High-performance
parallel
implementations of the
NAS kernel benchmarks
on the IBM SP2

. Recently, researchers at NASA Ames have
defined a set of computational benchmarks
designed to measure the performance of parallel
supercomputers. In this paper, we describe the
parallel implementation of the five kernel
benchmarks from this suite on the IBM SP2™, a
scalable, distributed memory parallel computer.
High-performance implementations of these
kernels have been obtained by mapping the
computation of these kernels to the underlying
architecture of the SP2 machine. Performance
results for the SP2 are compared with publicly
available results for other high-performance
computers.

Researchers at NASA Ames recently defined a
set of computational benchmarks for the per-
formance evaluation of parallel supercomputers for
large scientific applications. > Known as the NAS
parallel benchmarks, this set has become an in-
creasingly recognized means of quantifying the per-
formance of high-performance computers on a
range of algorithms of interest to many users of
such machines. A key feature of these benchmarks
is that the choice of data structures, algorithms,
processor allocation, and memory usage is left
open to the discretion of the implementer. In other
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words, an implementer has the flexibility to design
an algorithm that matches the target machine. This
feature is important in motivating researchers
working in the area of high-performance parallel
algorithms to investigate efficient ways of imple-
menting the benchmarks.

The NAS kernel benchmarks. The Numerical Aero-
dynamic Simulation (NAS) benchmark suite con-
sists of five kernel benchmarks and three simulated
computational fluid dynamics application bench-
marks. In this paper we focus on the implemen-
tation of kernel benchmarks on the IBM SP2*; the
implementation of the simulated application bench-
marks is discussed in References 3, 4, and 5.

The five kernel benchmarks vary in their compu-
tation and communication requirements:
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* EPis an embarrassingly parallel kernel designed
to measure primarily floating-point computation
performance. It requires minimal interprocessor
communication.

* MG is a three-dimensional (3D) multigrid kernel
requiring highly structured interprocessor com-
munication.

* CG is a conjugate gradient kernel to compute an
approximation to the smallest eigenvalue of a
large, sparse matrix. This kernel tests irregular
long-distance communication.

* FT solves a 3D partial differential equation using
fast Fourier transforms (FFTs) and is a rigorous
test of long-distance communication perfor-
mance.

* IS is a large integer sort operation testing both
integer computation speed and interprocessor
communication. This kernel stresses the integer
performance of the underlying node.

The IBM SP2 parallel system. The SP2 is the sec-
ond offering in IBM’s scalable POWERparallel* fam-
ily of parallel systems based on the IBM RISC Sys-
tem/6000* (RS/6000*) processor technology . The SP2
is a distributed memory system consisting of up to
128 processor nodes connected by a High-Perfor-
mance Switch. Three different processor nodes are
available, based on RS/6000 Model 370, 390, and 590
CPU planars. (These nodes are also known as Thin
62, Thin 66, and wide nodes, respectively.) The
Model 370 processor is based on the original POWER
Architecture®, whereas the 390 and 590 processors
are based on POWER2 Architecture*. Each compute
processor has at least 64 megabytes (MB) of local
memory (wide nodes can have up to 2 gigabytes
[GB] of local memory per node). Each compute
node has a locally attached disk.

All performance results reported in this paper are
made on a wide-node SP2 system with POWER2
(Model 590) compute nodes. POWER2 processors
have two floating-point units and two fixed-point
units and therefore can perform two fixed-point in-
structions and two floating-point instructions ev-
ery cycle, if no dependencies exist. The sP2 wide
nodes are clocked at 66 megahertz (MHz), and thus
each node has a peak floating-point performance
of 266 MFLOP/s (megaflops per second) based on
two multiply-add instructions per cycle. This
model has a 256-kilobyte (KB) four-way set-asso-
ciative data cache with a cache line size of 256
bytes. An important feature of the POWER2 Archi-
tecture is the availability of floating-point quad-
word load/store operations. Use of both fixed-point
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units results in an effective bandwidth of four dou-
ble words per cycle between cache and the floating-
point registers. Furthermore, all POWER2 nodes can
fetch a complete cache line from memory in eight
cycles after the first word of the line arrives; on
the SP2 wide nodes, representing a local memory
bandwidth of 32 bytes per cycle, or 2112 MB/s. The
very high data access rates between cache and reg-
isters and between memory and cache make pos-
sible the very high sustained performance of the
POWER?2 nodes in the SP2. Many of the optimiza-
tions discussed in this paper are designed to ex-
ploit these capabilities.

