point/entry-point
concept in the architecture and a transport technique
for management services data that utilizes the facili-
ties of Advanced Program-to-Program Communi-
cations (APPC) rather than the SSCP-PU session.
Together this provides for a management structure
in a peer network.

Naming and registration for IBM distributed
systems by S. Zatti, J. Ashfield, J. Baker, and E.
Miller, p. 353. Today's trends toward interconnection
of networks expose limitations and deficiencies of
traditional identification schemes. The need arises
for a uniform naming solution that can accommodate
the size and heterogeneity of worldwide domains,
while still remaining understandable, usable, and
manageable by human users.

This paper describes a proposal to name objects and
resources in distributed environments; each object
or resource can be located, accessed, communicated
with, operated on, managed, or secured using the
same, unique name. The solution proposed here in-
cludes registration mechanisms necessary to ensure
name uniqueness. The scheme is based on existing
standards, mainly Open Systems Interconnection
(OSI) Distinguished Names; whenever standards
disagree, the preference goes to the alternative that
offers the widest usage across all protocols. Clear,
consistent naming guidelines are given that would

ABSTRACTS 1962-1994 §75H

enable IBM customers who have purchased IBM
networking and system management products to name
their resources so that their administrative processes
and IBM's products and protocols can support those
resources effectively. A method is suggested to en-
compass existing name spaces in a single, worldwide
naming space, and a migration path is sketched. The
interoperation of different protocols across network
boundaries using the same naming constructs is
shown by means of several scenarios. The naming
and addressing scheme proposed here requires noth-
ing new or different from the already defined stan-
dards, but allows interoperation among them by using
a subset of each.

APPC/MYVS distributed application support by F.
W. Voss, p. 381. Advanced Program-to-Program
Communication for Multiple Virtual Storage
(APPC/MYVS) is a major evolutionary change to MVS
for applications that need to connect and communi-
cate across the enterprise. APPC/MVS is an imple-
mentation of Systems Network Architecture (SNA)
LU 6.2 session-defined protocol. This new MVS
environment includes services to enhance the cre-
ation, execution, and management of MVS peer-to-
peer and client/server applications. In addition to
providing connectivity and communications services,
APPC/MVS also has scheduling facilities for man-
aging concurrent work originating from other systems
in the enterprise network. The objective of this paper
is to survey these facilities by examples of usage and
by relationships to existing MVS services. Topics
include various types of distributed models and ap-
proaches, design considerations, and characteristics
that represent candidates for an APPC/MVS imple-
mentation. Relationships of the APPC/MVS envi-
ronment with the Customer Information Control
System/Enterprise Systems Architecture (CICS/
ESA™), Information Management System/ Enterprise
Systems Architecture = Transaction = Manager
(IMS/ESA® TM), Time Sharing Option Extensions
(TSO/E), and batch environments are included.

Volume 31, Number 3, 1992 G321-0108

The evolution of the Common User Access
Workplace Model by R. E. Berry and C. J. Reeves,
D. 414. This paper describes some of the influences
contributing to and issues in dealing with the evolu-
tion of user interface guidelines over time. In par-
ticular, we focus on the evolution of IBM's user
interface architecture, the Common User Access™
(CUA™,) interface, over a period of six years. Dis-
cussed are the key architectural and design elements
of the CUA Workplace Model, the fundamental shifts
in computer-human interaction that have occurred
since the first publication of the guidelines in 1987,
and how user interface design, operating systems, and
tools have interacted in the evolution of the guide-
lines.

The information should help designers of user inter-
faces and developers of user interface guidelines to

676 ABSTRACTS 1962-1994

appreciate some of the factors involved in the long-
term evolution of a user interface style. The paper
provides an introduction to the most recent evolu-
tionary step in the CUA style (the Workplace Model)
to help the reader place these factors in perspective
relative to the degree of evolutionary change.

The designer's model of the CUA Workplace by
R. E. Berry, p. 429. This paper discusses the details,
insights, and rationale of the Operating System/2®
(0S/2®) Version 2 Workplace Model, an imple-
mentation of the user interface defined by the IBM
1991 Common User Access™ (CUA™) guidelines.
The Workplace Model is described as an object-
oriented user interface where objects represented by
icons are manipulated by selection and movement,
copying and creation of other objects, and by defining
their behavior to accomplish the user's desired task.

Inside IBM's Distributed Data Management ar-
chitecture by R. A. Demers, J. D. Fisher, S. S.
Gaitonde, and R. R. Sanders, p. 459. IBM's Distrib-
uted Data Management (DDM) architecture is an el-
ement of Systems Application Architecture™ that
defines an open environment for sharing data in files
and relational databases. DDM is a key element of
IBM's Distributed Relational Database Architecture.
DDM architecture enables programs to access and
manage data stored on remote systems. It is a
framework for a wide range of additional application
services. Influenced by the concepts of object-
oriented technology, DDM architecture is designed
to be object-oriented. This paper examines DDM
architecture from a number of viewpoints, consider-
ing why and how it was created, what it is, and how
it has evolved.

Data description and conversion architecture by
R. A. Demers and K. Yamaguchi, p. 488. A data de-
scription and conversion architecture has been defined
by IBM to enhance data interchange among Systems
Application Architecture™ (SAA™) programming
languages and systems. Its components, described
in this paper, are (1) A Data Language (ADL), a
programming language for describing data and
specifying what data conversions are to be performed,
(2) an object-oriented method of encoding ADL for
efficient machine storage, transmission, and pro-
cessing, and (3) programs that translate the data
declarations of other programming languages to or
from ADL. Also discussed is the application of the
architecture to record-oriented files for SAA Dis-
tributed File Management.

SAA distributed file access to the CICS environ-
ment by K. Deinhart, p. 516. IBM's Customer Infor-
mation Control System (CICS) is the leading product
family in the on-line transaction processing (OLTP)
market. OLTP systems are being used by many en-
terprises to implement their daily business processes
and manage operational data such as accounts, in-
ventories, and orders. CICS/Distributed Data Man-
agement (CICS/DDM) implements the distributed file
function of Systems Application Architecture®

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

(SAA™) Common Communications Support in the
CICS environment on Multiple Virtual Storage
(MVS) and Virtual Storage Extended (VSE) operating
systems. Providing a DDM target server, CICS/DDM
implements IBM's SAA protocol for access to dis-
tributed data, which are exploited by the SAA Com-
mon Programming Interface. CICS/DDM allows
applications and their users to access and share the
data managed through the OLTP environment pro-
vided by CICS.

The BiProcessor: A merger of two architectures
by C. Berggren, p. 535. The BiProcessor consists of
an IBM System/370™ and a Personal System/2® and
merges these two IBM architectures into a synergistic
relationship. The two processing environments are
connected by an internal high-speed pipe that allows
each system to take advantage of the other's strengths
as well as developed products, both hardware and
software. This paper describes this closely coupled
heterogeneous multiprocessor and its capability of
concurrent coprocessing. Also discussed are the im-
plementation, coupling architecture, and design con-
siderations of the BiProcessor and its development
objectives. Some of the intended applications are host
off-loading of communications protocol processing,
use as an applications coprocessor, and service as a
platform for future clustering technology.

Project Athena: Supporting distributed computing
at MIT by J. M. Arfman and P. Roden, p. 550. Project
Athena™ was an educational computing initiative at
the Massachusetts Institute of Technology, under-
taken in partnership with the IBM Corporation and
Digital Equipment Corporation from 1983 to 1991.
This paper gives an overview of the network-based
distributed computing services, developed for a
number of UNIX™-capable workstations. These
services are extensions to the native operating systems
of the workstations, and provide interoperability as
well as systems administration facilities in a large
heterogeneous workstation environment. Under
Project Athena, a mature distributed computing en-
vironment was developed. Its organization and sup-
pott structure may be used as a model when planning
a new installation, whether on a university or com-
mercial campus. A section of this paper deals with
the support requirements for distributed computing
environments, based on the Project Athena experi-
ence.

