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ABC+ +: Concurrency
by inheritance in C++

Many attempts have been made to add con-
currency to C+ +, often by extensive compiler
extensions, but much of the work has not
exploited the power of C-++. This paper shows
how the object-oriented facilities of C+ + are
powerful enough to encapsulate concurrency
creation and control. We have developed a
concurrent C+ +-based prototype system
(ABC+ +) and describe how we can provide,
with a standard compiler, almost all of the
functionality offered by a new or extended
language. Active objects, object distribution,
selective method acceptance, and synchronous
and asynchronous object interaction are
supported. Concurrency control and
synchronization are encapsulated at the active
object level. The goal of ABC+ + is to allow users
to write concurrent programs without dealing
with explicit synchronization and mutual
exclusion constructs, with as few restrictions on
the use of C++ as possible. ABC+ + can be
implemented on either a shared memory
multiprocessor or a cluster of homogeneous
workstations. It is presently irgplemented ona
network of RISC System/6000™ processors and
?érpt:rrs) IBM Scalable POWERparallel™ System 1

he object-oriented programming (OOP) para-

digm provides the tools and facilities for de-
veloping software that is easier to build, extend,
reuse, modify, and maintain. The key concept in
the OOP paradigm is the building of programs
around objects, as opposed to around actions, as
in the traditional procedural approach.' An object
is a self-contained entity that has exclusive con-
trol over its own internal state, and communicates
with other objects by sending them messages.
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The fact that OOP supports the building of soft-
ware around encapsulated objects suggests that
the OOP paradigm may present an ideal environ-
ment for concurrent programming.

Traditionally, users writing concurrent programs
are concerned with threads of control and prob-
lems of synchronization and mutual exclusion.
Writing, maintaining, debugging, extending, and
reusing concurrent software is extremely diffi-
cult. However, with the advent of inexpensive
multiprocessors and high-performance worksta-
tions, as well as fast and reliable communication
networks, concurrent programming has become
an integral part of language design.

The integration of concurrent programming and
object-oriented programming attempts to bring
the benefits of object-oriented programming to
concurrent programming, to ease the task of writ-
ing concurrent programs. A common way to in-
tegrate these two paradigms is to encapsulate
concurrency creation, synchronization, and mu-
tual exclusion at the object level. Such an object
is called active. The notions of object and process
are unified into a single notion of an active object
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that contains (possesses) its own thread of con-
trol. In contrast, a passive object does not have its
own thread of control and has to rely on active
objects to assume control or on other synchroni-
zation mechanisms (such as locks, monitors, etc.)
to ensure its integrity. The thread of an active
object executes a particular method of the active
object named the “body.” An active object syn-
chronizes with other active objects by using
accept statements or similar constructs that spec-
ify the set of methods that the active object is
prepared to serve at a given time, depending on its
internal state.

This paper describes the design and implementa-
tion of the prototype ABC++ (Active Base
Class). We show that with a standard C+ + com-
piler and no preprocessing, C++ is powerful
enough to allow the integration of the paradigms
of concurrency and 0OP. The goal of ABC++ is
to allow its users to write concurrent programs,
using a standard C++ compiler, without having
to deal with explicit synchronization and mutual
exclusion constructs, and with as few restrictions
on the use of C++ as possible.

Our initial attempt in designing and implementing
ABC++ concentrated on proving that C++ is
powerful enough to allow active object creation,
object distribution, and a variety of active object
interactions. Our first prototype implementation
imposes a few restrictions on the use of the C++
language that will be discussed later.

ABC+ + is presently implemented on a network
of RISC System/6000* processors using Transmis-
sion Control Protocol/Internet Protocol (TCP/IP)
for interprocessor communication, and on IBM’s
distributed memory multiprocessor SP1* using a
high-performance message-passing library (EUIH).
It is written in C++, with the exception of a few
lines of code that are written in assembly language.
All aspects of ABC+ + described in this paper, un-
less stated otherwise, have been implemented and
tested. We plan to migrate ABC+ + to other plat-
forms including a cluster of SUN SPARCStation** 10
computers.

This paper assumes some background in concur-
rent programming, object-oriented programming,
and the C+ + langunage. For more information on
concurrent programming, the reader is directed to
Reference 2. Meyer’s book on object-oriented
software construction® provides a good introduc-
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tion to object-oriented programming, and a book
by Stroustrup provides a good introduction to
C++.?

Issues in object distribution and in creating active
objects are first discussed. The details of how ac-

A standard C++ compiler
and no preprocessing
supports the integration
of concurrency and O0P.

tive objects are created and how objects interact
in ABC++ are then presented. Concluding re-
marks are followed by an appendix that gives an
example written in ABC++.

Concurrent systems

An important aspect of a concurrent system is its
memory model. Most concurrent languages use
either distributed memory or shared memory. In
a distributed memory model, processors have ex-
clusive access to their own local memories and
communicate with other processors through mes-
sages. In a shared memory model, all processors
share a large global memory and communication
is through shared variables—that is, a processor
writes into the shared variable, which can then be
read by other processors. Of course, access to the
shared variable must be synchronized.

Communication in a distributed memory model
can be classified into two paradigms. In the first
paradigm, objects and processes interact by send-
ing and receiving messages. A send or a receive
may be blocking or nonblocking. With blocking,
the caller is blocked as soon as the call is issued,
until a reply is received. The second paradigm of
interaction consists of call and reply. This para-
digm is an extension of the sequential procedure
call, and is commonly referred to as a remote
procedure call (RPC). In an RPC communication,
objects request services of remote objects with
familiar procedure call syntax. RPCs may also be
blocking or nonblocking. In this paper we will not
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discuss the different models of RPCs introduced in
various operating systems (that is, ‘“at most
once,” “at least once,” etc., semantics). As in
most other concurrent object-oriented languages,
what we refer to as RPC has essentially the same
syntax and semantics as the regular method in-
vocation, where method is a term used in object-
oriented languages for member functions.