The High-Performance Switch is a multistage
packet switch providing a peak point-to-point
bandwidth of 40 MB/s in each direction between any
two nodes in the system. For the wide-node sys-
tem, the sustained application buffer to application
buffer transfer rate is approximately 35 MB/s for a
unidirectional transfer measured as one half of the
time necessary for a round-trip “ping’ operation
between two compute nodes. The latency (i.e., the
time for a zero-byte message) measured in the same
manner is approximately 40 microseconds on the
Sp2. In the case where a compute processor simul-
taneously sends and receives different messages,
the aggregate (incoming plus outgoing) bandwidth
at this node is approximately 48 MB/s on the wide-
node system. This transfer rate is observed when
two nodes exchange long messages, a common
communication operation in many parallel algo-
rithms.

The embarrassingly parallel benchmark

In this benchmark, two-dimensional statistics are
accumulated from a large number of Gaussian
pseudorandom numbers, which are generated ac-
cording to a particular scheme that is well suited
for parallel computation. This problem is typical
of many “Monte-Carlo™ applications. Since it re-
quires very little communication, this benchmark
measures the computation performance of the un-
derlying node. The problem has been defined in
two sizes: class A, whose size isn = 228, and class
B, whose problem size is four times bigger. Be-
cause the problem scales very nicely, it is suffi-
cient to restrict ourselves to the class B problem
on a single processor.

Statement of the EP problem. The embarrassingly

parallel problem is to generate pairs of Gaussian
random deviates, also called two independent nor-
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mally distributed variables, according to a specific
scheme (see Reference 6), and tabulate the num-
ber of pairs in successive square annuli.

Setn = 2%, g =5, ands = 271828183. Gen-
erate the pseudorandom floating-point values r; in
the interval (0, 1) for 1 < j < 2n using the scheme
described in References 1 and 7. Then for 1 =
jsnsetx; =2ry_, — landy; = 2ry — 1. Thus
x; and y; are uniformly distributed on the interval
(=1, 1). Next set k = 0. Then beginning withj =
1testtoseeift; = x? + y? < 1. If not, reject this
pair and proceed to the next j. If this inequality
holds, then set k = k + 1, X; = x; V(-2 log ,)/t;
and Y, = y; V(-2 log t,)/t; , where log denotes the
natural logarithm. Then X, and Y, are independent
normally distributed variables with zero mean and
unit variance. Approximately n/4 pairs will be con-
structed in this manner. Finally, for0 </ < 9 tabulate
Q, as the count of the pairs (X,, Y,) that lie in the
square annulus / < max ([X,|, |Y:|) <+ 1, and out-
put the ten O, counts.

On a p processor machine, every processor gen-
erates the statistics for a set of n/p points. This gen-
eration is done in parallel without any interproces-
sor communication. The only communication in
this problem is to add the 10 sums from various
processors at the end, which is insignificant. Thus,
the only optimization we did was to improve the
performance of the single node. We now summa-
rize some of the major techniques employed to im-
prove the single node performance. The details can
be found in Reference 8.

An improved random number generator. We used
an improved random number generator that utilizes
the fused multiply-add unit of the RS/6000. During
the multiply-add operation on RS/6000 and Pow-
erPC* machines, all 106 bits of the product are
added to the 53-bit operand, resulting in the best
possible accuracy. On a POWER2 node, the new ran-
dom number generator generates approximately 40
million random numbers per second.

A table-based algorithm for generating Gaussian de-
viates and their classification. The Gaussian devi-
ates are generated using the function f(r) =
V(-2 log t)/t. We subdivide the interval (0,1) into
a set of discrete points ¢, = ik where A is the sub-
interval size. We construct the table of points f{¢,).
The function f(¢) is a monotonic function in the
range of interest 0 < ¢ < 1. Now ¢ = 0 is a sin-
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gularity of f(r). However, only a very small frac-
tion of the random numbers have ¢ close to zero.
Therefore, we handle the ¢ values in the first in-
terval separately as a rare event.

