
Efficient  transport  and 
distribution of network 
control information in 
NBBS 

by M. Peyravian 
R. Bodner 

M.  Kaplan 
C.4.  Chow 

With  the  advances in fiber-based  transmission 
systems  that  operate at gigabit rates  and with  the 
introduction of  high-speed  networks,  the  course 
of  communication  and  computer  technologies 
has  changed  forever.  This  change  requires  that 
new attention  be  focused first on the  creation, 
then  on  the control of  networks,  which  now 
contain  high-speed links and  integrate 
heterogeneous traffic. IBM’s Networking 
BroadBand  Services (NBBS) architecture has 
been  designed to enable this networking 
revolution and, in particular, is designed  for  the 
high-speed, multimedia  networks needed  by 
emerging  applications. In this paper,  we  present 
the  Rapid Transport  Protocol (RTP). Its simple 
and efficient mechanisms  enable NBBS control 
information to be  transported  and  distributed, 
taking advantage  of  high-speed links by 
eliminating as much  nodal  processing as 
possible. RTP provides point-to-point and point- 
to-multipoint transport  services with a  reliable 
delivery  option. In addition, we present  a  simple 
and efficient mechanism  for  fast dissemination of 
time-critical  network  configuration and path 
update  messages to every  node in an NBBS 
network,  making  use  of  RTP, 

tocol (RTP), which is specifically designed for  fast 
and efficient transport and distribution of Network- 
ing BroadBand Services (NBBS) network control 
information. RTP is used by the NBBS network con- 
trol applications (such as directory  services, topol- 
ogy services, and access  agents) to transport net- 
work control information across  an NBBS network. 
RTP transport  connections  are  end-to-end,  i.e., 
there is no RTP transport  connection  awareness in 
transit nodes along the  path of a network connec- 
tion. 

RTP design began in 1988 with the objective of 
building a “full function”  transport  protocol  that 
could exploit high-speed networks  and be effi- 
ciently implemented on standard microprocessors. 
Greg Chesson’s Xpress  Transfer  Protocol4 with its 
“fast session setup” was taken as a starting point 
for the RTP design. Unlike Chesson,  the IBM team 
did not believe it to  be necessary to embed its trans- 
port protocol implementation in custom silicon. 
They saw that with microprocessor speeds increas- 
ing each year, their performance objectives-setup 
time approximately equal to network latency and 
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throughput limited only by media speed-could be 
met with the RTP “machine” implemented in soft- 
ware.  Over  the  next  few  years, RTP was extended 
with flexible multicast and  error control  options  to 
support  the NBBS architecture  and  control proto- 
cols. 

An RTP machine  (an  entity  that  supports and of- 
fers RTP services)  provides to its  users point-to- 
point  and point-to-multipoint (multicast) connec- 
tion-oriented  services with the following features: 

RTP performs user-message segmentation and  re- 
assembly  to allow user messages to flow over 
paths with fixed maximum packet  size. When an 
RTP machine is requested to send a user message 
that would result in a  packet larger than  the max- 
imum packet  size, it segments  the  user message 
before sending it.  The receiving RTP machine re- 
assembles the message segments into  the orig- 
inal user  message. 
RTP provides a simple, window flow-control 
mechanism that  prevents  an RTP user from over- 
loading its partner. An RTP user  can  send  data 
only within the window granted by its  partner. 
RTP has a connection-maintenance mechanism 
through which it can  detect loss of communica- 
tions with a remote  partner. 
RTP allows multiple RTP transport  connections 
to be associated with a single network  connec- 
tion endpoint (NCE); multiple RTP transport  con- 
nections  can  be multiplexed onto  a network con- 
nection. 
RTP provides in-order delivery of arbitrary-length 
user  messages. 
In point-to-point transport  connections, RTP pro- 
vides two  forms of error  recovery  schemes:  se- 
lective  repeat  and go-back-n. In  the  selective  re- 
peat  scheme,  the  sender only retransmits  the lost 
data; in the go-back-n scheme,  the  sender  re- 
transmits the lost  data  and all the  data  that fol- 
lowed it. 
In point-to-multipoint transport connections, RTP 
enables the  use  offast  hardware switching mech- 
anisms  for  use in point-to-multipoint multicast. 

RTP is designed to be implemented over  networks 
that  are  not completely reliable,  and its overhead 
is beyond  that  required  for  a simple connection- 
less  datagram ~ e r v i c e . ~  RTP is not  a traditional 
transport  protocol. The following RTP design prin- 
ciples result in high-performance implementations: 
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Optimism. RTP assumes  that the network  and  its 
underlying hardware  components are mostly re- 
liable, and  that  partner  users  are normally avail- 
able  and  ready  to  communicate  successfully. 
This optimism pervades  the  next  three  points. 

Fast  setup  for RTP transport  connection  estab- 
lishment. RTP has no separate  setup  handshak- 
ing phase.  The calling party simply assumes  that 
the listening party is ready to establish an RTP 
transport  connection. The first packet  sent  on  an 
RTP transport  connection may contain  user data 
(a user message or a segment of a user message, 
depending on  the maximum packet  size). 

Data streaming and piggybacking. The calling 
party may continue to stream  user  data to  the 
destination until status information is required. 
RTP assumes  a  listener that is able to receive  this 
initial burst of packets. RTP makes a trade-off that 
favors  fast  connection  setup  and low message la- 
tency against the possibility that  a  few  packets 
may reach a destination  unable to  process  them. 
In most of today’s  communications  environ- 
ments, transmission is cheap,  therefore dropping 
packets has trivial consequences compared to the 
cost of delaying a user’s  transactions. 

RTP “piggybacks”  its  protocol  control informa- 
tion within packets  containing user  data, when 
convenient, to reduce the number of flows. Pig- 
gybacking control information on  user  data  can 
make parsing difficult (because  packets will now 
have variable-length headers).  But RTP reduces 
this effect by placing the less-often-used  control 
information in optional  segments (as described 
later)  and by including in the RTP packet  header 
a payload offset field that gives the position of 
the  user  data  relative to  the beginning of the 
packet  header. 

Minimized handshaking  and  connection  disso- 
lution.  The RTP transport  connection  setup  pro- 
cess  and  the piggybacking of control information 
with user  data  are  examples of how RTP mini- 
mizes handshaking between the endpoints of the 
RTP transport  connections it manages. This  de- 
sign principle also  applies to connection  disso- 
lution,  the  process  that  occurs  when communi- 
cating parties  decide to terminate  the RTP 
transport  connection. Notification of intent to 
dissolve a connection is piggybacked on  the 
packet  carrying  the  last  user message (or the  last 
segment of the  last  user message). 
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The RTP philosophy and principles have been out- 
lined in broad  terms.  The following sections delve 
more deeply into  the detailed elements and pro- 
cedures  that  comprise RTP. 

RTP services  and  mechanisms 

RTP provides to its  users point-to-point and point- 
to-multipoint data  transport  services.  It provides 
point-to-point services by establishing a point-to- 
point RTP transport  connection in which one “call- 
er” (an RTP user  that  assumes  the calling role) is 
connected to  one  “listener” (an RTP user  that  as- 
sumes  the listening role). Callers and listeners are 
distinguishable only in terms of their role in a  par- 
ticular connection;  an RTP user may be  a caller of 
some connections and a listener of others.  In point- 
to-point RTP transport  connections, RTP provides 
full-duplex transmission with two user message de- 
livery options: 

Unreliable. If this option is selected, RTP sends 
the  user message to  its intended destination with 
no reliability provision. That  is, if the  user mes- 
sage is  lost or not delivered to  the intended re- 
cipient, RTP does not retransmit  the  user mes- 
sage nor does it inform the  user  that  its message 
was not delivered correctly;  however, lost user 
messages are  reported  to  the receiving partner. 
Reliable. If this option is selected, RTP informs 
the  user when the receipt of its message has been 
acknowledged by the intended recipient or when 
repeated  retransmissions  have failed to  produce 
this outcome. 

