
System generator for
producing manufacturing
applications

The Application System Generator (ASGlpc)
offers powerful capabilities for integrating the
personal computer into problem-solving in
manufacturing engineering. Implemented on
PentiumTM-class personal computers, it provides
an easy-to-use, application-building platform for
mathematically based solutions to a variety of
engineering problems. The ASGlpc provides a
master editor for incrementally developing the
complete environment of an entire application.
Such an application may entail hundreds of
programs, most of which are automatically
generated. These programs also include color-
coded textual and graphic screen interactions,
keyboard control, file management, and access
to auxiliary equipment. The ASGlpc is designed
for use by the application-domain engineer who
will also be the end user of the technology.
Facilities are provided for the integration of
components developed through teamwork. Two
applications of the ASGlpc are described: one is
in the domain of rapid-response machining; the
second is a system for rapid analysis and
redesign of the factory floor. The ASGlpc was
designed to facilitate an incremental, self-
learning process.

T his paper describes an engineering problem-
solving platform, implemented for the DOS-

based personal computer. The objective of the
Application System Generator on the personal com-
puter (ASG/~C) is to bring the process of conceptual-
ization, design, and implementation of engineering
systems within the grasp of the application-domain
engineer. The aim is to reduce the task of designing
and implementing a substantial application system
to one person-year. These application systems are
designed to deliver high productivity to the design-
to-manufacture process. This goal is achieved by in-

by Y. Hazony

troducing a high level of automation to the iterative
process of application system design and implemen-
tation.

The high productivity attained by the system de-
scribed herein is a result of the convergence of ad-
vances in both hardware and software methodology.
On the one hand, the emergence of 100-MHz-class
personal computers (e.g., Pentiurn**, PowerPC*,
and Alpha* * processors) at an ever-decreasing cost,
creates a new opportunity to develop highly inter-
active and computationally intensive problem-solv-
ing tools for science and engineering. On the other
hand, progress in the methodology of graphics pro-
gramming, augmented by a computer realization of
the algebra of nested arrays,' provides an outstand-
ing foundation and a high-productivity tool for the
rule-based implementation of new application sys-
tems. The convergence of these technologies can
serve an individual engineer in a way similar to that
of the traditional slide rule, with many orders of mag-
nitude of enhanced power. The focus on the indi-
vidual, application-domain engineer requires that the
new system be designed so that it could be mastered
through an incremental process of self-learning.

The ASG/~C was designed to integrate the full seam-
less-design-to-manufacture (SDTM) process, includ-
ing the placement of the conceptual design stage up

Wopyright 1996 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 35, NO 1, 1996 0016-6670/96/$5.00 0 1996 IBM HAZONY 69

Such a methodology inherently starts at an
abstract conceptual stage and gradually evolves into
a fully functioning SDTM system producing the ac-
tual physical end product. The evolution of this meta-
morphic process can be described in terms of a se-
ries of diagrams. This diagrammatic representation
is based on an extension of the algebra of nested ar-
rays. The diagrams represent an automatic imple-
mentation of the computer application system. The
implementation diagrams evolve until the nested ar-
ray, depicted by the diagrams, represents the fully
operational system. The algebra of nested arrays used
in this implementation is described briefly to explain
its contribution to the high productivity attained in
the development of new computer applications.

The ASG/pC provides an application-domain engineer
with the capability to develop computer-based, cus-
tomized, problem-solving tools. It provides an alter-
native to more traditional application-software
development tools, which typically require the in-
volvement of teams of application development spe-
cialists. These customized tools add up to a toolkit,
with the possibility of merging it into an integrated,
self-contained, engineering solution to a problem at
hand. The initial set of tools consists of an ASG pro-
cessor and a network of “editors.” These tools ad-
dress the programming requirements of the design
and implementation of a rule-based engineering so-
lution. Sample applications will be described, includ-
ing “manpower” analysis.

Antecedents to the Application System
Generator

The motivation for the implementation of the ASG
on the personal computer was the power of the meth-
odology demonstrated by the accomplishments of its
predecessor system on the mainframe computer plat-
form. 4,5 The latest application system reported, us-
ing the mainframe-workstation platform, was a sys-
tem for the seamless-design-to-manufacture (SDTM)
of marine propulsers.’ This system required about
one person-year to develop. It demonstrated a dra-
matic reduction in turnaround time between the
design concept and a manufactured prototype. It re-
duced the time required for the full cycle of design-
to-manufacture of a propulser blade from more than
six months to under a week.

