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Efficient transport and
distribution of network
control information in
NBBS

With the advances in fiber-based transmission
systems that operate at gigabit rates and with the
introduction of high-speed networks, the course
of communication and computer technologies
has changed forever. This change requires that
new attention be focused first on the creation,
then on the control of networks, which now
contain high-speed links and integrate
heterogeneous traffic. IBM’s Networking
BroadBand Services (NBBS) architecture has
been designed to enable this networking
revolution and, in particular, is designed for the
high-speed, multimedia networks needed by
emerging applications. In this paper, we present
the Rapid Transport Protocol (RTP). Its simple
and efficient mechanisms enable NBBS control
information to be transported and distributed,
taking advantage of high-speed links by
eliminating as much nodal processing as
possible. RTP provides point-to-point and point-
to-multipoint transport services with a reliable
delivery option. In addition, we present a simple
and efficient mechanism for fast dissemination of
time-critical network configuration and path
update messages to every node in an NBBS
network, making use of RTP.

igh-speed networks are characterized by very

high data transmission rates and high reliabil-
ity. Traditional transport protocols, such as Trans-
mission Control Protocol (TCP), may be poorly
matched for the emerging environment, since they
were designed for slow and unreliable networks. '
In this paper, we describe Rapid Transport Pro-

0018-8670/95/$3.00 © 1995 IBM

by M. Peyravian
R. Bodner
C.-S. Chow
M. Kaplan

tocol (RTP), which is specifically designed for fast
and efficient transport and distribution of Network-
ing BroadBand Services (NBBS) network control
information.® RTPis used by the NBBS network con-
trol applications (such as directory services, topol-
ogy services, and access agents) to transport net-
work control information across an NBBS network.
RTP transport connections are end-to-end, i.e.,
there is no RTP transport connection awareness in
transit nodes along the path of a network connec-
tion.

RTP design began in 1988 with the objective of
building a ““full function™ transport protocol that
could exploit high-speed networks and be effi-
ciently implemented on standard microprocessors.
Greg Chesson’s Xpress Transfer Protocol* with its
“fast session setup” was taken as a starting point
for the RTP design. Unlike Chesson, the IBM team
did not believe it to be necessary to embed its trans-
port protocol implementation in custom silicon.
They saw that with microprocessor speeds increas-
ing each year, their performance objectives—setup
time approximately equal to network latency and
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throughput limited only by media speed—could be
met with the RTP “machine” implemented in soft-
ware. Over the next few years, RTP was extended
with flexible multicast and error control options to
support the NBBS architecture and control proto-
cols.

An RTP machine (an entity that supports and of-
fers RTP services) provides to its users point-to-
point and point-to-multipoint (multicast) connec-
tion-oriented services with the following features:

« RTP performs user-message segmentation and re-
assembly to allow user messages to flow over
paths with fixed maximum packet size. When an
RTP machine is requested to send a user message
that would result in a packet larger than the max-
imum packet size, it segments the user message
before sending it. The receiving RTP machine re-
assembles the message segments into the orig-
inal user message.

* RTP provides a simple, window flow-control
mechanism that prevents an RTP user from over-
loading its partner. An RTP user can send data
only within the window granted by its partner.

s RTP has a connection-maintenance mechanism
through which it can detect loss of communica-
tions with a remote partner.

¢ RTP allows multiple RTP transport connections
to be associated with a single network connec-
tion endpoint (NCE); multiple RTP transport con-
nections can be multiplexed onto a network con-
nection.

* RTPprovides in-order delivery of arbitrary-length
user messages.

» In point-to-point transport connections, RTP pro-
vides two forms of error recovery schemes: se-
lective repeat and go-back-n. In the selective re-
peat scheme, the sender only retransmits the lost
data; in the go-back-n scheme, the sender re-
transmits the lost data and all the data that fol-
lowed it.

¢ Inpoint-to-multipoint transport connections, RTP
enables the use of fast hardware switching mech-
anisms for use in point-to-multipoint multicast.

RTP is designed to be implemented over networks
that are not completely reliable, and its overhead
is beyond that required for a simple connection-
less datagram service.” RTP is not a traditional
transport protocol. The following RTP design prin-
ciples result in high-performance implementations:
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¢ Optimism. RTP assumes that the network and its
underlying hardware components are mostly re-
liable, and that partner users are normally avail-
able and ready to communicate successfully.
This optimism pervades the next three points.

o Fast setup for RTP transport connection estab-
lishment. RTP has no separate setup handshak-
ing phase. The calling party simply assumes that
the listening party is ready to establish an RTP
transport connection. The first packet sent on an
RTP transport connection may contain user data
(a user message or a segment of a user message,
depending on the maximum packet size).

¢ Data streaming and piggybacking. The calling
party may continue to stream user data to the
destination until status information is required.
RTP assumes a listener that is able to receive this
initial burst of packets. RTP makes a trade-off that
favors fast connection setup and low message la-
tency against the possibility that a few packets
may reach a destination unable to process them.
In most of today’s communications environ-
ments, transmission is cheap, therefore dropping
packets has trivial consequences compared to the
cost of delaying a user’s transactions.

RTP “‘piggybacks’ its protocol control informa-
tion within packets containing user data, when
convenient, to reduce the number of flows. Pig-
gybacking control information on user data can
make parsing difficult (because packets will now
have variable-length headers). But RTP reduces
this effect by placing the less-often-used control
information in optional segments (as described
later) and by including in the RTP packet header
a payload offset field that gives the position of
the user data relative to the beginning of the
packet header.

¢ Minimized handshaking and connection disso-
lution. The RTP transport connection setup pro-
cess and the piggybacking of control information
with user data are examples of how RTP mini-
mizes handshaking between the endpoints of the
RTP transport connections it manages. This de-
sign principle also applies to connection disso-
lution, the process that occurs when communi-
cating parties decide to terminate the RTP
transport connection. Notification of intent to
dissolve a connection is piggybacked on the
packet carrying the last user message (or the last
segment of the last user message).
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The RTP philosophy and principles have been out-
lined in broad terms. The following sections delve
more deeply into the detailed eiements and pro-
cedures that comprise RTP.

RTP services and mechanisms

RTP provides to its users point-to-point and point-
to-multipoint data transport services. It provides
point-to-point services by establishing a point-to-
point RTP transport connection in which one “call-
er” (an RTP user that assumes the calling role) is
connected to one “listener” (an RTP user that as-
sumes the listening role). Callers and listeners are
distinguishable only in terms of their role in a par-
ticular connection; an RTP user may be a caller of
some connections and a listener of others. In point-
to-point RTP transport connections, RTP provides
full-duplex transmission with two user message de-
livery options:

~ Unreliable. If this option is selected, RTP sends
the user message to its intended destination with
no reliability provision. That is, if the user mes-
sage is lost or not delivered to the intended re-
cipient, RTP does not retransmit the user mes-
sage nor does it inform the user that its message
was not delivered correctly; however, lost user
messages are reported to the receiving partner.

