
High-performance
parallel
implementations of the
NAS kernel benchmarks
on the IBM SP2

by R. C. Agarwal
B. Alpern
L. Carter
F. G. Gustavson
D. J. Klepacki
R. Lawrence
M. Zubair

Recently, researchers at NASA Ames have
defined a set of computational benchmarks
designed to measure the performance of parallel
supercomputers. In this paper, we describe the
parallel implementation of the five kernel
benchmarks from this suite on the IBM SP2TM, a
scalable, distributed memory parallel computer.
High-performance implementations of these
kernels have been obtained by mapping the
computation of these kernels to the underlying
architecture of the SP2 machine. Performance
results for the SP2 are compared with publicly
available results for other high-performance
computers.

R esearchers at NASA Ames recently defined a
set of computational benchmarks for the per-

formance evaluation of parallel supercomputers for
large scientific applications. ',' Known as the NAS
parallel benchmarks, this set has become an in-
creasingly recognized means of quantifylng the per-
formance of high-performance computers on a
range of algorithms of interest to many users of
such machines. A key feature of these benchmarks
is that the choice of data structures, algorithms,
processor allocation, and memory usage is left
open to the discretion of the implementer. In other

words, an implementer has the flexibility to design
an algorithm that matches the target machine. This
feature is important in motivating researchers
working in the area of high-performance parallel
algorithms to investigate efficient ways of imple-
menting the benchmarks.

The NAS kernel benchmarks. The Numerical Aero-
dynamic Simulation (NAS) benchmark suite con-
sists of five kernel benchmarks and three simulated
computational fluid dynamics application bench-
marks. In this paper we focus on the implemen-
tation of kernel benchmarks on the IBM sP2*; the
implementation of the simulated application bench-
marks is discussed in References 3, 4, and 5.

The five kernel benchmarks vary in their compu-
tation and communication requirements:

Wopyright 1995 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is
done without alteration and (2) theJoumnlreference and IBM
copyright notice are included on the first page. The title and
abstract, but no other portions, of this paper may be copied or
distributed royalty freewithout further permission bycomputer-
based and other information-service systems. Permission tore-
publish any other portion of this paper must be obtained from
the Editor.

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995 0018-8670/95/$3.00 D 1995 IBM AGARWAL ET AL. 263

EP is an embawassinglyparallel kernel designed
to measure primarily floating-point computation
performance. It requires minimal interprocessor
communication.
MG is a three-dimensional (3D) multigrid kernel
requiring highly structured interprocessor com-
munication.
CG is a conjugategradient kernel to compute an
approximation to the smallest eigenvalue of a
large, sparse matrix. This kernel tests irregular
long-distance communication.
FT solves a 3D partial differential equation using
fast Fourier transforms (FFTS) and is a rigorous
test of long-distance communication perfor-
mance.
IS is a large integer sort operation testing both
integer computation speed and interprocessor
communication. This kernel stresses the integer
performance of the underlying node.

The IBM SP2 parallel system. The S P ~ is the sec-
ond offering in IBM’s scalable PoWERparallel* fam-
ily of parallel systems based on the IBM RISC Sys-
tem/6000* (RS/6000*) processor technology. The sp2
is a distributed memory system consisting of up to
128 processor nodes connected by a High-Perfor-
mance Switch. Three different processor nodes are
available, based on RS/6000 Model 370,390, and 590
CPU planars. (These nodes are also known as Thin
62, Thin 66, and wide nodes, respectively.) The
Model 370 processor is based on the original POWER
Architecture*, whereas the 390 and 590 processors
are based on POWER2 Architecture*. Each compute
processor has at least 64 megabytes (MB) of local
memory (wide nodes can have up to 2 gigabytes
[GB] of local memory per node). Each compute
node has a locally attached disk.

All performance results reported in this paper are
made on a wide-node Sp2 system with POWER2
(Model 590) compute nodes. POWER2 processors
have two floating-point units and two fixed-point
units and therefore can perform two fixed-point in-
structions and two floating-point instructions ev-
ery cycle, if no dependencies exist. The S P ~ wide
nodes are clocked at 66 megahertz (MHZ), and thus
each node has a peak floating-point performance
of 266 MFLOP/S (megaflops per second) based on
two multiply-add instructions per cycle. This
model has a 256-kilobyte (KB) four-way set-asso-
ciative data cache with a cache line size of 256
bytes. An important feature of the POWER2 Archi-
tecture is the availability of floating-point quad-
word load/store operations. Use of both fixed-point

264 AGARWAL ET AL.

units results in an effective bandwidth of four dou-
ble words per cycle between cache and the floating-
point registers. Furthermore, all POWW nodes can
fetch a complete cache line from memory in eight
cycles after the first word of the line arrives; on
the sp2 wide nodes, representing a local memory
bandwidth of 32 bytes per cycle, or 2112 M B ~ . The
very high data access rates between cache and reg-
isters and between memory and cache make pos-
sible the very high sustained performance of the
POWER2 nodes in the sP2. Many of the optimiza-
tions discussed in this paper are designed to ex-
ploit these capabilities.