 pr provides point-to-multipoint services by estab- 
lishing a multiparty RTP transport connection (MPC) 
in which one client application is connected to a 
group of server  applications.  The client applica- 
tion of an MPC initiates the MPC and has the calling 
role.  The  server applications of an MPC have  the 
listening role. Clients and servers  are distinguish- 
able only in terms of their role in a  particular MPC; 
a using application may be  a client application of 
some MPCs and  a  server application of others. RTP 
provides two  types ofpoint-to-multipoint services: 

Linear multicast (LM). RTP multicasts a client- 
application message along a user-specified lin- 
ear path to the  server applications located on  the 
path,  and  sends  a server-application message 
only to  the client application. RTP provides three 
LM service  options,  each of which is initiated by 
the client application: unreliable multicast dat- 
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agram, reliable multicast datagram,  and reliable 
multicast transaction. 
Unreliable multicast over  trees (UMOT). RTP mul- 
ticasts  a client application message over  a  user- 
specified tree  to  the  server applications located 
on  the  tree, and sends  a  server application mes- 
sage only to the client application. A server  ap- 
plication may join  or  leave  an unreliable-multi- 
cast-over-trees MPC at any time. Unreliable 
multicast over  trees provides no reliability pro- 
vision. Application messages may occasionally 
be lost with no indication to the  sender, which 
can  be  the client application or a  server appli- 
cation. It is up to  the application to provide any 
required recovery. 

Packet formats. Each RTP packet is comprised of 
a  header  and  a  data payload as shown in Figure 1. 
The  header  is of variable length and it allows for, 
and may include, optional segments. An optional 
segment is a special type of structure  that includes 
control information pertaining to a  transport  con- 
nection. Its  presence in the  header  depends on the 
type of information that needs to be conveyed from 
one RTP machine to  its  partners. When long user 
messages are segmented into many packets,  the 
vast majority of the  packets  carry  no optional seg- 
ments, just a  short  header  and  the  data  payload. 
RTP supports  the following optional segments: 

Status segment. This is used to  convey  status in- 
formation from the calling to  the listening part- 
ners and vice versa.  It  contains information such 
as acknowledgments for  already received data 
and window-allocation parameters. 
Connection setup segment. This segment is used 
in the RTP transport  connection  establishment 
process.  The calling partner  sends this segment 
in a packet to convey  the  setup information to 
its partners. This segment contains information 
such as the  source identifier. 
Return  path information segment. This segment 
is used in point-to-point RTP transport  connec- 
tions to pass  the  return  path information from 
the local partner  to  the  remote  partner. 
Linear multicast segment. This segment is used 
in a linear multicast RTP transport  connection 
to carry linear multicast related information 
(such as service  option  type)  from  the client to 
servers. 
Connection fault segment. When an  error  occurs, 
this segment is used to  carry  sense  data (iden- 
tifying the  error) from the  partner  that  detected 
the error  to the other  partners. 
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Figure 1 RTP and NBBS packets 
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The  data  payload is of variable length and it con- 
tains a message (or a message segment) and  op- 
tional padding. Cyclic redundancy checking (CRC) 
protects  both  the  header  and  the  data payload. 

The  base  header  contains a byte-sequence-num- 
ber field, which identifies the first user-message 
byte of each  packet. As long as no packets  con- 
taining user data (or an end-of-message character) 
are lost  by the underlying network,  the  receiver 
simply checks  that  the value in the  byte  sequence 
number field equals  the  sum of the  byte  sequence 
number of the previous  packet  and  the number of 
data payload bytes (plus one if an end-of-message 
character is present) in the previous  packet. 

Since RTP checks  the  byte  sequence number of 
each  received  packet, if a  packet  arrives with a 
higher than expected  byte  sequence  number, it can 
immediately deduce  that  packets  have  been  lost. 
This process of deduction of packet  loss is referred 
to  as gap detection. This mechanism is used for 
error  recovery, as described  later. 

A sequence  number is assigned to  each byte of the 
data  payload,  rather  than  to the packet containing 
the  data  payload, because of the variable-length 
RTP header. If sequence  numbers  are assigned to 
packets,  then  a retransmission may require a longer 
header  than  that of the original transmission (be- 
cause additional optional segments may have  to be 
included in the retransmission). When packet size 
is limited, the  packet to  be retransmitted may not 
have enough room  for additional optional seg- 
ments. 

I 
Transport  connections  multiplexing. As part of the 
transport  connection  setup  process, the calling RTP 
machine chooses  and assigns a 4-byte  transport 
connection identifier (TCID) to  the  transport  con- 
nection.  This TCID, along with a globally unique 
connection qualifier associated with the calling RTP 
machine (which may be a network  address or  an 
International Organization for  Standardization 
[ISO] object identifier), is included on all packets 
and  associates the  packet with the RTP transport 
connection. When sending packets,  the listening 
partner  always  puts  the TCID value  received  from 
the calling partner in each  packet it generates. 
Since  these  packets will contain the TCID chosen 
by the calling partner,  they  do  not  carry a connec- 
tion qualifier. 

RTP allows multiple RTP transport  connections to 
be  associated with a single NCE; i.e., multiple RTP 
transport  connections  can be multiplexed onto  the 
same network connection. This is possible because 
an RTP machine associated with an NCE assigns  a 
different TCID to  each RTP transport  connection, 
and  because  packets belonging to different RTP 
transport  connections  can  be identified based  on 
their TCIDs. Thus,  an RTP machine associated with 
an NCE has  the capability to multiplex and demul- 
tiplex RTP transport  connections onto and off of 
network  connections using the TCIDs. 

Message segmentation. The network  packets  must 
be large enough to contain the variable-length RTP 
headers. When the  network  packets are not large 
enough to hold both  the RTP header  and  message, 
RTP segments  the message into  pieces to fit into 
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the network  packets at  the sending side  and  reas- 
sembles  the message segments  into  the original 
message at  the receiving side.  This is referred to 
as message  segmentation. RTP performs message 
segmentation,  reassembly,  and  sequence  check- 
ing in a  straightforward  fashion, with start-of-mes- 
sage and end-of-message bits in the RTP header. 
When no message segmentation is required,  a 
packet containing a message has  both  the  start-of- 
message and  the end-of-message bits  set. When 
message segmentation  is  required,  the first packet 
contains  the first segment of the  message; it has 
the  start-of-message bit set  but  does  not  have  the 
end-of-message bit set.  The last  packet  contains 
the  last segment of the message; it does not have 
the  start-of-message bit set  but  does  have  the  end- 
of-message bit set. Any middle packets (each con- 
taining a segment of the message) do  not  have ei- 
ther  the start-of-message or  the end-of-message bit 
set. 

Window flow control  mechanism. RTP maintains a 
receive window allocation, which is communicated 
end-to-end  between  partners via the allocation-se- 
quence-number (ASEQ) field in the  status segment. 
The  partner sending a status segment has allocated 
a receive window and  agrees to receive  user mes- 
sage bytes with byte  sequence  numbers  starting  at 
received  sequence  number (RSEQ) and ending at 
ASEQ - 1. The  sender of the  status segment will 
not  accept  any  user message bytes  outside this al- 
located  receive  window; it will simply discard  any 
such  data.  The  receive window allocated by one 
partner is the send  window of the  other  partner. 
RTP stops sending user-message  bytes at  byte se- 
quence  number ASEQ - 1, that  is, when its send 
window is shut. 

During the RTP transport connection setup,  the call- 
ing partner  assumes  some initial send window (by 
assuming some initial value  for ASEQ). This allows 
the calling partner  to  send a burst of packets  con- 
taining user-message  bytes without waiting for  its 
partner  to actually  communicate  its  receive win- 
dow  allocation.  This initial ASEQ can be an imple- 
mentation-default value. 

Timers. There  are five timers  required  for  the  op- 
eration Of RTP at  each  end of an RTP transport  con- 
nection: a  short-request (SHORT-REQ) timer,  a 
short-response (SHORT-RSP) timer, a gap-received 
(GAP-REC) timer,  a dally timer,  and  a  connection- 
inactivity  timer.  There is also  a maximum-retry 
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(MAX-RETRY) count  required  at  each  end of an RTP 
transport  connection. 