~ Reliable. If this option is selected, RTP informs
the user when the receipt of its message has been
acknowledged by the intended recipient or when
repeated retransmissions have failed to produce
this outcome.

RTP provides point-to-multipoint services by estab-
lishing a multiparty RTP transport connection (MPC)
in which one client application is connected to a
group of server applications. The client applica-
tion of an MPC initiates the MPC and has the calling
role. The server applications of an MPC have the
listening role. Clients and servers are distinguish-
able only in terms of their role in a particular MPC;
a using application may be a client application of
some MPCs and a server application of others. RTP
provides two types of point-to-multipoint services:

» Linear multicast (LM). RTP multicasts a client-
application message along a user-specified lin-
ear path to the server applications located on the
path, and sends a server-application message
only to the client application. RTP provides three
LM service options, each of which is initiated by
the client application: unreliable multicast dat-
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agram, reliable multicast datagram, and reliable
multicast transaction.

« Unreliable multicast over trees (UMOT). RTP mul-
ticasts a client application message over a user-
specified tree to the server applications located
on the tree, and sends a server application mes-
sage only to the client application. A server ap-
plication may join or leave an unreliable-multi-
cast-over-trees MPC at any time. Unreliable
multicast over trees provides no reliability pro-
vision. Application messages may occasionally
be lost with no indication to the sender, which
can be the client application or a server appli-
cation. It is up to the application to provide any
required recovery.

Packet formats. Each RTP packet is comprised of
a header and a data payload as shown in Figure 1.
The header is of variable length and it allows for,
and may include, optional segments. An optional
segment is a special type of structure that includes
control information pertaining to a transport con-
nection. Its presence in the header depends on the
type of information that needs to be conveyed from
one RTP machine to its partners. When long user
messages are segmented into many packets, the
vast majority of the packets carry no optional seg-
ments, just a short header and the data payload.
RTP supports the following optional segments:

» Status segment. This is used to convey status in-
formation from the calling to the listening part-
ners and vice versa. It contains information such
as acknowledgments for already received data
and window-allocation parameters.

« Connection setup segment. This segment is used
in the RTP transport connection establishment
process. The calling partner sends this segment
in a packet to convey the setup information to
its partners. This segment contains information
such as the source identifier.

» Return path information segment. This segment
is used in point-to-point RTP transport connec-
tions to pass the return path information from
the local partner to the remote partner.

» Linear multicast segment. This segment is used
in a linear multicast RTP transport connection
to carry linear multicast related information
(such as service option type) from the client to
servers.

» Connection fault segment. When an error occurs,
this segment is used to carry sense data (iden-
tifying the error) from the partner that detected
the error to the other partners.
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Figure 1 RTP and NBBS packets
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The data payload is of variable length and it con-
tains a message (or a message segment) and op-
tional padding. Cyclic redundancy checking (CRC)
protects both the header and the data payload.

The base header contains a byte-sequence-num-
ber field, which identifies the first user-message
byte of each packet. As long as no packets con-
taining user data (or an end-of-message character)
are lost by the underlying network, the receiver
simply checks that the value in the byte sequence
number field equals the sum of the byte sequence
number of the previous packet and the number of
data payload bytes (plus one if an end-of-message
character is present) in the previous packet.

Since RTP checks the byte sequence number of
each received packet, if a packet arrives with a
higher than expected byte sequence number, it can
immediately deduce that packets have been lost.
This process of deduction of packet loss is referred
to as gap detection. This mechanism is used for
error recovery, as described later.

A sequence number is assigned to each byte of the
data payload, rather than to the packet containing
the data payload, because of the variable-length
RTP header. If sequence numbers are assigned to
packets, then a retransmission may require a longer
header than that of the original transmission (be-
cause additional optional segments may have to be
included in the retransmission). When packet size
is limited, the packet to be retransmitted may not
have enough room for additional optional seg-
ments.
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Transpert connections multiplexing. As part of the
transport connection setup process, the calling RTP
machine chooses and assigns a 4-byte transport
connection identifier (TCID) to the transport con-
nection. This TCID, along with a globally unique
connection qualifier associated with the calling RTP
machine (which may be a network address or an
International Organization for Standardization
[1S0] object identifier), is included on all packets
and associates the packet with the RTP transport
connection. When sending packets, the listening
partner always puts the TCID value received from
the calling partner in each packet it generates.
Since these packets will contain the TCID chosen
by the calling partner, they do not carry a connec-
tion qualifier.

RTP allows multiple RTP transport connections to
be associated with a single NCE; i.e., multiple RTP
transport connections can be multiplexed onto the
same network connection. This is possible because
an RTP machine associated with an NCE assigns a
different TCID to each RTP transport connection,
and because packets belonging to different RTP
transport connections can be identified based on
their TCIDs. Thus, an RTP machine associated with
an NCE has the capability to multiplex and demul-
tiplex RTP transport connections onto and off of
network connections using the TCIDs.

Message segmentation. The network packets must
be large enough to contain the variable-length RTP
headers. When the network packets are not large
enough to hold both the RTP header and message,
RTP segments the message into pieces to fit into
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the network packets at the sending side and reas-
sembles the message segments into the original
message at the receiving side. This is referred to
as message segmentation. RTP performs message
segmentation, reassembly, and sequence check-
ingin a straightforward fashion, with start-of-mes-
sage and end-of-message bits in the RTP header.
When no message segmentation is required, a
packet containing a message has both the start-of-
message and the end-of-message bits set. When
message segmentation is required, the first packet
contains the first segment of the message; it has
the start-of-message bit set but does not have the
end-of-message bit set. The last packet contains
the last segment of the message; it does not have
the start-of-message bit set but does have the end-
of-message bit set. Any middle packets (each con-
taining a segment of the message) do not have ei-
ther the start-of-message or the end-of-message bit
set.

Window flow control mechanism. RTP maintains a
receive window allocation, which is communicated
end-to-end between partners via the allocation-se-
quence-number (ASEQ) field in the status segment.
The partner sending a status segment has allocated
areceive window and agrees to receive user mes-
sage bytes with byte sequence numbers starting at
received sequence number (RSEQ) and ending at
ASEQ — 1. The sender of the status segment will
not accept any user message bytes outside this al-
located receive window; it will simply discard any
such data. The receive window allocated by one
partner is the send window of the other partner.
RTP stops sending user-message bytes at byte se-
quence number ASEQ — 1, that is, when its send
window is shut.

During the RTP transport connection setup, the call-
ing partner assumes some initial send window (by
assuming some initial value for ASEQ). This allows
the calling partner to send a burst of packets con-
taining user-message bytes without waiting for its
partner to actually communicate its receive win-
dow allocation. This initial ASEQ can be an imple-
mentation-default value.