The need for a new system. The success of the SDTM
system and the emergence of Pentium-class personal
computers, combined with other interactive advan-

70 HAZONY

tages of personal computers, points to the oppor-
tunity for higher productivity to be attained. This op-
portunity motivated the redesign of the methodology
of the ASG/pC. However, the new approach must
build on the initiative and ingenuity of the individ-
ual application-domain engineer. For an application
system generator to fit the needs and working par-
adigm of such individuals, it has to provide power-
ful initial results in a relatively short time-on the
order of hours and days. This requirement is nec-
essary so that a case can be made for a more sub-
stantial investment of time, with much higher expec-
tations for productivity enhancement. Consequently,
a proposed problem-solving platform has to exhib-
it:

A short initial learning curve in order to facilitate
an “instant” preliminary success
An incremental self-learning process, through
which the motivated individual engineer could pur-
sue a higher level of proficiency in the method-

A mechanism for “teamwork,” providing for easy
integration of modules developed individually,
while maintaining recognition of the ownership of
solution elements when a project develops into a
“team effort”

ology

Beyond a predecessor system. The ASG/pc entails a
complete redesign and a major extension of a pre-
viously reported, mainframe-based system, the Ex-
pert System Generator (ESG).4,5 The new system em-
phasizes integrating conceptual design into the
process of system design. It includes new capabil-
ities aimed at better handling of the generation and
management of the underlying rule base. Further-
more, it takes advantage of the algebra of nested ar-
rays to deliver higher efficiencies, both in the devel-
opment and the execution of computer-based
solutions to engineering problems.

Both the ESG and ASG/pc processors are imple-
mented on the basis of data-driven-control-flow
(DDCF) method~logy.~ The control flow of an ap-
plication network was implemented through the con-
cept of key-controlled links. Such links carry with them
individualized sets of execution rules. In this imple-
mentation, links are controlled by key-execution tu-
bles, and an executed link is blocked if one of the
relevant rules is violated.

The ASG/~C extends the conceptual scope of its pre-
decessor to incorporate capabilities for

IBM SYSTEMS JOURNAL, VOL 35, NO 1, 1996

Conceptual design
Extended graphic programming
Integrated run/edit/program-edit modes
Automatic encapsulation
Integrated archive for version management
Topological mapping of rules on an application

Facility-focused rule development and manage-

Streamlining of facility names and key designations

network

ment

The new system embodies a collection of generic el-
ements, e.g., screen configurations, textual screen in-
teractions, graphic screen interactions, keyboard in-
teractions, and file and input/output interfaces. It is
built upon a collection of procedures and rules, which
serve to automate most of the system design and ap-
plication-building process. Text and graphic inter-
actions can be combined on a single screen, and an
extensive (and easy) use of color coding of both text
and graphics is provided.

Mathematical foundation. A major advance of
ASG/~C with respect to the original implementation
of the Expert System Generator is in the use of a
commercial implementation of the algebra of nested
arrays.6 This implementation provides a powerful set
of mathematical tools for the structural and algebraic
manipulation of such data. It serves as the mathe-
matical base on which both the development system
and the customized applications are built.

The term nested array implies having data structures,
e.g., vectors, matrices, and scalers, which accommo-
date data items that may themselves have an inter-
nal structure. This internal structure may in turn in-
clude scalers, vectors, matrices, and nested arrays.
Elements of an array may be of any type, e.g., tex-
tual, numeric, or Boolean, and the array would be
of a mixed type.

The structure of nested arrays is suitable for network-
ing the execution tables, the associated link functions,
and the corresponding rule sets. The algebra of
nested arrays consists of tools for the selective ex-
traction and selective assignment of elements. These
tools are integrated with a set of algebraic tools, bor-
rowed from the domains of linear algebra, Boolean
algebra, relational algebra, algebra of constraints,
and set theory. The algebra of nested arrays inte-
grates all these tools into one internally consistent
set, with the addition of powerful generalization^.^-^

IBM SYSTEMS JOURNAL, VOL 35, NO 1, 1996

To understand the need for a complicated data struc-
ture, consider the task of managing one interactive
screen, which is part of a network of screens designed
to respond to the diverse requirements of a partic-
ular application. The particular structure used by the
ASG/PC to describe a screen, which is made of N fields,
consists of a nested N X 10 matrix of data. The first
column of the matrix includes data items that de-
scribe the location, dimensions, input/output (I/o)
classification, and color attribute definition of each
field. Each of these data items has the internal struc-
ture of a six-element numeric vector.

The second column of this nested matrix contains
textual vectors that include the fixed text appearing
in some fields on the screen, i.e., titles and instruc-
tions. These data differ from those associated with
dynamic I/O fields, which require variable names to
associate particular data with the corresponding
fields. The actual N X 10 matrix also includes log-
ical (Boolean) data and the names of programs that
contain rules regarding the input of legitimate data
in the “open” fields on the screen.

The ASG/~C methodology was designed to accommo-
date the unstructured thinking process often asso-
ciated with conceptual design. This process is best
described by the concept of “irregular spider web”
(ISW) networks, which allows the unrestricted trans-
fer of control from almost any part to any other part
of the application. The flexibility of the DDCF meth-
odology combines with the power of the nested ar-
rays and the extensive use of rules to provide an ideal
platform for the implementation of the ISW network
structure. The ISW structure minimizes the need for
human interaction and significantly reduces the op-
portunities for errors.