The SHORT-REQ timer is for  error  recovery,  and it 
provides a basic  retransmission  mechanism. It is 
used when waiting for  status information from  a 
remote  partner. When an RTP machine wants to 
know the  status of its  partner, it sends a packet 
with the  status-request bit set, indicating that it 
wants  its  partner to send a status  segment,  and 
starts  its SHORT-REQ timer. When an RTP machine 
receives a packet with the  status-request bit set, 
it responds by sending a packet  that  contains a sta- 
tus  segment.  The SHORT-REQ timer is stopped 
when a current  status segment is received. If the 
SHORT-REQ timer  expires,  the RTP machine sends 
another  packet with the  status-request bit set. 

The  number of consecutive  times  that the 
SHORT-REQ timer  can  expire at  each RTP machine 
is governed by MAX-RETRY. An RTP machine in- 
creases  its  retry  count by one  each time the 
SHORT-REQ timer expires. An RTP machine resets 
its  retry  count  to  zero if it receives  a  current  status 
segment from  its  partner. When an RTP machine’s 
retry  count is greater  than MAX-RETRY, it assumes 
that  its  partner  has failed or has  become  unreach- 
able.  In  this  case, it reports  the  failure  to  the RTP 
user  and  disconnects. 

The SHORT-RSP timer is for piggyback optimiza- 
tion; it specifies how long an RTP machine can wait 
before sending a  status segment in response  to  one 
or more status  requests  from  its  partner. When an 
RTP machine receives a packet with the  status-re- 
quest bit set, it starts  the SHORT-RSP timer  unless 
it is already running. When the SHORT-RSP timer 
expires, it sends  a  packet  containing  a  status seg- 
ment to its  partner  and  stops  the SHORT-RSP timer. 

The SHORT-RSP timer  has  two benefits. First,  an 
RTP machine need not send a  separate  status seg- 
ment for  each  received  packet with the  status-re- 
quest bit set.  Second, if user  data  are not yet 
available and a partner  has  requested  status infor- 
mation, the RTP machine can wait a short time. If 
user  data  become  available during that  time, the 
status segment can  be included in the packet  con- 
taining the  user  data. 

When an RTP user  wants  to  disconnect, if the RTP 
machine has  received reliable messages  from its 
partner, it does  not terminate the RTP transport  con- 
nection immediately. Instead, it starts  the dally 
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timer  and will “dally” (wait) for a while. Dallying 
ensures  that  the  remote  partner  receives acknowl- 
edgments  for all reliable data payloads  that it has 
sent. During the dallying period,  any  data payload 
received  from  the  remote  partner is simply dis- 
carded.  The  data  payload may be  a  redundant  re- 
transmission-perhaps because  a  packet  contain- 
ing a status  segment (acknowledgment) was  lost. 
The  data  payload may be new (probably due  to an 
RTP user  error);  or perhaps  the RTP users did not 
“handshake” properly (perhaps an RTP user did not 
know that  its  partner  has  requested to disconnect). 

The connection-inactivity timer provides a connec- 
tion maintenance mechanism through which a fail- 
ure of the  remote  partner or loss of communica- 
tions with the  remote  partner  can be detected.  The 
connection-inactivity  timer is started  (or  restarted 
if it is already running) each time a  packet is re- 
ceived from the remote  partner. 

The GAP-REC timer is used by the receiving RTP 
machine (implementing the selective  repeat  error 
recovery scheme) to periodically notify the  remote 
sending RTP machine that  lost reliable message 
bytes  have  not  been  recovered.  This  timer is used 
to speed  up the  error  recovery  process. When an 
RTP machine detects a new gap in the reliable data 
stream, it sends  to its partner  a  packet containing 
a status  segment with the gap-detected-by-the-re- 
ceiver (GAPDETR) bit set  and  starts  or  restarts  the 
GAP-REC timer. If the GAP-REC timer  expires, an- 
other  packet containing a  status segment with the 
GAPDETR bit set is sent  and  the GAP-REC timer is 
restarted.  The GAP-REC timer is stopped when all 
missing reliable message bytes (including the  ones 
in earlier gaps) are received. 

Point-to-point  connections 

RTP connections are initiated by RTP applications. 
The application notifies its RTP machine of poten- 
tial connections  and  for  each one  the RTP machine 
constructs a unique “connection  context.” 

An RTP point-to-point transport  connection begins 
life with one RTP user assuming the calling role and 
another  remote RTP user assuming the listening 
role.  How it is decided which partner is calling and 
which partner is listening is outside  the  scope of 
RTP. 

The RTP approach  to  connection  setup is very dif- 
ferent  from  the  traditional handshaking protocols 
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of Open Systems  Interconnection (OSI) transport, 
Systems  Network  Architecture  (SNA),  and TCP. 
The RTP approach is very similar to  and  borrows 
from Xpress  Transfer  Protocol (XTP)4 and Delta- 
t. Optimism is combined with piggybacking to 
minimize the  latency of the first bytes of user data 
to follow on  an RTP connection.  Another way to 
think about  the RTP setup  protocol  is to view it as 
an overlapping of a more  traditional  session  estab- 
lishment handshake with data  transport. 

Upon  the  request of the calling RTP user  for  trans- 
mission of the first message, the calling RTP ma- 
chine  constructs a special  type of packet called a 
setup  packet and  sends it to  the listening RTP ma- 
chine. Along with the usual RTP header  and  user 
data,  the  setup  packet  contains a connection-setup 
segment that  carries  information,  such as the 
source identifier. The  setup  packet may also in- 
clude  other  optional  segments. 

The listening RTP machine treats  setup  packets in 
a special way. If the  setup information does  not 
duplicate previously received information and 
there is a matching connection  context, the listen- 
ing RTP machine enters  a  “connected  state.”  The 
calling RTP machine does  not  enter  the  connected 
state until it receives a packet indicating that  the 
listening partner  has  received  the  setup  packet. 
Once  both  the RTP machines are in the connected 
state, a point-to-point transport  connection  exists 
and  packets may flow  in either  direction. 

In point-to-point connections, RTP offers two  op- 
tions for reliable message delivery: selective repeat 
and go-back-n. In  the  selective  repeat  option, RTP 
only retransmits  the  lost  user  data  bytes;  however, 
in the go-back-n option, RTP retransmits all the  user 
data  bytes following the  last acknowledged byte 
without an earlier  gap. The  procedures  that RTP 
uses to support  these  two  schemes are described 
in Appendix A. 

Point-to-multipoint  connections 

RTP provides point-to-multipoint (multicast) ser- 
vices by establishing a multiparty RTP transport 
connection (MPC) in which one  client RTP machine 
is connected to a  group of server RTP machines. 
The client RTP machine of an MPC initiates  the MPC 
and  has  the calling role. The  server RTP machines 
of an MPC have  the listening role. The client RTP 
machine multicasts  packets to  the  server RTP ma- 
chines,  but a server RTP machine may send  pack- 
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Figure 2 Typical  configuration  for  a  linear  multicast MPC 

ets only to  the client RTP machine on the same MPC. 
When replies (acknowledgments or messages) from 
the  server RTP machines are  expected, packets sent 
by the client RTP machine have  the  reverse  path 
accumulation function activated  (each intermedi- 
ate node  determines  its label for  the  return  path 
and includes it in the  packet).  Then,  packets from 
the  server RTP machines are  sent point-to-point on 
the  same MPC to the client RTP machine with the 
automatic network routing (ANR) transfer mode us- 
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ing the accumulated reverse ANR labels in the  re- 
ceived packets. RTP multicast services  are used by 
the NBBS network control applications (directory 
services, network connection  services,  and topol- 
ogy services). 

There is a using application associated with each 
of the RTP machines participating in an MPC; the 
application using the client RTP machine is the cli- 
ent  application, and the applications using the 
server RTP machines are  server applications. Cli- 
ents  and  servers  are distinguishable only in terms 
of their role in a  particular MPC; a using applica- 
tion may be a client application of some MPCS and 
a  server application of others. RTP currently pro- 
vides two  types of multicast services, linear mul- 
ticast (LM) and unreliable multicast over  trees 
(UMOT), which are  described in the following sec- 
tions. 