Design considerations for distributed applications
by J. J. Rofrano, Jr., p. 564. Probably the hardest part
about developing a distributed application is deter-
mining where to start. There are multiple hardware
and software platforms to understand, network traffic
implications, and numerous tools and technologies
to consider. One question, however, transcends the
importance of what platform to pick or what tool to
use: that is, how do you design it? This paper rep-
resents the results of two years of work with cus-
tomers regarding this question. The paper explores
some of the implications of working in a distributed
environment, reviews some rules for data and function

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

placement, and introduces a methodology for dis-
tributed application design.

Extending and formalizing the framework for in-
formation systems architecture by J. F. Sowa and
J. A. Zachman, p. 590. John Zachman introduced a
framework for information systems architecture (ISA)
that has been widely adopted by systems analysts and
database designers. It provides a taxonomy for re-
lating the concepts that describe the real work to the
concepts that describe an information system and its
implementation. The ISA framework has a simple
elegance that makes it easy to remember, yet it draws
attention to fundamental distinctions that are often
overlooked in systems design. This paper presents
the framework and its recent extensions and shows
how it can be formalized in the notation of conceptual
graphs.

Volume 31, Number 4, 1992 G321-0109

Interactive image segmentation for radiation
treatment planning by P. J. Elliott, J. M. Knapman,
and W. Schilegel, p. 620. COVIRA (COmputer VIsion
in RAdiology) is a project in the European Commu-
nity's Advanced Informatics in Medicine program.
The goal is to improve the diagnosis and planning
of treatment (radiotherapy) for patients with brain
tumors and other diseases. The aim of radiotherapy
is to provide a high dose of radiation to a tumor while
sparing as much as possible of the surrounding
healthy tissue. A necessary first step is defining the
target volume and organs at risk by manually out-
lining the required contours on magnetic resonance
or computed tomography scans. For a full three-
dimensional plan this is time-consuming, as 40 or
more scans are used. Computer image segmentation
speeds up the process, and a method that combines
information from edge and region detectors is de-
scribed. Since this method is not able to completely
meet the clinical requirements, an interactive image
segmentation algorithm has been developed that en-
ables the operator to employ clinical judgment.
Probabilities are assigned to edges and regions and
presented to the user as a hierarchy of segmentations.
The approach is being subjected to extensive clinical
evaluation, using pilot applications running on IBM
RISC System/6000™ workstations.

Causal probabilistic network modeling—An illus-
tration of its role in the management of chronic
diseases by R. Hovorka, S. Andreassen, J. J. Benn,
K. G. Olesen, and E. R. Carson, p. 635. This paper
describes the role of the novel technique of causal
probabilistic network (CPN) modeling as an approach
to tackling control system problems typified by that
of the administration of treatment to the patient suf-
fering from a chronic disease such as diabetes. Three
roles of a CPN are discussed. First, since diabetes
arises as a consequence of impaired control of car-
bohydrate metabolism, the ability of a CPN to rep-
resent the uncertainty of a physiologically-based
model is described. Second, its ability to make robust
estimates of the parameters of the metabolic model

ABSTRACTS 1962-1994 677

is presented, and finally, in conjunction with decision
theory approaches, its ability to compare alternative
therapies and advise on insulin therapy for patients
with insulin-dependent diabetes mellitus is illustrated.

The European telecommunications research and
development program RACE and its software
project SPECS by M. Dauphin, M. M. Marques, A.
P. Mullery, and P. Rodier, p. 649. This paper presents
the RACE program and the objectives and achieve-
ments of SPECS, a representative RACE project. The
European Commission has set up the research and
development program RACE for the preparation and
promotion of an integrated broadband communication
system in Europe. The SPECS project develops
methods and techniques for the development of the
complex software needed by this communication
system. Its approach is the use of formal methods and
maximum automation. A unique feature of this ap-
proach is the support of multiple specification lan-
guages, including the ability to mix specification
languages within a given system design.

A common compiler for LOTOS and SDL spec-
ifications by C. Binding, W. Bouma, M. Dauphin, G.
Karjoth, and Y. Yang, p. 668. This paper describes a
translation of LOTOS and SDL specification lan-
guages into executable code, as it was prototyped in
the Specification and Programming Environment for
Communication Software (SPECS) project under the
Research and Development in Advanced Communi-
cations in Europe (RACE) program. Both languages
are translated into a common intermediate represen-
tation in the form of a network of state machines
with both synchronous and asynchronous communi-
cations. By a series of transformations that make full
use of the equivalence relations defined on LOTOS
processes, this translation solves unique problems
stemming from the highly abstract nature of LOTOS.
The common intermediate representation is mapped
into C code that can be executed in a specific run-time
environment, implemented on a UNIX®-like operat-
ing system. SPECS has also developed a pragmatic
approach to represent implementable data types in the
algebraic framework of LOTOS and SDL, based on
a set of predefined type constructors.

The RACE Open Services Architecture project
by A. O. Oshisanwo, M. D. Chapman, M. Key, A. P.
Mullery, and J. Saint-Blancat, p. 691. The specifica-
tion and implementation of current telecommuni-
cation services tend to be intimately bound to a
specific network architecture. Moreover, within the
service software, interactions between the logical
modules are not always explicit, accessible, or uni-
form, and tend to be optimized for a particular service.
This is exemplified by the difficulty experienced in
integrating equipment from multiple vendors, and has
resulted in telecommunication systems that cannot
rapidly exploit the advantages of new technology or
respond to changing customer requirements. In ad-
dition, current telecommunication services tend not
to be viewed as an integral whole, whereby user,
control, and management aspects of a service are

678 ABSTRACTS 1962-1994

developed independently from one another. Separate
development can lead to problems of inconsistency
if shared data are not updated correctly. The RACE
Open Services Architecture (ROSA) project was es-
tablished to address these problems. This paper
presents an overview of the approach taken in the
ROSA project.

Service and traffic management for IBCN by K.
Geihs, P. Francois, D. Griffin, C. Kaas-Petersen, and
A. Mann, p. 711. The future Integrated Broadband
Communications Network (IBCN) will provide
high-speed communication capabilities that support
a variety of existing and new services. The manage-
ment of such a complex environment requires inno-
vative management systems. NEMESYS is a project
within the European Commission's Research and
Development in Advanced Communications in
Europe (RACE) program. The project goals are to
demonstrate and evaluate the use of advanced infor-
mation processing techniques for quality-of-service
and traffic management. To reach these goals, a series
of experimental prototypes are being built. This paper
describes the assumptions, objectives, and approach
of NEMESYS, and in particular, the design and im-
plementation of an experiment that investigates ser-
vice and traffic management techniques in a simulated
asynchronous transfer mode environment. Because
the project is not yet finished, some preliminary re-
sults are presented.

The Open Document Architecture: From stan-
dardization to the market by H. Fanderl, K. Fischer,
and J. Kdmper, p. 728. The Open Document Archi-
tecture (ODA) was developed in the mid-1980s by
several standardization bodies. It is now a stable set
of international standards for the interchange of
compound documents consisting of text, image, and
graphic content. Since 1985 the standardization
process has been accompanied by European industrial
cooperation projects in order to get early experience
with the standard and to develop technologies im-
plementing the standard. IBM's European Network-
ing Center has participated in the projects and has
prototyped enhancements to OfficeVision™ platforms
to allow the interchange of ODA documents between
OfficeVision applications and applications running
on other vendor platforms. In this paper, the ODA
technology is described, experiences of interworking
in heterogeneous environments are given, and the role
of cooperating with project partners is outlined.

