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Recently,  researchers at NASA  Ames  have 
defined  a  set of computational  benchmarks 
designed to measure  the  performance of parallel 
supercomputers. In this paper, we describe  the 
parallel  implementation of the  five  kernel 
benchmarks  from  this  suite  on  the  IBM  SP2TM,  a 
scalable,  distributed  memory  parallel  computer. 
High-performance  implementations of these 
kernels  have  been  obtained  by  mapping  the 
computation of these  kernels to the  underlying 
architecture of the  SP2  machine.  Performance 
results  for  the  SP2  are  compared  with  publicly 
available  results for  other high-performance 
computers. 

R esearchers  at NASA Ames  recently defined a 
set of computational benchmarks  for  the  per- 

formance evaluation of parallel supercomputers for 
large scientific applications. ',' Known as  the NAS 
parallel benchmarks,  this  set  has  become  an in- 
creasingly recognized means of quantifylng the per- 
formance of high-performance computers  on  a 
range of algorithms of interest  to  many  users of 
such machines. A  key  feature of these  benchmarks 
is that  the  choice of data  structures, algorithms, 
processor allocation, and  memory usage is left 
open  to  the  discretion of the implementer. In  other 

words,  an implementer has  the flexibility to design 
an algorithm that  matches  the target machine. This 
feature is important in motivating researchers 
working in the area of high-performance parallel 
algorithms to investigate efficient ways of imple- 
menting the  benchmarks. 

The NAS kernel  benchmarks. The Numerical Aero- 
dynamic Simulation (NAS) benchmark  suite  con- 
sists of five kernel benchmarks and three simulated 
computational fluid dynamics application bench- 
marks.  In  this  paper we focus  on the implemen- 
tation of kernel  benchmarks  on  the IBM sP2*; the 
implementation of the simulated application bench- 
marks is discussed in References 3, 4, and 5. 

The five kernel  benchmarks vary in their compu- 
tation and communication  requirements: 
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EP is an embawassinglyparallel kernel designed 
to measure primarily floating-point computation 
performance. It  requires minimal interprocessor 
communication. 
MG is a  three-dimensional (3D) multigrid kernel 
requiring highly structured  interprocessor com- 
munication. 
CG is a conjugategradient kernel to compute  an 
approximation  to  the smallest eigenvalue of a 
large, sparse matrix. This  kernel  tests irregular 
long-distance communication. 
FT solves  a 3D partial differential equation using 
fast Fourier transforms (FFTS) and  is  a rigorous 
test of long-distance communication perfor- 
mance. 
IS is a large integer sort operation testing both 
integer computation  speed and interprocessor 
communication. This  kernel  stresses  the integer 
performance of the underlying node. 

The IBM SP2 parallel  system. The S P ~  is  the  sec- 
ond offering in IBM’s scalable PoWERparallel* fam- 
ily of parallel systems  based on the IBM RISC Sys- 
tem/6000* (RS/6000*) processor technology. The sp2 
is  a  distributed  memory  system  consisting of up to 
128 processor  nodes  connected  by  a High-Perfor- 
mance Switch. Three different processor  nodes  are 
available, based on RS/6000 Model 370,390, and 590 
CPU planars. (These  nodes  are  also  known as Thin 
62, Thin 66, and wide nodes, respectively.) The 
Model 370 processor is based on the original POWER 
Architecture*,  whereas  the 390 and 590 processors 
are based on POWER2 Architecture*. Each compute 
processor  has at least 64 megabytes (MB) of local 
memory  (wide  nodes  can  have  up to 2 gigabytes 
[GB] of local memory  per  node).  Each  compute 
node  has  a locally attached disk. 