The original implementation of ESG4 did not ben-
efit at all from the advantages of nested arrays. A
later version of the ESG’ provided these advantages
for implemented customized applications, without
the ESG platform itself benefiting from it. This di-
chotomy was removed in the present implementa-
tion with the complete redesign of the methodology
to take advantage of the power of the Pentium-class
computer. The new system, the ASG/~C, takes full ad-
vantage of the algebra of nested arrays, both within
the development system and the application domain.

The underlying hardware/software technology. In
this paper, a general outline of the methodology em-
ployed by the ASG/~C is given, with minimum refer-
ence to the underlying software platform. The

HAZONY 71

premise is that the concepts described and perfor-
mance attained could be duplicated, in principle, on
any software and hardware platform.

Design of the ASG/pc

The Application System Generator is a rule-based
system for the design and implementation of rule-
based computer application systems. It consists of
an ASG processor and a network of interactive ed-

The ASG/pc consists of
an integrated set of three
basic modes of operation.

itors. It provides the engineer with concurrent ca-
pabilities for the iterative top-down conceptual de-
sign and bottom-up implementation of an interactive,
computer-based solution to a specified engineering
problem.

A rule-based approach. The seemingly monumen-
tal task of building interactive application systems
can be reduced to the task of a rule-based system,
bringing about an orders-of-magnitude reduction in
both time and cost^.^,^ The ASG/PC platform exem-
plifies such a system. It contains a set of interactive
editors facilitating the implementation of a rule da-
tabase that is part of the application control data ar-
ray. Embedding the rule sets in the application con-
trol data structure enables a powerful simplification
of the design, implementation, and maintenance of
the rule database. Embedding the sets is done within
the context of the underlying nested array platform,
without requiring that the application developer be
involved in its structural details.

The fact that the implementation of the nested ar-
rays includes an algebra interpreter (the program-
ming language APL2) simplifies the task of imple-
menting the individual rules. The fact that rule
grouping is inherent to the structure of the nested
array eliminates some severe problems imposed by
rule-based systems that maintain all rules in one pool.
The tight mapping between rule grouping and the
structure of the application eliminates the need to

rely on other mechanisms to sort out the rules and
maintain the consistency and integrity of the rele-
vant rule subsets.

A master editor. The A S G / ~ C consists of an integrated
set of three basic modes of operation: the edit and
run modes and a program (function) editor. Con-
sequently, in edit mode the ASG developer is no far-
ther than two keystrokes away from the execution
(run mode) of the new version of the application.
Similarly, during run mode, the developer is always
one keystroke away from returning to the edit mode.
The program editor is directly accessible from within
the edit mode of ASG, so that upon exit from the ed-
itor, the new version of the edited program becomes
part of the current version of the system under de-
velopment. This capability amounts to instant switch-
ing, back and forth, between application edit and run
modes. It facilitates the gradual evolution of the
structure of the application and the corresponding
rule sets toward the final implementation.

The ASG/~C may be viewed as a master editor, de-
signed to simultaneously handle a network of pro-
grams that constitute a complete application. A fully
developed application may easily be comprised of
hundreds of programs. In contrast, the program ed-
itor, which is invoked internally by the ASG and is
provided by the underlying system, is designed to
handle either one program or a “ring” of programs
at a time.

Problem conceptualization. ASG/~C provides a prob-
lem-solving environment that accommodates the ten-
tative nature of the initial conceptual stage of the
problem-solving process. The incremental nature of
the ASG development process, combined with the im-
mediate toggling between edit and run modes, al-
lows a gradual evolution from abstract definitions
to an operational end product.

As an example, consider the case in which part of
a mechanical assembly failed and would have to un-
dergo an engineering change. The failing part was
manufactured using a numerically controlled (NC)
lathe, which is to be used for the production of the
new part.

Table 1 represents a tentative activity list that can
be developed as an initial approach to the design and
implementation of such a system. It includes an ini-
tial problem-setup stage, which may include both
parametric and graphic specifications or explorations
of the problem, or both. The next set of activities

IBM SYSTEMS JOURNAL, VOL 35, NO 1, 1996

able 1 A tentative activity table

Stage Specifications Development of Facilities

Setup PARAMETRIC (Numeric interaction) Parametric control
GRAPHIC

Part PROFILE
POINTEDIT
NUMERIC

(Graphic interaction) Graphic control
(Graphic interaction) Profile startpoint
(Graphic interaction} Graphic profile edit
(Numeric interaction) Numeric profile edit

Fixture
Process
Solution (Textual interaction) Solution summary

Table 2 Facility-table definition

Screen Mode

SETUP
SETUP
SETUP
PART
PART
PARTTEXT
FIXTURE
PROCESS

PARMTRIC
GRAPHIC
SOLUTION
PROFILE
PNTEDJT
NUMERIC
FIXTURE
PROCESS

OT
OG
OT
OG
2G
OT
OG
OT

Short Name

SETUP
GRAPHIC
SOLUTION
1stPOINT
POINTEDIT
TEXT
FIXTURE
PROCESS

Activity

Problem setup parametric control
Problem setup graphic control
Solution summary
Profile starting point
Edit points in profile
Numeric edit of profile

may include the development of facilities for the
graphic initial definition of the new part profile, and
for graphic and numeric profile-editing activities.
Two more activities, dealing with fixture and pro-
cess definitions, are included, waiting to be articu-
lated later. The last activity addresses the final so-
lution stage.

