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Many aftempts have  been  made to add con- 
currency to C+ +, often by extensive  compiler 
extensions, but much  of  the  work has not 
exploited  the power  of  C+ +. This pa  er shows 
how  the  object-oriented facilities of [+ + are 
powerful  enough to encapsulate  concurrency 
creation  and control. We have  developed  a 
concurrent C+ +-based prototype system 
(ABC+ +) and  describe how  we can  provide, 
with a  standard  compiler,  almost all of  the 
functionality offered  by a new or extended 
language. Active objects,  object distribution, 
selective  method acceptance,  and synchronous 
and  asynchronous  object  interaction are 
supported.  Concurrency control and 
synchronization  are  encapsulated at the  active 
object level.  The  goal of ABCi + is to allow  users 
to write concurrent  programs without dealing 
with explicit synchronization  and  mutual 
exclusion constructs, with as  few restrictions on 
the  use  of C+ + as possible. ABCi + can  be 
implemented on either  a  shared  memory 
multiprocessor or a cluster of  homogeneous 
workstations. It  is presently  imglemented on a 
network  of RlSC  System/SOOO processors  and 
on the ISM Scalable  POWERparalleF"  System 1 
(SPP). 

T he  object-oriented programming (OOP) para- 
digm provides  the  tools  and facilities for de- 

veloping software  that  is  easier to build, extend, 
reuse, modify, and maintain. The  key  concept in 
the OOP paradigm is the building of programs 
around objects, as opposed to around  actions, as 
in the traditional procedural  approach.' An object 
is a  self-contained  entity  that  has  exclusive  con- 
trol  over  its  own  internal  state, and communicates 
with other  objects  by sending them messages. 

The  fact  that OOP supports  the building of soft- 
ware  around  encapsulated  objects  suggests  that 
the OOP paradigm may  present  an ideal environ- 
ment for  concurrent programming. 

Traditionally, users writing concurrent  programs 
are  concerned with threads of control  and  prob- 
lems of synchronization and mutual exclusion. 
Writing, maintaining, debugging, extending, and 
reusing concurrent  software  is  extremely diffi- 
cult.  However, with the  advent of inexpensive 
multiprocessors  and high-performance worksta- 
tions, as well as fast  and reliable communication 
networks,  concurrent programming has  become 
an integral part of language design. 

The integration of concurrent programming and 
object-oriented programming attempts  to bring 
the benefits of object-oriented programming to 
concurrent programming, to  ease  the  task of writ- 
ing concurrent programs. A common way  to in- 
tegrate  these two paradigms is to encapsulate 
concurrency  creation,  synchronization,  and mu- 
tual  exclusion at the  object level. Such an object 
is called active. The  notions of object and process 
are unified into  a single notion of an active  object 
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that  contains  (possesses)  its  own  thread of con- 
trol. In  contrast, a passive object does not have  its 
own  thread of control and has to rely on active 
objects  to  assume  control  or on other synchroni- 
zation mechanisms (such as locks, monitors, etc.) 
to ensure  its integrity. The thread of an  active 
object executes a particular method of the  active 
object named the  “body.” An active object syn- 
chronizes with other  active  objects  by using 
accept statements or similar constructs  that  spec- 
ify the set of methods  that  the  active object is 
prepared to  serve at a given time, depending on  its 
internal state. 

This paper describes  the design and implementa- 
tion of the  prototype ABC++ (Active Base 
Class). We show that  with a standard C+ + com- 
piler and no preprocessing, C + +  is powerful 
enough to allow the integration of the paradigms 
of concurrency and OOP. The goal of ABC+ + is 
to allow its  users  to  write  concurrent programs, 
using a standard C++ compiler, without having 
to deal with explicit synchronization and mutual 
exclusion constructs, and with as few restrictions 
on the use of C+ + as possible. 

Our initial attempt in designing and implementing 
ABC++ concentrated  on proving that C++ is 
powerful enough to allow active object creation, 
object distribution, and a variety of active object 
interactions. Our first prototype implementation 
imposes a few restrictions  on  the  use of the C+ + 
language that will be discussed later. 

ABC+ + is presently implemented on a network 
of RISC System/6000* processors using Transmis- 
sion Control Protocol/Internet Protocol (TCPIIP) 
for interprocessor communication, and on IBM’s 
distributed memory multiprocessor sP1* using a 
high-performance  message-passing library (EUIH). 
It is written in C++, with the exception of a few 
lines of code that are written in assembly language. 
All aspects of ABC+ + described in this paper, un- 
less stated otherwise, have been implemented and 
tested. We  plan to migrate ABC+ + to other plat- 
forms including a cluster of SUN SPARCStation** 10 
computers. 

This paper assumes  some background in concur- 
rent programming, object-oriented programming, 
and the C+ + language. For more information on 
concurrent programming, the  reader is directed to 
Reference 2. Meyer’s book  on object-oriented 
software  construction’ provides a good introduc- 
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tion to object-oriented programming, and a book 
by  Stroustrup provides a good introduction to 
c++.3 
Issues in object distribution and in creating active 
objects  are first discussed. The details of how ac- 

A standard C++ compiler 
and no preprocessing 

supports the integration 
of concurrency  and OOP. 

tive objects  are  created and how objects  interact 
in ABC++ are then presented. Concluding re- 
marks  are followed by  an  appendix  that gives an 
example written in ABC+ +. 

Concurrent systems 

An important aspect of a concurrent  system is its 
memory model. Most concurrent languages use 
either distributed memory or shared memory. In 
a distributed memory model, processors  have  ex- 
clusive access  to their own local memories and 
communicate with other  processors through mes- 
sages. In a shared memory model, all processors 
share a large global memory and communication 
is through shared variables-that is, a processor 
writes  into  the  shared  variable, which can  then be 
read by  other  processors. Of course,  access  to  the 
shared  variable must be synchronized. 

Communication in a distributed memory model 
can  be classified into  two paradigms. In  the first 
paradigm, objects and processes  interact  by  send- 
ing and receiving messages. A send or a receive 
may be blocking or nonblocking. With blocking, 
the caller is blocked as soon as the call is issued, 
until a reply is received. The  second paradigm of 
interaction consists of call and reply. This para- 
digm is an extension of the sequential procedure 
call, and is commonly referred to  as a remote 
procedure call (RPC). In an RPC communication, 
objects  request  services of remote  objects with 
familiar procedure call syntax. RPCs may also  be 
blocking or nonblocking. In this paper  we will not 
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discuss  the different models of RPCS introduced in 
various  operating  systems  (that is, “at most 
once,”  “at least once,” etc., semantics). As in 
most  other  concurrent object-oriented languages, 
what  we refer to  as RPC has essentially the  same 
syntax and semantics as the regular method in- 
vocation,  where method is a term used in object- 
oriented languages for member functions. 