The table of points f(¢;) is used to decide the bin
number / where this random pair lies. Thus, un-

On a p processor machine,
every processor generates the
statistics for a set of np
points.

less we are close to a bin boundary, there isnoneed
to compute f(¢) with high precision. For most of
the cases when we are not close to a bin bound-
ary, we use the table values f(¢;) and f(z,,,) bor-
dering f(z) to get the bin number.

Performance tuning for POWER Architecture. A
large amount of inefficiency in the generic code
supplied by NASA is due to the overhead associ-
ated with the conversion from a floating-point num-
ber to an integer. This conversion is required to
obtain the table index and the bin index. The com-
piler calls a function routine that takes many cy-
cles. In this conversion, the function routine has
to take into account all possibilities including neg-
ative integers and overflows. However, in our case,
the integers are always small and positive. For a
52-bit positive IEEE floating-point numberx, 2.0°*
+x =2.0% + int(x), provided that the arithmetic
is done in the chop mode. If this result is stored
back into memory, its low-order 32 bits represent
the integer part ofx, whenx < 23" — 1. These bits
are then loaded in a fixed-point register. This store/
load combination could introduce several cycles
of delay, and the code must be scheduled to do use-
ful work during this period.

We also did some additional tuning that is gener-
ally applicable to high-performance RISC worksta-
tions.®

In the NAS parallel benchmark results report,’
changes were made to the EP benchmark. In Sec-
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Figure 1 Outline of serial MG algorithm

u=u" =90 (initialize solution)
for i = 1, NITER do (do NITER (=4) multigrid iterations)
re = v—Aut-v (evaluate residual on fine grid)
for k = K, K—1, -+, 1do (down cycle)
re = P Pe (restrict residual)
enddo (end down cycle)
zZy=85n (apply smoother on coarsest grid)
fork=1,-+--, Kdo (up cycle)
2, = Q 24, (prolongate)
re = r, — Az, (evaluate residual)
Zy =2, + 85, (apply smoother)
enddo ) (end up cycle)
uth = -0 4 g, {apply correction on fine grid)
enddo (end multigrid iterations)

tion 2.1 of Reference 1 the benchmark authors state
that “the intent of the EP benchmark is to provide
an accuracy and performance check on the
FORTRAN LOG and SQRT intrinsic . . . ,” and thus
they made two changes. Briefly, the changes dis-
allow the use of table look-up and also the construc-
tion of the composite function SQRT(-LOG(X)). In
Tables 2a and 2b of Reference 1, EP timings based
on the table look-up approach are given for the
Cray €90, Cray T3D, IBM SP1*, and IBM RS/6000-590.
Here, for brevity, we only mention that the table-
based approach is about 4.5 times faster on the SP2
machine than the nontable-based approach. The
results reported in this paper (see Table 2 later) are
for the nontable-based approach.

The muitigrid benchmark

Statement of the MG problem. The multigrid (MG)
kernelis a V-cycle multigrid algorithm used to ob-
tain the approximate solution to the Poisson equa-
tion, V2u = v, on a 256 X 256 X 256 regular grid
with periodic boundary conditions and a specified
spatial distribution for v. Four multigrid iterations
are done, starting with an initial iterate u = 0. Each
iteration consists of the following two steps, where
K = 8 = log,(256):

r=v —Au (evaluate residual)
u=u+M*r (apply correction)

Here, M¥ denotes the V-cycle multigrid operator, ?
and A denotes the trilinear finite element discret-
ization of the Laplacian operator V2.
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Figure 1illustrates the serial implementation of the
MG algorithm. Here, k denotes the grid level such
that the k-th grid has 2* points in each dimension,
and z, = M*r,. The coefficients of the operators
A, P, Q, and S shown in Figure 1 are given in Ref-
erence 2. These operators represent three-dimen-
sional, nearest-neighbor, 27-point stencils, but with
some coefficients set to zero. A single layer of
“ghost points™ is added around the exterior bound-
ary of the computational mesh to facilitate eval-
uation of these stencils for points on the external
boundary. Values of the solution at these ghost
points are updated using explicit copies of active
data points consistent with the specified periodic
boundary conditions. These copies are performed
after each update (e.g., for r;, z;, * *+ ) on each
grid level.