Timers. There are five timers required for the op-
eration of RTP at each end of an RTP transport con-
nection: a short-request (SHORT_REQ) timer, a
short-response (SHORT_RSP) timer, a gap-received
(GAP_REC) timer, a dally timer, and a connection-
inactivity timer. There is also a maximum-retry
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(MAX_RETRY) count required at each end of an RTP
transport connection.

The SHORT_REQ timer is for error recovery, and it
provides a basic retransmission mechanism. It is
used when waiting for status information from a
remote partner. When an RTP machine wants to
know the status of its partner, it sends a packet
with the status-request bit set, indicating that it
wants its partner to send a status segment, and
starts its SHORT_REQ timer. When an RTP machine
receives a packet with the status-request bit set,
it responds by sending a packet that contains a sta-
tus segment. The SHORT_REQ timer is stopped
when a current status segment is received. If the
SHORT_REQ timer expires, the RTP machine sends
another packet with the status-request bit set.

The number of consecutive times that the
SHORT_REQ timer can expire at each RTP machine
is governed by MAX_RETRY. An RTP machine in-
creases its retry count by one each time the
SHORT_REQ timer expires. An RTP machine resets
its retry count to zero if it receives a current status
segment from its partner. When an RTP machine’s
retry count is greater than MAX_RETRY, it assumes
that its partner has failed or has become unreach-
able. In this case, it reports the failure to the RTP
user and disconnects.

The SHORT_RSP timer is for piggyback optimiza-
tion; it specifies how long an RTP machine can wait
before sending a status segment in response to one
or more status requests from its partner. When an
RTP machine receives a packet with the status-re-
quest bit set, it starts the SHORT_RSP timer unless
it is already running. When the SHORT_RSP timer
expires, it sends a packet containing a status seg-
ment to its partner and stops the SHORT_RSP timer.

The SHORT_RSP timer has two benefits. First, an
RTP machine need not send a separate status seg-
ment for each received packet with the status-re-
quest bit set. Second, if user data are not yet
available and a partner has requested status infor-
mation, the RTP machine can wait a short time. If
user data become available during that time, the
status segment can be included in the packet con-
taining the user data.

When an RTP user wants to disconnect, if the RTP
machine has received reliable messages from its
partner, it does not terminate the RTP transport con-
nection immediately. Instead, it starts the dally
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timer and will ““dally” (wait) for a while. Dallying
ensures that the remote partner receives acknowl-
edgments for all reliable data payloads that it has
sent. During the dallying period, any data payload
received from the remote partner is simply dis-
carded. The data payload may be a redundant re-
transmission—perhaps because a packet contain-
ing a status segment (acknowledgment) was lost.
The data payload may be new (probably due to an
RTP user error); or perhaps the RTP users did not
“handshake” properly (perhaps an RTP user did not
know that its partner has requested to disconnect).

The connection-inactivity timer provides a connec-
tion maintenance mechanism through which a fail-
ure of the remote partner or loss of communica-
tions with the remote partner can be detected. The
connection-inactivity timer is started (or restarted
if it is already running) each time a packet is re-
ceived from the remote partner.

The GAP_REC timer is used by the receiving RTP
machine (implementing the selective repeat error
recovery scheme) to periodically notify the remote
sending RTP machine that lost reliable message
bytes have not been recovered. This timer is used
to speed up the error recovery process. When an
RTP machine detects a new gap in the reliable data
stream, it sends to its partner a packet containing
a status segment with the gap-detected-by-the-re-
ceiver (GAPDETR) bit set and starts or restarts the
GAP_REC timer. If the GAP_REC timer expires, an-
other packet containing a status segment with the
GAPDETR bit set is sent and the GAP_REC timer is
restarted. The GAP_REC timer is stopped when all
missing reliable message bytes (including the ones
in earlier gaps) are received.

Point-to-point connections

RTP connections are initiated by RTP applications.
The application notifies its RTP machine of poten-
tial connections and for each one the RTP machine
constructs a unique ‘‘connection context.”

An RTP point-to-point transport connection begins
life with one RTP user assuming the calling role and
another remote RTP user assuming the listening
role. How it is decided which partner is calling and
which partner is listening is outside the scope of
RTP.

The RTP approach to connection setup is very dif-
ferent from the traditional handshaking protocols
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of Open Systems Interconnection (OSI) transport,
Systems Network Architecture (SNA), and TCP.
The RTP approach is very similar to and borrows
from Xpress Transfer Protocol (xTP)* and Delta-
t.! Optimism is combined with piggybacking to
minimize the latency of the first bytes of user data
to follow on an RTP connection. Another way to
think about the RTP setup protocol is to view it as
an overlapping of a more traditional session estab-
lishment handshake with data transport.

Upon the request of the calling RTP user for trans-
mission of the first message, the calling RTP ma-
chine constructs a special type of packet called a
setup packet and sends it to the listening RTP ma-
chine. Along with the usual RTP header and user
data, the setup packet contains a connection-setup
segment that carries information, such as the
source identifier. The setup packet may also in-
clude other optional segments.

The listening RTP machine treats setup packets in
a special way. If the setup information does not
duplicate previously received information and
there is a matching connection context, the listen-
ing RTP machine enters a ‘“‘connected state.” The
calling RTP machine does not enter the connected
state until it receives a packet indicating that the
listening partner has received the setup packet.
Once both the RTP machines are in the connected
state, a point-to-point transport connection exists
and packets may flow in either direction.

In point-to-point connections, RTP offers two op-
tions for reliable message delivery: selective repeat
and go-back-n. In the selective repeat option, RTP
only retransmits the lost user data bytes; however,
in the go-back-n option, RTP retransmits all the user
data bytes following the last acknowledged byte
without an earlier gap. The procedures that RTP
uses to support these two schemes are described
in Appendix A.

Point-to-multipoint connections

RTP provides point-to-multipoint (multicast) ser-
vices by establishing a multiparty RTP transport
connection (MPC) in which one client RTP machine
is connected to a group of server RTP machines.
The client RTP machine of an MPC initiates the MPC
and has the calling role. The server RTP machines
of an MPC have the listening role. The client RTP
machine multicasts packets to the server RTP ma-
chines, but a server RTP machine may send pack-
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Figure 2 Typical configuration for a linear multicast MPC
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ets only to the client RTP machine on the same MPC.
When replies (acknowledgments or messages) from
the server RTP machines are expected, packets sent
by the client RTP machine have the reverse path
accumulation function activated (each intermedi-
ate node determines its label for the return path
and includes it in the packet). Then, packets from
the server RTP machines are sent point-to-point on
the same MPC to the client RTP machine with the
automatic network routing (ANR) transfer mode us-
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ing the accumulated reverse ANR labels in the re-
ceived packets. RTP multicast services are used by
the NBBS network control applications (directory
services, network connection services, and topol-
ogy services).