Prolog at IBM: An advanced and evolving appli-
cation development technology by M. Bénichou, H.
Beringer, J.-M. Gauthier, and C. Beierle, p. 755.
Prolog is a powerful programming language, based
on logic, that originated and matured in Europe. This
paper aims to show that Prolog is becoming one of
the key tools for the entire application development
community. First explained is how the unique prop-
erties of Prolog give it many advantages over classical
languages. Then we show that the language is suffi-
ciently mature technically so that numerous industrial
Prolog products are now available. In particular, IBM

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

offers the Systems Application Architecture®
(SAA™) AD/Cycle™ Prolog product family, which
provides a combination of logic programming and
object programming facilities. Many industrial ap-
plications are written in Prolog. Examples of 15
outstanding operational applications, developed by
IBM or major IBM customers, are presented. There
is a potential for future growth in the types of ap-
plications enabled by improving the language. The
simplicity and elegance of the theoretical basis of
Prolog allow a number of extensions to be defined.
Here, three European projects are briefly presented.
In conclusion it is shown that Prolog, possibly ex-
tended in many directions, is one of the tools that
could help solve the long-standing quality and cost
problems in application development.

Internal combustion engine design on IBM plat-
forms by F. Papetti, S. Golini, M. Maggiore, S. Succi,
P. Gaillard, and J.-M. Perez, p. 774. Computer sim-
ulation of fluid flow and combustion in diesel engines
is rapidly gaining an increasing popularity within the
automotive industry, becoming recognized as a cost-
effective tool for cutting design cycle time. This paper
shows how an advanced computing environment for
numerically intensive applications, entirely based
upon IBM platforms, can be profitably exploited
within the framework of a joint project with industrial
partners, in this case Renault Vehicules Industriels.
The computing environment has been applied to the
code KIVA-II, a computer program for numerical
combustion developed at Los Alamos National Lab-
oratory. Numerical simulations have been performed
to assess the capability of the code to correctly re-
produce the experimental data. Several features, such
as visualization of the fuel spray droplet formation
and its evolution in time, and selected scalar fields
(velocity components, temperature, and vapor con-
centration), have proved invaluable for a correct
understanding of the various phenomena under ex-
amination. In particular, the scientific data visualizer,
combined with the power of cooperative processing,
has allowed a rapid identification of the most sig-
nificant parameters that need to be tuned in order to
recover good agreement between the simulation and
the experimental data.

Numerical simulation of reactive flow on the IBM
ES/3090 Vector Multiprocessor by F. K. Hebeker,
R. R. Maly, and 8. U. Schoeffel, p. 788. Prohibiting
knock damage in internal combustion engines pre-
sents severe restrictions for engineers. Laboratory
experiments are expensive or even impossible; nev-
ertheless, numerical attempts that employ supercom-
puters have been rarely undertaken. The numerical
approach described in this paper combines a recent
shock-capturing finite-volume scheme for the
compressible Navier Stokes equations, with semi-
implicit treatment of the chemical source terms.

An algorithm is described and validated by exper-
iment that is optimally adapted to vector and parallel
computers. The algorithm has been implemented on
the IBM Enterprise System/3090™ (ES/3090™)

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

Vector Multiprocessor. Performance measurements
are discussed. The potential of the code is illustrated
by an example: formation of pseudo shock waves due
to interaction of a shock wave with turbulent
boundary layer flow.

A modeling study of the North Atlantic with em-
phasis on the Greenland-Iceland-Norwegian Sea
by T. Aukrust, J. M. Oberhuber, E. J. Farrell, and P.
M. Haugan, p. 798. This essay presents the results
of a modeling study that addresses the circulation and
convection of ocean currents. A possible change in
the global climate due to human-induced increase of
atmospheric CO, and other greenhouse gases is one
of the major environmental challenges in our time.
In order to get more insight into this problem, one
needs to better understand the various components
of the climate system and how they interact. Due to
the large heat capacity of the global ocean, the
magnitude, delay, and regional distribution of a po-
tential global warming are to a large extent deter-
mined by exchanges of heat between the upper ocean
and the world's deep ocean. An important process in
this regard is deep water formation due to convection.
The North Atlantic and the Greenland-Iceland-
Norwegian Sea are particularly important regions for
this process. Major parts of the circulation in this area
are simulated by a coupled ice-ocean model that also
includes the entire Arctic Ocean.

Volume 32, Number 1, 1993 G321-0110

Strategic alignment: Leveraging information
technology for transforming organizations by J.
C. Henderson and N. Venkatraman, p. 4. It is clear
that even though information technology (I/T) has
evolved from its traditional orientation of adminis-
trative support toward a more strategic role within
an organization, there is still a glaring lack of fun-
damental frameworks within which to understand the
potential of I/T for tomorrow's organizations. In this
paper, we develop a model for conceptualizing and
directing the emerging area of strategic management
of information technology. This model, termed the
Strategic Alignment Model, is defined in terms of four
fundamental domains of strategic choice: business
strategy, information technology strategy, organiza-
tional infrastructure and processes, and information
technology infrastructure and processes—each with
its own underlying dimensions. We illustrate the
power of this model in terms of two fundamental
characteristics of strategic management: strategic fit
(the interrelationships between external and internal
components) and functional integration (integration
between business and functional domains). More
specifically, we derive four perspectives of alignment
with specific implications for guiding management
practice in this important area.

Information technology and the management dif-
ference: A fusion map by P. G. W. Keen, p. 17. When
every leading firm in an industry has access to the
same information technology resource, the manage-
ment difference determines competitive advantage

ABSTRACTS 1962-1994 §79

or disadvantage. The management challenge is to
make sure that business processes, people, and tech-
nology are meshed, instead of being dealt with as
separate elements in planning and implementation.
This paper presents a framework for senior executives
to use in order to lead the deployment of information
technology (I/T) without having to know how it is
managed and to ensure the fusion of business pro-
cesses, people, and technology. The “fusion map”
approach that focuses on the steps that precede and
enable strategy, has been applied in a number of
companies. Factors are identified that make I/T a
frequent destabilizer of basic logistics in an industry.

New competitive strategies: Challenges to organ-
izations and information technology by A. C.
Boynton, B. Victor, and B. J. Pine II, p. 40. The old
competitive strategies of invention and mass pro-
duction no longer work in an increasingly turbulent
business environment. Successful firms are imple-
menting the new competitive strategies of continuous
improvement (constant process improvement) and
mass customization—a dynamic flow of goods and
services via a stable set of processes. This paper
provides a “lens” through which managers can assess
their firm's current competitive position, build a vi-
sion for where they must be in the future, and craft
a transformation strategy to turn that future vision into
reality.

Beyond re-engineering: The three phases of busi-
ness transformation by W. H. Davidson, p. 65. New
information-technology-based capabilities make it
possible to achieve systematic and dramatic gains in
business performance. Re-engineering offers one
method to access these gains, but a broader process
of business transformation explored in this paper can
give enterprises a greater range of benefits. This
three-phase transformation process starts with struc-
tured automation and re-engineering efforts, builds
on new infrastructure and capabilities to enhance and
extend the original business, and then redefines it to
create new businesses.

A new approach to business processes by A. L.
Scherr, p. 80. This paper presents a methodology for
analyzing and designing the processes that an enter-
prise uses to conduct its business. The methodology
builds upon traditional approaches to business process
definition by adding the dimension of people's ac-
countabilities: their roles, relationships, and agree-
ments. The approach presented allows for unique
insights into customer satisfaction, employee
empowerment, and quality. It also provides a basis
for spanning the concerns of both business people
and information technologists responsible for pro-
viding business process automation.

Measuring the value of information: The infor-
mation-intensive organization by R. Glazer, p. 99.
This paper suggests that firms that successfully inte-
grate an information technology (I/T) strategy with
their business strategies do so by focusing on the
information itself, rather than on technology, as the

680 ABSTRACTS 1962-1994

real carrier of value and source of competitive ad-
vantage. A primary mechanism by which a firm be-
comes an information-intensive firm is the
implementation of a procedure for measuring the
value of its information assets V(I). This paper pre-
sents a methodology for measuring the value of in-
formation in the firm. This paper describes the
application of that methodology in an actual case
study and discusses some consequences of being able
to compare organizations with respect to their relative
levels of information intensity.

Strategic control in the extended enterprise by B.
R. Konsynski, p. 111. The strategic role of information
systems in “extending” the enterprise is examined.
A number of issues emerge as essential considerations
in the strategic alignment of the investment in infor-
mation technology and business strategy. Information
technologies transform organizational boundaries,
interorganizational relations, and marketplace com-
petitive and cooperative practice. The paper presents
a framework of strategic control that guides the
planning and execution of these investments in in-
formation technology for business transformation,
seeking increased understanding and influence.
Emerging information technologies change the limits
of what is possible in the leverage of strategic control
through transformation of boundaries, relations, and
markets.