Concurrent C+ +-based  systems 

C + + 3  has increasingly become the language of 
choice among developers, and numerous  at- 
tempts  have been made to add concurrency to 
it. u 2  For a more complete review of the  literature 
and approaches  taken in adding concurrency to 
C+ +, see Reference 13. Two  approaches  can  be 
used to add concurrency to an object-oriented 
language such as  C+ +. In  the first approach,  the 
language is  extended in order to add the  concur- 
rency  constructs.  New or extended languages can 
use  the compiler to provide higher-level con- 
structs, compile-time type checking, and en- 
hanced performance. In  the  second  approach, 
such as that used with ABC+ +, the facilities of 
OOP are used to encapsulate  the lower-level de- 
tails of concurrency.  In  this  second  approach, a 
library  class generally referred  to as a Task  class 
provides  the  concurrent facilities. A user wishing 
to write  concurrent  code  can  use  Task, normally 
by inheriting from it. In  this  approach  the  con- 
currency  constructs  are  kept  outside of the lan- 
guage, the language is kept small, the programmer 
can  work with familiar compilers and tools, the 
option of supporting many concurrent models 
through a variety of libraries is provided, and the 
porting of code  to  other  architectures  is  eased 
(usually, a small amount of assembler code  needs 
to  be changed). Software  developers typically 
have large investments in existing code and are 
reluctant to adopt a new language. A class library 
with sufficient flexibility that  can provide most of 
the functionality of a new or  extended language is 
often more palatable. 

Concurrent C+ +-based  systems  often  require 
extensive compiler extensions.  Previous  at- 
tempts to add  concurrency to  C+ + without com- 
piler extensions have imposed unreasonable lim- 
itations  on  the  user^.^,^,'^,'^ These limitations can 
include using explicit message queues in object 
interaction, limiting the number of inheritance 
levels to one, explicitly managing threads through 
the  use of start routines and managing synchro- 
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nization and mutual exclusion through the  use of 
explicit mechanisms to wait on  an  event and to 
signal events. In these  systems, after an object 
has been  created, in a separate  step  the object is 

ABC+ + supports implicit 
concurrency through active 
objects  that possess their 

own thread of control. 

activated  by  the  use of a start routine, provided by 
the  class library. These  systems  are primarily 
thread packages and have not attempted to ex- 
ploit the  object-oriented facilities of C+ + for con- 
currency  creation  and control. Buhr and Ditch- 
field16 argue that many of these problems are 
difficult or impossible to solve without compiler 
support.  For this reason, Buhr et al.’ employ lan- 
guage extensions to provide the  users with suffi- 
cient flexibility without imposing significant  lim- 
itations. In the remainder of this  section we 
review some of the C+ +-based  concurrent  sys- 
tems  that,  with  the  exception of ES-Kit, have  not 
changed either  the C+ + language or the C++ 
compiler. 

AT&T. The AT&T Task Coroutine Library14 is 
one of the earliest concurrent C + +  libraries. A 
class wishing to  use  the  concurrent facilities of 
AT&T’S Task  library would be derived from class 
Task.  Objects of a class derived from Task  have 
their own thread of control, and run within the 
same UNIX** process. AT&T’s Task library im- 
poses  the following limitations on  its users: 

Only a single level of derivation is allowed from 
Task,  hence, no derivation is allowed from a 
user’s class. 
Objects of a class deriving from Task commu- 
nicate through explicit message queues. 
Objects synchronize through explicit use of wait 
and alert routines. 

Doeppner. Doeppner’s’ Task library supports 
true  concurrency  by building on  top of a thread 
package named Threads.  However, it still suffers 
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from the  same limitations as in AT&T’s Task li- 
brary. 

PRESTO. PRESTO4 is  a library for programming 
with  threads.  Concurrent programming facilities 
are provided by a  set of classes called Thread, 
Lock, Spinlock, Condition, and Monitors. Ob- 
jects of a  class wishing to use PRESTO are not 
given a  thread.  Threads  are  created indepen- 
dently  by  the C++ new operator.  The  Thread 
class  provides  a start method, which can  be in- 
voked  on  a thread object. The arguments to start 
include the object whose method is being in- 
voked,  the method name, and the method argu- 
ments. Class Monitor provides the  methods entry 
and exit, which are explicitly used to ensure  ato- 
micity when accessing critical sections. Condi- 
tion variables  are  instances of class Condition, 
and are manipulated by  the  methods signal and 
wait. Communication among PRESTO objects is 
solely through shared variables. 

AWESIME. AWESIME” is very similar to PRESTO, 
with additional support for process-oriented sim- 
ulation. Unlike the AT&T Task library, it allows 
arbitrary levels of subclassing from its  Task  class 
(called THREAD). However,  thread and message 
queue management in AWESIME are still explicit. 

Gautron. GautronI7  extends AT&T’s library by 
adding support for LIFO-mode (last in-first out) 
task scheduling, priorities, and user-controlled 
scheduling. The limitations of the AT&T class li- 
brary  are not addressed. 

Amber. AmberI8 is a C+ +-based  system for writ- 
ing distributed applications on  a homogeneous 
network of 64-bit multiprocessors. Amber’s con- 
currency model is the  same as that for PRESTO, 
where  thread  objects  are  created independently 
and manipulated by  a start routine. Amber does 
not modify the language or the compiler; how- 
ever, it requires preprocessing of the  code before 
compilation by  C+ +. It  assumes  that all nodes 
share  a globally managed virtual  address  space. 
In this paper, the  words  “processor” and “node” 
are used interchangeably to refer to a single pro- 
cessing element. A shared  virtual  address  space 
will quickly exhaust  its  virtual  address  space  on 
machines with 32-bit addressing; thus Amber as- 
sumes  the availability of 64-bit addressing ma- 
chines. Amber objects  are passive, and their 
methods  can be invoked locally or remotely. The 
active  objects of the  system  are  thread  objects 
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that  are migrated to  a  node in the  network  where 
an object whose method has  been invoked re- 
sides. The  preprocessor  assists in trapping 
method invocation on  remote objects. More de- 
tail on how Amber supports object distribution is 
provided in the  section  “Issues in object distri- 
bution.” 

PANDA. PANDA19 is a run-time package that  sup- 
ports  distributed applications in C+ +. PANDA 
does not extend  the C + +  compiler; however, a 
preprocessor is used. The  preprocessor  inserts 
source  code  at specified places in the user code. 
As in Amber, PANDA assumes  that all nodes  share 
a globally managed virtual address  space, hence 
it requires  the availability of 64-bit processors. Its 
distribution facilities are  very similar to those of 
Amber. 

ES-Kit. ES-Kit7 is an object-oriented  system for 
distributed applications. Developed at  the Micro- 
Electronics and Computer Corporation, this  ex- 
perimental system  is  written in GNU C+ +. ES-Kit 
objects  are not active, and parallelism is created 
by method invocation of many objects. ES-Kit re- 
lies on some  nonstandard  features of GNU C++ 
for object distribution and remote object creation. 
In particular, ES-Kit relies on  a  nonstandard mem- 
ber  access  operator, +, which takes four argu- 
ments  (the  standard member access  operator  is  a 
unary  operator). Therefore, in effect ES-Kit has 
changed the compiler. It  uses global identifiers for 
object location, and each object is assigned a han- 
dle at  the time of its  creation  that  contains  the 
unique identifier for the  object, including its node- 
id. The  nonstandard  features of ES-Kit assist in 
trapping method invocations and address  trans- 
lation at  node boundaries. 