There is a using application associated with each
of the RTP machines participating in an MPC; the
application using the client RTP machine is the cli-
ent application, and the applications using the
server RTP machines are server applications. Cli-
ents and servers are distinguishable only in terms
of their role in a particular MPC; a using applica-
tion may be a client application of some MPCs and
a server application of others. RTP currently pro-
vides two types of multicast services, linear mul-
ticast (LM) and unreliable multicast over trees
(UMOT), which are described in the following sec-
tions.

Linear multicast. RTP provides LM services by es-
tablishing a mwultiparty RTP transport connection
(MPC) in which there is a client RTP and a group of
server RTPs. The RTP machine in the origin node
is the client RTP. The RTP machines in the transit
nodes and in the destination node are server RTPs.
Normally, a client RTP multicasts packets to all the
server RTPs, and a server RTP sends packets only
to the client RTP. At certain times, communication
may take place between the client RTP and a sub-
set of the server RTPs. For example, this occurs
when a reliable message is retransmitted only to
server RTPs that have not yet acknowledged the
message.

Figure 2 illustrates a typical configuration for the
client and server RTPs in a linear multicast MPC.
The forward and reverse paths used by the client
and server RTPs to send packets are indicated.

RTP provides three LM service options, each of
which is initiated by the client application:

* Unreliable multicast datagram (UMD). This ser-
vice option provides delivery of a single message
from the client RTP to user-specified server RTPs
with no reliability provision.

* Reliable multicast datagram (RMD). This service
option provides reliable delivery of a single mes-
sage from the client RTP to user-specified server
RTPs.

e Reliable multicast transaction (RMT). This ser-
vice option provides reliable delivery of a single
message from the client RTP to user-specified
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server RTPs and delivery of one or more messages
(only the last of which is reliable) from each
server RTP to the client RTP.

Each of these service options is implemented us-
ing a short-lived MPC. The client application may
interleave UMDs, RMDs, and RMTs in any order de-
sired by the particular application. The procedures
and mechanisms that RTP uses to provide these
three service options are described in Appendix
B.

The client RTP sends packets to the server RTPs with
the ANR transfer mode. With this mode the entire
path of the packet is identified at the origin of the
connection and placed in the network header of
the packet as an ANR field. When a node receives
the packet, it extracts the ANR label that identifies
the link over which the packet was received from
the ANR field and then forwards the packet to the
next node in the path. The next node will then re-
peat the process.

When multicasting packets to the server RTPs, the
client RTP utilizes the selective copy function of
the ANR transfer mode. The selective copy func-
tion allows only certain nodes along a path to copy
the packet, eliminating unnecessary processing of
packets. The client RTP, located in the origin node,
multicasts a packet by including an ANR field in the
network header and sending the packet along the
path specified by the ANR field to the endpoint
server RTP located in the destination node.

Sometimes it is not necessary for the client RTP to
send a packet to all the server RTPs for an MPC; for
example, an acknowledgment can be sent only to
the server RTPs from which a reliable message has
been received, and a reliable multicast message
needs to be retransmitted only to the server RTPs
that have not acknowledged the multicast message.
Delivery to the server RTP in a transit node is spec-
ified with the selective copy bit of the ANR label
for the outgoing link of the node.

Unreliable multicast over trees. The client RTP ini-
tiates an unreliable multicast over trees (UMOT)
MPC and multicasts packets to all the server RTPs
located on the tree. On the same MPC, a server RTP
may send packets only to the client RTP. When a
packet is sent over a tree, the packet will be for-
warded to all members of the tree (all the server
RTPs located on the tree). Packets sent by the cli-
ent RTP use a label-swap transfer mode (which
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swaps an inbound label for an outbound label via
hardware) and have the reverse path accumulation
function activated. Packets from a server RTP are
sent on the same MPC to the client RTP with the ANR
transfer mode, using accumulated reverse ANR la-
bels (which were collected by the reverse path ac-
cumulation function).

RTP provides no reliability when an application re-
quests the UMOT services. Application messages
may occasionally be lost with no indication to the
sender (which might be the client application or a
server application). UMOT provides delivery of one
or more unreliable messages from the client RTP
to all the server RTPs, and delivery of zero or more
unreliable messages from each server RTP to the
client RTP.

Unreliable multicast over trees allows a server RTP
tojoin or to leave an ongoing MPC at any time. That
is, a server RTP need not participate in an MPC dur-
ing the entire life of the MPC. This allows server
RTPs that have failed and recovered to rejoin the
MPC.

Figure 3 illustrates an example of client and server
RTP transmissions in an UMOT MPC. The procedures
and mechanisms that RTP uses to provide UMOT
MPC are described in Appendix C.

Reliability for the UMOT service can be provided
by an application that uses this service. The next
section describes a topology-based reliability
mechanism, provided by NBBS topology services,
which makes use of the UMOT service to multicast
time-critical configuration information to the en-
tire NBBS network.

An example of reliability added by an application
to the UMOT service. The objective of NBBS topol-
ogy services is to maintain a consistent view of the
network topology in each node in the network. A
consistent view is required for finding key services,
maintaining current network state information, and
computing good paths through the network. The
main requirement on topology services is to en-
sure that all nodes in the connected portion of the
network eventually acquire the same picture of the
network. Since this information is critical, it must
be distributed quickly, efficiently, and reliably. To-
pology services enable the information to be dis-
tributed quickly and efficiently via an underlying
structure termed the control point (CP) spanning
tree, which dynamically identifies the nodes that
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Figure 3 Client and server RTP transmissions in an
UMOT MPC
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are part of the MPC comprising the entire NBBS net-
work, and which enables packet transfer in the
hardware. Topology services also provide an ap-
plication-based reliability mechanism that makes
use of the RTP UMOT service. This section describes
the creation and maintenance of the CP spanning
tree and the application-based reliability provided
by topology services.

Topology services create and maintain a CP span-
ning tree for distribution of time-critical, vital con-
figuration information. In NBBS, the CP spanning
tree is defined to be a graph comprised of one or
more nodes and zero or more edges; thus a CP span-
ning tree could be a single node. An edge is a link
(transmission medium) that is part of the CP span-
ning tree. Each link is represented as a pair of uni-
directional links , where one unidirectional link en-
ters the node and one unidirectional link emanates
from the node. Each unidirectional link has a label
associated with it to enable fast packet transfer in
the hardware. This label is called an ANR label.

Each node on the CP spanning tree maintains a par-
ent-child relationship with its adjacent nodes. Each
node has one parent and zero or more children,
except for the root, which has zero or more chil-
dren but no parent. Every node in the CP spanning
tree is capable of being the root. The property of
being the root is termed rootship.

The root coordinates the construction and main-
tenance of the CP spanning tree and initiates the
process of joining two CP spanning trees together.
When a node becomes the root of a CP spanning
tree, it determines where the CP spanning tree join
will take place.