Problem articulation. The rule-based input con-
vention of the facility-table editor converts the in-
formation included in Table 1 into a more detailed
five-column table. The facility-table editor is used
to enter data into Table 2, where each row of the
table represents an ASG facility. It uses default terms
for incomplete facility definitions, which were not
included in the initial table definition.

The leading two columns in Table 2 include two dis-
tinct names that together constitute the name of an
interactive facility. The name in the first column re-
fers to the definition of the specific computer screen
used for textual or graphic interactions, or both, re-
quired by the activity. The second name specifies the
mode in which this screen is utilized, i.e., it repre-
sents the key-execution table. It specifies the key-
response functions for the particular facility. The
third column specifies the type of interaction, i.e.,
which of an available list of textual (or numeric, or

both) or graphic input cursors is invoked by this fa-
cility. The fourth column includes a short “surrogate”
name that is used by the system in referring to the
specific facility.

The facility-table editor creates a data set that takes
the form of a nested array and represents a struc-
ture for the application defined by Table 1. It includes
some default data items, as well as “place holders”
for missing data, which are to be specified during
the evolving ASG development process. This nested
array is used as drive data for the ASG processor men-
tioned The data depicted in Figure 1 de-
scribe five interactive screens, which are shared by
eight interactive facilities. The individual screens are
tentatively assigned default screen layouts, and the
respective facilities are provided with default def-
initions of key-execution tables.

The nested array illustrated in Figure 1 provides a
simplified outline of the control data structure gov-
erning the application. It is generated in response
to the entry of the conceptual list shown in Table 2.
The data structure generated for this simple illus-
tration constitutes a four-element nested vector. It
is labeled as ASG, and the respective four elements
are labeled SE, PA, FI, and PR, respectively. These
elements are automatically generated as four “en-

IBM SYSTEMS JOURNAL, VOL 35, NO 1, 1996

Figure 1 Nested array representation of Table 2

capsulated” application editors. The term encapsu-
lated editors will be discussed in more detail later.

Each of the four application editors is structured in-
ternally as a nested array. For example, the editor
labeled SE consists of one screen, which is shared by
three facilities. The editor labeled PA consists of two
screens, PART and PARTTEXT, with the first screen
shared by two facilities and the second one serving
only one facility. The last two editors, FI and PR, serve
as placeholders for data to be generated at a later
stage of model articulation.

Each innermost data element shown in Figure 1 rep-
resents an ASG facility. It corresponds to a nested
array of depth three, where the depth of a nested
array is defined as the depth of the element that ex-
hibits the deepest level of nesting. It defines the key-
response functions specific to the facility. The lay-
out and I/O interactions of each of the five screens,
shown in Figure 1, are also controlled by a nested
array of depth three, which is represented in the fig-
ure by the name of the screen, i.e., SETUP, PART,
PARTTEXT, FIXTURE, and PROCESS.

The nested array depicted in Figure 1 is of depth
six, but only four of the six levels of nesting are shown.

74 HAZONY

The ASG employs a dynamic definition of the nested
array, driven by the changes introduced to the fa-
cility table through the interactive application of the
facility table editor.

An ASG/pc application may contain one or several
editors, where each may incorporate one or several
screens. Furthermore, each screen may be associ-
ated with one or several facilities. The facilities are
associated with distinctly defined sets of interactions,
each defined and controlled by a specific key-exe-
cution table, and by the type designation shown in
the third column of Table 2.

The type designation of a facility is indicated by the
second row in each of the innermost boxes shown
in Figure 1. It shows that an editor may include a
screen that is being exercised through various types
of screen interactions. These interactions might be
either textual or graphic, responding to the needs of
parametric and graphic design modes. Various
graphic interactions may be defined through a spe-
cific definition of the graphic cursor being used. Sim-
ilarly, the type specification allows for the alterna-
tive attribute-designation of textual screens. These
allow various I/O fields in a specific screen to open
and close.

IBM SYSTEMS JOURNAL, VOL 35, NO 1, 1996

Figure 2 The application structure shown in Figure 1

Link specification. The concept of links between fa-
cilities is introduced to represent interactions in
which control is transferred between facilities. It re-
quires an extension of the original constructs of the
algebra of nested arrays. The A P L ~ platform converts
this high-power algebra into a “programming” tool
via the “algebra interpreter” accompanied by a “pro-
gram editor.” The ASG/~C adds another layer to the
interpreter in which the ASG processor recognizes
appropriate data items that represent action through
transfer of control between facilities. These data
items were generated by the ASG during system de-
sign and implementation.