Concurrent C+ +-based systems

C++? has increasingly become the language of
choice among developers, and numerous at-
tempts have been made to add concurrency to
it.*!? For a more complete review of the literature
and approaches taken in adding concurrency to
C++, see Reference 13. Two approaches can be
used to add concurrency to an object-oriented
language such as C++. In the first approach, the
language is extended in order to add the concur-
rency constructs. New or extended languages can
use the compiler to provide higher-level con-
structs, compile-time type checking, and en-
hanced performance. In the second approach,
such as that used with ABC+ +, the facilities of
0O0P are used to encapsulate the lower-level de-
tails of concurrency. In this second approach, a
library class generally referred to as a Task class
provides the concurrent facilities. A user wishing
to write concurrent code can use Task, normally
by inheriting from it. In this approach the con-
currency constructs are kept outside of the lan-
guage, the language is kept small, the programmer
can work with familiar compilers and tools, the
option of supporting many concurrent models
through a variety of libraries is provided, and the
porting of code to other architectures is eased
(usually, a small amount of assembler code needs
to be changed). Software developers typically
have large investments in existing code and are
reluctant to adopt a new language. A class library
with sufficient flexibility that can provide most of
the functionality of a new or extended language is
often more palatable.

Concurrent C++-based systems often require
extensive compiler extensions. Previous at-
tempts to add concurrency to C+ + without com-
piler extensions have imposed unreasonable lim-
itations on the users.***!> These limitations can
include using explicit message queues in object
interaction, limiting the number of inheritance
levels to one, explicitly managing threads through
the use of start routines and managing synchro-
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nization and mutual exclusion through the use of
explicit mechanisms to wait on an event and to
signal events. In these systems, after an object
has been created, in a separate step the object is

ABC+ + supports implicit

concurrency through active

objects that possess their
own thread of control.

activated by the use of a start routine, provided by
the class library. These systems are primarily
thread packages and have not attempted to ex-
ploit the object-oriented facilities of C+ + for con-
currency creation and control. Buhr and Ditch-
field!® argue that many of these problems are
difficult or impossible to solve without compiler
support. For this reason, Buhr et al.® employ lan-
guage extensions to provide the users with suffi-
cient flexibility without imposing significant lim-
itations. In the remainder of this section we
review some of the C++-based concurrent sys-
tems that, with the exception of ES-Kit, have not
changed either the C++ language or the C++
compiler.

AT&T. The AT&T Task Coroutine Library' is
one of the earliest concurrent C+ + libraries. A
class wishing to use the concurrent facilities of
AT&T’s Task library would be derived from class
Task. Objects of a class derived from Task have
their own thread of control, and run within the
same UNIX** process. AT&T’s Task library im-
poses the following limitations on its users:

¢ Only a single level of derivation is allowed from
Task, hence, no derivation is allowed from a
user’s class.

¢ Objects of a class deriving from Task commu-
nicate through explicit message queues.

¢ Objects synchronize through explicit use of wait
and alert routines.

Doeppner. Doeppner’s® Task library supports

true concurrency by building on top of a thread
package named Threads. However, it still suffers
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from the same limitations as in AT&T’s Task li-
brary.

PRESTO. PRESTO? is a library for programming
with threads. Concurrent programming facilities
are provided by a set of classes called Thread,
Lock, Spinlock, Condition, and Monitors. Ob-
jects of a class wishing to use PRESTO are not
given a thread. Threads are created indepen-
dently by the C++ new operator. The Thread
class provides a start method, which can be in-
voked on a thread object. The arguments to start
include the object whose method is being in-
voked, the method name, and the method argu-
ments. Class Monitor provides the methods entry
and exit, which are explicitly used to ensure ato-
micity when accessing critical sections. Condi-
tion variables are instances of class Condition,
and are manipulated by the methods signal and
wait. Communication among PRESTO objects is
solely through shared variables.

AWESIME. AWESIME ¥ is very similar to PRESTO,
with additional support for process-oriented sim-
ulation. Unlike the AT&T Task library, it allows
arbitrary levels of subclassing from its Task class
(called THREAD). However, thread and message
queue management in AWESIME are still explicit.

Gautron. Gautron!’ extends AT&T’s library by
adding support for LIFO-mode (last in-first out)
task scheduling, priorities, and user-controlled
scheduling. The limitations of the AT&T class li-
brary are not addressed.

Amber. Amber '8 is a C+ +-based system for writ-
ing distributed applications on a homogeneous
network of 64-bit multiprocessors. Amber’s con-
currency model is the same as that for PRESTO,
where thread objects are created independently
and manipulated by a start routine. Amber does
not modify the language or the compiler; how-
ever, it requires preprocessing of the code before
compilation by C++. It assumes that all nodes
share a globally managed virtual address space.
In this paper, the words “processor” and “node”
are used interchangeably to refer to a single pro-
cessing element. A shared virtual address space
will quickly exhaust its virtual address space on
machines with 32-bit addressing; thus Amber as-
sumes the availability of 64-bit addressing ma-
chines. Amber objects are passive, and their
methods can be invoked locally or remotely. The
active objects of the system are thread objects
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that are migrated to a node in the network where
an object whose method has been invoked re-
sides. The preprocessor assists in trapping
method invocation on remote objects. More de-
tail on how Amber supports object distribution is
provided in the section “Issues in object distri-
bution.”

PANDA. PANDAY is a run-time package that sup-
ports distributed applications in C++. PANDA
does not extend the C++ compiler; however, a
preprocessor is used. The preprocessor inserts
source code at specified places in the user code.
As in Amber, PANDA assumes that all nodes share
a globally managed virtual address space, hence
it requires the availability of 64-bit processors. Its
distribution facilities are very similar to those of
Amber.

ES-Kit. ESKit’ is an object-oriented system for
distributed applications. Developed at the Micro-
Electronics and Computer Corporation, this ex-
perimental system is written in GNU C++. ES-Kit
objects are not active, and parallelism is created
by method invocation of many objects. ES-Kit re-
lies on some nonstandard features of GNU C++
for object distribution and remote object creation.
In particular, ES-Kit relies on a nonstandard mem-
ber access operator, —, which takes four argu-
ments (the standard member access operator is a
unary operator). Therefore, in effect ES-Kit has
changed the compiler. It uses global identifiers for
object location, and each object is assigned a han-
dle at the time of its creation that contains the
unique identifier for the object, including its node-
id. The nonstandard features of ES-Kit assist in
trapping method invocations and address trans-
lation at node boundaries.