If the node (where the CP spanning tree join should
take place) is not the current root of the CP span-
ning tree, the rootship is transferred hop-by-hop
to the node that owns that unidirectional link via
a move root message. Each node, upon receipt of
amove root message, determines which node owns
the highest-weight potential unidirectional edge.®
If the node determines that it does not own the
highest-weight potential unidirectional edge, it cal-
culates a path to the node that does and sends a
move root message to the next node along the path.
If the node determines that it is the root where the
CP spanning tree join should take place, it begins
the process of joining the two CP spanning trees.
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Each root compares its node identifier with that of
the adjacent node to which the potential unidirec-
tional edge is attached to determine if it is the low-
er- or higher-named node. The comparisonis done
using the extended binary coded decimal inter-
change code (EBCDIC) collating sequence. (For ex-
ample, the EBCDIC value for ““A” is less than the
EBCDIC value for ““9,” therefore ““9” is higher than
“A.”) Then the node takes the following actions:

1. If the root is attached to the link where the join
should take place and is the lower-named node,
it sends a combine request message to the higher-
named node, using the reliable point-to-point
RTP service.

2. Upon receipt of the combine request message,
the higher-named node does one of the follow-
ing:

e If the CP spanning tree of the higher-named
node is in the process of joining with another
CP spanning tree or if the higher-named node
has not yet received a move root message, it
does nothing after receiving the combine re-
quest message until one of the following events
happens:

a. The join with the other spanning tree is
completed. Then the higher-named node
becomes the root of its CP spanning tree.

b. It receives a combine reply demanded mes-
sage. This notifies the higher-named node
that the lower-named node wants to with-
draw its joint offer because it has received
information about a new highest-weight po-
tential unidirectional edge. The higher-
named node then does one of the following:

i. Ifit has already agreed to the join offer
(it has already sent a combine grant mes-
sage to the lower-named node) or it is
ready to agree, it discards the combine
reply demanded message, sends the com-
bine grant message (if not already sent),
and the join continues normally.

ii. Ifitisready toaccept the lower-named
node’s join offer (because it is in the
process of joining with another CP span-
ning tree), it sends a combine release
message to the lower-named node, and
the CP spanning tree join proceeds no
further.

* Ifthe higher-named node is not already in the
process of joining with another CP spanning
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tree and has received a move root message, it
accepts the join offer (the combine request) by
sending a combine grant message to the lower-
named root, using the reliable point-to-point
RTP service.

3. Each node creates and sends its configuration
information to the other node involved in the
join. The lower-named node does this when it
receives the combine grant message and the high-
er-named node when it sends the combine grant
message. Upon receipt of this configuration in-
formation, each node will multicast any new
configuration information to its own CP span-
ning tree and any inconsistent configuration in-
formation to both CP spanning trees, so that all
nodes will correct the information.

4. Each node marks the hardware of the unidirec-
tional link emanating from it with hardware ad-
dresses to facilitate fast packet transfer: topol-
ogy services in the lower-named node do this
after processing configuration information from
the higher-named node, then send a combine
done message to the higher-named node; topol-
ogy services in the higher-named node do this
after processing configuration information from
the lower-named node and upon receipt of the
combine done message from the lower-named
node.

5. When the respective nodes are finished mark-
ing the unidirectional links with the hardware
addresses, the lower-named node (that sent the
combine request) makes its parent the higher-
named node and the higher-named node (that
received the combine request) becomes the root
of the newly combined CP spanning tree.

The combined CP spanning tree is the new vehicle
for transfer of configuration and utilization infor-
mation. It dynamically identifies the nodes that are
part of the MPC (for use by the UMOT RTP service)
and enables (via the hardware-marked address of
the link) fast packet transfer. The CP spanning tree,
along with the UMOT RTP service distribution, en-
ables NBBS to issue topological information with
the distribution of only n» — 1 messages each time
amulticast occurs, where #n is the number of nodes
in the network (in the CP spanning tree). The UMOT
RTP service and the creation and maintenance of
the CP spanning tree are more efficient than a flood-
ing-type algorithm (such as the ARPANET algo-
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rithm?®) for the distribution of topological informa-
tion.

Since configuration information is vital to the net-
work operation, topology services provide a reli-
able guarantee for any configuration information
issued over the CP spanning tree using the UMOT
RTP service, as described below.

Each time the topology services application mul-
ticasts configuration information using the UMOT
RTP service, it uniquely identifies the multicast by
a reliable multicast correlator and a node identi-
fier. The reliable multicast correlator is an integer
that the application increases by one each time it
uses the UMOT service to multicast configuration
information. The node identifier identifies the node
that issues the multicast.

Immediately after using the UMOT RTP service to
multicast the configuration information, topology
services use the unreliable point-to-point RTP ser-
vice to send a reliable multicast (RM) acknowledge-
ment (ack) message to each of its CP spanning tree
neighbors; the RM ack message also contains the
reliable multicast correlator and node identifier
identifying the multicast event. Topology services
then set a timer called the RM-ack timer, which in-
dicates the length of time the node will wait for RM
ack messages from its neighbors. The RM ack mes-
sages are used as a ‘“handshake” between the
neighbors, indicating that the node has received
(or sent, in the case of the originator) the configura-
tion information identified by the reliable multicast
correlator and node identifier. Each node that
receives the configuration information also sends
an RM ack message to each of its neighbors, sets its
RM-ack timer, and performs the following events.

When the node sets the RM-ack timer, it also cre-
ates an RM-acks-expected list that tracks which
neighbors send RM ack messages for the specified
multicast event. When creating the RM-acks-ex-
pected list, the node determines whether an RM-
acks-received list exists for the multicast event
(note that this is not necessary for the node that
originated the multicast of the configuration infor-
mation). When a node receives an RM ack message
from a neighboring node identifying a multicast
event for which no RM-acks-expected list exists,
the node creates an RM-acks-received list and
places the ANR label, over which it received the
unexpected RM ack message, in this list. This sce-
nario occurs whenever the configuration informa-
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tion for a specified multicast eventis lost (e.g., due
to buffer overflow, the packet containing config-
uration information passes through the hardware
but a copy of the packet is not made). When the

New configuration information
will flow only to the node’s
own CP spanning tree,
making topology services
more efficient.

node receives additional RM ack messages from
other CP spanning tree neighbors for the same mul-
ticast event, the node puts these ANR labels, over
which the RM ack messages flowed, into the RM-
acks-received list, as long as the configuration in-
formation for the corresponding multicast event
has not been received. Once the configuration in-
formation is received by the node, topology ser-
vices create an RM-acks-expected list.