ABc++. AT&T, Doeppner’s, and AWESIME task 
libraries cannot  be classified as concurrent ob- 
ject-oriented systems,  since  they have not encap- 
sulated concurrency  creation and control. 
PRESTO is a  thread package that  can  be used in 
building concurrent  object-oriented systems. In 
the  section  “Issues in creating  active  objects,” 
we analyze why  some of these  task libraries have 
failed to encapsulate  concurrency  creation and 
control at the  active object level. 

ABC+ + supports implicit concurrency through 
active  objects  that  possess their own  thread of 
control and can run simultaneously with  other  ac- 
tive objects  on  a  shared  or distributed memory 
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multiprocessor, as well as on  a homogeneous 
cluster of workstations.  Concurrency  creation is 
implicit, meaning active  objects  are  created like 
ordinary C+ + objects  without  the  use of explicit 
start routines for thread activation. Each active 
object  has  a mailbox and manages its own 
message queue without requiring the  users of 
ABC+ + to manipulate message queues as in  Ref- 
erences 8, 14, 15, and 17. An active object in 

ABC+ + programmers 
do not use explicit 

synchronization and mutual 
exclusion constructs. 

ABC+ + has  exactly  one  thread of control and is 
able to process  one message at a time, hence 
ABC++ programmers do not use explicit syn- 
chronization and mutual exclusion constructs to 
achieve atomicity. 

Active  objects in ABC++ communicate via 
method invocation. An invocation of a method of 
a  remote object is automatically transformed into 
a  remote  procedure call. Selective method accep- 
tance and asynchronous communications are also 
supported. 

The  restrictions  that ABC+ + presently imposes 
on  the  use of the C + +  language are: 

Public member functions of active  objects must 
be virtual. 
Friend classes and friend functions are re- 
stricted  to  access  virtual member functions 
only. In C+ +, an external function or another 
class may be defined as a friend of a class, allow- 
ing access to nonpublic members of the class. 
No public or  static  class  data members are al- 
lowed. 
The  types of arguments allowed for methods of 
active  objects as well as return  results  are re- 
stricted to simple types and pointers to active 
objects.  The number of such arguments is lim- 
ited to seven. 
The number of public member functions is fixed 
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by ABC++  to a relatively large number that 
can  be modified (this number is 32 in the  present 
implementation). 

The first restriction  can easily be eliminated by a 
simple preprocessor.  The  second and third re- 
strictions  cannot be eliminated unless  we change 
the model of ABC+ + and provide explicit mech- 
anisms for achieving atomicity. We believe the 
fourth restriction can easily be eliminated by  a 
more careful implementation of ABC++ and 
with the  use of function templates. Work is pres- 
ently  under  way to achieve this goal. 

Issues in object  distribution 

In  a  distributed memory model, it is important to 
provide support for location-independent object 
interaction. This  is particularly important when 
objects  are allowed to migrate. There  have been 
many efforts by  researchers  over  the  years to rep- 
resent  objects so that  they may be referred to  by 
remote  processors. One solution to this problem 
is to  use global identifiers. Global identifiers are 
used in place of object  references  when  objects 
are referenced. The disadvantage of this tech- 
nique is  that it requires  extensive compiler sup- 
port in translating these identifiers into local ref- 
erences  each time they  cross  a node boundary. 
Es-Kit uses global identifiers, and a  nonstandard 
member access  operator is used to assist in ad- 
dress translation at  node boundaries. 

Another solution is to represent  remote  objects 
byproxies.  Shapiro” introduced proxies as local 
representatives of remote  objects.  A  proxy  object 
contains  some information about  the object it is 
representing, including either the  address of the 
object or the  address of a name server  where  the 
object address may be  obtained. Proxies assist 
in providing location transparency in a  system 
where  objects  are  distributed  across many nodes. 
They allow uniform invocation of methods, irre- 
spective of their location, and are commonly used 
to facilitate object interactions in a  distributed 
memory environment. 21-23 

Amber uses  proxies (called object descriptors in 
this  case) and globally shared  virtual  address 
space to provide location transparency.  The  vir- 
tual address  space on each node is identical. Pro- 
gram code and static  data  are replicated on all 
nodes at the  same  virtual  addresses.  Each node in 
the  network  has  a distinct region of the  address 
space for allocating new objects. No node in the 
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network would use the region of another  node 
when it creates new objects. Although the solu- 
tion for Amber  avoids  address  translation at pro- 
cessor  boundaries, it suffers from the problem 
that large amounts of virtual  space  must be  “wast- 
ed” on objects  that  reside  on  other  nodes.  This 
virtual  memory  requirement  can be a  disadvan- 
tage in distributed  memory parallel computers 
containing large numbers of simple processors, 
since  they  may  not  otherwise  require  virtual 
memory  hardware. As was previously men- 
tioned, a  shared  virtual global address  space will 
soon  exhaust  its  virtual  address  space  on  a 32-bit 
addressing machine and,  for  this  reason,  the Am- 
ber model of computation  assumes  the availabil- 
ity of 64-bit architectures. 

Our ABC+ + solution is similar to that of Amber, 
but it does  not  require  virtual  addressing  or  any 
special hardware. 

Issues in creating  active  objects 

In C+ + , objects  OW" how to initialize them- 
selves (through constructors) and how to clean up 
after  themselves  (through destructors) when  they 
are no longer needed. Ideally, an  active  object 
should behave in a similar fashion. It should en- 
capsulate  thread and message queue management 
as well as object  construction and destruction. 
However, as outlined in Reference 16, if the C+ + 
compiler is not  extended to empower  active  ob- 
jects,  many challenging problems are created. 

Existing  task libraries are largely based  on  the 
AT&T class library. These  systems  either fail to 
create  active  objects implicitly, or impose unrea- 
sonable  restrictions  on  users (e.g., prohibiting in- 
heritance). An abstract  base  class called Task  is 
used as a  parent  class for any derived class  where 
concurrency  is  desired.  The  creation of an  active 
object in these  systems  causes  a  thread  to  be  spun 
off that will execute  the  “body” of the  active  ob- 
ject.  Two  approaches  are used in the  selection of 
a  body  for  the  active  object.  The first approach 
uses  the  constructor of the derived class as  the 
body. The second  approach defines a  “Main” 
routine as  the  body of the  active  object. 

If the  constructor of the derived  class  is used as 
the  body, it must be written as an infinite loop; 
therefore it will not terminate. A nonterminating 
constructor  prohibits  inheritance from this  class, 
as is the  case in References 8 and 14. This is due 
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to  the fact  that in C++, the  ancestor  classes 
perform their  construction  before  descendant 
classes.  Therefore if a  constructor  is nontermi- 
nating, no derived constructor would be  able  to 
complete  its  tasks,  hence prohibiting inheritance. 

We now consider  the  case  where  a Main is defined 
as  the  body of the  active  object. If such  systems 
allow arbitrary level of inheritance,  object  con- 
struction is faced with significant problems. As 
was  previously  mentioned,  the  constructors of 
ancestor  classes perform their duties  before  con- 
structors of successor  classes.  Hence,  the  Task 
constructor  performs  its  duties  before  any  other 
constructor. If the  Task  constructor  is  responsi- 
ble for spinning off a new thread, it must then 
direct  one  thread to  the object  that called new, and 
give the  second  thread to  the new active  object, 
which will execute Main. If the  number of levels 
of inheritance is unknown,  and if it is further un- 
known which levels define constructors  and 
which do  not,  the  Task  constructor  cannot  know 
where  to  return  the  thread in the calling object. 
Furthermore,  when  the  Task  constructor is 
called, the  new  active  object  is  not fully con- 
structed,  hence should not  receive  a  thread. If the 
active  object  receives  a  thread at this point, we 
are  faced with the problem of premature  method 
invocation. C+ + itself does  not  control  when  the 
creating  object  can invoke methods of the newly 
created  object;  thus  such  systems  require  the  use 
of a start routine for explicit thread management, 
as in Reference 15. 