ABC++. AT&T, Doeppner’s, and AWESIME task
libraries cannot be classified as concurrent ob-
ject-oriented systems, since they have not encap-
sulated concurrency creation and control.
PRESTO is a thread package that can be used in
building concurrent object-oriented systems. In
the section “Issues in creating active objects,”
we analyze why some of these task libraries have
failed to encapsulate concurrency creation and
control at the active object level.

ABC+ + supports implicit concurrency through
active objects that possess their own thread of
control and can run simultaneously with other ac-
tive objects on a shared or distributed memory
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multiprocessor, as well as on a homogeneous
cluster of workstations. Concurrency creation is
implicit, meaning active objects are created like
ordinary C++ objects without the use of explicit
start routines for thread activation. Each active
object has a mailbox and manages its own
message queue without requiring the users of
ABC+ + to manipulate message queues as in Ref-
erences 8, 14, 15, and 17. An active object in

ABC + + programmers
do not use explicit
synchronization and mutual
exclusion constructs.

ABC+ + has exactly one thread of control and is
able to process one message at a time, hence
ABC++ programmers do not use explicit syn-
chronization and mutual exclusion constructs to
achieve atomicity.

Active objects in ABC++ communicate via
method invocation. An invocation of a method of
a remote object is automatically transformed into
a remote procedure call. Selective method accep-
tance and asynchronous communications are also
supported.

The restrictions that ABC+ + presently imposes
on the use of the C++ language are:

* Public member functions of active objects must
be virtual.

e Friend classes and friend functions are re-
stricted to access virtual member functions
only. In C++, an external function or another
class may be defined as a friend of a class, allow-
ing access to nonpublic members of the class.

¢ No public or static class data members are al-
lowed.

* The types of arguments allowed for methods of
active objects as well as return results are re-
stricted to simple types and pointers to active
objects. The number of such arguments is lim-
ited to seven.

¢ The number of public member functions is fixed
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by ABC++ to a relatively large number that
can be modified (this number is 32 in the present
implementation).

The first restriction can easily be eliminated by a
simple preprocessor. The second and third re-
strictions cannot be eliminated unless we change
the model of ABC+ + and provide explicit mech-
anisms for achieving atomicity. We believe the
fourth restriction can easily be eliminated by a
more careful implementation of ABC++ and
with the use of function templates. Work is pres-
ently under way to achieve this goal.

Issues in object distribution

In a distributed memory model, it is important to
provide support for location-independent object
interaction. This is particularly important when
objects are allowed to migrate. There have been
many efforts by researchers over the years to rep-
resent objects so that they may be referred to by
remote processors. One solution to this problem
is to use global identifiers.” Global identifiers are
used in place of object references when objects
are referenced. The disadvantage of this tech-
nique is that it requires extensive compiler sup-
port in translating these identifiers into local ref-
erences each time they cross a node boundary.
ES-Kit uses global identifiers, and a nonstandard
member access operator is used to assist in ad-
dress translation at node boundaries.

Another solution is to represent remote objects
by proxies. Shapiro® introduced proxies as local
representatives of remote objects. A proxy object
contains some information about the object it is
representing, including either the address of the
object or the address of a name server where the
object address may be obtained. Proxies assist
in providing location transparency in a system
where objects are distributed across many nodes.
They allow uniform invocation of methods, irre-
spective of their location, and are commonly used
to facilitate object interactions in a distributed
memory environment. *-2

Amber uses proxies (called object descriptors in
this case) and globally shared virtual address
space to provide location transparency. The vir-
tual address space on each node is identical. Pro-
gram code and static data are replicated on all
nodes at the same virtual addresses. Each node in
the network has a distinct region of the address
space for allocating new objects. No node in the
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network would use the region of another node
when it creates new objects. Although the solu-
tion for Amber avoids address translation at pro-
cessor boundaries, it suffers from the problem
that large amounts of virtual space must be “wast-
ed” on objects that reside on other nodes. This
virtual memory requirement can be a disadvan-
tage in distributed memory parallel computers
containing large numbers of simple processors,
since they may not otherwise require virtual
memory hardware. As was previously men-
tioned, a shared virtual global address space will
soon exhaust its virtual address space on a 32-bit
addressing machine and, for this reason, the Am-
ber model of computation assumes the availabil-
ity of 64-bit architectures.

Our ABC+ + solution is similar to that of Amber,
but it does not require virtual addressing or any
special hardware.

Issues in creating active objects

In C++, objects “know” how to initialize them-
selves (through constructors) and how to clean up
after themselves (through destructors) when they
are no longer needed. Ideally, an active object
should behave in a similar fashion. It should en-
capsulate thread and message queue management
as well as object construction and destruction.
However, as outlined in Reference 16, if the C+ +
compiler is not extended to empower active ob-
jects, many challenging problems are created.

Existing task libraries are largely based on the
AT&T class library. These systems either fail to
create active objects implicitly, or impose unrea-
sonable restrictions on users (e.g., prohibiting in-
heritance). An abstract base class called Task is
used as a parent class for any derived class where
concurrency is desired. The creation of an active
object in these systems causes a thread to be spun
off that will execute the “body” of the active ob-
ject. Two approaches are used in the selection of
a body for the active object. The first approach
uses the constructor of the derived class as the
body. The second approach defines a “Main”
routine as the body of the active object.

If the constructor of the derived class is used as
the body, it must be written as an infinite loop;
therefore it will not terminate. A nonterminating
constructor prohibits inheritance from this class,
as is the case in References 8 and 14. This is due
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to the fact that in C++, the ancestor classes
perform their construction before descendant
classes. Therefore if a constructor is nontermi-
nating, no derived constructor would be able to
complete its tasks, hence prohibiting inheritance.