All performance  results  reported in this  paper  are 
made on a  wide-node Sp2 system  with POWER2 
(Model 590) compute  nodes. POWER2 processors 
have  two floating-point units and two fixed-point 
units  and  therefore  can perform two fixed-point in- 
structions  and  two floating-point instructions  ev- 
ery cycle, if no dependencies  exist.  The S P ~  wide 
nodes  are  clocked  at 66 megahertz (MHZ), and thus 
each  node  has  a  peak floating-point performance 
of  266 MFLOP/S (megaflops per  second)  based on 
two multiply-add instructions per cycle.  This 
model has  a 256-kilobyte (KB) four-way  set-asso- 
ciative  data  cache with a  cache line size of  256 
bytes. An important  feature of the POWER2 Archi- 
tecture is the availability of floating-point quad- 
word load/store operations. Use of both fixed-point 
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units  results in an effective bandwidth of four dou- 
ble words per cycle between cache  and  the floating- 
point registers. Furthermore, all POWW nodes  can 
fetch  a  complete  cache line from memory in eight 
cycles after the first word of the line arrives; on 
the sp2 wide  nodes,  representing  a local memory 
bandwidth of 32 bytes  per  cycle,  or 2112 M B ~ .  The 
very high data  access  rates  between  cache and reg- 
isters  and  between  memory  and  cache  make  pos- 
sible the  very high sustained  performance of the 
POWER2 nodes in the sP2. Many of the optimiza- 
tions  discussed in this  paper  are designed to  ex- 
ploit these capabilities. 

The  High-Performance  Switch is a multistage 
packet  switch providing a  peak point-to-point 
bandwidth of 40 MB/S in each direction between any 
two  nodes in the  system. For  the  wide-node  sys- 
tem, the sustained application buffer to application 
buffer transfer  rate  is  approximately 35 MB/s for a 
unidirectional transfer  measured as  one half  of the 
time necessary for a  round-trip  “ping”  operation 
between  two  compute nodes. The  latency (i.e., the 
time for a zero-byte message) measured in the  same 
manner is approximately 40 microseconds on the 
S P ~ .  In the  case  where  a  compute  processor simul- 
taneously  sends  and  receives different messages, 
the aggregate (incoming plus outgoing) bandwidth 
at  this  node is approximately 48 MB/s on the  wide- 
node  system.  This  transfer  rate is observed  when 
two  nodes  exchange long messages,  a common 
communication operation in many parallel algo- 
rithms. 

The  embarrassingly  parallel  benchmark 

In  this  benchmark, two-dimensional statistics  are 
accumulated from a large number of Gaussian 
pseudorandom  numbers, which are generated  ac- 
cording to a  particular  scheme  that is well suited 
for parallel computation.  This problem is typical 
of many  “Monte-Carlo” applications. Since it re- 
quires very little communication, this  benchmark 
measures  the  computation  performance of the un- 
derlying node.  The problem has  been defined in 
two  sizes:  class A, whose  size is n = 2 28, and class 
B, whose problem size is four times bigger. Be- 
cause  the problem scales  very nicely, it is suffi- 
cient to restrict  ourselves to the  class  B problem 
on  a single processor. 

Statement of the EP problem. The embarrassingly 
parallel problem is to generate  pairs of Gaussian 
random  deviates,  also called two independent nor- 
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mally distributed variables, according to a specific 
scheme  (see Reference 6), and tabulate  the num- 
ber of pairs in successive  square annuli. 

Set n = 230, a = 513, ands = 271828183. Gen- 
erate  the  pseudorandom floating-point values rj in 
the interval (0,l) for 1 I j I 2n using the  scheme 
described in References 1 and 7. Then for 1 I 
j I n setxj = 2rzj-1 - 1 andyj = 2rzj - 1. Thus 
x j  andyj are uniformly distributed on  the interval 
(- 1, 1). Next  set k = 0. Then beginning with j = 
1 test  to  see if ti = x,? + y,? I 1. If not, reject this 
pair and proceed to the  next j .  If this inequality 
holds, then set k = k + 1, x k  = xjd(-2 log tj)/tj 
and Y k  = yjd( -2  log tj)/tj , where log denotes the 
natural logarithm. Then X k  and Y, are independent 
normally distributed variables with zero mean and 
unit variance. Approximatelynd4 pairs will be con- 
structed in this manner.  Finally,  for 0 I I I 9 tabulate 
Ql as the count of the pairs ( x k ,   Y k )  that lie  in the 
square annulus I I max (Fkl, IYkl) e I + 1, and out- 
put the ten Ql counts. 

On a p  processor machine, every  processor gen- 
erates  the statistics for a set of n/p points. This gen- 
eration  is  done in parallel without  any  interproces- 
sor communication. The  only communication in 
this problem is to add  the 10 sums from various 
processors  at  the  end, which is insignificant. Thus, 
the only optimization we did was  to improve the 
performance of the single node. We now summa- 
rize some of the major techniques employed to im- 
prove the single node performance. The details can 
be found in Reference 8. 