The ANR labels emanating from all CP spanning tree
neighbors and entering the node are candidates for
the RM-acks-expected list. If an RM-acks-received
list exists, it is used to trim entries from the RM-
acks-expected list; the ANR labels over which RM
ack messages have already been received are not
placed in the RM-acks-expected list. Neither does
the node put ANR labels of all neighboring nodes
in the RM-acks-expected list when new configura-
tion information is received during a CP spanning
tree join—the ANR label over which the join is tak-
ing place is not placed in the RM-acks-expected list.
This is desirable because the new configuration in-
formation will flow only to the node’s own CP span-
ning tree, making topology services more efficient
(the messages do not flow through both CP span-
ning trees since it is not necessary).

The RM-acks-received list is then discarded since
it is no longer needed (the configuration informa-
tion has been received), RM ack messages and re-
liable point-to-point configuration information (cor-
responding to the multicast event) are tracked by
removing the ANR labels, over which they are re-
ceived, from the RM-acks-expected list correspond-
ing to the multicast event.
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When the RM-ack timer expires (if the RM-acks-ex-
pected list does not empty prior to the RM-ack timer
expiring), the node sends another copy of the con-
figuration information to each neighbor that did not
send an RM ack message—but this time using the
reliable point-to-point RTP service. (Sending the
configuration information reliably via RTP ensures
that it gets to the neighbor.) The node then discards
the RM-acks-expected list, since the configuration
information arrived at each of the neighboring
nodes—by the UMOT RTP service or by the reliable
point-to-point RTP service.

The node then sets the RM-event timer, which is
used to eliminate unnecessary processing of late
RM ack messages or configuration information for
the specified multicast event. Late responses could
be caused by transient loops in the CP spanning tree
(which may occur when the CP spanning tree con-
figuration changes faster than the information
about these changes is delivered) or by out-of-or-
der delivery of messages. Once the RM-event timer
expires, the multicast event information for the
specified multicast event is discarded (enough time
has transpired that the probability of either event
has been greatly reduced).

If the configuration information is not received via
multicast but only by a reliable point-to-point
message, the node forwards the configuration in-
formation to each of its CP spanning tree neighbors
(except the one from which it received the infor-
mation) using the reliable point-to-point RTP ser-
vice. Immediately after sending this information
to its neighbors, the node sets the RM-event timer.
(The rRM-acks-expected list and RM-acks-received
list are not created nor is the RM-ack timer set, in
this scenario.) '

With this topology-based reliability, topology ser-
vices guarantee that the multicast configuration in-
formation reaches every node in the network.

Conclusion

We introduced RTP, a high-performance protocol
that provides point-to-point and point-to-multipoint
transport services with a reliable delivery option.
This protocol enables NBBS network control infor-
mation to be transported and distributed in a man-
ner that takes advantage of high-speed links by
eliminating as much nodal processing as possible.
We also presented a simple and efficient mecha-
nism, using the UMOT service of RTP, for fast and
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efficient dissemination of time-critical network con-
figuration and path update messages to every node
inan NBBS network. For the distribution of the net-
work configuration information, we presented an
example of an application-based reliability mech-
anism for these multicast messages.

Inretrospect, what distinguishes RTP from XTP and
the other “‘light-weight” protocols proposed dur-
ing the late 1980s and early 1990s, other than tech-
nical details, is that the RTP design evolved to per-
fectly support the rest of the IBM NBBS architecture
and that RTP has been successfully implemented
and deployed in several IBM products. RTP is not
a theory. It became more than a research project.
The several implementations of RTP prove that
“fast, optimistic session setup” works and that sen-
sible packet formats can be handled efficiently with
straightforward code running on off-the-shelf mi-
Croprocessors.
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Appendix A: Reliable delivery by
retransmission

This appendix describes the retransmission pro-
cedures that RTP uses to detect and recover lost
packets. One partner informs the other partner
about its status by including a status segment in
a packet sent to the partner. The status segment
contains acknowledgments for already received re-
liable message bytes. One partner requests a sta-
tus segment from its partner by setting the status-
request bit in the RTP header. The loss of a
transmitted packet containing message bytes is de-
tected at the receiver through a gap in the sequence
number.

An RTP user can suppress error recovery by send-
ing messages unreliably. The sending RTP machine
sets the no-retry bit in the containing packets and
does not retransmit these messages. The receiv-
ing RTF machine does not report missing message
bytes back to the sender from a packet with the
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no-retry bit set. If status is required, the receiving
machine sends the status segment back to the send-
ing machine with the byte-sequence-number field
updated to reflect the reception of the most recently
received message bytes. It discards any unreliable
message that has a gap in it, and reports the miss-
ing (or discarded) unreliable message to the receiv-
ing RTP user.

When gaps are detected in reliable messages, RTP
uses the procedures described next to recover
missing message bytes.

Selective repeat. When a receiving partner, B, de-
tects a new gap, it buffers the message bytes that
follow the gap. Then, partner B builds a packet con-
taining a status segment with the gap-detected-by-
the-receiver (GAPDETR) bit set. The status segment
acknowledges the most recently received message
bytes without an earlier gap. It also acknowledges
any safely arrived and buffered message bytes fol-
lowing the oldest existing gap so that the sending
partner, A, will know that it does not need to re-
transmit those spans of message bytes. For this
purpose the status segment carries zero, one, or
more acknowledged byte span pairs (ABSP). Each
ABSP represents a sequence of message bytes that
are being held in partner B’s buffers pending the
arrival of the message bytes expected based on the
gaps. Partner B sends this packet to partner A and
starts (or restarts) the GAP_REC timer. The GAP_REC
timer is not stopped unless all the lost message
bytes (including the ones in earlier gaps) are re-
covered. As long as the lost message bytes are not
recovered, any subsequent status segment sent (in
a packet) by partner B will have the GAPDETR bit
set, reporting all the existing gaps. If the GAP_REC
timer expires, partner B restarts it and sends an-
other packet, containing a status segment with the
GAPDETR bit set, to partner A.

In order to avoid retransmitting a message byte if
it is not lost, partner A will retransmit a message
byte (reported as being in a gap) only if a trans-
mission following it in time (regardless of its byte
sequence number) has been acknowledged. For
this purpose partner A maintains a chained buffer
in which it retains the message bytes that have been
transmitted but not yet acknowledged. The mes-
sage bytes in the chained buffer are chained in the
order of the most recent transmission. Thus, when
a message byte is transmitted (or retransmitted) it
is placed at the end of the chained buffer. When-
ever partner A receives a status segment (current
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or old) from partner B, it removes each acknowl-
edged message byte from the chained buffer. In ad-
dition, partner A records the point in the chained
buffer where the most recently transmitted mes-
sage byte is acknowledged. Each message byte in
the chained buffer that was last transmitted, prior
to this most recently acknowledged message byte,
is referred to as “eligible-for-retransmission.”