We now consider the case where a Main is defined
as the body of the active object. If such systems
allow arbitrary level of inheritance, object con-
struction is faced with significant problems. As
was previously mentioned, the constructors of
ancestor classes perform their duties before con-
structors of successor classes. Hence, the Task
constructor performs its duties before any other
constructor. If the Task constructor is responsi-
ble for spinning off a new thread, it must then
direct one thread to the object that called new, and
give the second thread to the new active object,
which will execute Main. If the number of levels
of inheritance is unknown, and if it is further un-
known which levels define constructors and
which do not, the Task constructor cannot know
where to return the thread in the calling object.
Furthermore, when the Task constructor is
called, the new active object is not fully con-
structed, hence should not receive a thread. If the
active object receives a thread at this point, we
are faced with the problem of premature method
invocation. C+ + itself does not control when the
creating object can invoke methods of the newly
created object; thus such systems require the use
of a start routine for explicit thread management,
as in Reference 15.

An active object must not be destroyed until its
thread of control has terminated. Once again,
C+ + itself cannot ensure thread termination be-
fore object destruction. If compiler extensions
are not made, one way to solve this problem is
through explicit use of a wait routine, as in Ref-
erences 8 and 14. Explicit use of start and wait
routines is error-prone and complicates the al-
ready complex task of concurrent programming.
One of the objectives of concurrent object-ori-
ented languages is to reduce the use of explicit
synchronization and mutual exclusion mecha-
nisms, thereby reducing the complexity of writing
concurrent programs. Similarly, active objects
should encapsulate message queue management.
Existing Task-based systems typically require ex-
plicit message queue management, as in Refer-
ences 8, 14, and 15.
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So far our discussions have focused on creating
active objects in a shared memory environment.
A distributed memory model poses many differ-
ent problems, as previously mentioned. The ex-
isting Task libraries only support a shared

Location transparency
eases the task of writing
concurrent programs in a

distributed memory model.

memory model. ABC++ supports implicit con-
currency through active objects in a shared or a
distributed memory model. In the next section,
we explain how active objects are created in
ABC++.

ABC++

In this section we outline how ABC+ + supports
active object creation, object distribution, selec-
tive method acceptance, and object interaction.

Object distribution. Since ABC++ supports ob-
ject distribution, it is vital to provide location
transparency for active objects. Location trans-
parency eases the task of writing concurrent pro-
grams in a distributed memory model by freeing
the programmer from having to deal with object
location. We adopt the proxy approach to provide
location transparency; however, we refer to prox-
ies as object descriptors.

A designated area of memory, referred to as the
descriptor region, is allocated on all the nodes at
the same address. This region is essentially a ta-
ble of object descriptors. An object descriptor
will contain some information about the object it
is representing. Each active object has an object
descriptor representing it on each of the partici-
pating nodes at exactly the same location. The
object descriptor on the node where the active
object resides is called a local object descriptor
(LoD). All other object descriptors are called re-
mote object descriptors (RODs). The entries con-
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taining LODs also contain the memory address of
the active object.

Since object descriptors are small in size (only a
few words), we can define a relatively large de-
scriptor region at startup time. ABC+ + performs
“garbage collection” (the reuse of unused or dis-
carded items) on descriptors; therefore it is un-
likely that processors would run out of descrip-
tors. However, it is possible to repeat the process
of creating object descriptor regions, if neces-
sary. The communication layer of ABC++ es-
tablishes communication across node bound-
aries. This layer, among other things, provides a
daemon thread on each of the participating nodes
at startup time. A daemon thread is a system
thread that is unknown to the user. The daemon
threads handle various housekeeping tasks in-
cluding polling for communication. When a pro-
cessor runs out of space in its designated area for
storing new object descriptors, a descriptor re-
gion creation can be initiated by sending the dae-
mon thread a message (this feature is not imple-
mented in our present ABC++ prototype
implementation).

To ensure that processors can create objects
freely without having to synchronize with other
nodes, each processor in the pool is assigned a
specific area of the descriptor region in which its
new object descriptors are to be stored. No pro-
cessor in the pool would use the designated region
of another processor for storing new object de-
scriptors. Figure 1 shows the descriptor regions in
a three-processor cluster and their designated ar-
eas for storing new object descriptors. The object
descriptor index determines the identity of the
node that created the corresponding active ob-
ject. If objects never move after their creation,
the descriptor regions on all processors will al-
ways contain RODs everywhere except in their
designated areas, which will contain LODs only.

In ABC+ +, when an active object is created, an
LOD object is created (represented as an object)
on the originating node and stored in the first
available entry of the processor’s designated area
in the descriptor region. The address of the cor-
responding active object is also stored in that
same entry. For example, in Figure 1, when a new
active object is created on processor 1, an LOD is
created and stored in the first available entry of
the area marked as A1. ROD objects are created at
startup time by ABC+ +.
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1

IV/ A1, A2, A3 IS THE DESIGNATED AREA IN THE DESCRIPTOR REGION FOR PROCESSORS
1, 2, AND 3 TO ALLOCATE DESCRIPTORS FOR NEW ACTIVE OBJECTS.

In C++, when an object is created, its address is tor region entry where the LOD is stored, is re-
returned to the program that initiated the object turned to the caller. Therefore, ABC++ pro-
creation. In ABC+ +, the address of the descrip- grams deal with descriptor region addresses, not
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active object addresses. We refer to the processor
that created an object as the object’s home node.
While an object is being constructed on a partic-
ular node, no action takes place on any of the
other nodes with respect to the newly created ob-
ject. However, if a reference to this new object
descriptor is passed to other nodes, the corre-
sponding object descriptor already exists and can
determine the home node of the corresponding
object from the object descriptor index.

Hence, in ABC+ + a reference to a descriptor for
a local object can be quickly translated into the
object’s address, and that same reference can be
sent to another processor and will automatically
refer to the correct ROD on that node. Thus, de-
scriptor region addresses can be freely passed as
arguments to remote procedure calls, as return
results from remote calls, or within messages of
any kind. A descriptor region address always re-
fers to a correct and current LOD or ROD, as ap-
propriate.

ABC++ gains much of its power by exploiting
the virtual function mechanism in C+ +. For this
reason, it requires that all the methods on the
interface of active objects (that is, public member
functions) be declared as virtual. In C++, the
visible members of a class are specified as public.
Members declared as private are not externally
visible. In C++, an object with virtual methods
will contain the address of a table, commonly re-
ferred to as the vtable, which contains pointers to
virtual methods. When a virtual method of an ob-
ject is invoked, only its vtable index is resolved at
compile time. At run time this index is used to
access a vtable that would contain a pointer to the
appropriate method.