The data structure in Figure 1 may not be executed
yet because it does not include any data items to af-
fect transfer of control between facilities. These

link data items include a key designation, a corre-
sponding mouse button (optional), an originating fa-
cility, a target facility, and a link function.

Figure 2 is generated by an ASG editor to provide
a color-coded view of the nested array that con-
trols the particular application system under de-
velopment. The data elements that represent the
interfacility links are depicted in the figure as
graphic links. A link emanates from the bottom
right of the box representing the originating fa-
cility and ends at the top left of the one represent-
ing a target facility.

The individual links shown in Figure 2 are introduced
through a graphic link editor provided by the ASG/PC.
Links are sketched in graphically, and initial link

IBM SYSTEMS JOURNAL, VOL 35, NO 1, 1996

Table 3 A list of ASG editors

Facility-table editor
Key-execution-table editor
Link editors:

Graphic link definition
Textual link-table editor

TextuaVgraphic window partition
Graphic field layout editor
Permanent-text editor

I/O field-label editor
I/O attribute editor
Input-processing rule editor

Graphic processor definition
Encapsulation editor
Incoming link rules
Outgoing link rules

Function and rule editor
Archive manager
Help

Screen-layout editors:

Input/output editor:

Facility-focus editor:

functions are automatically generated. They hold
link-specific sets of rules, and a link is automatically
blocked if one of the rules is violated. The specific
rule sets are gradually enhanced and extended dur-
ing the evolutionary process of application develop-
ment.

Automation of system implementation. The ASG&
is using techniques of graphic programming to au-
tomate the implementation of the application sys-
tem as defined by the process outlined previously.
It creates all the data, programs, and rules required
to have a running system. The ASG provides addi-
tional tools, referred to as editors, to proceed with
the customization of the system to respond more spe-
cifically to the application requirements. These ed-
itors allow the developer to gradually modify the
structural data, the generic programs, and the rules
in order to follow the advances in model articula-
tion. The list of editors and some functional details
are provided in the next section. An additional set
of tools associated with the requirements of graphic
programming, encapsulation, and archiving are de-
scribed in a later section.

A sample application. The package described below
was developed for demonstrating the principles of
rule-based seamless-design-to-manufacture (sDTM)~,~
in the classroom. It is used also as a tutorial for a
manufacturing-systems design course. It permits a
student to define the profile of a mechanical com-
ponent of an engineering design that is to be ma-

76 HAZONY

chined on a turning center. It provides capabilities
for sketching a design, “features” generation, and
parametric specifications of a part. It also provides
for the generative dimensioning of part-profile, as
well as for stock and tool specification. It employs
error-prevention rules and generative rules for au-
tomatic process design. The latter are used for the
automatic creation of the manufacturing process,
based on the capabilities of a specific machine and
available tooling. The system identifies the feasible
part of a design. It generates the appropriate tool
trajectories, accompanied by the numerical control
code (G code) needed to run the machining center
and manufacture the desired part. The design-to-
manufacture cycle time between conceptualization
of the design and generated G code is as short as 5
to 15 minutes, depending on the complexity of the
part. The evolution of this application of the A S G / ~ C
is used to illustrate some of the main concepts and
capabilities of the system.

ASG editors

In keeping with the Isw paradigm, ASG gives the
problem solver a list of options with which to elab-
orate various data elements in no prescribed order.
These options are provided through a network of ASG
editors. Each of these editors is invoked through a
single keystroke from within the facility-table editor
and some of the other editors in the list. The ac-
cessibility of these editors from a given facility
is governed by the specific key-execution table
associated with each facility. A brief description of
each editor is given in Table 3; however, the role of
the individual editors becomes better understood
through the evolving process of the ASG.

The facility-table editor. The facility-table editor con-
stitutes the entry point to the AsG system. It is the
means for defining a new facility as well as for chang-
ing a previously defined facility. It provides access
to all other editors and provides a run key to start
execution of the application at its present stage of
development. Almost all other ASG facilities have a
return key to this editor, thus providing a two-key
sequence to start execution of the application un-
der development. Similarly, all application facilities
under development have a return key to the facility-
table editor, thus offering a single-keystroke return
to the ASG edit mode. These keys disappear when
the ASG is started in run rather than edit mode. The
facility-table editor shown in Figure 3 displays the
five columns of the respective table.

IBM SYSTEMS JOURNAL, VOL 35, NO 1, 1996

Figure 3 The facility-table editor with table corresponding to SDTM sample application

This editor is equipped with two sets of command
keys. One set, shown at the bottom of the screen,
provides command keys invoking local-response
functions as well as links to other general editors.
Another set provides access to editors applied to a
selected facility. The list of commands available in
this mode is depicted in the field (red) at the top-
left part of the screen. These commands are exer-
cised by placing the respective key in the command
column to the left of the facility table, next to the
appropriate facility, and pressing enter.