An improved  random  number  generator. We used 
an improved random number generator that utilizes 
the fused multiply-add unit of the RS/6000. During 
the multiply-add operation on RS/6000 and Pow- 
erPC* machines, all  106 bits of the  product  are 
added to  the 53-bit operand, resulting in the  best 
possible accuracy. On a POWEW node, the new ran- 
dom number generator generates approximately 40 
million random numbers per second. 

A table-based  algorithm  for  generating  Gaussian  de- 
viates and  their  classification. The Gaussian devi- 
ates  are  generated using the function f(t) = 
g( -2 log t ) / t .  We subdivide the interval (0,l) into 
a set of discrete points t i  = ih where h is the  sub- 
interval size. We construct  the table of pointsf(t,). 
The  functionf(t) is a monotonic function in the 
range of interest 0 < t < 1. Now t = 0 is a sin- 
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gularity off(t). However,  only a very small frac- 
tion of the random numbers  have t close to zero. 
Therefore, we handle the t values in the first in- 
terval  separately as a rare  event. 

The table of pointsf(ti) is used to decide the bin 
number I where  this random pair lies. Thus, un- 

On a p processor machine, 
every  processor  generates  the 

statistics for a set of rt'p 
points. 

less we are close to a bin boundary, there  is no need 
to  computef(t) with high precision. For most of 
the  cases  when  we  are not close to a bin bound- 
ary, we use  the table valuesf(ti)  andf(ti+l) bor- 
deringf(t)  to get the bin number. 

Performance  tuning  for POWER Architecture. A 
large amount of inefficiency  in the generic code 
supplied by NASA is  due  to  the  overhead  associ- 
ated with the conversion from a floating-point  num- 
ber to an integer. This conversion is required to 
obtain  the table index and the bin index. The com- 
piler calls a function routine  that  takes many cy- 
cles. In  this  conversion,  the function routine  has 
to take  into  account all possibilities including neg- 
ative integers and overflows. However, in our case, 
the integers are always small and positive. For a 
52-bit positive IEEE floating-point numberx, 2.05' 
+ x  = 2.OS2 + &(x), provided that  the arithmetic 
is  done in the  chop mode. If this result is stored 
back  into memory, its low-order 32 bits  represent 
the integer part ofx,  whenx 5 231 - 1. These  bits 
are  then loaded in a fixed-point register. This store/ 
load combination could introduce  several  cycles 
of delay, and the code must be scheduled to do use- 
ful work during this period. 

We also did some additional tuning that is gener- 
ally applicable to high-performance RISC worksta- 
tions.' 

In  the NAS parallel benchmark  results  report,' 
changes were made to the EP benchmark. In  Sec- 
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Figure 1 Outline of serial MG algorithm 

u = u(0)  0 
for  i = 1. NITER do 

( i n i t i a l i z e   s o i ’ u t i o n )  
(do NITER (=4) mul t igr id   i te ra t ions)  

r x  = v-Au(i-1) (evaluate  residual on f i n e   g r i d )  

for  k = K. K - 1, 3 * , 1 do (down cycle)  

enddo (end down cycle) 

z1 = S rI (apply smoother on coarsest g r i d )  
f o r k  = 1, , K d o  (UP cycle)  

rk = p rk+l ( r e s t r i c t   r e s i d u a ! )  

zk = Q zk-1 (prolongate) 
r k  = rx  - A zk (evaluate  residual)  
Zk = zk + S r k  

enddo 
(apply  smoother) 
(end up cycle) 
(apply  correct ion on f i n e   g r i d )  u ( i )  = u( i - l )  + 

enddo (end  mul t igr id   i terat ions)  

tion 2.1  of Reference 1 the benchmark authors  state 
that “the intent of the EP benchmark is to  provide 
an  accuracy and performance  check on the 
FORTRAN  LOG and SQRT intrinsic . . . ,” and  thus 
they  made two changes. Briefly, the  changes dis- 
allow the use of table look-up and also the  construc- 
tion of the  composite  function SQRT(-LOG(X)). In 
Tables 2a and 2b of Reference 1, EP timings based 
on the  table look-up approach  are given for the 
Cray C90, Cray T3D,  IBM SPl*, and IBM RS/6000-590. 
Here, for brevity, we  only mention that  the  table- 
based  approach  is  about 4.5 times  faster on the S P ~  
machine than  the  nontable-based  approach.  The 
results  reported in this  paper  (see  Table  2  later)  are 
for  the  nontable-based  approach. 