Global business drivers: Aligning information
technology to global business strategy by B. Ives,
S. L. Jarvenpaa, and R. O. Mason, p. 143. The
alignment of worldwide computer-based information
systems and integrated business strategies is critical
to the success of multinational firms in a highly
competitive global market. In this paper, information
technology (I/T) solutions are explored that drive
firms toward making economic decisions based on
worldwide distributed knowledge. These solutions
focus on a number of entities (or global business
drivers) that identify where a firm can benefit most
from the management and application of the tech-
nology. A variety of approaches for overcoming the
barriers and risks of applying this technology are also
discussed.

Improving business and information strategy
alignment: Learning from the banking industry
by M. Broadbent and P. Weill, p. 162. An empirical
study that explored business and information strategy
alignment in the information-intensive and compet-
itive Australian banking industry is featured in this
paper. The aim of the study was to identify organ-
izational practices that contribute to and enhance such
alignment. Multiple sources of information were used
to collect data about business and information strat-
egies from the major firms dominating Australian
banking. Sources included written and interview-
based information, strategic planning documentation,
and annual reports. Evidence was sought for the
alignment of business and information strategies
through the use of information and information
technology that provided a comparative advantage to

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

an organization over its competitors. The firm-wide
strategy-formation processes of the banks, rather than
their information systems (I/S) methodology, was
central to the alignment of business and information
strategies. The interdependence of firm-wide pro-
cesses and I/S factors are emphasized in a strategic
alignment model that summarizes the findings of the
study. The paper concludes with a discussion of the
management implications and requirements for action
in both firm-wide strategy and I/S areas. The results
of this study in the banking industry are pertinent to
other industries where information technology and
systems are playing an increasingly strategic role.

Quantitative techniques in strategic alignment by
P. V. Norden, p. 180. There is increasing evidence in
both the business and technical literature that the
operations and strategy processes of many organiza-
tions have been aided materially by visualization and
modeling techniques. Application of quantitative
methods has progressed from relatively well-
structured operations to the more speculative aspects
of strategy and policy formation. In retrospect, how-
ever, the most valuable contribution of modeling has
been greater insight: a clearer understanding of the
situations and prospects at hand that the mere act of
model formulation often provided the planner. This
paper illustrates some characteristics of the modeling
process, and explores the applicability of quantitative
techniques to strategic alignment opportunities, such
as current pressures to reduce the “cycle time” of
many enterprise functions.

Transforming the enterprise: The alignment of
business and information technology strategies by
J. N. Luftman, P. R. Lewis, and S. H. Oldach, p. 198.
The strategic use of information technology (I/T) is
now and has been a fundamental issue for every
business. In essence, I/T can alter the basic nature
of an industry. The effective and efficient utilization
of information technology requires the alignment of
the I/T strategies with the business strategies, some-
thing that was not done successfully in the past with
traditional approaches. New methods and approaches
are now available. The strategic alignment framework
applies the Strategic Alignment Model to reflect the
view that business success depends on the linkage
of business strategy, information technology strategy,
organizational infrastructure and processes, and I/T
infrastructure and processes. In this paper, we look
at why it may not be sufficient to work on any one
of these areas in isolation or to only harmonize
business strategy and information technology. One
reason is that, often, too much attention is placed on
technology, rather than business, management, and
organizational issues. The objective is to build an
organizational structure and set of business processes
that reflect the interdependence of enterprise strategy
and information technology capabilities. The attention
paid to the linkage of information technology to the
enterprise can significantly affect the competitiveness
and efficiency of the business. The essential issue is
how information technology can enable the achieve-

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

ment of competitive and strategic advantage for the
enterprise.

Volume 32, Number 2, 1993 G321-0111

Box-structured methods for systems development
with ohjects by A. R. Hevner and H. D. Mills, p. 232.
Box structures provide a rigorous and systematic
process for performing systems development with
objects. Box structures represent data abstractions as
objects in three system views and combine the ad-
vantages of structured development with the advan-
tages of object orientation. As data abstractions
become more complex, the box structure usage hier-
archy allows stepwise refinement of the system design
with referential transparency and verification at every
step. An integrated development environment based
on box structures supports flexible object-based sys-
tems development patterns. We present a classic ex-
ample of object-based systems development using
box structures.

I/O subsystem configurations for ESA: New roles
for processor storage by B. McNutt, p. 252. 1/0
subsystem configurations are dictated by the storage
and /O requirements of the specific applications that
use the disk hardware. Treating the latter requirement
as a given, however, draws a boundary at the channel
interface that is not well-suited to the capabilities of
the Enterprise Systems Architecture (ESA). This ar-
chitecture allows hardware expenditures in the I/O
subsystem to be managed, while at the same time
improving transaction response time and system
throughput capability, by a strategy of processor
buffering coupled with storage control cache. The
key is to control the aggregate time per transaction
spent waiting for physical disk motion. This paper
investigates how to think about and accomplish such
an objective. A case study, based on data collected
at a large Multiple Virtual Storage installation, is used
to investigate the potential types and amounts of
memory use by individual files, both in storage con-
trol cache and in processor buffers. The mechanism
of interaction between the two memory types is then
examined and modeled so as to develop broad
guidelines for how best to deploy an overall memory
budget. These guidelines tend to contradict the usual
metrics of storage control cache effectiveness,
underscoring the need for an adjustment in pre-ESA
paradigms.

Introduction of the project management discipline
in a software development organization by T. Raz,
p. 265. An approach to the introduction of the project
management discipline in a software development
organization is presented, with emphasis on the as-
pects that can be generalized and adopted by other
organizations under similar circumstances. The pre-
sentation includes the key elements of the approach
taken, the maturity scale used to guide the introduc-
tion effort, a short description of the education
program developed specifically for this case, a
methodology for developing project models, and the
staff and support structure put in place. The paper

ABSTRACTS 1962-1994 681

concludes by reporting the initial experience and
noting directions for future development.

Building business and application systems with the
Retail Application Architecture by P. Stecher, p.
278. An industry application architecture is a frame-
work for integrating applications and databases and
can also be used for analyzing and re-engineering the
business of an enterprise as a whole, provided it is
structured correctly. This paper describes the moti-
vation, structure, and possible uses of the Retail
Application Architecture™ (RAA™). The core of
RAA is a set of generic enterprise models for com-
panies in the retail and wholesale distribution indus-
try. RAA is oriented as much to the business expert
as to the information systems (I/S) department. The
goal of RAA is to contribute to the task of building
sound business systems in a more efficient and ef-
fective manner.

System for the recognition of human faces by M.
S. Kamel, H. C. Shen, A. K. C. Wong, and R. L
Campeanu, p. 307. This paper describes a system for
content-based retrieval of facial images from an im-
age database. The system includes feature extraction
based on expert-assisted feature selection, spatial
feature measurement, feature and shape represen-
tation, feature information compression and organ-
ization, search procedures, and pattern-matching
techniques. The system uses novel data structures to
represent the extracted information. These structures
include attributed graphs for representing local fea-
tures and their relationships, n-tuple of mixed mode
data, and highly compressed feature codes. For the
retrieval phase, a knowledge-directed search tech-
nique that uses a hypothesis refinement approach
extracts specific features for candidate identification
and retrieval. The overall system, the components,
and the methodology are described. The system has
been implemented on an IBM Personal System/2®
running Operating System/2®, Examples demon-
strating the performance of the system are included.

Technical note—Complementarity attacks and
control vectors by D. Longley and S. M. Matyas, p.
321. A control vector is a data structure that specifies
the nature and role of an associated cryptographic
key. The control vector is checked by software and
cryptographic hardware in order to limit the range
of permissible operations to be undertaken with
ciphertext produced with the key. The linking of the
control vector and cryptographic key is such that at-
tempts to modify, or substitute, control vectors will
cause the subsequent processing to operate with a
corrupted key, and hence ensure protection of data
encrypted with the genuine key. A potential attack
on the control vector approach is described in which
the complement of the control vector is substituted.
The manner in which such attacks are thwarted by
the IBM implementation of control vectors is also
described.