The High-Performance Switch is a multistage
packet switch providing a peak point-to-point
bandwidth of 40 MB/S in each direction between any
two nodes in the system. For the wide-node sys-
tem, the sustained application buffer to application
buffer transfer rate is approximately 35 MB/s for a
unidirectional transfer measured as one half of the
time necessary for a round-trip “ping” operation
between two compute nodes. The latency (i.e., the
time for a zero-byte message) measured in the same
manner is approximately 40 microseconds on the
S P ~ . In the case where a compute processor simul-
taneously sends and receives different messages,
the aggregate (incoming plus outgoing) bandwidth
at this node is approximately 48 MB/s on the wide-
node system. This transfer rate is observed when
two nodes exchange long messages, a common
communication operation in many parallel algo-
rithms.

The embarrassingly parallel benchmark

In this benchmark, two-dimensional statistics are
accumulated from a large number of Gaussian
pseudorandom numbers, which are generated ac-
cording to a particular scheme that is well suited
for parallel computation. This problem is typical
of many “Monte-Carlo” applications. Since it re-
quires very little communication, this benchmark
measures the computation performance of the un-
derlying node. The problem has been defined in
two sizes: class A, whose size is n = 2 28, and class
B, whose problem size is four times bigger. Be-
cause the problem scales very nicely, it is suffi-
cient to restrict ourselves to the class B problem
on a single processor.

Statement of the EP problem. The embarrassingly
parallel problem is to generate pairs of Gaussian
random deviates, also called two independent nor-

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995

mally distributed variables, according to a specific
scheme (see Reference 6), and tabulate the num-
ber of pairs in successive square annuli.

Set n = 230, a = 513, ands = 271828183. Gen-
erate the pseudorandom floating-point values rj in
the interval (0,l) for 1 I j I 2n using the scheme
described in References 1 and 7. Then for 1 I
j I n setxj = 2rzj-1 - 1 andyj = 2rzj - 1. Thus
x j andyj are uniformly distributed on the interval
(- 1, 1). Next set k = 0. Then beginning with j =
1 test to see if ti = x,? + y,? I 1. If not, reject this
pair and proceed to the next j . If this inequality
holds, then set k = k + 1, x k = xjd(-2 log tj)/tj
and Y k = yjd(-2 log tj)/tj , where log denotes the
natural logarithm. Then X k and Y, are independent
normally distributed variables with zero mean and
unit variance. Approximatelynd4 pairs will be con-
structed in this manner. Finally, for 0 I I I 9 tabulate
Ql as the count of the pairs (x k , Y k) that lie in the
square annulus I I max (Fkl, IYkl) e I + 1, and out-
put the ten Ql counts.

On a p processor machine, every processor gen-
erates the statistics for a set of n/p points. This gen-
eration is done in parallel without any interproces-
sor communication. The only communication in
this problem is to add the 10 sums from various
processors at the end, which is insignificant. Thus,
the only optimization we did was to improve the
performance of the single node. We now summa-
rize some of the major techniques employed to im-
prove the single node performance. The details can
be found in Reference 8.

An improved random number generator. We used
an improved random number generator that utilizes
the fused multiply-add unit of the RS/6000. During
the multiply-add operation on RS/6000 and Pow-
erPC* machines, all 106 bits of the product are
added to the 53-bit operand, resulting in the best
possible accuracy. On a POWEW node, the new ran-
dom number generator generates approximately 40
million random numbers per second.

A table-based algorithm for generating Gaussian de-
viates and their classification. The Gaussian devi-
ates are generated using the function f(t) =
g(-2 log t) / t . We subdivide the interval (0,l) into
a set of discrete points t i = ih where h is the sub-
interval size. We construct the table of pointsf(t,).
The functionf(t) is a monotonic function in the
range of interest 0 < t < 1. Now t = 0 is a sin-

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995

gularity off(t). However, only a very small frac-
tion of the random numbers have t close to zero.
Therefore, we handle the t values in the first in-
terval separately as a rare event.

The table of pointsf(ti) is used to decide the bin
number I where this random pair lies. Thus, un-

On a p processor machine,
every processor generates the

statistics for a set of rt'p
points.

less we are close to a bin boundary, there is no need
to computef(t) with high precision. For most of
the cases when we are not close to a bin bound-
ary, we use the table valuesf(ti) andf(ti+l) bor-
deringf(t) to get the bin number.

Performance tuning for POWER Architecture. A
large amount of inefficiency in the generic code
supplied by NASA is due to the overhead associ-
ated with the conversion from a floating-point num-
ber to an integer. This conversion is required to
obtain the table index and the bin index. The com-
piler calls a function routine that takes many cy-
cles. In this conversion, the function routine has
to take into account all possibilities including neg-
ative integers and overflows. However, in our case,
the integers are always small and positive. For a
52-bit positive IEEE floating-point numberx, 2.05'
+ x = 2.OS2 + &(x), provided that the arithmetic
is done in the chop mode. If this result is stored
back into memory, its low-order 32 bits represent
the integer part ofx, whenx 5 231 - 1. These bits
are then loaded in a fixed-point register. This store/
load combination could introduce several cycles
of delay, and the code must be scheduled to do use-
ful work during this period.

We also did some additional tuning that is gener-
ally applicable to high-performance RISC worksta-
tions.'