The  multigrid  benchmark 

Statement of the MG problem. The multigrid (MG) 
kernel is a V-cycle multigrid algorithm used to ob- 
tain the  approximate  solution to  the Poisson equa- 
tion, V2u = v ,  on a 256 X 256 X 256 regular grid 
with periodic  boundary  conditions  and  a specified 
spatial  distribution  for v. Four multigrid iterations 
are done, starting with an initial iterate u = 0. Each 
iteration  consists of the following two steps,  where 
K = 8 = log2(256): 

r = v - Au (evaluate residual) 

u = u + MKr (apply correction) 

Here, M K  denotes  the V-cycle multigrid operator, 
and A denotes  the trilinear finite element  discret- 
ization of the Laplacian  operator V2. 
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Figure 1 illustrates the serial implementation of the 
MG algorithm. Here, k denotes  the grid level such 
that  the k-th grid has 2k points in each dimension, 
and z k  = Mkrk. The coefficients of the  operators 
A ,  P ,  Q ,  and S shown in Figure 1 are given in Ref- 
erence 2. These  operators  represent  three-dimen- 
sional, nearest-neighbor, 27-point stencils, but with 
some coefficients set  to zero. A single layer of 
“ghost points” is added around the  exterior bound- 
ary of the  computational  mesh to facilitate eval- 
uation of these  stencils for points on the  external 
boundary. Values of the solution at  these ghost 
points  are  updated using explicit copies of active 
data  points  consistent  with  the specified periodic 
boundary  conditions.  These  copies  are performed 
after  each  update (e.g., for rk, z k ,  - - * ) on each 
grid level. 

Parallel implementation. The parallel implementa- 
tion of the MG kernel is a  data parallel algorithm 
applied at each grid level. The  computational grid 
is subdivided into subdomains using a three-dimen- 
sional block data decomposition, with a one-to-one 
mapping of subdomains  to  processors.  Processors 
are logically  configured  in a three-dimensional grid; 
for example, 32 processors  are configured as a 
2 X 4 X 4  processor grid. Each  processor applies 
the  stencil  operations to grid points in its  subdo- 
main, requiring interprocessor communication to 
access  data needed for  the  evaluation of the  points 
on the  boundary of the subdomain. This decom- 
position is applied only on (finer) grids above  a 
specified grid level. For grids at or below this level 
(Le., on coarser grids), the  distributed  data  are 
combined and replicated in each  processor,  and 

IEM SYSTEMS JOURNAL, VOL 34, NO 2, 1995 



Flgure 2 Outline of parallel algorithm  for  down cycle 

f o r  k = K, K - 1, + . , 1 do (down cyc le   f o r   t h i s  subdomain) 

( r e s t r i c t  subdomain residual)  
(stencil  comnunication) 

i f  k > k,,,,, then 

comunicate(r,) 
endi f 
i f  k = kcuton then 

rk = p rk+l 

gather(rk+, 4 G+1 
Rk = Rk+l 

endi f 
i f  k < kcvtof, then 

endi f 
Rk Rk+l 

enddo 

1 ( form  global   residual   in each processor) 
( res t r i c t   g loba l   res idua l )  

( res t r i c t   g loba l   res idua l )  

(end down cycle) 

each  processor  then  does  the  computation  for all 
points in these  coarser grids. 

Figure 2 summarizes  the parallel implementation 
of the down cycle (residual  restriction) included 
in Figure 1. In Figure 2, rk denotes  the residual for 
points  for the specified subdomain,  and Rk is  the 
residual for all points on level k. 