Linear multicast. RTP provides LM services by es- 
tablishing a niultiparty RTP transport  connection 
(MPC) in which there is a client RTP and  a  group of 
server RTPs. The RTP machine in the origin node 
is the client RTP. The RTP machines in the  transit 
nodes and in the  destination  node  are  server RTPs. 
Normally, a client RTP multicasts packets to all the 
server RTPs, and  a  server RTP sends  packets only 
to the client RTP. At certain  times, communication 
may take place between  the  client RTP and a  sub- 
set of the  server RTPs. For example, this occurs 
when a reliable message is retransmitted only to 
server RTPS that  have  not  yet acknowledged the 
message. 

Figure 2 illustrates  a typical configuration for  the 
client and  server RTPs in a linear multicast MPC. 
The  forward and reverse  paths used by the client 
and server RTPS to send  packets are indicated. 

RTP provides three LM service  options,  each of 
which is initiated by the client application: 

Unreliable multicast datagram (UMD). This  ser- 
vice option provides delivery of a single message 
from the client RTP to user-specified server RTPs 
with no reliability provision. 
Reliable multicast datagram (RMD). This service 
option provides reliable delivery of a single mes- 
sage from the client RTP to user-specified server 
RTPs . 
Reliable multicast transaction (RMT). This ser- 
vice option provides reliable delivery of a single 
message from the client RTP to user-specified 
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server RTPs and delivery of one or more messages 
(only the  last of which is reliable) from each 
server RTP to  the client RTP. 

Each of these  service  options is implemented us- 
ing a short-lived MPC. The client application may 
interleave UMDS, RMDS,  and RMTS in any  order de- 
sired by the  particular application. The  procedures 
and  mechanisms  that RTP uses to provide  these 
three  service  options are described in Appendix 
B. 

The client RTP sends packets  to  the  server RTPS with 
the ANR transfer  mode. With this mode the  entire 
path of the  packet is identified at  the origin of the 
connection  and placed in the  network  header of 
the  packet as an ANR field. When a node receives 
the  packet, it extracts  the ANR label that identifies 
the link over which the  packet  was  received from 
the ANR field and  then  forwards  the  packet to the 
next  node in the  path.  The  next node will then  re- 
peat  the  process. 

When multicasting packets  to  the  server RTPS, the 
client RTP utilizes the  selective  copy function of 
the ANR transfer  mode.  The  selective  copy  func- 
tion allows only certain  nodes along a path  to copy 
the  packet, eliminating unnecessary  processing of 
packets.  The  client RTP, located in the origin node, 
multicasts a packet by including an ANR field  in the 
network  header  and sending the  packet along the 
path specified by the ANR field to  the  endpoint 
server RTP located in the  destination  node. 

Sometimes it  is not  necessary  for  the client RTP to 
send a packet to all the  server RTPs for  an MPC; for 
example, an acknowledgment can be sent only to 
the  server RTPS from which a reliable message has 
been  received,  and  a reliable multicast message 
needs  to  be  retransmitted only to  the  server RTPS 
that  have not acknowledged the multicast message. 
Delivery to  the  server RTP in a  transit  node is spec- 
ified with the selective  copy bit of the ANR label 
for  the outgoing link of the  node. 

Unreliable multicast over trees. The client RTP ini- 
tiates an unreliable multicast over  trees (UMOT) 
MPC and  multicasts  packets  to all the  server RTPs 
located  on  the  tree. On the  same MPC, a  server RTP 
may send packets only to  the client RTP. When a 
packet is sent over a tree,  the packet will be for- 
warded to all members of the  tree (all the  server 
RTPs located  on  the  tree).  Packets  sent by the cli- 
ent RTP use a label-swap  transfer mode (which 
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swaps  an inbound label for  an  outbound label via 
hardware)  and  have the reverse  path accumulation 
function  activated.  Packets from a server RTP are 
sent on the  same MPC to the client RTP with the ANR 
transfer  mode, using accumulated  reverse ANR la- 
bels (which were collected by the  reverse  path  ac- 
cumulation function). 

RTP provides no reliability when  an  application  re- 
quests  the UMOT services. Application messages 
may occasionally be  lost with no  indication to  the 
sender (which might be  the client application or a 
server application). UMOT provides delivery of one 
or more unreliable messages from the client RTP 
to all the  server RTPS, and  delivery of zero  or  more 
unreliable messages from each  server RTP to  the 
client RTP. 

Unreliable multicast over  trees allows a server RTP 
to  join or  to leave  an ongoing MPC at  any  time.  That 
is,  a  server RTP need not participate in an MPC dur- 
ing the  entire life  of the MPC. This allows server 
RTPS that  have failed and  recovered  to rejoin the 
MPC . 

Figure 3 illustrates an example of client  and  server 
RTP transmissions in an UMOT MPC. The procedures 
and mechanisms that RTP uses to provide UMOT 
MPC are  described in Appendix C. 

Reliability for  the UMOT service  can  be  provided 
by an application that  uses  this  service.  The  next 
section  describes a topology-based reliability 
mechanism, provided by NBBS topology services, 
which makes  use of the UMOT service to multicast 
time-critical configuration information to  the en- 
tire NBBS network. 

An example of reliability added by an application 
to the  UMOT service. The objective Of NBBS topol- 
ogy services is to maintain a consistent view of the 
network topology in each node in the  network.  A 
consistent view is required for finding key services, 
maintaining current network state information, and 
computing good paths through the  network.  The 
main requirement  on topology services is to en- 
sure  that all nodes in the  connected  portion of the 
network eventually acquire  the  same  picture of the 
network.  Since this information is critical, it must 
be distributed quickly, efficiently, and reliably. To- 
pology services  enable  the information to  be dis- 
tributed quickly and efficiently via an underlying 
structure  termed  the controE point (CP) spanning 
tree, which dynamically identifies the nodes  that 
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Figure 3 Client  and  server RTP transmissions in an 
UMOT MPC 
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conn-setup = connection  setup  segment 
status =status segment 
no-retry = no  retry bit set 
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are  part of the MPC comprising the  entire NBBS net- 
work,  and which enables  packet  transfer in the 
hardware. Topology services  also provide an ap- 
plication-based reliability mechanism that makes 
use of the RTP UMOT service. This section describes 
the  creation and maintenance of the CP spanning 
tree and the application-based reliability provided 
by topology services. 

Topology services  create and maintain a CP span- 
ning tree  for distribution of time-critical, vital con- 
figuration information. In NBBS, the CP spanning 
tree is defined to  be  a graph comprised of one or 
more nodes and zero  or more edges;  thus  a CP span- 
ning tree could be  a single node. An edge is a link 
(transmission medium) that is part of the CP span- 
ning tree.  Each link is represented as a pair of uni- 
directional links, where one unidirectional link en- 
ters  the node and one unidirectional link emanates 
from the  node.  Each unidirectional link has a label 
associated with it to  enable  fast  packet  transfer in 
the hardware. This label is called an ANR label. 

Each node on  the CP spanning tree maintains a par- 
ent-child relationship with its adjacent nodes. Each 
node has one  parent and zero or more  children, 
except for the  root, which has zero  or more chil- 
dren but no parent.  Every node in the CP spanning 
tree is capable of being the  root.  The  property of 
being the  root is termed rootship. 

The  root  coordinates  the  construction  and main- 
tenance of the CP spanning tree and initiates the 
process  ofjoining  two CP spanning trees  together. 
When a node becomes  the  root of a CP spanning 
tree, it determines  where  the CP spanning tree  join 
will take place. 