In the NAS parallel benchmark results report,'
changes were made to the EP benchmark. In Sec-

AGARWAL ET AL. 265

Figure 1 Outline of serial MG algorithm

u = u(0) 0
for i = 1. NITER do

(i n i t i a l i z e s o i ’ u t i o n)
(do NITER (=4) mul t igr id i te ra t ions)

r x = v-Au(i-1) (evaluate residual on f i n e g r i d)

for k = K. K - 1, 3 * , 1 do (down cycle)

enddo (end down cycle)

z1 = S rI (apply smoother on coarsest g r i d)
f o r k = 1, , K d o (UP cycle)

rk = p rk+l (r e s t r i c t r e s i d u a !)

zk = Q zk-1 (prolongate)
r k = rx - A zk (evaluate residual)
Zk = zk + S r k

enddo
(apply smoother)
(end up cycle)
(apply correct ion on f i n e g r i d) u (i) = u(i - l) +

enddo (end mul t igr id i terat ions)

tion 2.1 of Reference 1 the benchmark authors state
that “the intent of the EP benchmark is to provide
an accuracy and performance check on the
FORTRAN LOG and SQRT intrinsic . . . ,” and thus
they made two changes. Briefly, the changes dis-
allow the use of table look-up and also the construc-
tion of the composite function SQRT(-LOG(X)). In
Tables 2a and 2b of Reference 1, EP timings based
on the table look-up approach are given for the
Cray C90, Cray T3D, IBM SPl*, and IBM RS/6000-590.
Here, for brevity, we only mention that the table-
based approach is about 4.5 times faster on the S P ~
machine than the nontable-based approach. The
results reported in this paper (see Table 2 later) are
for the nontable-based approach.

The multigrid benchmark

Statement of the MG problem. The multigrid (MG)
kernel is a V-cycle multigrid algorithm used to ob-
tain the approximate solution to the Poisson equa-
tion, V2u = v , on a 256 X 256 X 256 regular grid
with periodic boundary conditions and a specified
spatial distribution for v. Four multigrid iterations
are done, starting with an initial iterate u = 0. Each
iteration consists of the following two steps, where
K = 8 = log2(256):

r = v - Au (evaluate residual)

u = u + MKr (apply correction)

Here, M K denotes the V-cycle multigrid operator,
and A denotes the trilinear finite element discret-
ization of the Laplacian operator V2.

266 AGARWAL ET AL.

Figure 1 illustrates the serial implementation of the
MG algorithm. Here, k denotes the grid level such
that the k-th grid has 2k points in each dimension,
and z k = Mkrk. The coefficients of the operators
A , P , Q , and S shown in Figure 1 are given in Ref-
erence 2. These operators represent three-dimen-
sional, nearest-neighbor, 27-point stencils, but with
some coefficients set to zero. A single layer of
“ghost points” is added around the exterior bound-
ary of the computational mesh to facilitate eval-
uation of these stencils for points on the external
boundary. Values of the solution at these ghost
points are updated using explicit copies of active
data points consistent with the specified periodic
boundary conditions. These copies are performed
after each update (e.g., for rk, z k , - - *) on each
grid level.

Parallel implementation. The parallel implementa-
tion of the MG kernel is a data parallel algorithm
applied at each grid level. The computational grid
is subdivided into subdomains using a three-dimen-
sional block data decomposition, with a one-to-one
mapping of subdomains to processors. Processors
are logically configured in a three-dimensional grid;
for example, 32 processors are configured as a
2 X 4 X 4 processor grid. Each processor applies
the stencil operations to grid points in its subdo-
main, requiring interprocessor communication to
access data needed for the evaluation of the points
on the boundary of the subdomain. This decom-
position is applied only on (finer) grids above a
specified grid level. For grids at or below this level
(Le., on coarser grids), the distributed data are
combined and replicated in each processor, and

IEM SYSTEMS JOURNAL, VOL 34, NO 2, 1995

Flgure 2 Outline of parallel algorithm for down cycle

f o r k = K, K - 1, + . , 1 do (down cyc le f o r t h i s subdomain)

(r e s t r i c t subdomain residual)
(stencil comnunication)

i f k > k,,,,, then

comunicate(r,)
endi f
i f k = kcuton then

rk = p rk+l

gather(rk+, 4 G+1
Rk = Rk+l

endi f
i f k < kcvtof, then

endi f
Rk Rk+l

enddo

1 (form global residual in each processor)
(res t r i c t g loba l res idua l)

(res t r i c t g loba l res idua l)

(end down cycle)

each processor then does the computation for all
points in these coarser grids.

Figure 2 summarizes the parallel implementation
of the down cycle (residual restriction) included
in Figure 1. In Figure 2, rk denotes the residual for
points for the specified subdomain, and Rk is the
residual for all points on level k.