The communication operation involves the  ex- 
change of subdomain  boundary  data with neigh- 
boring processors in the logical processor grid. 
Given a  subdomain grid of N, x N, x N,, a  total 
of 6(N , )  ’ + 12(N,)  + 8 words  must  be exchanged 
with  processors holding adjacent  subdomains. A 
naive implementation is to  do 26 distinct commu- 
nication operations, involving message lengths of 
1, N,, and (N,) ‘ words.  This implementation can 
be  rather inefficient on typical message-passing ar- 
chitectures  with point-to-point communication 
times given by the usual T,,,, = a + p x msglen. 
The preferred  approach  is to  do only six commu- 
nication operations (two in each of three  coordi- 
nate  dimensions) involving (N, + 2 ) 2  words  for 
each operation. Note  that single “cornerp~int~~ val- 
ues  are moved in successive  communication steps 
as part of the much longer messages. Furthermore, 
in certain  phases of the algorithm, it is necessary 
only to communicate in the  positive (or negative) 
coordinate  directions,  therefore requiring only 
three  distinct communication steps. All such  com- 
munication is implemented using nonblocking, 
double-buffered, point-to-point send  and  receive 
operations.  This communication operation also 
serves to enforce periodic boundary conditions and 
is invoked at  precisely  the  same  phases in the  par- 
allel algorithm as  the  copy  operation  is  done in the 
serial implementation. 
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The  gather  operation  requires  interprocessor  com- 
munication in order  to concatenate  the  distributed 
data  and  then  replicate  the  concatenated  data in 
each  processor. In practice, we use = 3, and 
we  observe  that  the time necessary  to perform the 
gather  operation is negligible since kc,,, << K (= 
8)- 

An analogous procedure is used during the  up  cy- 
cle, in which  the  globalvalues  are  distributed (i.e., 
distribute(Rk-l + rk-1)) at the cutoff grid level. 
This  operation  does not require  interprocessor 
communication since  each  processor merely re- 
sumes  computation  on  only  the  data in its  subdo- 
main. Stencil communication is required after each 
update step  as in the down  cycle. 

The  conjugate  gradient  benchmark 

Statement of the CG problem. The conjugate gra- 
dient (CG) benchmark  “computes  an  iterative ap- 
proximation to  the smallest eigenvalue of a large, 
sparse,  symmetric positive definite matrix. Within 
the  iteration  loop,  the core procedure  is to solve 
a linear system of equations  via  the  conjugate gra- 
dient  method (CGM). This  kernel  is typical of un- 
structured grid computations in that it tests irreg- 
ular long-distance communication, employing 
unstructured  matrix-vector multiplication.”’ 

The  inner  iteration of the CGM computes  the  prod- 
uct of a  sparse  matrix  with  a  vector: 

y = A X  

and then  uses  the result y to  update  the x vector. 
UnlessP,  the number of processors, is very large, 
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Table 1 The  number of processors in a row, P2, for the 
NAS/CG  class B problem 

Cache  Slze  Total  number of processors, P 
1 2 4 8 16 32  64 128 256 512 

32K 1 1 2 8 8 8 8 16 16 16 
64K 1 1 4 8 8 16 16 16 16 16 

128K 1 2 4 8 8 8 8 8 16 16 
256K 1 2 4 4 4 4 8 8 16 16 

the  cost of the update is insignificant. The  size N 
of this problem is the length of x. Another  param- 
eter, k ,  measures  the  sparsity of the  matrix;  each 
row  and column of A  has  about k nonzero ele- 
ments. For  the  class  B  (class  A) problem, N is 
75 000 (14 000), and k is  approximately 183  (133). 

Parallel  implementation. Our tuning of this  kernel 
had three  components: 

1. Selecting an  approach  that minimizes commu- 

2. Using the  memory  hierarchy of the processing 

3. Striving for maximal use of the  processors  on 

nication and computation  costs 

nodes effectively 

the inner loop 

The  choice of a  general  approach was consider- 
ably simplified by  the  decision of the NAS Bench- 
mark  Committee  to disallow approaches  based  on 
factoring  the  sparse  matrix A. The choice  narrows 
to either  a one-dimensional or a two-dimensional 
decomposition of this matrix. Each decomposition 
requires  the  same  amount of computation,  but  the 
one-dimensional decomposition does  not  scale 
well.’ It requires communicating NP values per 
matrix  vector  product as opposed  to  about 2NP ’” 
values in the two-dimensional approach. lo 

Lewis and Van de Geijn’ give a very nice commu- 
nication algorithm for the two-dimensional decom- 
position approach.  The P processors  are logically 
arranged in a P ,  X P2 grid, where  both P ,  and P ,  
are  powers of two. The  data  are  partitioned so that 
the  processor in the  i-th row andj-th column owns 
length NIP subvectors xii and yii  of x  and y, as well 
as an NIP, X NIP, submatrix A,  of  A. It com- 
putes  the  product: 

yj = Aqx, 

where xi is the concatenation of all the xiis for  a 
fixedj.  Construction of the xis from the xiis is  done 
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by an elegant hypercube-based communication 
strategy.  It  requires log, P ,  rounds of communi- 
cations,  with  a combined length of NIP, double- 
words  per  processor.  After  each  processor  com- 
putes  its y{, accumulation and  distribution of the 
yip are accomplished by a similar communication 
strategy. Altogether each global matrixvector mul- 
tiplication requires Nk multiply-adds, communi- 
cation of N ( P ,  + P,) values,  and P log, P mes- 
sages. 