Whenever partner A receives a status segment with
the GAPDETR bit set, it does the following: If the
number-of-acknowledged-byte-span-pairs (NABSP)
field is nonzero (regardless of whether the status
segment is current or old), partner A retransmits
all the eligible-for-retransmission message bytes
between (and including) the byte sequence num-
bers RSEQ and acknowledged byte span pair be-
gins (ABSPBEG) of the last ABSP. If the NABSP field
is zero and the status segment is current, partner
A retransmits all the message bytes from the byte
sequence number RSEQ to the byte sequence num-
ber of the most recently transmitted message byte.
When partner A retransmits message bytes, it ini-
tiates a state exchange with the last packet con-
taining a retransmitted message byte if the NABSP
field in the received status segment is zero. If the
GAPDETR bit is set and the NABSP field is set to zero,
this indicates that partner B is implementing the
go-back-n scheme. The use of the chained buffer
as described ensures that if both the partners im-
plement the selective repeat scheme, no message
byte will be retransmitted unless it is actually lost.

RTP uses the gap detection scheme to deduce that
message bytes have been lost; however, this
scheme does not work if a packet containing the
last message (or the last segment of the last mes-
sage) of a sequence of messages is lost. We refer
to the message bytes contained in this packet as
the “‘last message bytes.”” In order to ensure the
correct delivery of the last message bytes, partner
A initiates a state exchange with the transmission
of the last message bytes. If the SHORT_REQ timer
expires and a status segment acknowledging the
receipt of the last message bytes has not been re-
ceived, partner A retransmits the last message
bytes and initiates a pseudo state exchange.®

Figure 4 shows an example of RTP error recovery
when the selective repeat option is implemented.

Go-back-n. The scheme that will be described for

the go-back-n option allows an implementation that
supports selective repeat to communicate with an

IBM SYSTEMS JOURNAL, VOL 34, NO 4, 1995




Figure 4 Example of error recovery with selective repeat
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implementation that supports go-back-n. The go-
back-n scheme is the same as the selective repeat
except as described here.

When partner B detects a gap (it receives a packet
with a byte sequence number higher than expect-
ed), it does not buffer any message bytes that fol-
low; it simply discards them. Then, partner B sends
a packet containing a status segment with the
GAPDETR bit set and the NABSP field not set to part-
ner A. The status segment acknowledges the most

Unlike in the selective
repeat scheme, partner A
does not need to maintain

a chained buffer
in the go-back-n scheme.

recently received message bytes without an ear-
lier gap. Unless in-sequence message bytes are re-
ceived, any subsequent status segment sent by
partner B has the GAPDETR bit set. ’

Unlike in the selective repeat scheme, here part-
ner A does not need to maintain a chained buffer.
When partner A receives a current status segment
with the GAPDETR bit set, it ignores the acknowl-
edged byte span pairs (if any) and retransmits the
message bytes from the byte sequence number
RSEQ to the byte sequence number of the most re-
cently transmitted message byte. Partner A ini-
tiates a state exchange with the last packet con-
taining a retransmitted message byte.

Figure 5 shows an example of RTP error recovery
when the go-back-n option is implemented.

Appendix B: Linear multicast mechanisms

This appendix describes the procedures and mech-
anisms that RTP uses to provide the three service
options of RTP linear multicast (LM): unreliable mul-
ticast datagram (UMD), reliable multicast datagram
(RMD), and reliable multicast transaction (RMT).
The LM protocols are the same as the RTP point-
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to-point protocols except as specifically described
here.

Unreliable multicast datagram. This service pro-
vides delivery of a single message from the client
RTP to specified server RTPs with no reliability pro-
vision. When the client application has an unre-
liable message to multicast and requests the UMD
service option, the client RTP constructs a packet
with the no-retry bit set, a connection setup seg-
ment, and the message itself; then the client RTP
multicasts the packet to the specified server RTPs
and terminates the MPC. In this discussion, we as-
sume that the packet size is large enough to hold
amessage and any required optional segments; oth-
erwise, message segmentation is required as de-
scribed previously.

The server RTP waits for the arrival of a packet.
When it receives a packet with the no-retry bit set
and containing a user message, it delivers the ap-
plication message to the server application and in-
forms the server application that it received the
message on an UMD MPC. Then the server RTP dis-
connects.

Reliable multicast datagram. This service provides
reliable delivery of a single message from the cli-
ent RTP to specified server RTPs. When the client
application has a reliable message to multicast and
requests the RMD service option, the client RTP con-
structs a packet containing the message with the
status-request and respond-as-soon-as-possible
(respond-ASAP) bits set, a connection setup seg-
ment, and a linear multicast segment with the lin-
ear-multicast-service-option (LMSO) bits set to
RMD. It then multicasts the packet to the specified
server RTPs and starts the SHORT_REQ timer.

If the SHORT_REQ timer expires, the packet is mul-
ticast to the server RTPs which have not yet ac-
knowledged the receipt of the packet and the
SHORT_REQ timer is restarted. The client RTP in-
creases its retry count by one each time it trans-
mits the packet. The send fails if the SHORT_REQ
timer expires when the retry count is greater than
the client MAX_RETRY. If the send fails, the client
RTP reports a failure to the client application and
disconnects.

If all the specified server RTPs have acknowledged
the receipt of the packet, the client RTP stops the
SHORT_REQ timer and informs the client applica-
tion that the send completed.
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Figure 5 Example of error recovery with go-back-n
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NOTE: SELECTED FIELDS OF THE RTP PACKET ARE SHOWN, WITH ABBREVIATIONS

conn-setup = connection setup segment status-req = status-request bit set gap = GAPDETR bit set
status = status segment ASAP = respond-ASAP bit set PARTNER B has no user data to send to PARTNER A
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The server RTP waits for the arrival of a packet.
When it receives a packet with the LMSO bits set
to RMD, the status-request and respond-ASAP bits
set, and containing a message, it delivers the ap-
plication message to the server application and in-
forms the server application that it received the
message on an RMD MPC. Because the status-re-
quest and respond-ASAP bits are set in the received
packet, the server RTP immediately sends an ac-
knowledgment (a packet containing a status seg-
ment with RSEQ set to one plus the sequence num-
ber of the end-of-message character of the received
reliable message) to the client RTP.

When the server application requests RTP to dis-
connect, the server RTP has to dally (as explained
in point-to-point connections) before it discon-
nects. This is because the client RTP may not have
received the acknowledgment for its reliable mes-
sage; in that case, the client RTP retransmits its re-
liable message.

Reliable multicast transaction. This service pro-
vides reliable delivery of a single message from the
client RTP to specified server RTPs and delivery of
one or more messages (only the last of which is
reliable) from each server RTP to the client RTP.
When the client application has a reliable message
to multicast and requests the RMT service option,
the client RTP constructs a packet containing the
message with the status-request bit set and the re-
spond-ASAP bit not set. The packet also includes
aconnection setup segment, a status segment (with
ASEQ indicating the server RTP’s send window al-
located by the client RTP), and a linear multicast
segment with the LMSO bits set to RMT. The client
RTP then multicasts the packet to the specified
server RTPs and starts the SHORT_REQ timer. The
timer is stopped if the client RTP receives an ac-
knowledgment from each server RTP.