The communication operation involves the ex-
change of subdomain boundary data with neigh-
boring processors in the logical processor grid.
Given a subdomain grid of N, x N, x N,, a total
of 6(N ,) ’ + 12(N,) + 8 words must be exchanged
with processors holding adjacent subdomains. A
naive implementation is to do 26 distinct commu-
nication operations, involving message lengths of
1, N,, and (N,) ‘ words. This implementation can
be rather inefficient on typical message-passing ar-
chitectures with point-to-point communication
times given by the usual T,,,, = a + p x msglen.
The preferred approach is to do only six commu-
nication operations (two in each of three coordi-
nate dimensions) involving (N, + 2) 2 words for
each operation. Note that single “cornerp~int~~ val-
ues are moved in successive communication steps
as part of the much longer messages. Furthermore,
in certain phases of the algorithm, it is necessary
only to communicate in the positive (or negative)
coordinate directions, therefore requiring only
three distinct communication steps. All such com-
munication is implemented using nonblocking,
double-buffered, point-to-point send and receive
operations. This communication operation also
serves to enforce periodic boundary conditions and
is invoked at precisely the same phases in the par-
allel algorithm as the copy operation is done in the
serial implementation.

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995

The gather operation requires interprocessor com-
munication in order to concatenate the distributed
data and then replicate the concatenated data in
each processor. In practice, we use = 3, and
we observe that the time necessary to perform the
gather operation is negligible since kc,,, << K (=
8)-

An analogous procedure is used during the up cy-
cle, in which the globalvalues are distributed (i.e.,
distribute(Rk-l + rk-1)) at the cutoff grid level.
This operation does not require interprocessor
communication since each processor merely re-
sumes computation on only the data in its subdo-
main. Stencil communication is required after each
update step as in the down cycle.

The conjugate gradient benchmark

Statement of the CG problem. The conjugate gra-
dient (CG) benchmark “computes an iterative ap-
proximation to the smallest eigenvalue of a large,
sparse, symmetric positive definite matrix. Within
the iteration loop, the core procedure is to solve
a linear system of equations via the conjugate gra-
dient method (CGM). This kernel is typical of un-
structured grid computations in that it tests irreg-
ular long-distance communication, employing
unstructured matrix-vector multiplication.”’

The inner iteration of the CGM computes the prod-
uct of a sparse matrix with a vector:

y = A X

and then uses the result y to update the x vector.
UnlessP, the number of processors, is very large,

AGARWAL ET AL. 267

Table 1 The number of processors in a row, P2, for the
NAS/CG class B problem

Cache Slze Total number of processors, P
1 2 4 8 16 32 64 128 256 512

32K 1 1 2 8 8 8 8 16 16 16
64K 1 1 4 8 8 16 16 16 16 16

128K 1 2 4 8 8 8 8 8 16 16
256K 1 2 4 4 4 4 8 8 16 16

the cost of the update is insignificant. The size N
of this problem is the length of x. Another param-
eter, k , measures the sparsity of the matrix; each
row and column of A has about k nonzero ele-
ments. For the class B (class A) problem, N is
75 000 (14 000), and k is approximately 183 (133).

Parallel implementation. Our tuning of this kernel
had three components:

1. Selecting an approach that minimizes commu-

2. Using the memory hierarchy of the processing

3. Striving for maximal use of the processors on

nication and computation costs

nodes effectively

the inner loop

The choice of a general approach was consider-
ably simplified by the decision of the NAS Bench-
mark Committee to disallow approaches based on
factoring the sparse matrix A. The choice narrows
to either a one-dimensional or a two-dimensional
decomposition of this matrix. Each decomposition
requires the same amount of computation, but the
one-dimensional decomposition does not scale
well.’ It requires communicating NP values per
matrix vector product as opposed to about 2NP ’”
values in the two-dimensional approach. lo

Lewis and Van de Geijn’ give a very nice commu-
nication algorithm for the two-dimensional decom-
position approach. The P processors are logically
arranged in a P , X P2 grid, where both P , and P ,
are powers of two. The data are partitioned so that
the processor in the i-th row andj-th column owns
length NIP subvectors xii and yii of x and y, as well
as an NIP, X NIP, submatrix A, of A. It com-
putes the product:

yj = Aqx,

where xi is the concatenation of all the xiis for a
fixedj. Construction of the xis from the xiis is done

268 AGARWAL ET AL.

by an elegant hypercube-based communication
strategy. It requires log, P , rounds of communi-
cations, with a combined length of NIP, double-
words per processor. After each processor com-
putes its y{, accumulation and distribution of the
yip are accomplished by a similar communication
strategy. Altogether each global matrixvector mul-
tiplication requires Nk multiply-adds, communi-
cation of N (P , + P,) values, and P log, P mes-
sages.

The key to effective use of the memory hierarchy
on each node is keeping xi in cache during the ma-
trix-vector multiplication. It can be achieved by
an appropriate factoring of the number of proces-
sors P into P I and P, . This argues for making P2
large, but ifP, << P,, the communication cost will
mount. In addition, there is a measurable loop
overhead for the inner loop that is amortized over
klP, multiply-adds. This also argues for keeping
P2 from getting too big. Careful balancing of the
various costs results in the choices for P 2 given in
Table 1.