The  key  to effective use of the  memory  hierarchy 
on  each  node is keeping xi in cache during the ma- 
trix-vector multiplication. It can  be achieved by 
an  appropriate  factoring of the  number of proces- 
sors P into P I  and P, .  This  argues  for making P2 
large, but ifP, << P,, the communication cost will 
mount.  In addition, there  is  a  measurable  loop 
overhead  for  the inner loop  that is amortized  over 
klP, multiply-adds. This  also  argues for keeping 
P2 from getting too big. Careful balancing of the 
various  costs  results in the  choices  for P 2  given in 
Table 1. 

The inner loop  computes  the  dot  product of  xi with 
one row of the local submatrix, entailing about klP, 
multiply-adds. Since the matrix is sparse, each mul- 
tiply-add requires  three loads: avalue fromAij,  the 
column index of the  value,  and  the  corresponding 
value from xi. If the column index is used  to  sub- 
script  the vector directly, it must  be  shifted (mul- 
tiplied by the  size of a doubleword) in order  to  be 
used. This additional fixed-point cycle can  be elim- 
inated using the FORTRAN 90 pointer  construct. 
Thus, each multiply-add requires  three loads, each 
taking one cycle on  the POWER Architecture. On 
the POWER2 Architecture, which has  two fixed- 
point units,  the  three  loads  take 1.5 cycles. 

Each floating-point unit is capable of executing  a 
multiply-add every cycle, but  the result is not ready 
until the third cycle. Thus, accumulation of a  dot- 
product  into  a single register  requires two cycles 
per multiply-add. This  situation would result in a 
bottleneck  on  the POWERZ Architecture, so the al- 
ternate  terms of the  dot-product are accumulated 
in two  separate  registers  that  are  added  together 
at  the  end of the loop. If it is  assumed  that  the in- 
put  vector fits in cache,  the resulting code  can  run 
on  the POWER (POWER2) Architecture at about three 
cycles (1.5 cycles)  per multiply-add, plus the  cost 
of cache  misses  on  the  data  structures  represent- 
ing the A matrix. This  cost  depends  on  the  cache 
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size,  but  ranges from 318 cycles (on a  wide-node 
SP2) to 312 cycles (on an sP1) per multiply-add. 

The 3D Fourier  transform  benchmark 

In this  benchmark  a Poisson partial differential 
equation (PDE) is solved using 3D forward and in- 
verse discrete  Fourier  transform (DFT). Basically, 
this benchmark first requires  a forward 3D FFT com- 
putation.  Then in a  loop  the  transformed  data are 
multiplied by a coefficient array followed by an in- 
verse 3D FFT computation. We now give a brief de- 
scription of the  benchmark for the Class B  prob- 
lem size. For details  the  reader  can refer to 
Reference 2. 

Statement of the FlW problem 

Initialization  phase:  Set n1  = 512, n 2  = 256, 
n3 = 256, and a = Generate 2 X n1 X n2 x n3 
64-bit real  numbers using the  pseudorandom  gen- 
erator  outlined in Reference 2. Assign these real 
numbers to a  complex  array, U( 0 : n - 1 ,O : n - 
1,0 : n3 - 1) such  that  two  consecutive real ele- 
ments  are assigned to an element of U .  

Forward  phase: Compute V( 0 : n - 1 ,O : n - 
l , 0 :n3  - l), the 3D DFT of the  array  Uusing  the 
FFT algorithm. 