Parallel implementation. The parallel implementa-
tion of the MG kernel is a data parallel algorithm
applied at each grid level. The computational grid
is subdivided into subdomains using a three-dimen-
sional block data decomposition, with a one-to-one
mapping of subdomains to processors. Processors
are logically configured in a three-dimensional grid;
for example, 32 processors are configured as a
2 X 4 x 4 processor grid. Each processor applies
the stencil operations to grid points in its subdo-
main, requiring interprocessor communication to
access data needed for the evaluation of the points
on the boundary of the subdomain. This decom-
position is applied only on (finer) grids above a
specified grid level. For grids at or below this level
(i.e., on coarser grids), the distributed data are
combined and replicated in each processor, and
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Figure 2 Outline of parallel algorithm for down cycle

for k = K, K— 1, -
if k > Koporr then
re= P org
communicate(r,)
endif
if k = Keyorr then
gather(ri, — Re)

-, 1 do

(down cycle for this subdomain)

(restrict subdomain residual)
(stencil communication)

(form global residual in each pracessor)

R, = P Rer (restrict global residual)
endif
if k < Keyorr then
R = 1 (restrict global residual)
endif
enddo {end down cycle)

each processor then does the computation for all
points in these coarser grids.

Figure 2 summarizes the parallel implementation
of the down cycle (residual restriction) included
in Figure 1. In Figure 2, r, denotes the residual for
points for the specified subdomain, and R, is the
residual for all points on level k.

The communication operation involves the ex-
change of subdomain boundary data with neigh-
boring processors in the logical processor grid.
Given a subdomain grid of N; X N; X N, atotal
of 6(N,)? + 12(N,) + 8 words must be exchanged
with processors holding adjacent subdomains. A
naive implementation is to do 26 distinct commu-
nication operations, involving message lengths of
1, N, and (N,)* words. This implementation can
be rather inefficient on typical message-passing ar-
chitectures with point-to-point communication
times given by theusual T,,,,,, = a + B X msglen.
The preferred approach is to do only six commu-
nication operations (two in each of three coordi-
nate dimensions) involving (N, + 2)? words for
each operation. Note that single “cornerpoint” val-
ues are moved in successive communication steps
as part of the much longer messages. Furthermore,
in certain phases of the algorithm, it is necessary
only to communicate in the positive (or negative)
coordinate directions, therefore requiring only
three distinct communication steps. All such com-
munication is implemented using nonblocking,
double-buffered, point-to-point send and receive
operations. This communication operation also
serves to enforce periodic boundary conditions and
is invoked at precisely the same phases in the par-
allel algorithm as the copy operation is done in the
serial implementation.
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The gather operation requires interprocessor com-
munication in order to concatenate the distributed
data and then replicate the concatenated data in
each processor. In practice, we use k.. = 3, and
we observe that the time necessary to perform the
gather operation is negligible since k ...,y << K (=
8).

An analogous procedure is used during the up cy-
cle, inwhich the global values are distributed (i.e.,
distribute(R,., — r,_;)) at the cutoff grid level.
This operation does not require interprocessor
communication since each processor merely re-
sumes computation on only the data in its subdo-
main. Stencil communication is required after each
update step as in the down cycle.

The conjugate gradient benchmark

Statement of the CG problem. The conjugate gra-
dient (CG) benchmark “computes an iterative ap-
proximation to the smallest eigenvalue of a large,
sparse, symmetric positive definite matrix. Within
the iteration loop, the core procedure is to solve
alinear system of equations via the conjugate gra-
dient method (CGM). This kernel is typical of un-
structured grid computations in that it tests irreg-
ular long-distance communication, employing
unstructured matrix-vector multiplication.”?