As was mentioned earlier, ABC++ returns the
descriptor region address where the LOD of a new
active object resides. Hence, when a method of
an active object is invoked, this invocation is in-
tercepted by the LOD object and before the real
method is invoked, ABC++ performs some
tasks. This is achieved due to the fact that object
descriptors are real C++ objects and contain a
vtable pointer. ABC++ provides two classes,
LOD_proto and ROD_proto, instances of which are
LODs and RODs, respectively. These classes define
a set of private virtual member functions. We re-
fer to these virtual functions as protocol func-
tions. Hence LOD and ROD objects will contain a
vtable pointer. There is a one-to-one correspon-
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dence between the protocol functions and the vir-
tual methods in the user’s class hierarchy. There-
fore, the maximum number of member functions
in user classes is limited by the number of pro-
tocol functions (this number is 32 in the present
implementation).

The interception of method invocation in active
objects would work if the vtable pointer in the
object descriptors and in the active objects is at
the same location. Since object descriptors are
small, the vtable pointer must also reside near the
beginning of the object. Some compilers place the
vtable pointer in the first word of the object,
whereas others place the vtable pointer after
the first nonvirtual base class having a virtual
method. In C+ + virtual base classes are used to
avoid multiple copies of shared classes along mul-
tiple inheritance paths. To ensure that the vtable
pointer for object descriptors and active objects is
at the same location, LOD_proto, ROD_proto, and
the base class for active objects have no data
members. In the case of active objects, since user
classes inherit from ABC++, it is sufficient to
make the first base class of ABC++ an abstract
base class with a single pure virtual member func-
tion main (LOD_proto and ROD_proto also define
main in order to maintain the one-to-one corre-
spondence between the methods of active objects
and the protocol functions). In C++, abstract
base classes are never instantiated. Their role is
to provide a common interface that will be im-
plemented by the derived classes. A pure virtual
member function is designated by following its
argument list with the keyword ““="" and “0.” The
definition of such a function is provided by de-
rived classes. An abstract base class must contain
at least one pure virtual function. When a method
of a local active object is invoked, the following
steps take place:

* The corresponding protocol function of the LOD
is invoked.

¢ The protocol function checks to see if the active
object is presently serving messages of the type
requested and if the object is free to serve this
request. As was mentioned earlier, ABC++
supports selective method acceptance. Namely,
active objects can change their interface depend-
ing on their state. A following section provides
more detail on how selective method accep-
tance is implemented. If the object is serving
such requests and is free, the appropriate
method of the object whose local address is
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stored in the same entry of the descriptor region
as the LOD object is invoked.

* If the invoked method is not being served at this
point, or if the object is busy serving other re-
quests, the protocol function queues up this re-
quest for later processing. The protocol func-
tion blocks other functions until a reply is
received.

When a method of a remote active object is in-
voked, once again this call is intercepted by the
ROD object and the corresponding protocol func-
tion of the ROD object is invoked. The protocol
functions of ROD objects forward the call to the
node where the object resides.

In the present version of ABC++, we have not
implemented object migration. However, the
technique used by ABC+ + for providing location
transparency allows object migration. Recall that
each processor has its own designated area for
storing new object descriptors. Therefore if an
object moves to a new node, the following steps
would have to take place:

* AnROD object is instantiated and stored in place
of the LOD object.

* A message is sent to its home node informing it
of the new location.

* An LOD object is instantiated in the destination
node and stored in place of the ROD. The local
address of the active object is also stored in the
same entry.

In this scheme, the home node of active objects
contains information about their whereabouts as
they move around. Therefore, to locate a remote
object, its home node must be consulted. Once
again, the daemon thread would assist in achiev-
ing object migration. In this technique, all remote
accesses have an extra level of indirection. If the
extra level of indirection is too expensive, other
techniques such as broadcasting can be used to
keep the LODs and the RODs up-to-date.

Creating active objects. ABC+ + is able to create
implicit concurrency (and provide many other
features) by exploiting the virtual function mech-
anism of C+ +. This allows ABC+ + to intercept
the method invocation mechanism of C+ +. Inthe
previous section, we explained that when active
objects are created, the address of the object de-
scriptor is returned to the caller; therefore all
method invocations on active objects are inter-
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cepted, and before the “real method™ is invoked,
a corresponding protocol function of the object
descriptor is invoked. In this section we address
how active objects are created when they are al-
located dynamically by operator new. ABC+ + is
able to create automatic (that is, stack-based) ob-
jects, the details of which are not addressed in this

paper.

To use ABC+ +, user classes must inherit from
Task. All classes that inherit from Task should
declare the methods that would be invokable by
other active objects as virtual. ABC+ + provides a
virtual main that becomes the body of the active
objects. This default main will accept all messages
in FIFO (first in-first out) order. Users of ABC++
may define their own main.

Functions that support active object creation.
C++ allows programmers to redefine almost all
C+ + operators. This redefinition is called over-
loading. The creation of active objects in
ABC+ + is handled by two overloaded new op-
erators, the Task constructor, and a static mem-
ber function of Task, called auto-start. We next
outline the duties of these functions.

Operator new is a request for creating an active
object that might be local or remote. An optional
argument to new provides the remote node iden-
tifier. The overloaded version of new for local ob-
ject creation allocates storage, instantiates class
LOD_proto, and initiates the chain of constructor
calls before returning. If the request is for remote
object creation, the overloaded version of new for
remote object creation sends a message to the
daemon thread on the requested node, which
would arrange for a local object creation on the
remote site. Object construction on the site that
requested the remote object creation is aborted.

We previously outlined some of the problems in
creating active objects and, in particular, we ad-
dressed the problem of returning the original
thread (the thread that called new) to a proper
statement in the calling object, and giving the new
object a thread only after it is fully constructed.
We refer to the address of the proper statement in
the calling object as the return address. The nec-
essary steps for recording where this information
may be found are taken by new. It terminates by
returning the address of the descriptor region en-
try containing the corresponding LOD object.