Inverse  phase: for t = 1 to 20 do 

multiplication step 

f o r O ~ i < n , , O ~ j < n , , O ~ k < n ,  
~ ( i ,  j, k) = e-4aa2(i '2+j '2+k'2) t  Vi, j, k) 

where i' is defined as i for 0 I i < n1/2  and i - n,  
for n1/2 5 i < nl. Similar  definitions  hold for j' 
with n2 and k' with n3. 

inverse 3D DFT step 

ComputeX(O:n, - 1,0:n, - 1,0:n3 - l), the 
3D inverse DFT of the  array U using the FFT al- 
gorithm. 

checksum step 

Compute  the  complex  checksum 2ci1_oi3 X ( q ,  r, 
s), where q = i mod n l ,  r = 3i mod n 2 ,  and 
s = 5i mod n3. 

end for 
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Parallel  implementation. The major effort in par- 
allelizing the  above  benchmark is to efficiently im- 
plement the 3D inverse DFT computation inside the 
for loop. An overall  description of our algorithm 
is as follows. Initially the 3D data  are  assumed  to 
be distributed across  the  processors along the third 
dimension. We first do FFT computation along the 
first dimension. This  computation  does  not require 
any  communication.  Second, we move  data  be- 
tween  the  processors  such  that  the  new  distribu- 
tion across  the  processors is along the first dimen- 
sion.  Third, we  do FFT computation along the 
second and third dimensions locally on  a node with- 
out  any communication. The implementation de- 
tails can  be found in Reference ll. 

On a single node we use FFT routines of the  En- 
gineering and Scientific Subroutine  Library 
(ESSL).~, We implemented the  complete  bench- 
mark using one-dimensional FFT routines along 
with some  data  movement  routines blocked for 
cache.  As  a  result,  cache  behavior of the RISC Sys- 
tern16000 node is better. 

The  integer  sort  benchmark 

Statement of the IS problem. This  benchmark  com- 
putes  ranks, yo, r,, * * * , r,-,, for a given set of 
n integerkeys, ko,  kl ,  - - - , kn-l,  withm-bits  each. 
A rank ri is the position of key ki in the  sorted  as- 
cending order.  In  other  words, ri I rj implies 
ki I k j  for 0 I i, j I n - 1. Here,  we  focus  on 
the ranking problem (m, n )  on a p  processor  ma- 
chine withp r nI2" and n 2 2". The  two ranking 
problems for the  benchmark are: (19, 223) for Class 
A, and (21, 225) for Class B. The  choice of an al- 
gorithm depends  on  the  relative  values of m, n , 
and the  number of processorsp.  The proposed al- 
gorithm is efficient for  any number of processors. 
However,  the communication part of the algorithm 
could be  improved forp < 16. For smaller values 
of p,  the communication part  can  be significantly 
reduced by sending the  count  arrays from each pro- 
cessor,  instead of sending  the  key  values. For 
p < 16, at each  node,  the number of keys  are  more 
than  the  size 2" of the  total  count  array.  Thus it 
is  more efficient to  send  counts instead of keys. 

Parallel  implementation. The  central idea of the al- 
gorithm is  as follows. At  each  node,  we  sort  keys 
into  a  certain  number of buckets  based  on  some 
key  bits. For many reasonable distribution of keys, 
sorting  on  the middle bits  assures  nearly uniform 
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Table  2  Performance  results  In  ratlos to C-9011 for 
Class B NAS kernel  benchmarks;  C-90/1  times 
(In  seconds)  used to com  Ute  these  ratlos 
are:  185.26  (EP),  37.77 (Mg), 122.90  (CG), 
127.44 (FT), and  12.92  (CG) 