682 ABSTRACTS 1962-1994

Volume 32, Number 3, 1993 G321-0113

Process automation in software application de-
velopment by K. D. Saracelli and K. F. Bandat, p.
376. Over the years, the field of application develop-
ment (AD) has evolved from that of an art form to
being more of a science, hence the emergence of
concepts such as information engineering. In engi-
neering and scientific fields, the value of process
definition and management has long been known.
This paper discusses the requirements for managing
the AD process and establishes the need for auto-
mated assistance for these management activities.
Considerations for an automated system to manage
the process are presented, and the benefits to be re-
alized by such an implementation are then discussed.

Rapid Delivery: An evolutionary approach for
application development by D. Hough, p. 397. From
a historical vantage point, large application develop-
ment projects are frequently at risk of failure. Ap-
plications are typically developed using a monolithic
development approach. Monolithic approaches gen-
erally feature business-user-defined requirements that
are incorporated in the application but not evident
until the resulting application has been implemented.
To effectively produce new information systems, in-
novative methods must be utilized. This paper pro-
vides information about one of these, Rapid
Delivery—a method for developing applications that
can evolve over time. To fully understand the prin-
ciples of Rapid Delivery, a discussion is included that
illuminates a three-dimensional application model and
its variations. The application model helps in under-
standing application segmentation, a technique used
in Rapid Delivery to break applications into a variety
of functional capabilities. After the development of
each application segment has been completed, it is
implemented to provide immediate benefit to the
enterprise; each application segment is added to the
evolving application and its ever-expanding capabil-
ities. The result of using Rapid Delivery is an en-
hanced ability to build applications that better support
the enterprise through a continuous stream of deliv-
ered requirements, a reduction in the possibility of
project failure, and a diminished likelihood of run-
away projects.

The impact of object-orientation on application
development by A. A. R. Cockburn, p. 420. Object-
orientation introduces new deliverables, notations,
techniques, activities, and tools. Application devel-
opment consists not only of these items but also of
work segmentation, scheduling, and managing the
sharing and evolution of deliverables. This paper
breaks application development into three major
components: construction, coordination, and evolu-
tion, with the topic of reuse receiving extra attention.
It highlights four aspects of object-orientation having
impact: encapsulation, anthropomorphic design, reuse
with extensibility, and incremental and iterative de-
velopment.

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

Measurement: The key to application development
quality by C. Walrad and E. Moss, p. 445. Application
development quality and productivity have been
identified as being among the top ten concerns of
information systems (I/S) executives in both 1991
and 1992. This paper discusses the role of measure-
ment in pursuit of I/S application development quality
and productivity. The relationships between produc-
tivity, quality, and measurement are described, classes
of measures are identified, and “dominant measures”
are grouped according to the maturity levels defined
by the Software Engineering Institute's Capability
Maturity Model for Software. Also discussed are the
organizational and cultural issues associated with
instituting a measurement process.

A public key extension to the Common Cryp-
tographic Architecture by A. V. Le, S. M. Matyas,
D. B. Johnson, and J. D. Wilkins, p. 461. A new
method for extending the IBM Common Cryp-
tographic Architecture (CCA) to include public key
cryptography is presented. The public key extension
provides nonrepudiation via digital signatures and an
electronic means to distribute Data Encryption
Algorithm (DEA) key-encrypting keys in a hybrid
Data Encryption Algorithm-Public Key Algorithm
(DEA-PKA) cryptographic system. The improve-
ments are based on a novel method for extending the
control vector concept used in the IBM Common
Cryptographic Architecture. Four new key types that
separate the public and private key pairs into four
classes according to their broad uses within the
cryptographic system are defined. The public key
extension to the CCA is implemented in the IBM
Transaction Security System (TSS). This paper dis-
cusses both the public key extension to the CCA and
the TSS implementation of this architectural exten-
sion.

Morphologically based automatic phonetic tran-
scription by K. Wothke, p. 486. A system is described
that automatically generates phonetic transcriptions
for German orthographic words. The entire generative
process consists of two main steps. In the first step,
the system segments the words into their morphs, or
prefixes, stems, and suffixes. This segmentation is
very important for the transcription of German words,
because the pronunciation of the letters depends also
on their morphological environment. In the second
step, the system transcribes the morphologically
segmented words. Several transcriptions can be gen-
erated per word, thus permitting the system to take
pronunciation variants into account. This feature re-
sults from the application area of the system, which
is the provision of phonetic reference units for an
automatic large-vocabulary speech recognition sys-
tem. Statistical evaluations show that the transcription
system has an excellent linguistic performance: more
than 99 percent of the segmented words obtain a
correct segmentation in the first step, and more than
98 percent of the words receive a correct phonetic
transcription in the second step.

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

A storage subsystem for image and records man-
agement by H. M. Gladney, p. 512. Digital storage
and communications are becoming cost effective for
massive collections of document images with access
not only for nearby users but also for those who are
hundreds of miles from their libraries. The Document
Storage Subsystem (DocSS) provides generic library
services such as searching, storage, and retrieval of
document pages and sharing of objects with appro-
priate data security and integrity safeguards. A library
session has three components: a manager of remote
catalogs, a set of managers of large-object stores, and
a manager of cache services. DocSS supports all kinds
of page data—text, pictures, spreadsheets, graphics,
programs—and can be extended to audio and video
data. Document models can be built as DocSS ap-
plications; the paper describes a folder manager as
an example. What differentiates DocSS among digital
library projects is its approach to data distribution
over wide area networks, its client-server approach
to the heterogeneous environment, and its synergism
with other components of evolving open systems.

Volume 32, Number 4, 1993 G321-0114

Software reuse: From library to factory by M. L.
Griss, p. 548. Systematic software reuse is a key
business strategy that software managers can employ
to dramatically improve their software development
processes, to decrease time-to-market and costs, and
to improve product quality. Effective reuse requires
much more than just code and library technology.
We have leamed that careful consideration must be
given to people, process, and technology. One ap-
proach to the systematic integration of these three
elements is the concept of the software factory. At
Hewlett-Packard Co., we have initiated a multifaceted
corporate reuse program to help introduce the best
practices of systematic reuse into the company,
complemented by multidisciplinary research to in-
vestigate and develop better methods for domain-
specific, reuse-based software engineering. This essay
discusses our experiences. Key aspects include
domain-specific kits, business modeling, organization
design, and technology infrastructure for a flexible
software factory.

The business case for software reuse by J. S. Poulin,
J. M. Caruso, and D. R. Hancock, p. 567. To remain
competitive, software development organizations
must reduce cycle time and cost, while at the same
time adding function and improving quality. One
potential solution lies in software reuse. Because
software reuse is not free, we must weigh the potential
benefits against the expenditures of time and re-
sources required to identify and integrate reusable
software into products. We first introduce software
reuse concepts and examine the cost-benefit trade-offs
of software reuse investments. We then provide a set
of metrics used by IBM to accurately reflect the effort
saved by reuse. We define reuse metrics that distin-
guish the savings and benefits from those already
gained through accepted software engineering tech-

ABSTRACTS 1962-1994 583

niques. When used with the return-on-investment
(ROI) model described in this paper, these metrics
can effectively establish a sound business justification
for reuse and can help assess the success of organ-
izational reuse programs.

Implementing Critical Success Factors in software
reuse by M. Wasmund, p. 595. Software reuse is one
of several technologies that can improve quality and
effectiveness of software development. The intro-
duction of a reuse infrastructure within an existing
organization and the associated modification of em-
ployee behavior and processes is a complex inter-
disciplinary task. The structuring and monitoring of
several coordinated activities is required in order to
be successful. This paper describes a practical appli-
cation of the Critical Success Factors method on reuse
technology insertion into the software development
process. The Critical Success Factors method has
proved to be a useful means for the introduction of
software reuse concepts. Application of the method
and results are discussed in detail, concluding with
lessons learned and recommendations for similar ef-
forts.