If the node (where  the CP spanning tree  join should 
take place) is not the  current  root of the CP span- 
ning tree,  the  rootship is transferred hop-by-hop 
to the node that  owns  that unidirectional link via 
a move root message. Each  node, upon receipt of 
a move root message, determines which node  owns 
the highest-weight potential unidirectional edge. 
If the node determines  that it does  not  own  the 
highest-weight potential unidirectional edge, it cal- 
culates  a  path to  the  node  that  does  and  sends  a 
move root message to  the next node along the  path. 
If the node determines  that it is the  root  where  the 
CP spanning tree  join should take  place, it begins 
the  process of joining the  two CP spanning trees. 
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Each  root  compares  its  node identifier with that of 
the adjacent  node to which the  potential unidirec- 
tional edge is attached to determine if it is  the low- 
er-  or higher-named node.  The  comparison is done 
using the  extended binary coded decimal inter- 
change  code (EBCDIC) collating sequence.  (For ex- 
ample,  the EBCDIC value for “A” is  less  than  the 
EBCDIC value for “9,” therefore “9” is higher than 
“A.”) Then  the  node  takes  the following actions: 

1 .  If the  root is attached  to  the link where  the  join 
should take  place  and is the lower-named node, 
it sends acombine request message to  the higher- 
named node, using the reliable point-to-point 
RTP service. 

2. Upon receipt of the combine  request message, 
the higher-named node  does  one of the follow- 
ing: 

If the CP spanning tree of the higher-named 
node is in the  process  ofjoining with another 
CP spanning tree  or if the higher-named node 
has  not  yet  received a move root message, it 
does nothing after receiving the combine  re- 
quest message until one of the following events 
happens: 
a. The  join with the  other spanning tree is 

completed.  Then the higher-named node 
becomes  the  root of its CP spanning tree. 

b.  It receives a combine  reply  demanded mes- 
sage. This notifies the higher-named node 
that  the lower-named node wants  to with- 
draw  its  joint offer because it has received 
information about a new highest-weight  po- 
tential unidirectional edge. The higher- 
named node then does one of the following: 
i. If it has  already  agreed  to  the  join offer 

(it has already sent  a combine  grant mes- 
sage to  the lower-named node) or it is 
ready  to  agree, it discards  the combine 
reply  demanded message, sends  the com- 
bine  grant message (if not already  sent), 
and the  join  continues normally. 

ii.  If it is ready to  accept  the lower-named 
node’s join offer (because it is in the 
process ofjoining with another CP span- 
ning tree), it sends a combine  release 
message to  the lower-named node,  and 
the CP spanning tree join  proceeds no 
further. 

If the higher-named node is not already in the 
process of joining with another CP spanning 
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tree  and  has  received  a move  root message, it 
accepts  the  join offer (the combine  request) by 
sending a combine  grant message to  the lower- 
named root, using the reliable point-to-point 
RTP service. 

3.  Each  node  creates and sends  its configuration 
information to  the  other  node involved in the 
join.  The lower-named node does  this when it 
receives the combine  grant message and  the high- 
er-named node when it sends  the combine  grant 
message. Upon  receipt of this configuration in- 
formation,  each  node will multicast  any new 
configuration information to its own CP span- 
ning tree  and  any  inconsistent configuration in- 
formation  to  both CP spanning trees, so that all 
nodes will correct  the  information. 

4. Each  node  marks  the  hardware of the unidirec- 
tional link emanating  from it with hardware ad- 
dresses  to  facilitate  fast  packet  transfer: topol- 
ogy services in the lower-named node  do  this 
after processing configuration information from 
the higher-named node,  then  send a combine 
done message to  the higher-named node; topol- 
ogy services in the higher-named node  do this 
after processing configuration information from 
the lower-named node  and upon receipt of the 
combine  done message from the lower-named 
node. 

5. When the  respective  nodes are finished mark- 
ing the unidirectional links with the  hardware 
addresses,  the lower-named node  (that  sent  the 
combine  request) makes  its  parent the higher- 
named node and  the higher-named node  (that 
received the combine  request) becomes  the  root 
of the newly combined CP spanning tree. 

The combined CP spanning tree is the new vehicle 
for  transfer of configuration and utilization infor- 
mation. It dynamically identifies the nodes  that  are 
part of the MPC (for use by the UMOT RTP service) 
and  enables (via the  hardware-marked  address of 
the link) fast  packet  transfer.  The CP spanning tree, 
along with the UMOT RTP service  distribution,  en- 
ables NBBS to issue topological information with 
the  distribution of only n - 1 messages  each time 
a multicast occurs,  where n is the  number of nodes 
in the  network (in the CP spanning tree).  The UMOT 
RTP service  and  the  creation  and  maintenance of 
the CP spanning tree  are more efficient than a flood- 
ing-type algorithm (such as  the ARPANET algo- 

PEYRAVIAN ET AL. 649 



rithm’) for  the  distribution of topological informa- 
tion. 

Since configuration information is vital to  the  net- 
work  operation, topology services provide a reli- 
able  guarantee  for  any configuration information 
issued over  the CP spanning tree using the UMOT 
RTP service,  as  described below. 

Each time the topology services application mul- 
ticasts configuration information using the UMOT 
RTP service, it uniquely identifies the multicast by 
a reliable multicast correlator  and  a  node identi- 
fier. The reliable multicast correlator is an integer 
that  the application increases by one  each time it 
uses  the UMOT service to multicast configuration 
information. The  node identifier identifies the node 
that  issues  the  multicast. 

Immediately after using the UMOT RTP service  to 
multicast the configuration information, topology 
services  use  the unreliable point-to-point RTP ser- 
vice to  send  a reliable multicast (RM) acknowledge- 
ment  (ack) message to  each of its CP spanning tree 
neighbors;  the RM ack message also  contains  the 
reliable multicast correlator  and  node identifier 
identifying the multicast event. Topology services 
then  set a timer called the RM-ack timer, which in- 
dicates  the length of time  the  node will wait for RM 
ack messages  from its neighbors. The RM ack mes- 
sages are used as a  “handshake” between the 
neighbors, indicating that  the  node has received 
(or sent, in the  case of the originator) the configura- 
tion information identified by the reliable  multicast 
correlator and node identifier. Each node that 
receives the configuration  information also sends 
an RM ack message to each of its neighbors, sets its 
RM-ack timer, and performs the following events. 

When the  node  sets  the RM-ack timer, it also  cre- 
ates an RM-acks-expected list that  tracks which 
neighbors send RM ack messages  for  the specified 
multicast event. When creating  the RM-acks-ex- 
pected  list,  the  node  determines  whether  an RM- 
acks-received list exists  for  the multicast event 
(note  that  this is not  necessary  for  the node that 
originated the multicast of the configuration infor- 
mation). When a node  receives an RM ack message 
from a neighboring node identifying a multicast 
event  for which no RM-acks-expected list exists, 
the  node  creates an RM-acks-received list and 
places the ANR label,  over which it received the 
unexpected RM ack message, in this list. This sce- 
nario  occurs  whenever  the configuration informa- 
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tion for  a specified multicast event is lost  (e.g., due 
to buffer overflow, the  packet  containing config- 
uration information passes  through  the  hardware 
but a copy of the  packet is not  made). When the 

New configuration information 
will flow only to the  node’s 

own CP spanning tree, 
making topology services 

more efficient. 

node receives  additional RM ack messages  from 
other CP spanning tree neighbors for  the same mul- 
ticast  event,  the  node  puts  these ANR labels, over 
which the RM ack messages flowed, into  the RM- 
acks-received  list, as long as  the configuration in- 
formation for  the  corresponding multicast event 
has not been received.  Once  the configuration in- 
formation is received  by  the  node, topology ser- 
vices create  an RM-acks-expected list. 

The ANR labels emanating from all CP spanning tree 
neighbors and  entering the node are candidates  for 
the RM-acks-expected list. If an RM-acks-received 
list exists, it is used to trim entries from the RM- 
acks-expected  list;  the ANR labels over which RM 
ack messages have  already  been  received are not 
placed in the RM-acks-expected list.  Neither  does 
the  node  put ANR labels of  all neighboring nodes 
in the RM-acks-expected list when new configura- 
tion information is received during a CP spanning 
tree join-the ANR label over which the join is tak- 
ing place is not placed in the RM-acks-expected list. 
This is desirable  because  the  new configuration in- 
formation will  flow only to  the node’s own CP span- 
ning tree, making topology services  more efficient 
(the messages do not flow through  both CP span- 
ning trees  since it is not  necessary). 