An active  object  must  not  be  destroyed until its 
thread of control  has  terminated.  Once again, 
C+ + itself cannot  ensure  thread  termination  be- 
fore  object  destruction. If compiler extensions 
are  not  made,  one way  to solve  this problem is 
through explicit use of a wait routine, as in Ref- 
erences 8 and 14. Explicit use of start and wait 
routines  is  error-prone  and  complicates  the al- 
ready  complex  task of concurrent programming. 
One of the  objectives of concurrent  object-ori- 
ented languages is to reduce  the  use of explicit 
synchronization  and  mutual exclusion mecha- 
nisms, thereby reducing the  complexity of writing 
concurrent programs. Similarly, active  objects 
should encapsulate message queue management. 
Existing  Task-based  systems typically require  ex- 
plicit message queue management, as in Refer- 
ences 8, 14, and 15. 
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So far  our  discussions  have focused on creating 
active  objects in a  shared memory environment. 
A distributed memory model poses many differ- 
ent problems, as previously mentioned. The ex- 
isting Task libraries only  support  a  shared 

Location  transparency 
eases the task of writing 
concurrent  programs in a 

distributed memory model. 

memory model. ABC+ + supports implicit con- 
currency through active  objects in a  shared or a 
distributed memory model. In  the  next  section, 
we explain how active  objects  are  created in 
ABC+ +. 

ABC++ 

In  this  section  we outline how ABC+ + supports 
active object creation, object distribution, selec- 
tive method acceptance, and object interaction. 

Object  distribution. Since ABC+ + supports ob- 
ject distribution, it is  vital to provide location 
transparency for active objects. Location  trans- 
parency  eases  the  task of writing concurrent pro- 
grams in a distributed memory model by freeing 
the programmer from having to deal with  object 
location. We adopt  the  proxy  approach to provide 
location transparency; however, we refer to prox- 
ies as object  descriptors. 

A designated area of memory, referred to  as the 
descriptor  region, is allocated on all the  nodes at 
the  same  address. This region is essentially a  ta- 
ble of object descriptors. An object  descriptor 
will contain  some information about  the object it 
is representing. Each  active object has an object 
descriptor representing it on each of the partici- 
pating nodes at exactly the same location. The 
object descriptor  on  the node where  the  active 
object resides is called a local object descriptor 
(LOD). All other object descriptors  are called re- 
mote object descriptors (RODS). The  entries  con- 
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taining LODS also contain  the memory address of 
the  active object. 

Since object descriptors  are small in size (only a 
few words),  we  can define a relatively large de- 
scriptor region at  startup time. ABC+ + performs 
“garbage collection” (the  reuse of unused or dis- 
carded items) on  descriptors;  therefore it is un- 
likely that  processors would run out of descrip- 
tors.  However, it is possible to repeat  the  process 
of creating object descriptor regions, if neces- 
sary.  The communication layer of ABC++ es- 
tablishes communication across node bound- 
aries. This layer, among other things, provides a 
daemon thread  on  each of the participating nodes 
at startup time. A daemon thread  is  a  system 
thread  that is unknown to  the user. The daemon 
threads handle various housekeeping tasks in- 
cluding polling for communication. When a pro- 
cessor  runs  out of space in its designated area for 
storing new object descriptors,  a  descriptor re- 
gion creation  can be initiated by  sending the dae- 
mon thread  a message (this feature  is not imple- 
mented in our  present ABC++ prototype 
implementation). 

To ensure  that  processors  can  create  objects 
freely without having to synchronize  with  other 
nodes,  each  processor in the pool is assigned a 
specific area of the  descriptor region in which its 
new object descriptors  are to be  stored. No pro- 
cessor in the pool would use the designated region 
of another  processor for storing new object de- 
scriptors. Figure l shows  the  descriptor regions in 
a  three-processor  cluster and their designated ar- 
eas for storing new object descriptors.  The object 
descriptor index determines  the identity of the 
node  that  created the corresponding  active ob- 
ject. If objects  never move after their creation, 
the  descriptor regions on all processors will al- 
ways contain RODS everywhere  except in their 
designated areas, which will contain LODS only. 

In ABC+ +, when an active object is  created, an 
LOD object is created  (represented as an object) 
on the originating node and stored in the first 
available entry of the  processor’s designated area 
in the  descriptor region. The  address of the  cor- 
responding active object is  also  stored in that 
same  entry. For example, in Figure 1, when a  new 
active  object  is  created  on  processor 1, an LOD is 
created and stored in the first available entry of 
the  area marked as Al. ROD objects  are  created  at 
startup time by ABC+ +. 
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Figure 1 Object descriptor region in a three-processor machine cluster 
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active object addresses. We refer to  the  processor 
that  created an object as the object’s home  node. 
While an object is being constructed on a partic- 
ular node, no action takes place on  any of the 
other  nodes  with  respect  to  the newly created ob- 
ject.  However, if a reference to this new object 
descriptor is passed to other  nodes,  the  corre- 
sponding object descriptor  already  exists and can 
determine the home node of the  corresponding 
object from the object descriptor index. 

Hence, in ABC+ + a reference  to a descriptor for 
a local object can be quickly translated  into  the 
object’s address, and that  same reference can  be 
sent  to  another  processor and will automatically 
refer to  the  correct ROD on that node. Thus,  de- 
scriptor region addresses  can be freely passed as 
arguments to remote  procedure calls, as return 
results from remote calls, or within messages of 
any kind. A descriptor region address always re- 
fers to a correct and current LOD or ROD, as ap- 
propriate. 

ABC++ gains much of its power by exploiting 
the  virtual function mechanism in C+ + . For this 
reason, it requires  that all the  methods  on  the 
interface of active  objects  (that  is,public member 
functions) be declared as virtual. In C+ + , the 
visible members of a class  are specified as public. 
Members declared as  private are  not  externally 
visible. In C+ +, an object with  virtual  methods 
will contain  the  address of a table, commonly re- 
ferred  to as the vtable, which contains  pointers to 
virtual  methods. When a virtual method of an  ob- 
ject is invoked, only  its  vtable index is resolved at 
compile time. At run time this index is used to 
access a vtable  that would contain a pointer to the 
appropriate method. 