Technical forum—Management of reuse at IBM
by J. R. Tirso and H. Gregorius, p. 612,

Technical forum—Information reuse parallels
software reuse by K. P. Yglesias, p. 615.

Technical forum—A reusable parts center by D.
Bauer, p. 620.

Application reference designs for distributed sys-
tems by J. J. Shedletsky and J. J. Rofrano, p. 625.
This paper is based on the findings and conclusions
of a client/server work group that was commissioned
in 1991 to report IBM's technical strategy for
client/server computing. Although there are countless
variations for designing applications and intercon-
necting components in a distributed environment,
there seems to be a finite number of variations that
represent what a large majority of customers want to
build. The intent of the work group was to explore
the possibility of defining a set of application “ref-
erence designs,” which would represent the distrib-
uted designs that customers are building today or
want to build in the near future. This paper documents
the customer scenarios, the reference designs that
represent them, and the requirements that were gen-
erated for the underlying system software. The work
group concluded that the reference designs described
herein represent our best working assumption about
“where customers are going” with distributed appli-
cation designs. The discussion should give those who
have not yet begun to exploit distributed systems a
starting point and considerations for their design
work.

Advanced Function Printing—From print to
presentation by R. K. deBry and M. W. Munger, p.
647. The strength of Advanced Function Printing™
(AFP™) is due largely to the architectures that form
its foundation. The architectures on which AFP is

684 ABSTRACTS 1962-1994

based have been developed over the last 12 years and
have influenced the development of standards, com-
petitive architectures, and, most importantly, software
inside and outside IBM. Customers are demanding
a more comprehensive view of printing that includes
easy creation, viewing, and even specialized editing
of printable documents. These “next generation” re-
quirements are now being satisfied by software
products that are based on the existing architecture.
This paper describes some of these products and how
they use the architecture, and describes possible future
directions for AFP and related technologies.

The continuing evolution of Advanced Function
Printing by R. J. Howarth and B. G. Platte, p. 665.
Advanced Function Printing™ (AFP™) has become
one of the de facto printing standards. It is a broad
architecture to support printing across an entire en-
terprise and encompasses IBM architectures as well
as industry standards. AFP had its beginnings in the
IBM System/370™ environment in 1984 and has
since expanded to include midrange and local area
network systems. Recently the capabilities of AFP
have been extended beyond printing to include on-line
viewing and management of presentation data. An
overview of AFP capabilities was given in an earlier
issue of the IBM Systems Journal. This paper traces
the continuing evolution of AFP and its usage and
how it is addressing the presentation requirements
of businesses in the 1990s.

Volume 33, Number 1, 1994 G321-0115

Software quality: An overview from the perspec-
tive of total quality management by S. H. Kan, V.
R. Basili, and L. N. Shapiro, p. 4. This essay presents
a tutorial that discusses software quality in the context
of total quality management (TQM). Beginning with
a historical perspective of software engineering, the
tutorial examines the definition of software quality
and discusses TQM as a management philosophy
along with its key elements: customer focus, process
improvement, the human side of quality, and data,
measurement, and analysis. It then focuses on the
software-development specifics and the advance-
ments made on many fronts that are related to each
of the TQM elements. In conclusion, key directions
for software quality improvements are summarized.

Forging a silver bullet from the essence of software
by R. G. Mays, p. 20. Most improvements in software
development technology have occurred by eliminat-
ing the accidental aspects of the technology. Further
progress now depends on addressing the essence of
software. Fred Brooks has characterized the essence
of software as a complex construct of interlocking
concepts. He concludes that no silver bullet will
magically reduce the essential conceptual complexity
of software. This paper expands on Brooks's defi-
nition to lay a foundation for forging a possible silver
bullet. Discussed are the three essential attributes of
software entities from which a number of conse-
quences arise in software development: (1) conceptual
content, (2) representation, and (3) multiple subdo-

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

mains. Four basic approaches to develop technologies
are proposed that directly address the essential attri-
butes. Although some of these technologies require
additional development or testing, they present the
most promise for forging a silver bullet. Among them,
design reabstraction addresses the most difficult at-
tribute, multiple subdomains, and the most difficult
consequence, enhancing existing code, making it the
best prospect.

Journey to a mature software process by C.
Billings, J. Clifton, B. Kolkhorst, E. Lee, and W. B.
Wingert, p. 46. Development process maturity is
strongly linked to the success or failure of software
projects. As the word “maturity” implies, time and
effort are necessary to gain it. The Space Shuttle
Onboard Software project has been in existence for
nearly 20 years. In 1989 the project was rated at the
highest level of the Software Engineering Institute's
Capability Maturity Model. The high-quality soft-
ware produced by the project is directly linked to its
maturity. This paper focuses on the experiences of
the Space Shuttle Onboard Software project in the
journey to process maturity and the factors that have
made it successful.

AS/400 software quality management by S. H. Kan,
S. D. Dull, D. N. Amundson, R. J. Lindner, and R. J.
Hedger, p. 62. This paper describes the software
quality management system for the Application
System/400® (AS/400®) computer system. Key ele-
ments of the quality management system such as
customer satisfaction, product quality, continuous
process improvement, and people are discussed.
Based on empirical data, recent progress in several
quality parameters of the AS/400 software system
are examined. The quality action road map that de-
scribes the various quality actions that were deployed
is presented, as are the other elements that enabled
the implementation of the quality management sys-
tem.

Adopting Cleanroom software engineering with a
phased approach by P. A. Hausler, R. C. Linger, and
C. J. Trammell, p. 89. Cleanroom software engineer-
ing is a theory-based, team-oriented engineering
process for developing very high quality software
under statistical quality control. The Cleanroom
process combines formal methods of object-based
box structure specification and design, function-
theoretic correctness verification, and statistical usage
testing for reliability certification to produce software
approaching zero defects. Management of the
Cleanroom process is based on a life cycle of de-
velopment and certification of a pipeline of user-
function increments that accumulate into the final
product. Teams in IBM and other organizations that
use the process are achieving remarkable quality re-
sults with high productivity. A phased implementa-
tion of the Cleanroom process enables quality and
productivity improvements with an increased control
of change. An introductory implementation involves
the application of Cleanroom principles without the
full formality of the process; full implementation in-

1BM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

volves the comprehensive use of formal Cleanroom
methods; and advanced implementation optimizes the
process through additional formal methods, reuse, and
continual improvement. The AOEXPERT/MVS™
project, the largest IBM Cleanroom effort to date,
successfully applied an introductory level of imple-
mentation. This paper presents both the implementa-
tion strategy and the project results.

RE-Analyzer: From source code to structured
analysis by A. B. O'Hare and E. W. Troan, p. 110.
The RE-Analyzer is an automated, reverse engineer-
ing system providing a high level of integration with
a computer-aided software engineering (CASE) tool.
Specifically, legacy code is transformed into ab-
stractions within a structured analysis methodology.
The abstractions are based on data flow diagrams,
state transition diagrams, and entity-relationship data
models. Since the resulting abstractions can be
browsed and modified within a CASE tool environ-
ment, a broad range of software engineering activities
are supported, including program understanding, re-
engineering, and redocumentation. In addition, dia-
gram complexity is reduced through the application
of control partitioning.: an algorithmic technique for
managing complexity by partitioning source code
modules into smaller yet semantically coherent units.
This approach also preserves the information content
of the original source code. It is in contrast to other
reverse engineering techniques that produce only
structure charts and thus suffer from loss of infor-
mation, unmanaged complexity, and a lack of corre-
spondence to structured analysis abstractions. The
RE-Analyzer has been implemented and currently
supports the reverse engineering of software written
in the C language. It has been integrated with a CASE
tool based on the VIEWS method.