The RM-acks-received list is then  discarded  since 
it is no longer needed  (the configuration informa- 
tion has been received), RM ack messages and  re- 
liable point-to-point configuration information (cor- 
responding to  the multicast  event) are tracked by 
removing the ANR labels,  over which they are re- 
ceived, from the RM-acks-expected list correspond- 
ing to  the multicast event. 
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When the RM-ack timer expires (if the RM-acks-ex- 
pected list does not empty prior to  the RM-ack timer 
expiring), the  node  sends  another copy of the con- 
figuration information to  each neighbor that did not 
send an RM ack message-but this time using the 
reliable point-to-point RTP service. (Sending the 
configuration information reliably via RTP ensures 
that it gets to  the neighbor.) The node then discards 
the RM-acks-expected list,  since  the configuration 
information arrived  at  each of the neighboring 
nodes-by the UMOT RTP service  or by the reliable 
point-to-point RTP service. 

The  node  then sets the RM-event timer, which is 
used to eliminate unnecessary  processing of late 
RM ack messages or configuration information for 
the specified multicast event.  Late  responses could 
be caused by transient loops in the CP spanning tree 
(which may occur when the CP spanning tree  con- 
figuration changes  faster  than  the information 
about  these  changes is delivered) or by out-of-or- 
der delivery of messages. Once  the RM-eVent timer 
expires,  the multicast event information for  the 
specified multicast event is discarded (enough time 
has  transpired  that  the probability of either  event 
has been greatly  reduced). 

If the configuration information is not received via 
multicast but  only by a reliable point-to-point 
message,  the  node  forwards  the configuration in- 
formation to  each of its CP spanning tree neighbors 
(except  the one from which it received the infor- 
mation) using the reliable point-to-point RTP ser- 
vice. Immediately after sending this information 
to its neighbors,  the  node  sets  the RM-event timer. 
(The RM-acks-expected list and RM-acks-received 
list are not  created  nor is the RM-ack timer set, in 
this scenario.) 

With this  topology-based reliability, topology ser- 
vices guarantee  that  the multicast configuration in- 
formation  reaches  every  node in the  network. 

Conclusion 

We introduced RTP, a high-performance protocol 
that provides point-to-point and point-to-multipoint 
transport  services with a reliable delivery option. 
This  protocol  enables NBBS network  control infor- 
mation to  be  transported  and  distributed in a man- 
ner  that  takes  advantage of high-speed links by 
eliminating as much nodal processing  as possible. 
We also presented  a simple and efficient mecha- 
nism, using the UMOT service of RTP, for  fast and 
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efficient dissemination of time-critical network con- 
figuration and  path  update messages to every  node 
in an NBBS network.  For  the distribution of the net- 
work configuration information, we presented  an 
example of an  application-based reliability mech- 
anism for  these multicast messages. 

In retrospect, what distinguishes RTPfrom xTP and 
the  other “light-weight” protocols  proposed  dur- 
ing the  late 1980s and early 1990s, other  than  tech- 
nical details, is that  the RTP design evolved to per- 
fectly support  the  rest of the IBM NBBS architecture 
and  that RTP has  been successfully implemented 
and deployed in several IBM products. RTP is not 
a  theory. It became  more  than a research  project. 
The  several  implementations of RTP prove  that 
“fast, optimistic session setup”  works and that sen- 
sible packet formats  can  be handled efficiently with 
straightforward code running on off-the-shelf mi- 
croprocessors. 
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Appendix A: Reliable delivery by 
retransmission 

This appendix describes the retransmission  pro- 
cedures  that RTP uses to  detect  and recover  lost 
packets. One partner informs the  other  partner 
about its status by including a  status segment in 
a  packet  sent  to  the  partner.  The  status segment 
contains acknowledgments for already received re- 
liable message bytes.  One  partner  requests  a  sta- 
tus segment from its partner by setting  the  status- 
request bit  in the RTP header. The loss of a 
transmitted packet containing message bytes is de- 
tected at the  receiver through a gap in the  sequence 
number. 

An RTP user  can  suppress  error  recovery by send- 
ing messages unreliably. The sending RTP machine 
sets  the  no-retry bit  in the  containing  packets  and 
does not retransmit  these messages. The  receiv- 
ing RTP machine does not report missing message 
bytes  back to  the sender  from  a  packet with the 

I TYRAVIAN ET AL. 651 



no-retry bit set. If status is required,  the receiving 
machine sends  the  status segment back to  the send- 
ing machine with the  byte-sequence-number field 
updated to reflect the reception of the most recently 
received message bytes. It discards  any unreliable 
message that  has  a  gap in it, and  reports  the miss- 
ing (or discarded) unreliable message to  the receiv- 
ing RTP user. 

or old) from  partner B, it  removes  each  acknowl- 
edged message byte from the  chained buffer. In  ad- 
dition,  partner A records  the  point in the chained 
buffer where  the  most  recently  transmitted mes- 
sage byte is acknowledged.  Each message byte in 
the  chained buffer that  was  last  transmitted,  prior 
to this  most  recently acknowledged message byte, 
is referred to as “eligible-for-retransmission.” 

When gaps are  detected in reliable messages, RTP 
uses  the  procedures  described  next  to  recover 
missing message bytes. 

Selective repeat. When a receiving partner, B, de- 
tects  a  new  gap, it buffers the message bytes  that 
follow the gap. Then,  partner B builds a packet con- 
taining a status segment with the  gap-detected-by- 
the-receiver (GAPDETR) bit set. The  status segment 
acknowledges the most recently received message 
bytes  without an earlier  gap. It also acknowledges 
any safely arrived  and  buffered message bytes fol- 
lowing the  oldest existing gap so that  the sending 
partner, A, will know  that it does  not need to  re- 
transmit  those  spans of message bytes.  For  this 
purpose  the  status segment carries  zero,  one, or 
more acknowledged byte  span  pairs (ABSP). Each 
ABSP represents  a  sequence of message bytes  that 
are being held in partner B’s buffers pending the 
arrival of the message bytes  expected  based on the 
gaps.  Partner B sends  this  packet to partner A and 
starts (or restarts)  the GAeREC timer. The GAP-REC 
timer is not  stopped unless all the lost message 
bytes (including the  ones in earlier gaps) are  re- 
covered. As long as  the  lost message bytes are not 
recovered,  any  subsequent  status segment sent (in 
a  packet)  by  partner B will have  the GAPDETR bit 
set, reporting  all  the existing gaps. If the GAP-REC 
timer  expires,  partner B restarts it and  sends an- 
other  packet,  containing a status segment with the 
GAPDETR bit set,  to  partner A. 

In  order  to avoid retransmitting a message byte if 
it is not  lost,  partner A will retransmit a message 
byte  (reported as being in a gap) only if a trans- 
mission following it in time (regardless of its  byte 
sequence  number)  has  been acknowledged. For 
this  purpose  partner A maintains a chained bufleev 
in which it retains the message bytes  that  have been 
transmitted  but not yet acknowledged.  The mes- 
sage bytes in the  chained buffer are chained in the 
order of the  most  recent  transmission.  Thus, when 
a message byte is transmitted (or retransmitted) it 
is placed at  the end of the  chained buffer. When- 
ever  partner A receives a status segment (current 

Whenever partner A receives a status segment with 
the GAPDETR bit set, it does  the following: If the 
number-of-acknowledged-byte-span-pairs (NABSP) 
field is nonzero  (regardless of whether  the  status 
segment is current  or old),  partner A retransmits 
all the eligible-for-retransmission message bytes 
between (and including) the  byte  sequence num- 
bers RSEQ and acknowledged byte  span  pair be- 
gins (ABSPBEG) of the last ABSP. If the NABSP field 
is zero  and  the  status segment is  current,  partner 
A retransmits all the message bytes from the  byte 
sequence  number RSEQ to  the byte  sequence num- 
ber of the most recently  transmitted message byte. 
When partner A retransmits message bytes, it ini- 
tiates a state  exchange with the last  packet  con- 
taining a retransmitted message byte if the NABSP 
field in the  received  status  segment is zero. If the 
GAPDETR bit is set  and  the NABSP field is set  to  zero, 
this indicates  that  partner B is implementing the 
go-back-n scheme.  The  use of the  chained buffer 
as  described  ensures  that if both  the  partners im- 
plement the  selective  repeat  scheme,  no message 
byte will be retransmitted unless it is  actually  lost. 