ARJOMANDI ET AL. 129




In the case of local object creation, after new re-
turns, the chain of constructor calls begins until
the Task constructor is called.

The Task constructor performs the following du-
ties: '

s It saves the return address to be used by the
auto-start function. The overloaded new has re-
corded where this information may be found.
This address is obtained by a small amount of
assembly code. This is the only place in
ABC+ + that some assembly code is used.

» It replaces the return address with the address
of auto-start.

» It saves the address of the newly created object
in the same entry of the descriptor region where
the corresponding LOD object is stored.

After the Task constructor terminates, the object
construction begins, and eventually control is
given to auto-start.

Since a pointer to auto-start is left by the Task
constructor where the return address is normally
found, after the most derived constructor (that is,
the first constructor called after new returns) per-
forms its duties, control is given to auto-start.
Auto-start performs the following duties:

» It spins off a thread for the newly created object
and makes that object’s virtual method main its
body.

& It returns the original thread to the object that
called new.

Main defines the activity of the object. It also pro-
cesses the incoming messages by issuing accept
statements. Provided that users use virtual func-
tions, ABC+ + treats object descriptors as if they
are regular C+ + objects, with the virtual function
mechanism translating the calls to local or remote
invocations as appropriate. Within this paradigm,
users would never need to know when an object
is remote and when it is not.

Selective method acceptance. Active object sys-
tems must be able to selectively accept messages
to answer, and to delay some for later accep-
tance. If a C++ concurrent system is to have this
capability, then active objects should be able to
control which of their methods are “invokable.”
C++ provides no native mechanism for this, and
there has previously been no class-library-based
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approach to solving this problem. Some class li-

. braries® require users to use explicit message

queues, thus erasing the natural object-oriented
analogy of methods to messages.

In ABC+ + each active object has a mailbox and
manages its own message queue. As was men-
tioned earlier, there is a daemon thread on each
of the participating nodes. The daemon thread
delivers the newly arrived messages to the ap-
propriate mailboxes.

To solve the selective method acceptance, the
Task class provides an accept method and the nec-
essary data structures for implementing the re-
quired message acceptance protocol. The argu-
ments to the accept method (beside the this
pointer) are an integer and the appropriate virtual
method function pointers. The integer argument
represents the total number of virtual function
pointers appearing in the accept statement. The
virtual function pointers define the set of accept-
able messages. The accept method flips the ap-
propriate bits in a method-mask according to the
value of its parameters. Method-mask is an in-
stance variable of class Task, and the indicator bit
is a “1” if the corresponding method is currently
being accepted by the object; otherwise it is a
“0.” A method is “open” if it is currently accept-
able, otherwise it is “closed.” ABC+ + users can
change the interface of an active object by issuing
accept statements from within the body of the ac-
tive object. For example, the statement accept(1,
push) causes push messages to be accepted by a
stack object. The pop messages are delayed.
ABC++ intercepts method invocations and an
appropriate protocol function is called before the
“real method” is invoked. The protocol functions
invoke the “real method,” if the method is cur-
rently acceptable by the active object; otherwise,
the message remains queued for later processing.

Premature method invocation and object de-
struction. An active object in ABC++ is not
given a thread of control until it is fully con-
structed. Therefore, premature method invoca-
tion is no longer an issue.

In ABC++, active objects are destroyed in the
same way C++ objects are destroyed (for exam-
ple, by delete, in the case of dynamic objects). To
solve the problem of premature object destruc-
tion, once again we use the protocol function
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mechanism. Task provides a virtual destructor.
Therefore, the destructors of all user classes in-
heriting from Task will also be virtual. Since
ABC+ + intercepts invocations made to all vir-
tual methods, the destructor calls are also inter-

ABC+ + provides
blocking, nonblocking,
and future remote
procedure calls.

cepted. The destructor of an active object is not
called until its thread of control has terminated.
The protocol function associated with the virtual
destructor will do the waiting.

Automatic mutual exclusion. To ensure the in-
tegrity of an object, multiple methods of an active
object should not be simultaneously invoked.
Wegner? describes an object with a single thread
of control as sequential. Wegner goes on to define
quasi-concurrent objects as having multiple
threads with only one object active, and concur-
rent objects having multiple active threads.
ABC+ + objects are sequential because there is a
single thread attached to main, which processes
the incoming messages (that is, the method invo-
cations). Only one invocation can be processed
at a time, thus guaranteeing mutual exclusion.
Users are freed from the burden of managing crit-
ical sections themselves through the use of ex-
plicit synchronization mechanisms.

Object interaction. An important aspect of a con-
current object-oriented language is the way its
objects interact. A natural and easy paradigm of
communication is the remote procedure call (RPC)
facility.? RPC is a mechanism for communication
across a network. It is an extension of sequential
procedure calls with similar syntax and seman-
tics. A (blocking) RPC blocks the caller until a
reply is received. Due to the synchronous nature
of RPC, a system providing only a (blocking) REC
cannot fully exploit the inherent parallelism in
many applications. A nonblocking (also called
asynchronous) RPC sends the message (that is, the
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method being invoked and its arguments) and re-
turns to the caller object immediately. To maxi-
mize parallelism even further, a mechanism is
needed that would allow a caller to receive a re-
sult from a nonblocking RPC at some future point
when the result is needed. Such a mechanism is
called a future. Futures are commonly used in
concurrent object-oriented languages. %!

ABC+ + provides blocking, nonblocking, and fu-
ture RPCs. In the present prototype implementa-
tion of ABC++, we deal with general-purpose
registers in the marshaling of messages, where
marshaling refers to the act of packaging the pa-
rameters into a message that is then sent to the
destination processor. In this case, the number of
arguments in methods of active objects is limited
to seven (that is, the number of general-purpose
registers minus one; one register is used for the
this pointer), and their types are limited to simple
types and pointers to active objects. We believe
this restriction can be eliminated with a more
careful implementation of ABC++ and with the
use of function templates. Work is presently un-
der way to achieve this goal. The following sec-
tions discuss these three kinds of object interac-
tion in ABC++.