This dual set of command keys is a feature used by
the ASG/~C but also available for the developing ap-
plication. The actual table depicted on the screen

represents the SDTM application outlined above. It has
evolved from Table 2. The number of facilities in-
creased to 18, representing significant progress in
model articulation. The changes in the names used in
the table are facilitated by the streamlining capabili-
ties provided by this editor. These changes affect the
overall structure of the system, which is automatically
regenerated on the basis of the naming convention.

Figure 4 depicts the nested array model of the un-
derlying data structure of the SDTM application. The
system has evolved into four application editors.
They are implemented as parts of one encapsulated
package (labeled TS), as represented by the encom-
passing block (gray).

IBM SYSTEMS JOURNAL, VOL 35, NO 1, 1996
I

HAZONY 77

Figure 4 Nested array model of underlying data structure of SDTM application

The four editors (each shown as a block) are:

Main editor (TSMAIN), including setup and pro-

Dimensioning editor (TSPARAM)
Process editor (TSPROC)
Tool design editor and tool library (TSLIB)

file

The last editor consists of the tool-definition facil-
ity. This facility was initially developed as part of the
process editor. However, it was removed from that
editor to form a starting facility for a comprehen-
sive tool-library editor. This change was accom-
plished using the streamlining capability, which is
part of the facility-table editor. The restructuring of
the underlying database is accomplished automat-

78 HAZONY

ically following the appropriate change in the name
of the facility.

The link editor. For an application to become “ex-
ecutable,” links have to be specified between facil-
ities as illustrated in Figures 2 and 4. Links are gen-
erated graphically via the graphic-link editor, which
is accessible by a keystroke from several other ed-
itors. Each link is assigned a link function, which can
be edited using a function editor through either the
link-table editor or through the facility-focus editor.
Links may be defined at any time once a minimum
of two facilities has been defined. Once a set of links
has been defined, the new system may be executed,
at its present state, using the run key from the facility-
table editor.

IBM SYSTEMS JOURNAL, VOL 35, NO 1, 1996

Figure 5 Graphic-link editor with two-point rubber-band cursor

The link editor consists of two subeditors: the graph-
ic-link editor and the link-table editor.

The graphic-link editor is used to create new links
or to delete old ones. This editor is associated with
a graphic screen showing the full facility/link network
of the application. The purpose of the following dis-
cussion is twofold. On the one hand, it illustrates the
power provided to the system designer by ASG ed-
itors. On the other hand, it illustrates the kinds of
design instruments that are made available for use
by the application being developed.

Figure 5 represents the second of a four-step se-
quence used to generate a new system link. The
screen displayed by the first step is identical to Fig-
ure 5, with two exceptions:

1. The list of control keys in the bottom row is dif-

2. The graphic cursor used by the respective facil-
ferent.

ities is different.

The four-step process for the creation of a new link
is supported by four facilities. These steps consist
O f

1. Graphic display of the facility/link network, ac-
companied by a simple moving cursor (type OG),
is used to point at the originating facility.

2. The fixed end of a two-point rubber-band cursor
(type 1G) is automatically attached to the des-
ignated originating facility, while the moving end
is used to point at the target facility.

3. The key-execution table is displayed on a textual

IBM SYSTEMS JOURNAL, VOL 35, NO 1, 1996
I

HAZONY 79

Figure 6 Key-execution-table editor with table corresponding to TSMAINSETUP facility

screen (type OT), and an input field is opened on
the screen for key designation. The table is dis-
played to avoid choosing a duplicate key.

4. The key-execution-table editor is automatically
invoked (Figure 6-facility type OT), displaying
the new table, which includes the new link. This
action permits editorial changes reflecting the
consequences of the new addition to the table.

A default link function is automatically generated
upon the creation of a new link. This function in-
cludes an initial set of rules governing the particular
action. Any link is blocked if one of the specific rules
is violated. It also includes a default definition of the
graphic cursor, consistent with the type specified at
the creation of the target facility.

80 HAZONY

Any particular link function is accessible with the
link-table editor, once the application developer is
ready to add, delete, or modify some of the rules it
contains. The link-table editor is used for changing
key designations and for renaming link functions so
as to streamline such designations across an appli-
cation. Additional access to the specific link func-
tion is provided by the facility-focus editor, to be dis-
cussed later.

The key-execution-table editor. The key-execution
table (Figure 6) defines all the command keys avail-
able within a facility. They include program-function
(PF) and command-column keys in the case of a tex-
tual-type facility, or regular keyboard keys in the case
of a graphic-type facility. The entries in these tables

IBM SYSTEMS JOURNAL, VOL 35, NO 1, 1996

may represent either a local-response function or a
link to another facility. A local-response function is
accessible to the function editor by pointing at it with
the alphanumeric cursor and pressing the function-
edit key. The response function to an invoked link
is a link function, which is accessible to the function
editor either through the link-table editor or through
the facility-focus editor. With this editor a mouse but-
ton can be selectively attached to an appropriate key.
It also is used to change the key descriptors in the
command line or field.