RTP uses  the  gap  detection  scheme to  deduce  that 
message bytes  have  been lost;  however,  this 
scheme  does  not  work if a packet  containing  the 
last message (or the last  segment of the  last mes- 
sage) of a sequence of messages is lost. We refer 
to  the message bytes  contained in this  packet as 
the  “last message bytes.”  In  order  to  ensure  the 
correct delivery of the  last message bytes,  partner 
A initiates a  state  exchange with the  transmission 
of the  last message bytes. If the SHORT-REQ timer 
expires  and a status segment acknowledging the 
receipt of the  last message bytes  has  not  been re- 
ceived,  partner A retransmits  the  last message 
bytes  and initiates a pseudo state exchange.’ 

Figure 4 shows an example of RTP error  recovery 
when the selective repeat  option is implemented. 

Go-back-n. The  scheme  that will be  described  for 
the go-back-n option allows an implementation that 
supports  selective  repeat to communicate with an 
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Figure 4 Example of error  recovery  with  Selective repeat 

PARTNER  A w 
CHAINED BUFFER 
(after  transmissions  or  arrivals) U 

0.1 

0,1,2,3 

2,3,0,1 

2,3,0,1,4,5 

2,3,0,1,4,5,6,7 

eligible-for-retr&nission 2,314,5,6,7 

6,723 

6,7,2,3,8,9,10,11 

6,7,2,3,8,9,10,11,12,13,14,15,16,17 
eligible-for-retransmission 
2,3:12,13,14,15,16,17,6,7 

12,13,14,15,16,17,6,7,2,3 

a 

23 

2,3,18,19 

2,3,18,19,20,21,22 

2,3,18,19,20,21,22,23,24 

2,3,18,19,20,21,22,23,24,25,26,27,28 

18,19,20,21,22 

18,19,20,21,22,29,30,31,32,33,34,35 

18,19,20,21,22,29,30,31,32,33,34,35 

A 

SHORT-REQ 

(state  exchange) V 

SHORT-REO 
stops 

(state  exchange) A 

SHORT-REQ 

7 
(pseudo  state  exchange) 

SHORT-REQ 
stops 

r 

PARTNER 6 

discards 
(conn-setup  not  received) 

A 

GAP-REC 

A 
GAP-REC 

r 
stops 
GAP-REC 

A 

GAP-REC 

'* 

stops 
GAP-REC 

NOTE: SELECTED FIELDS OF THE RTP  PACKET ARE SHOWN, WITH ABBREVIATIONS 

conn-setup = connection  setup  segment status-req = status-request  bit  set 
status = status  segment ASAP = respond-ASAP bit set 

gap = GAPDETR bit set 
PARTNER B has no user  data to send to PARTNER  A 
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implementation that  supports go-back-n. The go- 
back-n scheme is the  same as  the  selective  repeat 
except as described  here. 

When partner B detects a gap (it receives  a  packet 
with a  byte  sequence  number higher than  expect- 
ed), it does  not buffer any message bytes  that fol- 
low; it  simply discards them. Then,  partner B sends 
a  packet  containing  a  status segment with the 
GAPDETR bit set  and  the NABSP field not set  to  part- 
ner A. The  status segment acknowledges the most 

Unlike  in the  selective 
repeat scheme,  partner A 
does not need to maintain 

a  chained buffer 
in the go-back-n scheme. 

recently  received message bytes without an ear- 
lier  gap.  Unless  in-sequence message bytes  are  re- 
ceived,  any  subsequent  status segment sent by 
partner B has  the GAPDETR bit set. 

Unlike in the  selective  repeat  scheme,  here  part- 
ner A does not need to maintain a  chained buffer. 
When partner A receives a current  status segment 
with the GAPDETR bit set, it ignores the acknowl- 
edged byte  span  pairs (if any)  and  retransmits  the 
message bytes from the  byte  sequence number 
RSEQ to  the  byte sequence  number of the most re- 
cently  transmitted message byte.  Partner A ini- 
tiates a state  exchange with the  last  packet  con- 
taining a  retransmitted message byte. 

Figure 5 shows an example of RTP error  recovery 
when the go-back-n option is implemented. 

Appendix B: Linear multicast mechanisms 

This appendix describes  the  procedures  and mech- 
anisms  that RTP uses to provide  the  three  service 
options of RTP linear multicast (LM): unreliable mul- 
ticast datagram (UMD), reliable multicast datagram 
(RMD),  and reliable multicast transaction  (RMT). 
The LM protocols are  the  same  as  the RTP point- 
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to-point protocols  except as specifically described 
here. 

Unreliable multicast datagram. This  service  pro- 
vides delivery of a single message from  the client 
RTP to specified server RTPs with no reliability pro- 
vision. When the client application  has an unre- 
liable message to multicast and  requests  the UMD 
service  option,  the  client RTP constructs  a  packet 
with the  no-retry bit set, a  connection  setup seg- 
ment,  and  the message itself;  then  the client RTP 
multicasts the  packet to  the specified server RTPS 
and  terminates  the  MPC.  In  this  discussion,  we  as- 
sume that  the  packet size is large enough to hold 
a message and any required optional segments; oth- 
erwise, message segmentation is required as de- 
scribed previously. 

The  server RTP waits for  the  arrival of a packet. 
When it receives a packet with the no-retry bit set 
and containing a user  message, it delivers  the  ap- 
plication message to  the  server application  and in- 
forms  the  server  application that it received  the 
message on  an UMD MPC. Then  the  server RTP dis- 
connects. 

Reliable multicast datagram. This  service  provides 
reliable delivery of a single message from the cli- 
ent RTP to specified server RTPs. When the client 
application has  a reliable message to multicast and 
requests the RMD service option,  the client RTP con- 
structs  a  packet  containing  the  message with the 
status-request  and  respond-as-soon-as-possible 
(respond-ASAP) bits set, a  connection  setup seg- 
ment,  and a linear multicast segment with the lin- 
ear-multicast-service-option (LMSO) bits set  to 
RMD. It  then  multicasts  the  packet to  the specified 
server RTPS and  starts  the SHORT-REQ timer. 

If the SHORT-REQ timer  expires,  the  packet is mul- 
ticast to  the  server RTPs which have not yet ac- 
knowledged the  receipt of the  packet  and  the 
SHORT-REQ timer is restarted.  The client RTP in- 
creases  its  retry  count by one  each time it trans- 
mits the  packet.  The  send fails if the SHORT-REQ 
timer expires when the  retry  count is greater  than 
the client MAX-RETRY. If the  send  fails,  the client 
RTP reports a failure to  the client application  and 
disconnects. 

If all the specified server RTPS have acknowledged 
the  receipt of the  packet,  the  client RTP stops  the 
SHORT-REQ timer  and informs the client applica- 
tion that  the send completed. 
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Figure 5 Example of error  recovery  with go-back-n 
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NOTE:  SELECTED  FIELDS OF THE RTP  PACKET  ARE  SHOWN,  WITH  ABBREVIATIONS 
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The  server RTP waits for  the arrival of a  packet. 
When it receives  a  packet with the LMSO bits set 
to RMD, the  status-request  and respond-ASAP bits 
set,  and containing a  message, it delivers the ap- 
plication message to  the  server application and in- 
forms  the  server application that it received the 
message on  an RMD MPC. Because  the  status-re- 
quest and respond-ASAP bits are  set in the received 
packet,  the  server RTP immediately sends an ac- 
knowledgment (a  packet containing a  status seg- 
ment with RSEQ set  to  one plus the sequence num- 
ber of the end-of-message character of the received 
reliable message) to the client RTP. 

When the  server application requests RTP to dis- 
connect,  the  server RTP has to dally (as explained 
in point-to-point connections) before it discon- 
nects. This is because  the client RTP may not have 
received the acknowledgment for its reliable mes- 
sage; in that  case,  the client RTP retransmits  its re- 
liable message. 