The inner loop computes the dot product of xi with
one row of the local submatrix, entailing about klP,
multiply-adds. Since the matrix is sparse, each mul-
tiply-add requires three loads: avalue fromAij, the
column index of the value, and the corresponding
value from xi. If the column index is used to sub-
script the vector directly, it must be shifted (mul-
tiplied by the size of a doubleword) in order to be
used. This additional fixed-point cycle can be elim-
inated using the FORTRAN 90 pointer construct.
Thus, each multiply-add requires three loads, each
taking one cycle on the POWER Architecture. On
the POWER2 Architecture, which has two fixed-
point units, the three loads take 1.5 cycles.

Each floating-point unit is capable of executing a
multiply-add every cycle, but the result is not ready
until the third cycle. Thus, accumulation of a dot-
product into a single register requires two cycles
per multiply-add. This situation would result in a
bottleneck on the POWERZ Architecture, so the al-
ternate terms of the dot-product are accumulated
in two separate registers that are added together
at the end of the loop. If it is assumed that the in-
put vector fits in cache, the resulting code can run
on the POWER (POWER2) Architecture at about three
cycles (1.5 cycles) per multiply-add, plus the cost
of cache misses on the data structures represent-
ing the A matrix. This cost depends on the cache

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995

size, but ranges from 318 cycles (on a wide-node
SP2) to 312 cycles (on an sP1) per multiply-add.

The 3D Fourier transform benchmark

In this benchmark a Poisson partial differential
equation (PDE) is solved using 3D forward and in-
verse discrete Fourier transform (DFT). Basically,
this benchmark first requires a forward 3D FFT com-
putation. Then in a loop the transformed data are
multiplied by a coefficient array followed by an in-
verse 3D FFT computation. We now give a brief de-
scription of the benchmark for the Class B prob-
lem size. For details the reader can refer to
Reference 2.

Statement of the FlW problem

Initialization phase: Set n1 = 512, n 2 = 256,
n3 = 256, and a = Generate 2 X n1 X n2 x n3
64-bit real numbers using the pseudorandom gen-
erator outlined in Reference 2. Assign these real
numbers to a complex array, U(0 : n - 1 ,O : n -
1,0 : n3 - 1) such that two consecutive real ele-
ments are assigned to an element of U .

Forward phase: Compute V(0 : n - 1 ,O : n -
l , 0 :n3 - l), the 3D DFT of the array Uusing the
FFT algorithm.

Inverse phase: for t = 1 to 20 do

multiplication step

f o r O ~ i < n , , O ~ j < n , , O ~ k < n ,
~ (i , j, k) = e-4aa2(i '2+j '2+k'2) t Vi, j, k)

where i' is defined as i for 0 I i < n1/2 and i - n,
for n1/2 5 i < nl. Similar definitions hold for j'
with n2 and k' with n3.

inverse 3D DFT step

ComputeX(O:n, - 1,0:n, - 1,0:n3 - l), the
3D inverse DFT of the array U using the FFT al-
gorithm.

checksum step

Compute the complex checksum 2ci1_oi3 X (q , r,
s), where q = i mod n l , r = 3i mod n 2 , and
s = 5i mod n3.

end for

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995

Parallel implementation. The major effort in par-
allelizing the above benchmark is to efficiently im-
plement the 3D inverse DFT computation inside the
for loop. An overall description of our algorithm
is as follows. Initially the 3D data are assumed to
be distributed across the processors along the third
dimension. We first do FFT computation along the
first dimension. This computation does not require
any communication. Second, we move data be-
tween the processors such that the new distribu-
tion across the processors is along the first dimen-
sion. Third, we do FFT computation along the
second and third dimensions locally on a node with-
out any communication. The implementation de-
tails can be found in Reference ll.

On a single node we use FFT routines of the En-
gineering and Scientific Subroutine Library
(ESSL).~, We implemented the complete bench-
mark using one-dimensional FFT routines along
with some data movement routines blocked for
cache. As a result, cache behavior of the RISC Sys-
tern16000 node is better.

The integer sort benchmark

Statement of the IS problem. This benchmark com-
putes ranks, yo, r,, * * * , r,-,, for a given set of
n integerkeys, ko, kl , - - - , kn-l, withm-bits each.
A rank ri is the position of key ki in the sorted as-
cending order. In other words, ri I rj implies
ki I k j for 0 I i, j I n - 1. Here, we focus on
the ranking problem (m, n) on a p processor ma-
chine withp r nI2" and n 2 2". The two ranking
problems for the benchmark are: (19, 223) for Class
A, and (21, 225) for Class B. The choice of an al-
gorithm depends on the relative values of m, n ,
and the number of processorsp. The proposed al-
gorithm is efficient for any number of processors.
However, the communication part of the algorithm
could be improved forp < 16. For smaller values
of p, the communication part can be significantly
reduced by sending the count arrays from each pro-
cessor, instead of sending the key values. For
p < 16, at each node, the number of keys are more
than the size 2" of the total count array. Thus it
is more efficient to send counts instead of keys.