The inner iteration of the CGM computes the prod-
uct of a sparse matrix with a vector:

y = Ax

and then uses the result y to update the x vector.
Unless P, the number of processors, is very large,
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Table 1 The number of processors in a row, P,, for the
NAS/CG class B problem

Cache Size Total number of processors, P

1 2 4 8 16 32 64 128 256 512

32K 1128 8 8 8 16 16 16
64K 1148 8 16 16 16 16 16
128K 1248 8 8 8 8 16 16
256K 1244 4 4 8 8 16 16

the cost of the update is insignificant. The size N
of this problem is the length of x. Another param-
eter, k, measures the sparsity of the matrix; each
row and column of A has about k& nonzero ele-
ments. For the class B (class A) problem, N is
75000 (14 000), and k is approximately 183 (133).

Parallel implementation. Our tuning of this kernel
had three components:

1. Selecting an approach that minimizes commu-
nication and computation costs

2. Using the memory hierarchy of the processing
nodes effectively

3. Striving for maximal use of the processors on
the inner loop

The choice of a general approach was consider-
ably simplified by the decision of the NAS Bench-
mark Committee to disallow approaches based on
factoring the sparse matrix A. The choice narrows
to either a one-dimensional or a two-dimensional
decomposition of this matrix. Each decomposition
requires the same amount of computation, but the
one-dimensional decomposition does not scale
well.® It requires communicating NP values per
matrix vector product as opposed to about 2N P2
values in the two-dimensional approach. !

Lewis and Van de Geijn® give a very nice commu-
nication algorithm for the two-dimensional decom-
position approach. The P processors are logically
arranged in a P, X P, grid, where both P, and P,
are powers of two. The data are partitioned so that
the processor in the i-th row andj-th column owns
length N/P subvectors x; andy; of xand y, as well
as an N/P; X N/P, submatrix A; of A. It com-
putes the product:

J =
y: = Aijxj

where x; is the concatenation of all the x;s for a
fixedj. Construction of the x;s from the x,;s is done
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by an elegant hypercube-based communication
strategy. It requires log, P, rounds of communi-
cations, with a combined length of N/P, double-
words per processor. After each processor com-
putes its y/, accumulation and distribution of the
Y¥;s are accomplished by a similar communication
strategy. Altogether each global matrix vector mul-
tiplication requires Nk multiply-adds, communi-
cation of N(P; + P,) values, and P log, P mes-
sages.

The key to effective use of the memory hierarchy
on each node is keeping x; in cache during the ma-
trix-vector multiplication. It can be achieved by
an appropriate factoring of the number of proces-
sors P into P, and P,. This argues for making P,
large, butif P, << P,, the communication cost will
mount. In addition, there is a measurable loop
overhead for the inner loop that is amortized over
k/P, multiply-adds. This also argues for keeping
P, from getting too big. Careful balancing of the
various costs results in the choices for P, given in
Table 1.

The inner loop computes the dot product of x; with
one row of the local submatrix, entailing about k/P,
multiply-adds. Since the matrix is sparse, each mul-
tiply-add requires three loads: a value from A, the
column index of the value, and the corresponding
value from x;. If the column index is used to sub-
script the vector directly, it must be shifted (mul-
tiplied by the size of a doubleword) in order to be
used. This additional fixed-point cycle can be elim-
inated using the FORTRAN 90 pointer construct.
Thus, each multiply-add requires three loads, each
taking one cycle on the POWER Architecture. On
the POWER2 Architecture, which has two fixed-
point units, the three loads take 1.5 cycles.

Each floating-point unit is capable of executing a
multiply-add every cycle, but the result is not ready
until the third cycle. Thus, accumulation of a dot-
product into a single register requires two cycles
per multiply-add. This situation would result in a
bottleneck on the POWER2 Architecture, so the al-
ternate terms of the dot-product are accumulated
in two separate registers that are added together
at the end of the loop. If it is assumed that the in-
put vector fits in cache, the resulting code can run
on the POWER (POWER2) Architecture at about three
cycles (1.5 cycles) per multiply-add, plus the cost
of cache misses on the data structures represent-
ing the A matrix. This cost depends on the cache
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size, but ranges from 3/8 cycles (on a wide-node
SP2) to 3/2 cycles (on an SP1) per multiply-add.

The 3D Fourier transform benchmark

In this benchmark a Poisson partial differential
equation (PDE) is solved using 3D forward and in-
verse discrete Fourier transform (DFT). Basically,
this benchmark first requires a forward 3D FFT com-
putation. Then in a loop the transformed data are
multiplied by a coefficient array followed by an in-
verse 3D FFT computation. We now give a brief de-
scription of the benchmark for the Class B prob-
lem size. For details the reader can refer to
Reference 2.