As was mentioned earlier, ABC++ returns  the 
descriptor region address  where  the LOD of a new 
active  object resides. Hence,  when a method of 
an active object is invoked, this invocation is in- 
tercepted  by  the LOD object and before  the real 
method is invoked, ABC++ performs some 
tasks. This is achieved due to the  fact  that  object 
descriptors  are real C + +  objects and contain a 
vtable pointer. ABC++ provides  two  classes, 
LOD-proto and ROD-prOtO, instances of which are 
LODS and RODS, respectively. These  classes define 
a set of private  virtual member functions. We re- 
fer to  these virtual functions as  protocol  jknc- 
tions.  Hence LOD and ROD objects will contain a 
vtable pointer. There  is a one-to-one  correspon- 
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dence  between  the  protocol functions and the  vir- 
tual methods in the user’s class hierarchy. There- 
fore, the maximum number of member functions 
in user  classes  is limited by the number of pro- 
tocol functions (this number is 32 in the  present 
implementation). 

The  interception of method invocation in active 
objects would work if the  vtable pointer in the 
object descriptors and in the  active  objects is at 
the  same location. Since object descriptors  are 
small, the  vtable pointer must also reside near  the 
beginning of the object. Some compilers place the 
vtable pointer in the first word of the object, 
whereas  others place the  vtable pointer after 
the first nonvirtual base  class having a virtual 
method. In C+ + virtual  base  classes  are used to 
avoid multiple copies of shared  classes along mul- 
tiple inheritance paths. To ensure  that  the  vtable 
pointer for object descriptors and active  objects is 
at the same location, LOD-proto,  ROD-proto, and 
the  base  class for active  objects  have no data 
members. In  the  case of active  objects,  since  user 
classes inherit from ABC+ +, it is sufficient to 
make the first base  class of ABC++ an abstract 
base  class with a single pure virtual member func- 
tion main (LOD-prOtO and ROD-proto also define 
main in order to maintain the one-to-one corre- 
spondence  between  the  methods of active  objects 
and the protocol functions). In C+ +, abstract 
base  classes  are  never  instantiated. Their role is 
to provide a common interface that will be im- 
plemented by  the derived classes. A pure virtual 
member function is designated by following its 
argument list with the keyword “=” and “0.” The 
definition of such a function is provided by de- 
rived classes. An abstract  base  class must contain 
at  least  one  pure  virtual function. When a method 
of a local active object is invoked, the following 
steps  take place: 

The  corresponding protocol function of the LOD 
is invoked. 
The  protocol function checks to  see if the  active 
object is  presently serving messages of the  type 
requested and if the object is  free to  serve this 
request.  As  was mentioned earlier, ABC++ 
supports selective method acceptance. Namely, 
active objects can change their interface depend- 
ing on their state. A following section  provides 
more detail on how selective method accep- 
tance  is implemented. If the object is serving 
such  requests and is  free,  the  appropriate 
method of the object whose local address  is 
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stored in the  same  entry of the  descriptor region 
as the LOD object  is invoked. 
If the invoked method is not being served  at  this 
point, or if the  object is busy  serving  other  re- 

quest for later processing. The  protocol  func- 
tion blocks  other  functions until a  reply is 
received. 

I quests,  the  protocol  function  queues  up  this  re- 

When a  method of a  remote  active  object  is in- 
voked,  once again this call is  intercepted by the 
ROD object and the corresponding  protocol  func- 
tion of the ROD object is invoked. The  protocol 
functions of ROD objects forward the call to the 
node  where  the  object  resides. 

In the  present  version of ABC+ +, we have  not 
implemented object migration. However,  the 
technique used by  ABC+ + for providing location 
transparency allows object migration. Recall that 
each  processor  has  its  own designated area for 
storing  new  object  descriptors.  Therefore if an 
object  moves to a new node,  the following steps 
would have  to  take place: 

An ROD object  is  instantiated and stored in place 
of the LOD object. 
A message is sent  to its  home  node informing it 
of the  new location. 
An LOD object is instantiated in the  destination 
node and stored in place of the ROD. The local 
address of the  active  object is also stored in the 
same  entry. 

In this  scheme,  the home node of active  objects 
contains information about  their  whereabouts as 
they  move  around.  Therefore,  to  locate  a  remote 
object,  its  home node must  be  consulted.  Once 
again, the  daemon  thread would assist in achiev- 
ing object migration. In  this  technique, all remote 
accesses  have  an  extra level of indirection. If the 
extra level of indirection is too  expensive,  other 
techniques  such as broadcasting  can  be used to 
keep  the LODs and  the RODS up-to-date. 

Creating  active  objects. ABC+ + is  able  to  create 
implicit concurrency  (and  provide  many  other 
features) by exploiting the  virtual  function  mech- 
anism of C+ +. This allows ABC+ + to  intercept 
the method invocation mechanism of C+ +. In the 
previous section,  we explained that  when  active 
objects  are  created,  the  address of the  object  de- 
scriptor  is  returned to  the caller; therefore all 
method invocations on active  objects  are inter- 
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cepted, and before  the  “real  method”  is invoked, 
a  corresponding  protocol  function of the  object 
descriptor is invoked. In  this  section we address 
how active  objects are  created  when  they  are al- 
located dynamically by  operator new. ABC+ + is 
able to  create automatic  (that is, stack-based)  ob- 
jects,  the  details of which are not addressed in this 
paper. 

To use ABC+ +, user  classes must inherit from 
Task. All classes  that inherit from Task should 
declare  the  methods  that would be invokable by 
other  active  objects as virtual. ABC+ + provides  a 
virtual main that  becomes  the  body of the  active 
objects.  This default main will accept all messages 
in FIFO (first in-first out) order. Users of ABC+ + 
may define their own main. 

Functions that support active  object creation. 
C++ allows programmers  to redefine almost all 
C+ + operators.  This redefinition is called over- 
loading. The  creation of active  objects in 
ABC++ is handled by two overloaded new op- 
erators,  the  Task  constructor,  and  a  static mem- 
ber  function of Task, called auto-start. We next 
outline  the  duties of these functions. 

Operator new is a  request for creating  an  active 
object  that might be local or remote. An optional 
argument to new provides  the  remote node iden- 
tifier. The  overloaded  version of new for local ob- 
ject  creation  allocates  storage,  instantiates  class 
LOD-proto, and  initiates the chain of constructor 
calls before returning. If the  request is for  remote 
object  creation,  the  overloaded  version of new for 
remote  object  creation  sends  a message to  the 
daemon  thread on the  requested  node, which 
would arrange for a local object creation on the 
remote  site. Object construction on the site  that 
requested  the  remote  object  creation is aborted. 

We previously  outlined  some of the  problems in 
creating  active  objects  and, in particular, we ad- 
dressed  the problem of returning the original 
thread  (the  thread  that called new) to  a  proper 
statement in the calling object,  and giving the  new 
object  a  thread  only  after it  is fully constructed. 
We refer to  the  address of the proper  statement in 
the calling object as  the return address. The  nec- 
essary  steps for recording where  this information 
may be found are  taken by new. It terminates by 
returning  the  address of the  descriptor region en- 
try containing the  corresponding LOD object. 
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In  the  case of local object  creation, after new re- 
turns,  the chain of constructor calls begins until . 
the  Task  constructor is called. 

The  Task  constructor performs the following du- 
ties: 

It  saves  the  return  address  to  be used by the 
auto-start function. The overloaded new has re- 
corded  where  this information may be found. 
This address is obtained by  a small amount of 
assembly code.  This is the  only place in 
ABC+ + that some assembly code is used. 
It  replaces  the  return  address  with  the  address 
of auto-start. 
It  saves  the  address of the newly created object 
in the  same  entry of the  descriptor region where 
the corresponding LOD object is stored. 