Parallel implementation. The central idea of the al-
gorithm is as follows. At each node, we sort keys
into a certain number of buckets based on some
key bits. For many reasonable distribution of keys,
sorting on the middle bits assures nearly uniform

AGARWAL ET AL. 269

Table 2 Performance results In ratlos to C-9011 for
Class B NAS kernel benchmarks; C-90/1 times
(In seconds) used to com Ute these ratlos
are: 185.26 (EP), 37.77 (Mg), 122.90 (CG),
127.44 (FT), and 12.92 (CG)

~~

No. of IBY Cray TMC Intel
Kernel Procs. SP2 T3D CMBE Paragon

EP

MG

CG

FT

IS

8
16
32
64

128
256

8
16
32
64

128
256

8
16
32
64

128
256

8
16
32
64

128
256

8
16
32
64

128
256

1.20
2.40 1.32
4.84 2.64
9.54 5.29

19.30 10.58
21.15

1.31
2.50 0.57
4.60 1.24
8.34 3.01

14.36 5.75
10.49

0.74
1.31 0.21
1.91 0.41
2.88 0.74
4.59 1.44

2.45

1.33
2.40
4.47 3.12
8.15 6.08

11.70

0.65
1.17
1.88 0.51
3.64 1.00
6.49 1.97

3.95

3.95
7.85

15.97

1.8
3.3
5.6

0.3
0.6
1.3

1.4
2.8
3.7

0.4
0.8
1.5

8.75
17.66
34.24

0.9
1.8
2.8

0.9
1.76

2.3
4.2

1.1
1.8
2.2

key density distribution across all buckets. If there
are nb buckets, nb/p of them are sent to each pro-
cessor using a global transpose communication
routine. Here we assumep to be a power of two.
Each processor receives buckets from all proces-
sors corresponding to some of the middle key bits.
At this stage, for each key value, there are on the
average n/2" keys. For the NAS IS problems this
average is 16. Therefore, for efficiency, we imple-
ment a distribution count sort. 13,14 At the same
time, at no additional cost, we implement sub-
bucket sorting on the high-order bits. Each pro-
cessor assigns subbucket ranks to all keys received
by it. These ranks along with all of the subbucket
counts are sent back to the originating processor
using another global transpose of the same size.

270 AGARWAL ET AL

The originating processor computes the final rank
by adding the subbucket rank to the global rank
offset for that subbucket. In the region of interest,
i.e., n/2" 2 1, both computing and communica-
tion scale with the number of processors.

Results

To date, two different specifications of the NAS par-
allel benchmarks have been defined. Class A re-
fers to the original problem dimensions, whereas
Class B denotes a more recent specification in
which problem sizes have been increased by a fac-
tor of four in most of the kernels.

Table 2 summarizes the performance results for the
Class B kernels. As is the convention, results are
reported as ratios to the respective single-proces-
sor Cray c90 time. However, in the caption of Ta-
ble 2 we have added the single-processor Cray c90
times for each of the benchmarks. The wall-clock
times for each of the benchmarks can thus be com-
puted. The S P ~ results are for a wide-node system
with 128 MB of memory per node and were obtained
using the user-space communication protocol in the
IBM Message-Passing Library15 included as part of
the IBM Parallel Operating Environment."j For
comparison, we have also included the perfor-
mance results for other scalable parallel machines;
these results are taken from References 1 and 17.
Note that the IBM sP2 EP results are based on the
latest NAS rules, which also require additional
checksums. The Intel Paragon performance re-
sults correspond to the better of the two environ-
ments, OSF1.2 or SunMos, wherever applicable.

In general, the S P ~ performance per processor ex-
ceeds that of the other parallel machines shown in
Table 2 for all processor configurations for which
the S P ~ results are available. This performance is
due primarily to the very high sustained perfor-
mance of the S P ~ wide nodes, combined with the
relatively high sustained interprocessor commu-
nication bandwidth for these problems. In review-
ing this paper, one of the referees noticed that for
the EP benchmark (Table 2), which requires very
little communication, the Intel Paragon perfor-
mance is almost as good as that of the S P ~ , whereas
for the more communication-intensive benchmarks
in Table 2, the performance of the Paragon is much
worse than that of the S P ~ . Here is an explanation:
First, in Reference 17 (see page 5) the NAS bench-
mark authors note that the SunMos-turbo operat-
ing system for the Paragon allows both i860* * pro-

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995

cessors on the node to be used for computation (in
regular SunMos and OSF the second processor is
used purely for communication). Additionally, In-
tel Paragon results in Table 2 do not include the
computation of the two new checksums, which
adds extra time to the IBM numbers. Also, NAS
ground rules require that only officialvendor librar-
ies be used for the intrinsic functions such as square
root and log. Recently, IBM has made available an
alternate library. l8 With the new library we have
been able to decrease the IBM Sp2 EP numbers in
Table 2 by about a factor of two.

Summary

In this paper, we have discussed the novel tech-
niques used to implement the NAS kernel bench-
marks on the IBM sP2 scalable parallel system. The
central idea of these techniques is to match the im-
plementation of these kernels with the underlying
architecture of the S P ~ . Performance results have
shown that the S P ~ implementations compare very
well with results currently available on other scal-
able parallel machines.

Acknowledgments

The authors are indebted to Mark Smith (IBM POWER
Parallel Division) for performing the s p 2 runs used

Gustavson, and Zubair acknowledge Mahesh
Joshi, Alok Kothari, and Prasad Palkar (Tata In-
formation Systems Ltd.) for their help in running
and tuning various versions of the EP, IS, and FFT
kernels.

l

I to obtain the results for this paper. Agarwal,

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Intel Corporation.