The impact of object-oriented technology on soft-
ware quality: Three case histories by N. P. Capper,
R. J. Colgate, J. C. Hunter, and M. F. James, p. 131.
Techniques to obtain software quality are examined
from the experiences of three very different object-
oriented projects carried out by IBM Information
Solutions Limited in 1991 and 1992. Object-oriented
programming systems are sold on the promise of
improved productivity from object reuse and a high
level of code modularity. Yet it is precisely these
aspects that also lead to their greatest benefit, namely
improved software quality. In this paper, lessons
learned from the three projects are described and
compared, indicating approaches to consider in using
object-oriented technology.

Deriving programs using generic algorithms by
V. R. Yakhnis, J. A. Farrell, and §. S. Shultz, p. 158.
We suggest a new approach to the derivation of
programs from their specifications. The formal deri-
vation and proof of programs as is practiced today
is a very powerful tool for the development of high-
quality software. However, its application by the
software development community has been slowed
by the amount of mathematical expertise needed to
apply these formal methods to complex projects and

ABSTRACTS 1962-1994 §85

by the lack of reuse within the framework of program
derivation. To address these problems, we have de-
veloped an approach to formal derivation that em-
ploys the new concept of generic algorithms. A
generic algorithm is one that has (1) a formal spec-
ification, (2) a proof that it satisfies this specification,
and (3) generic identifiers representing types and
operations. It may have embedded program specifi-
cations or pseudocode instructions describing the next
steps in the stepwise refinement process, Using ge-
neric algorithms, most software developers need to
know only how to pick and adapt them, rather than
perform more technically challenging tasks such as
finding loop invariants and deriving loop programs.
The adaptation consists of replacing the generic
identifiers by concrete types and operations. Since
each generic algorithm can be used in the derivation
of many different programs, this new methodology
provides the developer with a form of reuse of pro-
gram derivation techniques, correctness proofs, and
formal specifications.

In-process improvement through defect data in-
terpretation by I. Bhandari, M. J. Halliday, J. Chaar,
R. Chillarege, K. Jones, J. S. Atkinson, C. Lepori-
Costello, P. Y. Jasper, E. D. Tarver, C. C. Lewis, M.
Yonezawa, p. 182. An approach that involves both
automatic and human interpretation to correct the
software production process during development is
becoming important in IBM as a means to improve
quality and productivity. A key step of the approach
is the interpretation of defect data by the project team.
This paper uses examples of such correction to
evaluate and evolve the approach, and to inform and
teach those who will use the approach in software
development. The methodology is shown to benefit
different kinds of projects beyond what can be
achieved by current practices, and the collection of
examples discussed represents the experiences of
using a model of correction.

Technical forum—Programming quality im-
provement in IBM by D. L. Bencher p. 215.

Technical note—On reliability modeling and
software quality by A. J. Watkins, p. 220. This note
continues the recent discussion on reliability model-
ing and its application in software development by
Kan in a recent issue of the IBM Systems Journal.
We focus on the initial stages of a reliability modeling
process, as decisions here will often influence the later
stages of an analysis.

Volume 33, Number 2, 1994 G321-0116

Decision support at Lands' End-—An evolution by
G. G. Bustamente and K. Sorenson, p. 228. A decision
support system with over one billion rows of data
has been developed at Lands' End using the IBM
DATABASE 2™ (DB2®) relational database man-
agement system. This corporate database is a subset
of an Information Warehouse™ framework and
functions as both a decision support system server
and an application enabler. The corporate database

686 ABSTRACTS 1962-1994

uses operational data gathered from order processing
and customer mailing systems. Weekly processes
reformat these real-time data for loading into the
corporate database. This paper discusses some of the
business requirements that guided the development
of the corporate database, and also describes the da-
tabase design process, tool selection, and implemen-
tation experiences.

The Business Object Management System by M.
Schlatter, R. Furegati, F. Jeger, H. Schneider, and
H. Streckeisen, p. 239. The Business Object Man-
agement System (BOMS) is a distributed resource
manager that generalizes and extends the concepts
of shared corporate information to include not only
data that are structured such that the data can be held
in relational tables but also generalized, complex
business information objects. BOMS allows enter-
prises to store, manage, and query the totality of their
documents, business transaction records, images, etc.,
in a uniform and consistent way. With this system,
businesses can make more effective use of informa-
tion that has in the past been inaccessible to thorough
and systematic queries and that could not be inte-
grated effectively into existing or new business
processes. BOMS is targeted toward very large col-
lections of information objects (on the order of a
billion objects, equivalent to terabytes of data) and
allows enterprises to unlock information treasures that
would otherwise remain hidden in collections of that
size. BOMS is influenced by theoretical concepts,
such as object-orientation and hypermedia, but relies
on proven relational database and transaction pro-
cessing concepts. BOMS has been implemented with
DATABASE 2™ (DB2®) and Customer Information
Control System/Enterprise Systems Architecture
(CICS/ESA™) and has been in productive use since
1991.

Extending relational database technology for new
applications by J. M. Cheng, N. M. Mazttos, D. D.
Chamberlin, and L. G. DeMichiel, p. 264. Relational
database systems have been very successful in
meeting the needs of today's commercial applications.
However, emerging applications in disciplines such
as engineering design are now generating new re-
quirements for database functionality and perfor-
mance. This paper describes a set of extensions to
relational database technology, designed to meet the
requirements of the new generation of applications.
These extensions include a rich and extensible type
subsystem that is tightly integrated into the Structured
Query Language (SQL), a rules subsystem to enforce
global database semantics, and a variety of perfor-
mance enhancements. Many of the extensions de-
scribed here have been prototyped at the IBM
Database Technology Institute and in research
projects at the IBM Almaden Research Center in
order to demonstrate their feasibility and to validate
their design. Furthermore, many of these extensions
are now under consideration as part of the evolving
American National Standards Institute/International
Organization for Standardization (ANSI/ISO) stan-
dard for the SQL database language.

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

Maximizing leverage from an object database by
C. Alfred, p. 280. With increasing frequency, object
database management systems (ODBMSs) are being
used as a persistent storage framework for applica-
tions. This paper shows that ODBMS frameworks
provide a natural repository for supporting object-
oriented systems, because they store and manage
objects as their atomic units. In addition, these
frameworks can offer a great deal of leverage to the
developers of applications with the integration of two
distinct paradigm shifts: the object-oriented devel-
opment model, and the direct-reference storage
model. Software developers who understand the
implications of both paradigm shifts are more likely
to use the technology effectively and realize most
or all of the potential leverage. Highlighted is
ObjectStore™ from Object Design, Inc., which is
available as part of the IBM object database solution.

Data access within the Information Warehouse
framework by J. P. Singleton and M. M. Schwartz,
p. 300. IBM's Information Warehouse™ framework
provides a basis for satisfying enterprise requirements
for effective use of business data resources. It includes
an architecture that defines the structure and inter-
faces for integrated solutions and includes products
and services that can be used to create solutions. This
paper uses the Information Warehouse architecture
as a context to describe software components that can
be used for direct access to formatted business data
in a heterogeneous systems environment. Concepts
of independence between software components and
how this independence can provide flexibility for
change are discussed. The integration of software
from multiple vendors to create effective solutions
is a key emphasis of this paper.

Managing business processes as an information
resource by F. Leymann and W. Altenhuber, p. 326.
The relevance of business processes as a major asset
of an enterprise is more and more accepted: Business
processes prescribe the way in which the resources
of an enterprise are used, i.e., they describe how an
enterprise will achieve its business goals. Organiza-
tions typically prescribe how business processes have
to be performed, and they seek information technol-
ogy that supports these processes. We describe a
system that supports the two fundamental aspects of
business process management, namely the modeling
of processes and their execution. The meta-model of
our system deals with models of business processes
as weighted, colored, directed graphs of activities;
execution is performed by navigation through the
graphs according to a well-defined set of rules. The
architecture consists of a distributed system with a
client/server structure, and stores its data in an
object-oriented database system.