After the  Task  constructor  terminates,  the object 
construction begins, and eventually control is 
given to auto-start. 

Since  a pointer to auto-start  is left by  the  Task 
constructor  where  the  return  address  is normally 
found, after the most derived constructor  (that is, 
the first constructor called after new returns)  per- 
forms  its duties, control  is given to auto-start. 
Auto-start performs the following duties: 

It  spins off a  thread for the newly created object 
and makes that object’s virtual method main its 
body. 
It  returns  the original thread to the object that 
called new. 

Main defines the activity of the object. It  also pro- 
cesses  the incoming messages by issuing accept 
statements. Provided that  users  use  virtual func- 
tions, ABC+ + treats object descriptors as if they 
are regular C+ + objects,  with  thevirtual function 
mechanism translating the calls to local or remote 
invocations as appropriate. Within this paradigm, 
users would never need to know when an object 
is  remote and when it is not. 

Selective method acceptance. Active object  sys- 
tems must be able to selectively accept messages 
to answer, and to delay some for later  accep- 
tance. If a C+ + concurrent  system is to have  this 
capability, then  active  objects should be able to 
control which of their methods  are “invokable.” 
C+ + provides  no native mechanism for this, and 
there  has previously been  no class-library-based 
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approach to solving this problem. Some  class li- 
brariess require users  to use explicit message 
queues,  thus erasing the  natural object-oriented 
analogy of methods to messages. 

In ABC+ + each  active object has  a mailbox and 
manages its own message queue. As  was men- 
tioned earlier, there  is  a daemon thread on each 
of the participating nodes.  The daemon thread 
delivers the newly arrived messages to the ap- 
propriate mailboxes. 

To solve  the  selective method acceptance,  the 
Task  class  provides an accept method and the nec- 
essary  data  structures for implementing the re- 
quired message acceptance protocol. The argu- 
ments to the accept method (beside the this 
pointer)  are an integer and the  appropriate  virtual 
method function pointers. The integer argument 
represents  the total number of virtual function 
pointers appearing in the accept statement.  The 
virtual function pointers define the set of accept- 
able messages. The accept method flips the ap- 
propriate  bits in a method-mask according to the 
value of its  parameters. Method-mask is an in- 
stance  variable of class  Task, and the indicator bit 
is a “1” if the corresponding method is currently 
being accepted by the  object;  otherwise it is  a 
“0.”  A method is “open” if it is currently  accept- 
able, otherwise it is  “closed.” ABCS + users  can 
change the interface of an active object by issuing 
accept statements from within the  body of the  ac- 
tive object.  For example, the  statement accept(1, 
push) causes push messages to be accepted by  a 
stack object. The pop messages are delayed. 
ABC++ intercepts method invocations and an 
appropriate  protocol function is called before the 
“real  method” is invoked. The protocol functions 
invoke the  “real method,” if the method is cur- 
rently  acceptable  by  the  active  object;  otherwise, 
the message remains queued for later processing. 

Premature method invocation and object de- 
struction. An active object in ABC++ is not 
given a  thread of control until it is fully con- 
structed.  Therefore,  premature method invoca- 
tion is no longer an issue. 

In ABC+ +, active  objects  are  destroyed in the 
same  way C+ + objects  are  destroyed (for exam- 
ple, by delete, in the  case of dynamic objects). To 
solve the problem of premature object destruc- 
tion, once again we  use the protocol function 
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mechanism. Task  provides  a  virtual  destructor. 
Therefore,  the  destructors of all user  classes in- 
heriting from Task will also  be  virtual.  Since 
ABC+ + intercepts  invocations  made to all vir- 
tual  methods,  the  destructor calls are also  inter- 

ABC+ + provides 
blocking,  nonblocking, 

and  future remote 
procedure calls. 

cepted. The  destructor of an  active  object  is  not 
called until its  thread of control  has  terminated. 
The protocol function associated with the virtual 
destructor will do  the waiting. 

Automatic  mutual exclusion. To  ensure  the in- 
tegrity of an  object, multiple methods of an  active 
object should not be simultaneously invoked. 
Wegner”  describes  an  object with a single thread 
of control as sequential. Wegner goes  on  to define 
quasi-concurrent  objects as having multiple 
threads  with  only  one  object  active,  and  concur- 
rent  objects having multiple active  threads. 
ABC+ + objects  are  sequential  because  there is a 
single thread  attached to main, which processes 
the incoming messages  (that is, the  method invo- 
cations). Only one invocation  can be processed 
at  a time, thus  guaranteeing mutual exclusion. 
Users  are freed from the burden of managing crit- 
ical sections  themselves through the use of ex- 
plicit synchronization mechanisms. 

Object  interaction. An important  aspect of a  con- 
current  object-oriented language is  the  way  its 
objects  interact. A natural and easy paradigm of 
communication is  the  remote  procedure call (RPC) 
facility. 25 RPC is a mechanism for communication 
across  a  network.  It  is  an  extension of sequential 
procedure calls with similar syntax  and  seman- 
tics. A (blocking) RPC blocks  the caller until a 
reply is received. Due to  the  synchronous  nature 
of RPC, a  system providing only  a (blocking) RPC 
cannot fully exploit the  inherent parallelism in 
many applications. A nonblocking (also called 
asynchronous) RPC sends  the message (that is, the 
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method being invoked and  its arguments) and  re- 
turns  to  the caller  object immediately. To maxi- 
mize parallelism even  further,  a mechanism is 
needed  that would allow a caller to receive  a  re- 
sult from a nonblocking RPC at some  future point 
when  the result is needed.  Such  a mechanism is 
called a jkture.  Futures  are commonly used in 
concurrent  object-oriented languages. 6,7~10 

ABC+ + provides blocking, nonblocking, and fu- 
ture RPCs. In  the  present  prototype implementa- 
tion of ABC+ +, we deal with general-purpose 
registers in the marshaling of messages, where 
marshaling refers to  the act of packaging the pa- 
rameters  into  a message that  is  then  sent  to  the 
destination  processor.  In  this  case, the number of 
arguments in methods of active  objects is limited 
to seven  (that  is,  the  number of general-purpose 
registers  minus  one;  one register is used for  the 
this pointer), and  their  types  are limited to simple 
types  and  pointers  to  active  objects.  We believe 
this  restriction  can  be eliminated with a  more 
careful implementation of ABC+ + and with the 
use of function  templates.  Work  is  presently un- 
der  way  to achieve  this goal. The following sec- 
tions  discuss  these  three  kinds of object  interac- 
tion in ABC+ +. 
RPC interaction.  Previously we showed how, 
with the help of object  descriptors, we intercept 
method invocation  and  provide location transpar- 
ency. When a  method of an  active  object  is in- 
voked,  this call is  intercepted  and  instead  a 
method of the object  descriptor (aprotocol func- 
tion in ABC+ +) representing  the called object is 
invoked.  In the  case of local objects, the protocol 
function will invoke  the  “real  method” if the  ob- 
ject  is free  and if the called method is currently 
open.  Otherwise,  the  protocol  function will queue 
up the message for  later processing. In the  case of 
remote  objects,  the call is marshaled to  the  node 
where  the  object resides. 