If the SHORT_REQ timer expires, the packet is mul-
ticast again to the server RTPs that have not yet ac-
knowledged the receipt of the packet. When the
SHORT_REQ timer expires, the client RTP also sends
a multicast acknowledgment (a packet containing
a status segment with RSEQ set to the largest se-
quence number of the end-of-message characters
of the received reliable messages, plus one) to the
server RTPs that have sent their reliable messages
and have acknowledged the receipt of the client
RTP’s message.
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The client RTP increases its retry count by one each
time it transmits (or retransmits) the packet. The
send fails if the SHORT_REQ timer expires when the
retry count is greater than the client MAX_RETRY.
If the send fails, the client RTP sends a multicast
acknowledgment to the server RTPs that have sent
their reliable messages and have acknowledged the
receipt of their client RTP’s message. It then reports
afailure to the client application and disconnects.

After the SHORT_REQ timer is turned off (after an
acknowledgment is received from each server RTP)
and before requesting disconnect, if the client RTP
receives a reliable message from a server RTP, it
will send a multicast acknowledgment to the server
RTPs that have sent their reliable messages.

The transaction at the client RTP is considered
completed if the client RTP has received an ac-
knowledgment (for its reliable message) and it has
received a reliable message (in a packet with the
no-retry bit not set and the last-message bit set)
from each server RTP. At this time, the client RTP
sends a multicast acknowledgment to the server
RTPs and informs the client application of the com-
pletion of the transaction.

When the client application requests to disconnect,
the client RTP has to dally before it can terminate
the MPC. This is because a server RTP may not have
received the acknowledgment for its reliable mes-
sage; in that case, the server RTP retransmits its
reliable message.

The server RTP waits for the arrival of a packet.
When it receives a packet with the LMSO bits set
to RMT, with the status-request bit set and the re-
spond-ASAP bit not set, and containing a message,
it delivers the application message to the server
application, informs the server application that it
received the message on an RMT MPC, and starts
its SHORT_RSP timer. (While the SHORT_RSP timer
is running, it is not restarted if the server RTP re-
ceives another packet with the status-request bit
set and the respond-ASAP bit not set.) If the
SHORT_RSP timer expires, the server RTP sends an
acknowledgment (a packet containing a status seg-
ment with RSEQ set to the sequence number of the
end-of-message character of the received reliable
message, plus one) to the client RTP.

After receiving the application message from the

client application, the server application may send
any number of unreliable messages. The server ap-
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plication must then send a single reliable message.
When the server application has a message to send,
‘the server RTP constructs a packet containing the
message. If the SHORT_RSP timer is running, the
server RTP includes a status segment in the packet
and stops the timer. If the message is reliable, the
server RTP sets the status-request bit in the packet
and starts the SHORT_REQ timer. The packet is then
sent to the client RTP.

After sending an acknowledgment to the client RTP,
if the server RTP receives a retransmission of the
client RTP’s reliable message, it sends another ac-
knowledgment to the client RTP immediately.

If the SHORT_REQ timer expires, the server RTP re-
transmits the packet and restarts the timer. The
server RTP increases its retry count by one each
time it transmits the packet and starts (or restarts)
its SHORT_REQ timer. The send (associated with the
reliable message) fails if the SHORT_REQ timer ex-
pires when the retry count is greater than the server
MAX_RETRY. If the send fails, the server RTP re-
ports afailure to the server application and discon-
nects. If the server RTP receives an acknowledg-
ment for its reliable message, it stops the
SHORT_REQ timer and informs the server applica-
tion that the send has completed.

Connection maintenance. Each server RTP has a
connection inactivity timer that is used to detect
loss of communications with the client RTP. For
example, a transmission link could fail after a
server RTPreceived the first packet of a segmented
message from the client RTP. The timer is started
(or restarted if running) each time the server RTP
receives a packet from the client RTP. If it expires,
the server RTP notifies the server application, and
the server RTP disconnects. The timer is stopped
when the server RTPreceives a packet with the last-
message bit set.

Appendix C: Unreliable multicast over trees
mechanisms

This appendix describes the use of RTP multiparty
connections (MPCs) to provide unreliable multicast
over trees (UMOT) services. The UMOT protocols
are the same as the RTP point-to-point protocols
except as specifically described here.

RTP uses only the connection inactivity timer for

the unreliable multicast over trees service (the
other RTP timers are not used for this service). The
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connection inactivity timer is not used in the same
way as in point-to-point RTP. The connection in-
activity timer is required for the operation of each
server RTP and is used to detect loss of commu-
nications with the client RTP. For example, a trans-
mission link could fail after a server RTP received
the first packet of a segmented message from the
client RTP. The connection inactivity timer is
started (or restarted if running) each time a packet
is received from the client RTP. If it expires, the
server application is notified and the server RTP dis-
connects.

The client RTP maintains a receive window allo-
cation that is communicated via the ASEQ field in
the status segment to server RTPs. The client RTP
discards incoming application messages from
server RTPs that do not fall within its receive win-
dow. A server RTP can only send application mes-
sages within the send window allocated by the cli-
ent RTP. This provides a mechanism for the client
application to perform window flow control on its
side. If the client application does not want to re-
ceive application messages from server applica-
tions, it asks the client RTP to close its receive win-
dow. The client RTP closes its receive window by
setting its RSEQ equal to ASEQ and multicasts a sta-
tus segment in a packet to server RTPs. The client
application can also ask the client RTP to allocate
a new receive window. The client RTP allocates a
new receive window by increasing its ASEQ (by the
amount requested by the client application) and
multicasts a status segment in a packet to server
RTPs.

Unreliable multicast over trees MPCs have no sep-
arate MPC setup or dissolution. The client RTP sends
the connection setup information with each mes-
sage to allow server RTPs to join or leave the MPC
at any time. Upon receipt of a message from the
application, the client RTP constructs a packet con-
taining an application message with the setup-
packet and no-retry bits set and a connection setup
segment. A status segment is also included in the
packet if a receive window is allocated (applica-
tion messages are expected). RSEQ and ASEQ in the
status segment indicate the receive window allo-
cation of the client RTP. Then the client RTP mul-
ticasts the packet to server RTPs.

When a server RTP receives a packet, with the set-
up-packet bit set, containing a connection setup
segment, the server RTP simply ignores the setup
information (the connection setup segment) if it has
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already been received. When the server applica-
tion has a message to send, the server RTP con-
structs a packet containing a message with the no-
retry bit set and sends it to the client RTP. The
server RTP can send a message only if its send win-
dow is not filled and the message size does not ex-
ceed the unfilled part of the send window. If a mes-
sage cannot be sent, the server RTP informs the
server application.
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