The screen displayed by this editor includes another
example of the feature of a dual set of command keys
serving a facility, which is available for use by the
developed application. One set includes “global” keys
(bottom of the screen), whereas the second set is uti-
lizing a command column to the left of the table dis-
played. A separate output field lists the available
commands (right, top of the screen). Another field
provides instructions for the use of these commands.

The screen-layout editors. When a new screen is gen-
erated, it comes with a default layout of I/O fields.
The screen-layout editors employ graphic techniques
for easy and fast generation of such screen layouts.
They are used to redesign this layout through the
addition, deletion, and modification of fields. The
group consists of three subeditors:

The screen-partition editor
The screen-layout editor
The permanent-text editor

The screen-partition editor defines a graphic parti-
tion (“window”) in a screen, automatically defining
the rest of the screen as a textual partition. Such a
mixed textual and graphic screen may be shared by
both graphic and textual facilities. A screen may be
associated with textual I/O accompanied by graphic
output, or with graphic I/O accompanied by textual
output. These classifications are done at facility spec-
ification time.

The screen-layout editor performs graphic genera-
tion, modification, and deletion of textual I/O fields
within the textual partition of a screen.

The permanent-text editor is used to lay out titles
and fixed instructions on output-only fields. The ed-
itor displays the actual screen, allowing the screen
developer to enter the respective text wherever nec-
essary. The text entered through this editor becomes
part of the permanent structure of the particular

IBM SYSTEMS JOURNAL, VOL 35, NO 1, 1996

screen. This permanent text could be changed, how-
ever, at any time by invoking this editor again. The
screen shown in Figure 7 is used to illustrate the role
played by these editors.

Figure 7 shows a graphic partition surrounded by
three alphanumeric 110 areas that include:

A title field on top (permanent text)
A parametric input area to the left that includes
five table titles (permanent text), five entry-descrip-
tion fields (permanent text), and five fields for
parametric input/output
A service area at the bottom for command-key de-
scription and messages

The process for designing the layout of such a screen
has to be able to designate which of the alphanu-
meric fields is used for output only and which for
input and output. Furthermore, the color coding of
the various fields has to determined. These activi-
ties are performed by the input/output (ID) editor
described next.

The 1 /0 editor. The I/O editor is used to provide the
different facilities with screen and data linkages,
which create the context of each screen. These link-
ages determine which data are displayed in the var-
ious fields, and which variables would be updated
by the data input through the particular open fields.
The I ~ O editor consists of the following subeditors:

The field-label editor
The field-attribute editor
The input-processing editor

These editors are accessible through one or two key-
strokes from the facility-table editor. The ISW struc-
ture of ASG and the IiO editors make it possible to
modify the interactive response of a currently work-
ing, previously defined screen at any time. Such mod-
ifications are necessary to meet changes in the sys-
tem specification.

The field-label editor facilitates the designation of
labels to the different I/O fields that make up a screen.
The field labels are part of the nested array defining
all I/O characteristics of a screen. These labels offer
a contextual connection between the graphical lay-
out of the fields on the screen and the data and func-
tions associated with these fields. With the field-
label editor, fields and labels can be visualized
simultaneously so that a meaningful label may be as-
signed to each field. These labels are used in the field-

Figure 7 Screen layout for TSMAIN editor of SDTM application

attribute editor and input-processing editor, which
do not provide a graphic display of the screen lay-
out.

The field-attribute editor is used to associate var-
ious attributes with the different fields of a partic-
ular screen. These attributes include names of the
variables associated with the output or input, or both,
of each field, the type of data, color coding, and
scrolling.

The input-processing editor allows the designation
of groups of fields to be handled by specific input-
processing (UP) functions. These functions are
structured to include sets of rules that will block
acceptance of new data if a rule is violated. The input-
processing functions differ from the previously dis-

cussed link functions in that they apply to any input
action for all facilities sharing a particular screen. In
contrast, local-response and link functions are facil-
ity- and key-specific.

The facility-focus editor. The facility-focus editor
makes available access to all the functions and rules
associated with a particular facility. It provides for
the development of the rule-based application, with-
out the need for interaction with the underlying struc-
ture of the rule database. The screen layout of this
editor is partitioned into four color-coded areas, rep-
resenting the following groupings:

Incoming link functions
Outgoing link functions
Secondary editors:

82 HAZONY IBM SYSTEMS JOURNAL, VOL 35, NO 1, 1996

-Local response functions
-Input-processing functions

Auxiliary functions:

-Encapsulation entry rules
-Screen/facility specialized graphic displays
-Encapsulation exit function

The auxiliary functions do not require an initial spec-
ification. They become useful in the more advanced
stage of application development. The encapsulation
entry rules and the encapsulation exit function pro-
vide additional control over the editor-encapsulation
process. The “specialized” graphic display functions
become useful once the need for them is recognized.