Asynchronous RPC. Many of the  concurrent 
C+ +-based languages provide  asynchronous or 
future  communication (for example,  COOL^). 
However, COOL extends  the C + +  compiler sig- 
nificantly. Similarly, the ES-Kit system7  intro- 
duced  futures as  the  primary  method of generat- 
ing and controlling concurrency.  However, ES-Kit 
managed to provide  these facilities by extending 
the compiler with a  nonstandard  operator (+). 
ES-Kit also suffers from the  fact  that  every invo- 
cation of every  method in an ES-Kit class is gen- 
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Figure 2 The  template  for  asynchronous  method 
invocation 

template(class T) class  AsynCall { 

T* actual-pointer; 
virtual  FutureResult*  afO(. . .); 
virtual  FutureResult* afl(. . .); 
virtual  Futu;eResult*  afn(. . .); I 

private: 

public: 
AsynCall T* p); /I dass constructbr 
AsvnCall I ): N class  constructor 
T*bperaior -+ ( ); 
AsynCall(T)&  operator=(T* p); 
AsynCallO&  operator=(const  AsynCallO&  arg); 

I 

Figure 3 An example of  an asynchronous  Invocation 

class C: public  Task{ 
public: 

1; 
main( ){ 

virtual  void f( ); 

C c; I1 an instance of C 
AsynCall(C) p = &c; I/ a smart  pointer 
p 3 f( ); I/ asynchronous  invocation of f 

erated  asynchronously. Saleh and Gautron" in- 
troduced  futures  into their extended C+ + which 
they call CC+ + . CC+ + requires a  preprocessor 
that renames all user  methods so that method in- 
vocation can be intercepted.  In CC+ +, all meth- 
ods  that may be invoked with futures must be 
rewritten (usually in a derived class). This makes 
the use of futures very inconvenient and awk- 
ward. 

We employ an  approach similar to that in Refer- 
ence 1 1  to provide asynchronous method invo- 
cation.  The template mechanism of C+ + is used 
to define a class of smart  pointers,  a class of point- 
ers that can be used as regular pointers with the 
member access  operator "-f to invoke methods of 
active  objects,  but with semantics implementing 
asynchronous method invocation. Figure 2 shows 
part of the  private  and public declarations of the 
AsynCall template. 
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The AsynCall template provides  an overloaded 
" = " and  the  appropriate  constructors.  The non- 
default constructor  (that  is,  the  constructor  that 
takes  one  or more arguments) and  the "=" op- 
erator save the  address of the  object  that is the 
target of the  asynchronous invocation (this 
address is called actual-pointer in Figure 2). 
Actual-pointer is an LOD in the  case of local objects 
and an ROD in the  case of remote  objects.  The "-f 
operator is also  overloaded.  It  returns  a  pointer to 
the AsynCall object itself. This would cause  a cor- 
responding virtual method of the AsynCall object 
(designated as af0, afl ,  . . . , afn in Figure 2) to 
be  invoked,  and not the intended method.  The 
AsynCall virtual method takes  care of handling the 
call on  the target object, and returns  the  address 
of a placeholder to the caller. The  returned value 
may  be discarded by the caller, or made use of  in 
the  case of future communication, as next  de- 
scribed.  In  either  case,  the caller and  the called 
objects proceed concurrently. Figure 3 demon- 
strates  an  asynchronous  invocation.  In this fig- 
ure, class C inherits from Task, hence its objects 
are  active.  In main( ), we declare c as an object of 
class C and would like to invoke f( ), a method of 
C, asynchronously. To  do this, we instantiate  the 
AsynCall template with class C as its argument. We 
then declare p as  an object of class AsynCall ( C ) 
and assign it the  address of c. Operator "=," as 
noted above, is overloaded in the AsynCall tem- 
plate,  and it saves  the  address of c. We then in- 
voke f( ) by using the  smart  pointer p and  the mem- 
ber  access  operator, which is overloaded in 
AsynCall. The call is immediately returned to  the 
caller, and main( ) continues without blocking. 

Future RPC. As shown in Figure 2, the methods 
of the AsynCall template return  a value to  the call- 
ing program. This return value is designated as 
FutureResult* in Figure 2. FutureResult is a C++ 
structure  that  acts as a placeholder for  the  actual 
return value. This return value is discarded in the 
case of asynchronous method invocations. How- 
ever, if the calling object expects  a  return value 
from an asynchronous  invocation, it can simply 
store the returned value into  a  future  object. 

Future objects are  instances of the  class Future. 
Once again, we use  the  template mechanism of 
C+ + to define a  class of future  objects. This tem- 
plate has parameters  based  on  the  type of the 
expected  return  value. Figure 4 shows  part of the 
private and public declarations of the Future tem- 
plate. An instance variable of the Future class is 
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placeHolder of type FutureResult*. This  variable is 
properly initialized by  the  constructors. 

As in the  case of AsynCall template,  the “=” op- 
erator in the Future template is overloaded.  This 
overloaded  operator is invoked when  the calling 
object assigns the result of an  asynchronous in- 
vocation  into  a  future  object.  The “=” operator 
returns  the  future  object itself, at which point the 
calling object  proceeds  with  its  activity  without 
having to wait  for  the  actual result. However,  that 
result will usually be needed at some point in the 
future.  The  conversion  operator is overloaded in 
the Future template, as shown in Figure 4. This 
operator  is invoked whenever  a  future  object is 
used in place of the  actual  return result (for ex- 
ample, the  statement y=x in Figure 5). The  con- 
version  operator  performs  more  than  a simple 
conversion; it checks  to see if the  future  has  been 
resolved (that is, the asynchronous invocation has 
returned the expected result). If the future object is 
unresolved, the conversion operator waits for the 
completion of the asynchronous invocation. 

Once  the  future  object is resolved,  the  conversion 
operator  returns  the  expected  value,  and  the call- 
ing object  proceeds  with  its activity. The use of 
future  objects  is  demonstrated in Figure 5. In  this 
figure, class C inherits from Task, hence its ob- 
jects are  active. Method f( ) of C returns  an integer 
value. We like to invoke f( ) asynchronously  and 
collect the  return  value  at  a  later point when  the 
value is needed. In main() we declare  a  smart 
pointer as in Figure 3. We then  declare  a  future 
object x by instantiating class Future ( int ). Method 
f( ) of c is invoked using p and assigning the  return 
result to x. Operator “ =” is overloaded in the 
Future class,  and it returns x. At  this  point, main( ) 
continues until the  result from f ( )  is  needed. 
When the result is needed,  the  future  object x is 
assigned to y, which is of the  same  type as  the 
return result of f( ). The  conversion  operator  as- 
signs  the  returned result to y if the  future  has  been 
resolved; otherwise, it waits until the  future  is 
resolved. 