Statement of the FFT problem

Initialization phase: Set n, = 512, n, = 256,
n; =256, and o = 1075, Generate 2 X n; X n, X n,
64-bit real numbers using the pseudorandom gen-
erator outlined in Reference 2. Assign these real
numbers to a complex array, U(0:n, — 1,0:n, —
1,0:n5 — 1) such that two consecutive real ele-
ments are assigned to an element of U.

Forward phase: Compute V(0:n, — 1,0:n, -
1,0:n5; — 1), the 3D DFT of the array U using the
FFT algorithm.

Inverse phase: for t = 1 to 20 do
multiplication step
forO0<i<n,0=<j<n,, 0=<k<n,

W(l, ja k) = e—47ra2(i'2+j’2+k’2)tV(l~’ j’ k)

where i’ is defined asifor0 <i <n;/2andi — n,
for n,/2 < i < n,. Similar definitions hold for j’
with n, and k' with n,.
inverse 3D DFT step
Compute X(0:n; — 1,0:n, — 1,0:n; — 1), the
3D inverse DFT of the array U using the FFT al-
gorithm.
checksum step
Compute the complex checksum X% X(q, r,
s), where g = i mod n,, r = 3i mod n,, and

s = 5i mod n,.

end for
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Parallel implementation. The major effort in par-
allelizing the above benchmark is to efficiently im-
plement the 3D inverse DFT computation inside the
for loop. An overall description of our algorithm
is as follows. Initially the 3D data are assumed to
be distributed across the processors along the third
dimension. We first do FFT computation along the
first dimension. This computation does not require
any communication. Second, we move data be-
tween the processors such that the new distribu-
tion across the processors is along the first dimen-
sion. Third, we do FFT computation along the
second and third dimensions locally on a node with-
out any communication. The implementation de-
tails can be found in Reference 11.

On a single node we use FFT routines of the En-
gineering and Scientific Subroutine Library
(ESSL)."” We implemented the complete bench-
mark using one-dimensional FFT routines along
with some data movement routines blocked for
cache. As aresult, cache behavior of the RISC Sys-
tem/6000 node is better.

The integer sort benchmark

Statement of the IS problem. This benchmark com-
putes ranks, ry, ¥y, -+ -, r,_;, for a given set of
n integerkeys, kg, k1, * -+ , k,_q, withm-bits each.
A rank r; is the position of key ; in the sorted as-
cending order. In other words, r; < r; implies
ki <k;for0<1i,j<n— 1. Here, we focus on
the ranking problem (m, n) on a p processor ma-
chine withp = n/2" andn = 2™. The two ranking
problems for the benchmark are: (19, 2%) for Class
A, and (21, 2%) for Class B. The choice of an al-
gorithm depends on the relative values of m, n,
and the number of processors p. The proposed al-
gorithm is efficient for any number of processors.
However, the communication part of the algorithm
could be improved for p < 16. For smaller values
of p, the communication part can be significantly
reduced by sending the count arrays from each pro-
cessor, instead of sending the key values. For
p < 16, ateach node, the number of keys are more
than the size 2™ of the total count array. Thus it
is more efficient to send counts instead of keys.

Parallel implementation. The central idea of the al-
gorithm is as follows. At each node, we sort keys
into a certain number of buckets based on some
key bits. For many reasonable distribution of keys,
sorting on the middle bits assures nearly uniform
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Table 2 Performance results in ratios to C-90/1 for
Class B NAS kernel benchmarks; C-90/1 times
(in seconds) used to compute these ratios
are: 185.26 (EP), 37.77 (MG), 122.90 (CG),
127.44 (FT), and 12.92 (CG)