Reliable  multicast  transaction. This  service pro- 
vides reliable delivery of a single message from the 
client RTP to specified server RTPs and delivery of 
one  or more messages (only the  last of which is 
reliable) from each  server RTP to the client RTP. 
When the client application has a reliable message 
to multicast and requests  the RMT service  option, 
the client RTP constructs  a  packet containing the 
message with the  status-request bit set  and  the re- 
spond-ASAP bit not set.  The  packet  also includes 
a connection setup segment, a  status segment (with 
ASEQ indicating the  server RTP's send window al- 
located by the client RTP), and  a  linear multicast 
segment with the LMSO bits set  to RMT. The client 
RTP then multicasts the  packet to the specified 
server RTPs and starts  the SHORT-REQ timer. The 
timer is stopped if the client RTP receives an ac- 
knowledgment from each  server RTP. 

If the SHORT-REQ timer expires,  the  packet is mul- 
ticast again to  the  server RTPs that  have not yet ac- 
knowledged the  receipt of the  packet. When the 
SHORT-REQ timer expires, the client RTP also sends 
a multicast acknowledgment (a  packet containing 
a  status segment with RSEQ set  to  the largest se- 
quence number of the end-of-message characters 
of the received reliable messages, plus one) to the 
server RTPS that  have  sent their reliable messages 
and  have acknowledged the receipt of the client 
RTP'S message. 
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send fails if the SHORT-REQ timer'expiies when the 
retry  count is greater  than  the client MAX-RETRY. 
If the  send fails, the client RTP sends  a multicast 
acknowledgment to the  server RTPs that  have  sent 
their reliable messages and  have acknowledged the 
receipt of their client RTPs message. It then reports 
a failure to  the client application and  disconnects. 

After the SHORT-REQ timer is turned off (after  an 
acknowledgment is received from each  server RTP) 
and before requesting disconnect, if the client RTP 
receives a reliable message from  a  server RTP, it 
will send a multicast acknowledgment to  the  server 
RTPs that  have  sent  their reliable messages. 

The transaction  at  the client RTP is considered 
completed if the client RTP has  received  an  ac- 
knowledgment (for its reliable message) and it has 
received a reliable message (in a  packet with the 
no-retry bit not set  and  the  last-message bit set) 
from each  server RTP. At this time,  the client RTP 
sends a multicast acknowledgment to the  server 
RTPs and informs the client application of the com- 
pletion of the  transaction. 

When the client application requests to disconnect, 
the client RTP has to dally before it can  terminate 
the MPC. This is because a  server RTP may not have 
received the acknowledgment for  its reliable mes- 
sage; in that case,  the server RTP retransmits  its 
reliable message. 

The  server RTP waits for  the  arrival of a  packet. 
When it receives  a  packet with the LMSO bits set 
to RMT, with the  status-request bit set and the  re- 
spond-ASAP bit not set,  and containing a  message, 
it delivers the application message to the  server 
application, informs the  server application that it 
received the message on  an RMT MPC, and  starts 
its SHORT-RSP timer. (While the SHORT-RSP timer 
is running, it is not restarted if the server RTP re- 
ceives another  packet with the  status-request bit 
set and the respond-ASAP bit not set.) If the 
SHORT-RSP timer expires,  the  server RTP sends an 
acknowledgment (a packet containing a  status seg- 
ment with RSEQ set  to  the  sequence number of the 
end-of-message character of the  received reliable 
message, plus one) to the client RTP. 

After receiving the application message from the 
client application, the  server application may send 
any number of unreliable messages. The  server  ap- 
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plication must then  send  a single reliable message. 
When the server application has a message to send, 
the server RTP constructs  a  packet containing the 
message. If the SHORT-RSP timer is running, the 
server RTP includes a  status segment in the packet 
and stops  the timer. If the message is reliable, the 
server RTP sets  the  status-request bit in the packet 
and  starts the SHORT-REQ timer. The packet is then 
sent  to  the client RTP. 

After sending an acknowledgment to the client RTP, 
if the  server RTP receives  a retransmission of the 
client RTP’s reliable message, it sends  another  ac- 
knowledgment to the client RTP immediately. 

If the SHORT-REQ timer expires,  the  server RTP re- 
transmits the packet  and  restarts  the timer. The 
server RTP increases its retry  count by one  each 
time it transmits  the  packet  and  starts  (or  restarts) 
its SHORT-REQ timer. The send (associated with the 
reliable message) fails if the SHORT-REQ timer ex- 
pires when the retry count is greater than the server 
MAX-RETRY. If the  send  fails,  the  server RTP re- 
ports  a failure to the  server application and discon- 
nects. If the  server RTP receives an acknowledg- 
ment for  its reliable message, it stops  the 
SHORT-REQ timer and informs the  server applica- 
tion that  the  send has completed. 

Connection  maintenance. Each  server RTP has a 
connection inactivity timer that is used to detect 
loss of communications with the client RTP. For 
example,  a transmission link could fail after a 
server RTP received the first packet of a segmented 
message from the client RTP. The timer is started 
(or restarted if running) each time the  server RTP 
receives apacket from the client RTP. If it expires, 
the  server RTP notifies the  server  application,  and 
the  server RTP disconnects.  The timer is stopped 
when the  server RTP receives a packet with the last- 
message bit set. 

Appendix C: Unreliable  multicast over  trees 
mechanisms 

This appendix describes  the  use Of RTP multiparty 
connections (MPCS) to provide unreliable multicast 
over  trees (UMOT) services.  The UMOT protocols 
are  the same as the RTP point-to-point protocols 
except as specifically described here. 

RTP uses only the  connection inactivity timer for 
the unreliable multicast over  trees  service  (the 
other RTP timers  are not used for this service).  The 
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connection inactivity timer is not used in the  same 
way as in point-to-point RTP. The  connection in- 
activity timer is required for  the  operation of each 
server RTP and is used to detect  loss of commu- 
nications with the client RTP. For  example,  a  trans- 
mission link could fail after  a  server RTP received 
the first packet of a segmented message from the 
client RTP. The connection inactivity timer is 
started (or restarted if running) each time a  packet 
is received from the client RTP. If it expires,  the 
server application is notified and the  server RTP dis- 
connects. 

The client RTP maintains a  receive window allo- 
cation that is communicated via the ASEQ field  in 
the  status segment to server RTPs. The client RTP 
discards incoming application messages from 
server RTPS that do not fall within its  receive win- 
dow. A server RTP can only send application mes- 
sages within the send window allocated by the cli- 
ent RTP. This provides a mechanism for  the client 
application to perform window flow control  on  its 
side. If the client application does not want to re- 
ceive application messages from server applica- 
tions, it asks  the client RTP to close  its  receive win- 
dow. The client RTP closes  its  receive window by 
setting its RSEQ equal  to ASEQ and multicasts a sta- 
tus segment in a  packet to server RTPs. The client 
application can  also  ask  the client RTP to allocate 
a new receive window. The client RTP allocates a 
new receive window by increasing its ASEQ (by the 
amount requested by the client application) and 
multicasts a  status segment in a  packet  to  server 
RTPs . 

Unreliable multicast over  trees MPCs have  no  sep- 
arate MPC setup or dissolution. The client RTP sends 
the connection setup information with each mes- 
sage to allow server RTPs to  join  or  leave  the MPC 
at any time. Upon receipt of a message from the 
application, the client RTP constructs  a packet con- 
taining an application message with the  setup- 
packet and no-retry bits  set and a connection setup 
segment. A status segment is also included in the 
packet if a receive window is allocated (applica- 
tion messages are  expected). RSEQ and ASEQ in the 
status segment indicate the receive window allo- 
cation of the client RTP. Then  the client RTP mul- 
ticasts  the packet to server RTPs. 

When a  server RTP receives  a  packet, with the  set- 
up-packet bit set, containing a  connection  setup 
segment, the  server RTP simply ignores the  setup 
information (the connection setup segment) if it has 
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already been received. When  the server applica- 
tion has a message to  send, the  server RTP con- 
structs apacket containing a message with  the no- 
retry  bit set and sends it to the client RTP. The 
server RTP can  send a message only if its send  win- 
dow is not  filled  and  the message size  does not ex- 
ceed the  unfilled  part of the  send window. If a mes- 
sage cannot be sent, the  server RTP informs  the 
server application. 
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