Cited references and note

I 1. D. Bailey, E. Barszcz, L. Dagum, and H. Simon, NASPar-
allel Benchmark Results 3-94, Report RNR-94-006, NASA
Ames Research Center (March 1994).

2. D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter,
L. Dagum, R. Fatoohi, S. Fineberg, P. Frederickson,
T. Lasinski, R. Schreiber, H. Simon, V. Venkatakrishnan,
and S. Weeratunga, The NAS Parallel Benchmarks, Tech-
nical Report RNR-94-007, NASA Ames Research Center
(March 1994).

3. V. K. Naik, “Performance of NAS Parallel Application-
Benchmarks on IBM SP1,” Proceedings of the Scalable
High Performance Computing Conference, IEEE (1994),
pp. 121-128.

4. V. K. Naik, “A Comparative Study of the NAS Parallel

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995

Application Benchmarks,” Proceedings on Parallel CFD
’94.

5. V. K. Naik, “A Scalable Implementation of the NAS Par-
allel Benchmark BT on Distributed Memory Systems,”
IBMSystems Journal 34, No. 2,273-291 (1995, this issue).

6. D. E. Knuth, TheArtof ComputerProgramming, Volume
I4 2nd Edition: Semi NumericalAlgorithms, Addison-Wes-
ley Publishing Co., Reading, MA (1973).

7. D. H. Bailey and P. 0. Frederickson, “Performance Re-
sults for Two of the NAS Parallel Benchmarks,” Proceed-
ings of Supercomputing ’91 (1991), pp. 166-173.

8. R. Aganval, F. Gustavson, and M. Zubair, “AVery High
Performance Algorithm for NAS EP Benchmark,” High-
Performance Computing and Networking, Wolfgang
Gentzsch and Uwe Harms, Editors, Springer-Verlag, New
York (1994), pp. 164-169.

9. J. G. Lewis and R. A. van de Geijn, “Distributed Memory
Matrix-Vector Multiplication and Conjugate Gradient Al-
gorithm,” Proceedings of Supercomputing ’93 (1993), pp.
484492.

10. To simplify analysis, each processor is assumed to com-
municate with itself. The program requires slightly less
communication.

11. R. Aganval, F. Gustavson, and M. Zubair, “An Efficient
Parallel Algorithm for the 3-D FFT NAS Parallel Bench-
mark,” Proceedings of SHPCC ’94 (1994), pp. 129-133.

12. Engineering and Scient@ Subroutine Library (ESSL),
Guide and Reference, SC23-0526-01, IBM Corporation
(1994); available through IBM branch offices.

13. D. E. Knuth, TheArt of ComputerProgramming, Volume
111: Sorting and Searching, Addison-Wesley Publishing
Co., Reading, MA (1973).

14. F. G. Gustavson, “Two Fast Algorithms for Sparse Ma-
trices: Multiplication and Permuted Transposition,”ACM
Transactions on Mathematical Software 4, No. 3,250-269
(September 1978).

15. IBM AIX Parallel Environment-Parallel Programming
Reference, SH26-7228-0, IBM Corporation (1994); avail-
able through IBM branch offices.

16. IBM AIX Parallel Environment4peration and Use,
SH26-7230-0, IBM Corporation (1994); available through
IBM branch offices.

17. D. Bailey, E. Barszcz, L. Dagum, and H. Simon, NASPar-
allel Benchmark Results 10-94, NAS Technical Report
NAS-94-001, NASA Ames Research Center (October
1994).

18. B. D. Rubin, Mathematical Acceleration Subsystem
(MASS) Version 1.0; can be viewed on the WWW URL
via http:lhkurw.austin.ibm.com/tech/MASS.

Accepted for publication January 23, 1995.

Ramesh C . Agarwal IBM Research Division, Thomas
J. Watson Research Center, P. 0. Box 218, Yorktown Heights,
New York10598 (electronic mail: aganval@watson.ibm.com).
Dr. Aganval received a B.Tech. (Hons.) degree from the In-
dian Institute of Technology, Bombay. He was the recipient
of The President of India Gold Medal while there. He received
M.S. and Ph.D. degrees from Rice University and was awarded
the Sigma Xi Award for best Ph.D. thesis in electrical engineer-
ing. He has been a member of the Mathematical Sciences De-
partment at the Thomas J. Watson Research Center since 1983.
Dr. Aganval has done research in many areas of engineering,
science, and mathematics and has published over 60 papers in
various journals. Currently, his primary research interest is in

AGARWAL ET AL. 271

the area of algorithms and architecture for high-performance
computing on workstations and scalable parallel machines. In
1974, he received the Senior Award from the IEEE Acoustics,
Speech, and Signal Processing group for best papers. He has
received several Outstanding Achievement Awards and a Cor-
porate Award from IBM. Dr. Agarwal is a Fellow of the IEEE
and a member of the IBM Academy of Technology.

Bowen Aipern ZBM Research Division, Thomas J. Watson
Research Center, P. 0. Box 218, Yorktown Heights, New York
10598 (electronic mail: alpem@watson.ibm.com). Dr. Alpern
received a B.S. from the University of Michigan in 1974 and
a Ph.D. from Cornel1 University in 1986. He joined IBM in that
year and is in the Theory of Computation group of the Math-
ematical Sciences Department at the Thomas J. Watson
Research Center. His research interests include theoretical
models of the communication costs of computation and meth-
odologies for attaining portable high performance.