RPC interaction. Previously we showed how,
with the help of object descriptors, we intercept
method invocation and provide location transpar-
ency. When a method of an active object is in-
voked, this call is intercepted and instead a
method of the object descriptor (a protocol func-
tion in ABC+ +) representing the called object is
invoked. In the case of local objects, the protocol
function will invoke the “real method” if the ob-
ject is free and if the called method is currently
open. Otherwise, the protocol function will queue
up the message for later processing. In the case of
remote objects, the call is marshaled to the node
where the object resides.

Asynchronous RPC. Many of the concurrent
C+ +-based languages provide asynchronous or
future communication (for example, COOLS®).
However, COOL extends the C++ compiler sig-
nificantly. Similarly, the ES-Kit system’ intro-
duced futures as the primary method of generat-
ing and controlling concurrency. However, ES-Kit
managed to provide these facilities by extending
the compiler with a nonstandard operator (—).
ES-Kit also suffers from the fact that every invo-
cation of every method in an ES-Kit class is gen-
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Figure 2 The template for asynchronous method
invocation

template(class T) class AsynCall {
private:
T+ actual_pointer;
virtual FutureResult+ afo(. . .);
virtual FutureResultx af1{(...);

virtual FutureResult afn(. . .);

public:
AsynCalléT* p); // class constructor
AsynCall( ); I/ class constructor

T« operator — ();
AsynCall(T)& operator=(T* p);
AsynCall(T)& operator=(const AsynCal(T)& arg);

Figure 3 An example of an asynchronous Invocation

class C: public Task{
public:
virtual void f( );

main( ¥
Cc; /I an instance of C
AsynCalKC) p = &c; // a smart pointer
p — f(); // asynchronous invocation of f

h

erated asynchronously. Saleh and Gautron'! in-
troduced futures into their extended C+ + which
they call CC++. CC+ + requires a preprocessor
that renames all user methods so that method in-
vocation can be intercepted. In CC+ +, all meth-
ods that may be invoked with futures must be
rewritten (usually in a derived class). This makes
the use of futures very inconvenient and awk-
ward.

We employ an approach similar to that in Refer-
ence 11 to provide asynchronous method invo-
cation. The template mechanism of C++ is used
to define a class of smart pointers, a class of point-
ers that can be used as regular pointers with the
member access operator — to invoke methods of
active objects, but with semantics implementing
asynchronous method invocation. Figure 2 shows
part of the private and public declarations of the
AsynCall template.
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The AsynCall template provides an overloaded
“=" and the appropriate constructors. The non-
default constructor (that is, the constructor that
takes one or more arguments) and the “=" op-
erator save the address of the object that is the
target of the asynchronous invocation (this
address is called actual_pointer in Figure 2).
Actual_pointer is an LOD in the case of local objects
and an ROD in the case of remote objects. The —
operator is also overloaded. It returns a pointer to
the AsynCall object itself. This would cause a cor-
responding virtual method of the AsynCall object
(designated as af0, af1, ..., afn in Figure 2) to
be invoked, and not the intended method. The
AsynCall virtual method takes care of handling the
call on the target object, and returns the address
of a placeholder to the caller. The returned value
may be discarded by the caller, or made use of in
the case of future communication, as next de-
scribed. In either case, the caller and the called
objects proceed concurrently. Figure 3 demon-
strates an asynchronous invocation. In this fig-
ure, class C inherits from Task, hence its objects
are active. In main( ), we declare c as an object of
class C and would like to invoke f( ), a method of
C, asynchronously. To do this, we instantiate the
AsynCall template with class C as its argument. We
then declare p as an object of class AsynCall ( C )
and assign it the address of c¢. Operator “=,” as
noted above, is overloaded in the AsynCall tem-
plate, and it saves the address of c. We then in-
voke f( ) by using the smart pointer p and the mem-
ber access operator, which is overloaded in
AsynCall. The call is immediately returned to the
caller, and main() continues without blocking.

Future RPC. As shown in Figure 2, the methods
of the AsynCall template return a value to the call-
ing program. This return value is designated as
FutureResult+ in Figure 2. FutureResult is a C++
structure that acts as a placeholder for the actual
return value. This return value is discarded in the
case of asynchronous method invocations. How-
ever, if the calling object expects a return value
from an asynchronous invocation, it can simply
store the returned value into a future object.

Future objects are instances of the class Future.
Once again, we use the template mechanism of
C++ to define a class of future objects. This tem-
plate has parameters based on the type of the
expected return value. Figure 4 shows part of the
private and public declarations of the Future tem-
plate. An instance variable of the Future class is
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placeHolder of type FutureResults. This variable is
properly initialized by the constructors.

As in the case of AsynCall template, the “=" op-
erator in the Future template is overloaded. This
overloaded operator is invoked when the calling
object assigns the result of an asynchronous in-
vocation into a future object. The “=" operator
returns the future object itself, at which point the
calling object proceeds with its activity without
having to wait for the actual result. However, that
result will usually be needed at some point in the
future. The conversion operator is overloaded in
the Future template, as shown in Figure 4. This
operator is invoked whenever a future object is
used in place of the actual return result (for ex-
ample, the statement y=x in Figure 5). The con-
version operator performs more than a simple
conversion; it checks to see if the future has been
resolved (that is, the asynchronous invocation has
returned the expected result). If the future object is
unresolved, the conversion operator waits for the
completion of the asynchronous invocation.

Once the future object is resolved, the conversion
operator returns the expected value, and the call-
ing object proceeds with its activity. The use of
future objects is demonstrated in Figure 5. In this
figure, class C inherits from Task, hence its ob-
jects are active. Method () of C returns an integer
value. We like to invoke f() asynchronously and
collect the return value at a later point when the
value is needed. In main() we declare a smart
pointer as in Figure 3. We then declare a future
object x by instantiating class Future (int ). Method
f() of c is invoked using p and assigning the return
result to x. Operator “="" is overloaded in the
Future class, and it returns x. At this point, main()
continues until the result from f() is needed.
When the result is needed, the future object x is
assigned to y, which is of the same type as the
return result of f(). The conversion operator as-
signs the returned result to y if the future has been
resolved; otherwise, it waits until the future is
resolved.