The  support for asynchronous  and  future com- 
munication in ABC+ + does  not  require  any com- 
piler extensions (as in ES-Kit or COOL) or  any  pre- 
processing of the  code  (as in CC++). Users of 
ABC++ can  choose  between  synchronous  and 
future  method invocations. The future invocation 
is handled in a simple and  natural fashion and 
without requiring any  unreasonable programming 
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Figure 4 The  future  template 

ternplate(c1ass  T)  class  Future { 

FutureResub placeHolder; 
int  resolved; 

public: 

Future(const T& Val){ 
placeHolder=(FutureResult*)val; 

1; 
Future( ){ placeHolder = (FutureResult*)O; }; 

Future(T & operator=(const T& Val){ 
place H’ older=(FutureResult+)val; 
return  *this: 

1; 
operator T( ); 

1; 

Flgure 5 An  example demonstratlng  the  use of futures 

class C :public  Task{ 
public: 

virtual  int f( ); 
int  n; 

1; 
int  C::f( ){. . .; return(n)% 

11 f  computes for a w  ile,  then  returns  n 

main( ){ 
int  y; 
c c; 
AsynCall(C) p = &c; 
Future(int) x; 

x = p-, f( ); /I an asynchronous  call 
which  returns  some  result 

I1 do  some  computation 

y = x; 11 wait  for and then  retrieve 
the value returned  from p + f ( )  

1 

conventions  (such as rewriting the  methods  that 
may be invoked with futures as in CC+ +). 

Concluding  remarks  and  future  research 

In the design and implementation of ABC+ + , we 
showed that C+ + is powerful enough to  support 
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almost all of the functionality of an extended  con- 
current language without imposing severe limita- 
tions on  the  use of the language. 

One of the prime advantages of ABC+ + is  the 
fact  that C + +  programmers can  use  a familiar 
C+ + compiler to  create  active  objects and inter- 
act with active  objects.  Users of ABC+ + are  re- 
quired to declare as virtual all methods of an  ac- 
tive object that  are invokable by other  active 
objects. We do not believe that this is a major 
commitment on their part. Although ES-Kit 
changes  the compiler, it still imposes this  same 
programming convention. This requirement can 
easily be eliminated by a simple preprocessing of 
the  code.  However, in this paper our  intent  was 
to show how far  we  can go without changing the 
language or the compiler, and without employing 
a  preprocessor. 

Other limitations in ABC+ + are: 

Friend  classes and friend functions are  re- 
stricted to access  virtual member functions 
only. 
No public or  static  class  data members are al- 
lowed. 
The  types of arguments allowed for methods of 
active  objects as well as return  results  are re- 
stricted to simple types and pointers to active 
objects.  The number of such arguments is lim- 
ited to seven. 
The number of public member functions  is fixed 
by  ABC++  to a relatively large number that 
can  be modified (this number is 32 in the  present 
implementation). 

In  our  current  research  we  are examining the  use 
of function templates to eliminate many of these 
restrictions. We are  also investigating techniques 
for improving type checking, robustness, and 
portability of ABC+ + . Finally, we  are examining 
a  shared memory paradigm for inclusion in 
ABC+ +. The  features of ABC+ + follow. 

Support for implicit concurrency through active 
objects-An active object has  its own thread of 
control and can run simultaneously with  other 
active  objects  on  a  shared or distributed mem- 
ory multiprocessor as well as  on a homoge- 
neous  cluster of workstations. 
RPC communication-Active objects  can com- 
municate through method invocation. An invo- 
cation of a method of a  remote object is trans- 
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formed to RPc. Location  transparency  is 
provided through the  use of object descriptors. 
Selective method acceptance 
Asynchronous communication 
Future communication 

All the  features of ABC++ discussed in this 
paper,  unless  stated  otherwise,  have  been im- 
plemented and tested  on  a  cluster of RISC Sys- 
tem/6000 processors using TCP/IP as the commu- 
nication mechanism and on IBM'S Scalable 
PoWERparallel System 1 (sP1) using a high-per- 
formance message-passing library (EUIH). To  our 
knowledge, ABC+ + is  the  only  class library that 
provides  support for all of implicit concurrency, 
object distribution, selective method acceptance, 
asynchronous, and future communications. 
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Appendix A: A producer  and  consumer 
example 

The following example illustrates how ABC+ + is 
used. The  three  classes of Buffer, Producer, and 
Consumer inherit from Task, hence  are  concur- 
rent classes. The invokable methods of these  con- 
current  classes  are declared as virtual.  Instances 
of these  classes  are  active  objects with their own 
activity. Each  class defines a main that  becomes 
the "body" of its  active objects. As  this example 
demonstrates, ABC++ syntax is the familiar 
C++ syntax  with  no explicit synchronization, 
mutual exclusion, or message queue management 
constructs used. The  use of the accept statement 
is  demonstrated in the main provided for the 
Buffer class. For example, when  the buffer is 
empty, an Accept(1,  put) is  issued. Consequently, 
all get messages are delayed until a put message is 
received. After the  execution of the first put mes- 
sage, Accept returns and main continues  with  the 
statement immediately following Accept(1,  put). 

#include  "task.h" 
#include  "future.h" 

class  Buffer : public  Task { 
protected: 

int* array; 
int  capacity; 
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int no-in-buffer; 
Il number of elements  currently  in  buffer 
void* main( ); 

Buffer(int  capacity); 
virtual void put  (int  item); 
virtual  int  get ( ); 

public: 

1; 
class  Producer : public  Task { 
protected: 

int  amount 
Il number of items  to  be  produced 
Buffer *B; 
void* main( ); 

Producer(Buffer*  buffer,  int  no-of-items); 
public: 

I: 
class  Consumer : public  Task { 
protected: 

Buffer *B; 
int  amount; 
I/ number of items  to  be  consumed 
void* main( ); 

Consumer(Buffer*  buffer,  int  no-of-items); 
public: 

1; 
Buffer::Buffer  (int  size) { 

capacity = size; 
array = new  int  [capacity]: 
no-in-buffer = 0; 

void* Buffer::main( ) { 
I 

while (1) { 
if  (no-in-buffer = = 0) Accept(1, put); 
if (no-in-buffer < capacity)  Accept(2,  put,  get); 
if  (no-in-buffer = = capacity)  Accept(1,  get): 

1 
I 
void  Buffer::put  (int  item) { 

array[no-in-buffer+ +] = item; 
I 
int  Buffer::get ( ) { 

return array[- - no-in-buffer]; 
I 
Producer::Producer(Buffer *buffer,  int no-of-items) { 

B = buffer; 
amount = no-of-items; 

1 
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void* Producer::main ( ) { 
int  item = 0; 
AsynCall(Buffer)  ac(B); 
while  (item < amount) { 

ac + put(item+ +); 
I/ a  demonstration of an asynchronous  invocation 

1 
I 
Consumer::Consumer  (Buffer*  buffer,  int  no-of-items){ 

B = buffer; 
amount = no-of- items; 

1 
void* Consumer::main ( ) { 

for  (int i = 0; i < amount; i++) { 
int  item = B-+get( ); 
I/ a  demonstration of synchronous  invocation 

1 
I 

I* in  the  user’s  main *I 

Buffer  *B; 
B = new Buffer(l0); 
I! a Buffer active  object of size 10 
Producer *P; 
Consumer *C; 
C = new  Consumer (B,IO): 
I1 a Consumer active  object 
P = new  Producer  (B,IO); 
Il a  Producer  active  object 

*Trademark or registered trademark of International Business 
Machines  Corporation. 

**Trademark  or registered trademark of X/Open Co. Ltd.  or 
SUN Microsystems. 
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