Parallelism in relational database management
systems by C. Mohan, H. Pirahesh, W. G. Tang, and
Y. Wang, p. 349. In order to provide real-time re-
sponses to complex queries involving large volumes
of data, it has become necessary to exploit parallelism
in query processing. This paper addresses the issues

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

and solutions relating to intraquery parallelism in a
relational database management system (DBMS).
We provide a broad framework for the study of the
numerous issues that need to be addressed in sup-
porting parallelism efficiently and flexibly. The al-
ternatives for a parallel architecture system are
discussed, followed by the focus on how a query can
be parallelized and how that affects load balancing
of the different tasks created. The final part of the
paper contains information about how the IBM
DATABASE 2™ (DB2®) Version 3 product provides
support for I/O parallelism to reduce response time
for data-intensive queries.

Volume 33, Number 3, 1994 G321-0117

The Centre for Advanced Studies: A model for
applied research and development by J. Slonim,
M. A. Bauer, P. -A. Larson, J. Schwarz, C, Butler, E.
B. Buss, and D. Sabbah, p. 382. The Centre for Ad-
vanced Studies (CAS) is an applied research centre
formed in 1990 within the IBM Toronto Software
Solutions Laboratory. Its primary aim is to facilitate
the transfer of research ideas into the various product
groups of the laboratory. Although we are still
learning how to make CAS operate more effectively,
and it is too early to assess its long-term success, the
model for CAS has proved to be workable. The pri-
mary partners, namely the IBM Toronto Software
Solutions Laboratory, the IBM research community,
universities in North America, and government
agencies that support collaborative research, have
found it a viable approach. As an overview, this essay
provides some background to the formation of the
centre, describes some of the challenges deemed
important in defining the role of the centre, identifies
a number of principles that are used to guide its
formation and current operation, and reports on its
progress. We conclude with a discussion of some
lessons learned in the operation of the centre to date
and identify future activities and directions for the
centre.

A distributed system architecture for a distributed
application environment by M. A. Bauer, N. Coburn,
D. L. Erickson, P. J. Finnigan, J. W. Hong, P.-A.
Larson, J. Pachl, J. Slonim, D. J. Taylor, and T. J.
Teorey, p. 399. Advances in communications tech-
nology, development of powerful desktop work-
stations, and increased user demands for sophisticated
applications are rapidly changing computing from a
traditional centralized model to a distributed one. The
tools and services for supporting the design, devel-
opment, deployment, and management of applications
in such an environment must change as well. This
paper is concerned with the architecture and frame-
work of services required to support distributed
applications through this evolution to new environ-
ments. In particular, the paper outlines our rationale
for a peer-to-peer view of distributed systems, pre-
sents motivation for our research directions, describes
an architecture, and reports on some preliminary ex-
periences with a prototype system.

ABSTRACTS 1962-1994 B87

Reference architecture for distributed systems
management by M. A. Bauer, P. J. Finnigan, J. W.
Hong, J. A. Rolia, T. J. Teorey, and G. A. Winters,
p. 426. Management of computing systems is needed
to ensure efficient use of resources and provide
reliable and timely service to users. Distributed
systems are much more difficult to manage because
of their size and complexity, and they require a new
approach. A reference architecture for distributed
systems management is proposed that integrates
system monitoring, information management, and
system modeling techniques. Three classes of system
management—network services and devices, oper-
ating system services and resources, and user
applications—are defined within this framework, and
a detailed hospital application is presented to clarify
the requirements for managing applications. It is ar-
gued that the performance management of distributed
applications must be considered from all three per-
spectives. Several management prototypes under
study within the COnsortium for Research on Dis-
tributed Systems (CORDS) are described to illustrate
how such an architecture could be realized.

Evaluation of a predicate-based software testing
strategy by K.-C. Tai, M. A. Vouk, A. M. Paradkar,
and P. Lu, p. 445. In this paper, we report the results
of four empirical studies for evaluating a predicate-
based software testing strategy, called BOR (Boolean
operator) testing. The BOR testing strategy focuses
on the detection of Boolean operator faults in a
predicate, including incorrect AND/OR operators and
missing or extra NOT operators. Our empirical studies
involved comparisons of BOR testing with several
other predicate-based testing strategies, using
Boolean expressions, a real-time control system, and
a set of N-version programs. For program-based test
generation, BOR testing was applied to predicates in
a program. For specification-based test generation,
BOR testing was applied to cause-effect graphs rep-
resenting software specification. The results of our
studies indicate that BOR testing is practical and ef-
fective for both specification- and program-based test
generation.

Architecture and applications of the Hy* visual-
ization system by M. P. Consens, F. Ch. Eigler, M.
Z. Hasan, A. O. Mendelzon, E. G. Noik, A. G. Ryman,
and D. Vista, p. 458. The Hy* system is a generic
visualization tool that supports a novel visual query
language called GraphLog. In Hy*, visualizations are
based on a graphical formalism that allows compre-
hensible representations of databases, queries, and
query answers to be interactively manipulated. This
paper describes the design, architecture, and features
of Hy* with a number of applications in software
engineering and network management.

Investigating reverse engineering technologies for
the CAS program understanding project by E.
Buss, R. De Mori, W. M. Gentleman, J. Henshaw, H.
Johnson, K. Kontogiannis, E. Merlo, H. A. Miiller, J.
Mpylopoulos, S. Paul, A. Prakash, M. Stanley, S. R.

688 ABSTRACTS 1962-1994

Tilley, J. Troster, and K. Wong, p. 477. Corporations
face mounting maintenance and re-engineering costs
for large legacy systems. Evolving over several years,
these systems embody substantial corporate knowl-
edge, including requirements, design decisions, and
business rules. Such knowledge is difficult to recover
after many years of operation, evolution, and per-
sonnel change. To address the problem of program
understanding, software engineers are spending an
ever-growing amount of effort on reverse engineering
technologies. This paper describes the scope and re-
sults of an ongoing research project on program
understanding undertaken by the IBM Toronto Soft-
ware Solutions Laboratory Centre for Advanced
Studies (CAS). The project involves a team from CAS
and five research groups working cooperatively on
complementary reverse engineering approaches. All
the groups are using the source code of SQL/DS™
(a multimillion-line relational database system) as the
reference legacy system. Also discussed is an ap-
proach adopted to integrate the various tools under
a single reverse engineering environment.

Emerging technologies that support a software
process life cycle by G. T. Heineman, J. E. Botsford,
G. Caldiera, G. E. Kaiser, M. 1. Kellner, and N. H.
Madhavji, p. 501. The goal of developing quality
software can be achieved by focusing on the im-
provement of both product quality and process qual-
ity. While the traditional focus has been on product
quality, there is an increased awareness of the benefits
of improving the quality of the processes used to
develop and support those products. These processes
are key elements in understanding and improving the
practice of software engineering. In this paper, ex-
isting objectives for the development and application
of models of software processes are restated, and
current research sponsored by the IBM Centre for
Advanced Studies (CAS) is discussed as it applies
to furthering each of the objectives. A framework is
also presented that relates the research work to the
various sectors of a software process life cycle. The
on-going research involves four universities, CAS,
and collaboration with IBM Toronto Laboratory de-
velopers.

Volume 33, Number 4, 1994 G321-0118

IBM Systems Journal Cumulative Index 1962-1994,
p. 535. This index includes author, subject, and ab-
stract sections. All authors and complete titles of
all published papers are listed, and each paper is
categorized according to one or more topical areas.
The complete abstracts of all papers are listed by
volume number and issue.

Author guidelines for the IBM Systems Journal
by A. G. Davis, J. R. Friedman, and C. R. Seddon, p.
692. Effective communication of technical work is
the primary goal of the technical journal. This essay
provides information about the IBM Systems Journal
and offers guidelines for prospective authors. The
Systems Journal and its audience are described, and

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994

the processing of papers is discussed, along with
suggestions for content and structure. To further aid
the writer in preparing clear, complete papers of
high quality, we include a bibliography of technical
writing references.

IBM SYSTEMS JOURNAL, VOL 33, NO 4, 1994 ABSTRACTS 1962-1994 689

[[Page 690 is blank]]

n
ot

e Wt
i W"r_"',%“;ﬂ’ ,/;aﬁ/,”/"”

i

L

N
et