~~ 

No. of IBY Cray  TMC  Intel 
Kernel  Procs.  SP2  T3D CMBE Paragon 

EP 

MG 

CG 

FT 

IS 

8 
16 
32 
64 

128 
256 

8 
16 
32 
64 

128 
256 

8 
16 
32 
64 

128 
256 

8 
16 
32 
64 

128 
256 

8 
16 
32 
64 

128 
256 

1.20 
2.40 1.32 
4.84 2.64 
9.54 5.29 

19.30  10.58 
21.15 

1.31 
2.50 0.57 
4.60 1.24 
8.34 3.01 

14.36  5.75 
10.49 

0.74 
1.31 0.21 
1.91 0.41 
2.88 0.74 
4.59 1.44 

2.45 

1.33 
2.40 
4.47 3.12 
8.15 6.08 

11.70 

0.65 
1.17 
1.88 0.51 
3.64 1.00 
6.49 1.97 

3.95 

3.95 
7.85 

15.97 

1.8 
3.3 
5.6 

0.3 
0.6 
1.3 

1.4 
2.8 
3.7 

0.4 
0.8 
1.5 

8.75 
17.66 
34.24 

0.9 
1.8 
2.8 

0.9 
1.76 

2.3 
4.2 

1.1 
1.8 
2.2 

key  density distribution across all buckets. If there 
are nb buckets, nb/p of them are  sent to each pro- 
cessor using a global transpose communication 
routine. Here we assumep  to  be a power of two. 
Each  processor  receives  buckets from all proces- 
sors corresponding  to  some of the middle key bits. 
At this stage, for each  key  value,  there  are  on  the 
average n/2" keys. For  the NAS IS problems this 
average is 16. Therefore, for efficiency, we imple- 
ment a distribution count  sort. 13,14 At the  same 
time, at  no additional cost,  we implement sub- 
bucket  sorting  on  the high-order bits. Each pro- 
cessor assigns subbucket ranks to all keys received 
by it. These  ranks along with all of the  subbucket 
counts  are  sent  back to  the originating processor 
using another global transpose of the  same size. 
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The originating processor  computes  the final rank 
by adding the  subbucket  rank to the global rank 
offset for that  subbucket.  In  the region of interest, 
i.e., n/2" 2 1, both computing and communica- 
tion scale  with  the number of processors. 

Results 

To date, two different specifications of the NAS par- 
allel benchmarks  have  been defined. Class A re- 
fers to  the original problem dimensions, whereas 
Class B denotes a more recent specification in 
which problem sizes  have  been  increased  by a fac- 
tor of four in most of the kernels. 

Table 2 summarizes the performance results for the 
Class B kernels. As is the  convention,  results  are 
reported as ratios to the  respective single-proces- 
sor  Cray c90 time. However, in the  caption of Ta- 
ble 2 we have added the single-processor Cray c90 
times for each of the benchmarks. The wall-clock 
times for each of the  benchmarks  can  thus  be com- 
puted. The S P ~  results  are for a wide-node system 
with 128 MB of memory per node and were obtained 
using the user-space communication protocol in the 
IBM Message-Passing Library15 included as part of 
the IBM Parallel Operating Environment."j For 
comparison, we have  also included the perfor- 
mance results for other scalable parallel machines; 
these  results  are  taken from References 1 and 17. 
Note  that  the IBM sP2 EP results  are based on  the 
latest NAS rules, which also  require additional 
checksums.  The  Intel Paragon performance re- 
sults  correspond to  the  better of the two environ- 
ments, OSF1.2 or SunMos,  wherever applicable. 

In general, the S P ~  performance per  processor ex- 
ceeds  that of the  other parallel machines  shown in 
Table 2 for all processor configurations for which 
the S P ~  results  are available. This performance is 
due primarily to  the very high sustained perfor- 
mance of the S P ~  wide nodes, combined with the 
relatively high sustained  interprocessor commu- 
nication bandwidth for these problems. In review- 
ing this  paper,  one of the  referees noticed that for 
the EP benchmark (Table 2), which requires  very 
little communication, the Intel Paragon perfor- 
mance is almost as good as that of the S P ~ ,  whereas 
for the more communication-intensive benchmarks 
in Table 2, the performance of the Paragon is much 
worse  than  that of the S P ~ .  Here  is  an explanation: 
First, in Reference 17 (see page 5 )  the NAS bench- 
mark  authors  note  that  the  SunMos-turbo  operat- 
ing system for the Paragon allows both i860* * pro- 
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cessors  on  the node to  be used  for  computation (in 
regular SunMos and OSF the  second  processor is 
used purely for communication). Additionally, In- 
tel Paragon results in Table 2 do not include the 
computation of the two new checksums, which 
adds  extra time to  the IBM numbers. Also, NAS 
ground rules require that  only officialvendor librar- 
ies be used for the intrinsic functions such as square 
root  and log. Recently, IBM has made available an 
alternate  library. l8 With the new library we have 
been  able to  decrease  the IBM Sp2 EP numbers in 
Table 2 by about  a  factor of two. 

Summary 

In  this  paper, we have  discussed  the novel tech- 
niques used to implement the NAS kernel  bench- 
marks on the IBM sP2 scalable parallel system. The 
central  idea of these  techniques is to match  the im- 
plementation of these  kernels with the underlying 
architecture of the S P ~ .  Performance  results  have 
shown  that  the S P ~  implementations compare very 
well with results  currently available on  other  scal- 
able parallel machines. 
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