Larry Carter University of California, San Diego, Department
of Computer Science and Engineering, 9500 Gilman Drive, La
Jolla, California 92093-0114. Dr. Carter received the A.B. de-
gree from Dartmouth College in 1969 and the Ph.D. degree from
the University of California at Berkeley in 1974. He worked
at IBM for over 19years in the areas of probabilistic algorithms,
compilers, VLSI testing, and high-performance computation.
At the time the work in this paper was done, he was manager
of the System Principles project in the Mathematical Sciences
Department at the IBM Thomas J. Watson Research Center.
Since September 1994, Dr. Carter has been a professor in the
Computer Science and Engineering Department of the Univer-
sity of California at San Diego, and a Senior Fellow at the San
Diego Supercomputing Center.

Fred G. Gustavson ZBMResearch Division, Thomas J. Wat-
son Research Center, P.O. Box 218, Yorktown Heights, New
York 10598 (electronic mail: gustav@watson.ibm.com). Dr.
Gustavson is manager of algorithms and architectures in the
Mathematical Sciences Department at the Thomas J. Watson
Research Center. He received his B.S. in physics and his M.S.
and Ph.D. degrees in applied mathematics, all from Rensse-
laer Polytechnic Institute. He joined IBM Research in 1963.
One of his primary interests has been in developing theory and
programming techniques for exploiting the sparseness inher-
ent in large systems of linear equations. He has worked in the
areas of nonlinear differential equations, linear algebra, sym-
bolic computation, computer-aided design of networks, design
and analysis of algorithms, and programming applications. Dr.
Gustavson and his group are currently engaged in activities that
are aimed at exploiting the novel features of the IBM family
of RISC processors, including hardware design for divide and
square root, new algorithms for POWER2 for ESSL and for
other math kernels, and parallel algorithms for distributed mem-
ory processors. He has received an IBM Outstanding Contri-
bution Award, an IBM Outstanding Innovation Award, an IBM
Outstanding Invention Award, two IBM Outstanding Techni-
cal Achievement Awards, two IBM Corporate Technical Rec-
ognition Awards, and a Research Division Technical Group
Award.

Davld J. Klepacki ZBM POWER Parallel Division, Highly
Parallel SupercomputingLaboratov, 522 South Road, Pough-
keepsie, New York 12601-5400 (electronic mail: djk@minnie.nic.
kingston.ibm.com). Dr. Klepacki received a B.S. degree in

272 AGARWAL ET AL.

electrical engineering from the Illinois Institute of Technology in
1980, and an M.S. degree in electrical engineering from Syracuse
University in 1983. Being exposed to computational physics, he
then earned an M.S. degree in physics from Purdue University
in 1985, and a Ph.D. degree in theoretical nuclear physics from
Purdue University in 1989. In 1989, he joined the IBM Numer-
ically Intensive Computations Center in Kingston, where he be-
came interested in the parallel distributed processing of scientific
and technical applications. When the IBM POWERParallelgroup
formed in 1991, he then optimized technical applications for scal-
able parallel performance. Current areas of interest include scal-
able parallel algorithms, parallel software tools, and performance
benchmarking of parallel applications.

Rick Lawrence ZBM Research Division, Thomas J. Watson
Research Center, P.O. Box218, Yorktown Heights, New York
10598 (electronic mail: lawrence@watson.ibm.com). Dr.
Lawrence is presently a research staff member and manager,
Parallel Applications Methods and Analysis, at the Thomas J.
Watson Research Center. He joined IBM in 1987 as a compu-
tational scientist in the Numerically Intensive Computing Cen-
ter in Kingston, New York, and moved to IBM Research in
1990. Prior to coming to IBM, Dr. Lawrence held research po-
sitions at Argonne National Laboratory and Schlumberger-Doll
Research. His recent work at IBM has focused on the devel-
opment and analysis of parallel algorithms for IBM’s SPx se-
ries of scalable parallel machines. He has received an IBM Out-
standing Technical Achievement Award for his contributions
to the development of IBM’s Message-Passing Library on the
SPx platforms. Dr. Lawrence received the B.S. degree from
Stanford University and the Ph.D. degree from the University
of Illinois in nuclear engineering.

Mohammad Zubair ZBM Research Division, Thomas
J. Watson Research Center, P. 0. Box 218, Yorktown Heights,
New York 10598 (electronic mail: zubair@watson.ibm. com).
Dr. Zubair received his Ph.D. degree in 1987 from the Indian
Institute of Technology (IIT), New Delhi. From 1981 to 1987
he was at the Center for Applied Research in Electronics, IIT
Delhi. In 1987, he became an assistant professor at Old Do-
minion University, and in 1993 he became an associate pro-
fessor. He joined IBM Research in 1994. Dr. Zuhair’s primary
research interest is in the algorithm and architecture aspects
of large-scale scientific computing. He has published over 30
papers in various journals and conference proceedings.

Reprint Order No. G321-5568.

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995