No.of IBM Cray T™MC intel
Kernel Procs. SP2 T3D CM-5E Paragon
EP 8 1.20
16 2.40 1.32
32 4.84 264 3.95
64 9.54 529 7.85 8.75
128 19.30 10.58 15.97 17.66
256 21.15 34.24
MG 8 1.31
16 250 057
32 460 1.24 1.8
64 834 3.01 33 0.9
128 1436  5.75 5.6 1.8
256 10.49 2.8
CG 8 0.74
16 131 0.21
32 1.91 041 0.3
64 288 0.74 0.6
128 459  1.44 1.3 0.9
256 2.45 1.76
FT 8
16 1.33
32 2.40 14
64 447 312 2.8
128 875 6.08 37 2.3
256 11.70 4.2
IS 8 0.65
16 1.17
32 1.88 0.51 0.4
64 3.64 1.00 0.8 1.1
128 6.49 1.97 15 1.8
256 3.95 2.2

key density distribution across all buckets. If there
are nb buckets, nb/p of them are sent to each pro-
cessor using a global transpose communication
routine. Here we assume p to be a power of two.
Each processor receives buckets from all proces-
sors corresponding to some of the middle key bits.
At this stage, for each key value, there are on the
average n/2" keys. For the NAS IS problems this
average is 16. Therefore, for efficiency, we imple-
ment a distribution count sort.’>'* At the same
time, at no additional cost, we implement sub-
bucket sorting on the high-order bits. Each pro-
cessor assigns subbucket ranks to all keys received
by it. These ranks along with all of the subbucket
counts are sent back to the originating processor
using another global transpose of the same size.
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The originating processor computes the final rank
by adding the subbucket rank to the global rank
offset for that subbucket. In the region of interest,
i.e., n/2™ = 1, both computing and communica-
tion scale with the number of processors.

Results

To date, two different specifications of the NAS par-
allel benchmarks have been defined. Class A re-
fers to the original problem dimensions, whereas
Class B denotes a more recent specification in
which problem sizes have been increased by a fac-
tor of four in most of the kernels.'

Table 2 summarizes the performance results for the
Class B kernels. As is the convention, results are
reported as ratios to the respective single-proces-
sor Cray C90 time.' However, in the caption of Ta-
ble 2 we have added the single-processor Cray C90
times for each of the benchmarks. The wall-clock
times for each of the benchmarks can thus be com-
puted. The SP2 results are for a wide-node system
with 128 MB of memory per node and were obtained
using the user-space communication protocol in the
IBM Message-Passing Library " included as part of
the 1BM Parallel Operating Environment.'¢ For
comparison, we have also included the perfor-
mance results for other scalable parallel machines;
these results are taken from References 1 and 17.
Note that the IBM SP2 EP results are based on the
latest NAS rules, which also require additional
checksums.' The Intel Paragon performance re-
sults correspond to the better of the two environ-
ments, OSF1.2 or SunMos, wherever applicable.

In general, the SP2 performance per processor €X-
ceeds that of the other parallel machines shown in
Table 2 for all processor configurations for which
the SP2 results are available. This performance is
due primarily to the very high sustained perfor-
mance of the SP2 wide nodes, combined with the
relatively high sustained interprocessor commu-
nication bandwidth for these problems. In review-
ing this paper, one of the referees noticed that for
the EP benchmark (Table 2), which requires very
little communication, the Intel Paragon perfor-
mance is almost as good as that of the SP2, whereas
for the more communication-intensive benchmarks
in Table 2, the performance of the Paragon is much
worse than that of the sp2. Here is an explanation:
First, in Reference 17 (see page 5) the NAS bench-
mark authors note that the SunMos-turbo operat-
ing system for the Paragon allows both i860** pro-
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cessors on the node to be used for computation (in
regular SunMos and OSF the second processor is
used purely for communication). Additionally, In-
tel Paragon results in Table 2 do not include the
computation of the two new checksums, which
adds extra time to the IBM numbers. Also, NAS
ground rules require that only official vendor librar-
ies be used for the intrinsic functions such as square
root and log. Recently, IBM has made available an
alternate library.'® With the new library we have
been able to decrease the IBM SP2 EP numbers in
Table 2 by about a factor of two.

Summary

In this paper, we have discussed the novel tech-
niques used to implement the NAS kernel bench-
marks on the IBM SP2 scalable parallel system. The
central idea of these techniques is to match the im-
plementation of these kernels with the underlying
architecture of the SP2. Performance results have
shown that the SP2 implementations compare very
well with results currently available on other scal-
able parallel machines. -
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