The support for asynchronous and future com-
munication in ABC+ + does not require any com-
piler extensions (as in ES-Kit or COOL) or any pre-
processing of the code (as in CC++). Users of
ABC++ can choose between synchronous and
future method invocations. The future invocation
is handled in a simple and natural fashion and
without requiring any unreasonable programming
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Figure 4 The future template

template(class T) class Future {

FutureResult* placeHolder;
int resclved;

public:

Future(const T& val)}{
placeHolder=(FutureResult+)val;

Future( }{ placeHolder = (FutureResuit+)0; };
Future(T)& operator=(const T& val}{

placeHolder = (FutureResult+)val;

return «this;

dperator T();

Figure 5 An example demonstrating the use of futures

class C :public Task{
public:

int n;
virtual int f();

int C::f(){...; return(n);};
/I f computes for a while, then returns n

main( }{
int Yi

Cg;
AsynCall(C) p = &¢;
Future(int) x;

x = p— f(); // an asynchronous call
which returns some result
- |/ do some computation

y = X; // wait for and then retrieve
the value returned fromp — f{)

conventions (such as rewriting the methods that
may be invoked with futures as in CC++).
Concluding remarks and future research

In the design and implementation of ABC++, we
showed that C++ is powerful enough to support
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almost all of the functionality of an extended con-
current language without imposing severe limita-
tions on the use of the language.

One of the prime advantages of ABC+ + is the
fact that C++ programmers can use a familiar
C+ + compiler to create active objects and inter-
act with active objects. Users of ABC+ + are re-
quired to declare as virtual all methods of an ac-
tive object that are invokable by other active
objects. We do not believe that this is a major
commitment on their part. Although ES-Kit
changes the compiler, it still imposes this same
programming convention. This requirement can
easily be eliminated by a simple preprocessing of
the code. However, in this paper our intent was
to show how far we can go without changing the
language or the compiler, and without employing
a preprocessor.

Other limitations in ABC++ are:

s Friend classes and friend functions are re-
stricted to access virtual member functions
only.

+ No public or static class data members are al-
lowed.

» The types of arguments allowed for methods of
active objects as well as return results are re-
stricted to simple types and pointers to active
objects. The number of such arguments is lim-
ited to seven.

s The number of public member functions is fixed
by ABC++ to a relatively large number that
can be modified (this number is 32 in the present
implementation).

In our current research we are examining the use
of function templates to eliminate many of these
restrictions. We are also investigating techniques
for improving type checking, robustness, and
portability of ABC+ +. Finally, we are examining
a shared memory paradigm for inclusion in
ABC++. The features of ABC+ + follow.

s Support for implicit concurrency through active
objects—An active object has its own thread of
control and can run simultaneously with other
active objects on a shared or distributed mem-
ory multiprocessor as well as on a homoge-
neous cluster of workstations.

s RPC communication—Active objects can com-
municate through method invocation. An invo-
cation of a method of a remote object is trans-
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formed to RPC. Location transparency is
provided through the use of object descriptors.
s Selective method acceptance
» Asynchronous communication
» Future communication

All the features of ABC++ discussed in this
paper, unless stated otherwise, have been im-
plemented and tested on a cluster of RISC Sys-
tem/6000 processors using TCP/IP as the commu-
nication mechanism and on IBM’s Scalable
POWERparallel System 1 (sp1) using a high-per-
formance message-passing library (EUIH). To our
knowledge, ABC+ + is the only class library that
provides support for all of implicit concurrency,
object distribution, selective method acceptance,
asynchronous, and future communications.
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Appendix A: A producer and consumer
example

The following example illustrates how ABC+ + is
used. The three classes of Buffer, Producer, and
Consumer inherit from Task, hence are concur-
rent classes. The invokable methods of these con-
current classes are declared as virtual. Instances
of these classes are active objects with their own
activity. Each class defines a main that becomes
the “body” of its active objects. As this example
demonstrates, ABC++ syntax is the familiar
C++ syntax with no explicit synchronization,
mutual exclusion, or message queue management
constructs used. The use of the accept statement
is demonstrated in the main provided for the
Buffer class. For example, when the buffer is
empty, an Accept(1, put) is issued. Consequently,
all get messages are delayed until a put message is
received. After the execution of the first put mes-
sage, Accept returns and main continues with the
statement immediately following Accept(1, put).

#include ''task.h"
#include ''future.h"

class Buffer : public Task {
protected:

intx array;

int capacity;
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int no_in_buffer;
/I number of elements currently in buffer
void+ main( );
public:
Buffer(int capacity);
virtual void put (int item);
virtual int get ();
b

class Producer : public Task {
protected:
int amount
/I number of items to be produced
Buffer «B;
void* main( );
public:
Producer(Buffer* buffer, int no_of_items);

I

class Consumer : public Task {
protected:
Buffer *B;
int amount;
/| number of items to be consumed
void* main( );
public:
Consumer(Buffer= buffer, int no_of_items);

h

Buffer::Buffer (int size) {
capacity = size;
array = new int [capacity];
no_in_buffer = 0;

void= Buffer::main() {

while (1) {
if (no_in_buffer == 0) Accept(1, put);
if (no_in_buffer < capacity) Accept(2, put, get);
if (no_in_buffer == capacity) Accept(1, get);
}
}

void Buffer::put (int item) {
array[no_in_buffer++] = item;

}

int Buffer::get () {
return array[— —no_in_buffer];

}

Producer::Producer(Buffer =buffer, int no_of_items) {
B = buffer;
amount = no_of_items;

}
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void* Producer::main () {
int item = 0;
AsynCall(Buffer) ac(B);
while (item < amount) {
ac — put(item-++);
/I a demonstration of an asynchronous invocation
}
1

Consumer::Consumer (Buffer buffer, int no_of_items){
B = buffer;
amount = no_of_ items;

}

void* Consumer::main () {
for (inti = 0; i < amount; i++) {
int item = B—get();
/| a demonstration of synchronous invocation
}
}

[+ in the user's main */

Buffer +B;

B = new Buffer(10);

/I a Buffer active object of size 10
Producer =P;

Consumer *C;

C = new Consumer (B,10);

/I a Consumer active object

P = new Producer (B,10);

/I a Producer active object

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of X/Open Co. Ltd. or
SUN Microsystems.
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