The help editor. The ASG automatically generates
help screens for each of the facilities created. The
automatic help generator uses the description col-
umn in the respective key-execution table and the
corresponding entry in the fifth column of the fa-
cility table to create an initial help panel for each of
the facilities. This initial help panel supplies a skel-
etal description of all the command keys. The help
editor provides an interactive edit mode of the help
information. The ASG keeps track of the deletion and
addition of control keys and updates the help infor-
mation, respectively.

Additional ASG tools

Cursor interaction modes. A cursor type is speci-
fied for each facility using the facility-table editor at
the facility-definition stage. The SDTM sample ap-
plication takes advantage of several different type
specifications: OT, lT, 2T, OG, 2G, 4G, and 5G (Fig-
ure 3, third column).

ASG provides for ten textual, seven graphic, and one
mixed-cursor (moving text) facility types. Conse-
quently, when control is transferred between facil-
ities by exercising a link, a prespecified cursor icon
is invoked. Each different cursor is associated with
the appropriate data structure and hooks to pre-
defined I/O variables. This automatic software gen-
eration largely eliminates the need for some of the
traditional programming tools during design and im-
plementation of an application. Such programming
instruments as branching or looping, or both, are
essentially replaced by techniques of graphic pro-
gramming.

The list of available facility types includes ten tex-
tual designations, iT (with i = O,1,2, . . . , 9), that are

IBM SYSTEMS JOURNAL, VOL 35, NO 1, 1996

used to switch between groups of active and inac-
tive I/O fields in the same screen. This distinction is
used to specify different groups of textual screen in-
teractions without creating separate screens.

The list of graphic-facility types includes generic cur-
sor icons that serve various functions:

OG, 1G Automates the process of graphical sketch-
ing in terms of points, lines, and polygons

2G,3G Automates the sketch-editing process, pro-
viding for the moving or insertion, or both,
of selected points in a sketch

4G Creates a rectangular shape controlled by
fixed and moving corners

5G Provides user-defined icons. This type fa-
cilitates the arbitrary definition of moving
icons, which may include discontiguous
polygons as well as any number of “rubber-
banded” links to fixed points. The size of
the moving icon may be proportionally en-
larged or reduced using the “alt(+)” and
“alt(-)” keys. Similarly, the X-Y propor-
tions may be varied using the “alternate”
up, down, right, and left arrows

6G Provides a circular icon controlled by the
moving center position and the radius. The
radius may be changed via the “alt(+)” and
“alt(-)” keys.

The list also includes a mixed textual/graphic mode,
TG, by which graphically generated text can be used
as the cursor icon. This facilitates the moving and
scaling of text for labeling and classification of data
items.

The use of the OG and 1G labels was described ear-
lier in the discussion of the implementation of links
(Figure 5). Examples of the use of the facility types
OT, OG, 2G, and 4G are given in Figure 7 which is
taken from the SDTM sample application previously
outlined. It represents the TSMAIN screen shown in
the first column in Figure 4. This screen is shared
by the five facilities constituting the TSMAIN editor.
The display corresponds to the TSMAININSERT facil-
ity. It is of type 2G and is last in the first column
shown in Figure 4.

All facilities in this editor show a table of setup pa-
rameters and a graphic display. The first facility,
TSMAINSETUP, is of type OT. It provides for numeric
input of setup parameters, accompanied by output-
only graphic display. It displays an instant graphic

HAZONY 83

Figure 8 A user-defined cursor

presentation of the consequences of the parametric
changes introduced through the numeric input fields.

In contrast, the other facilities are of types OG, 2G,
and 4G. They provide for output-only text accom-
panying an interactive graphic display. The graphic
display depicts the shape of the fixture (spindle),
stock, and part profile. (It is customary to show only
a one-sided profile because of the spinning motion
of the stock in the turning center.)

The TSMAINPOINT facility (type OG) is used to pick
a point or a line segment in the profile. It can also
be used to delete a point. A link to a 2G-type facility
activates the three-point rubber-band cursor to show
a moving point attached to two fixed points via
rubber-band lines. This interactive display shows the

old profile and its modification simultaneously.
The modification may be accepted by pressing an
extra command key. Figure 7 shows the action of
inserting an additional point to modify the profile
(TSMAININSERT facility-type 2G). The new point
is inserted into a designated line segment. The mod-
ification is affected by moving the cursor and press-
ing a command key for approval.

The 4G-type facility TSMAINRESET (Figure 4) is used
to reset the profile to a rectangular shape. It pro-
vides a fixed-corner/moving-corner rectangular cur-
sor to specify the new rectangular shape.

The SG-type facility is used by the dimensioning ed-
itor (Figure 8), which is part of the SDTM sample ap-
plication. This facility is using the combined vertical

84 HAZONY IBM SYSTEMS JOURNAL, VOL 35, NO 1, 1996

and horizontal moving lines as a cursor. This cursor
is used to line up a point or a line segment of the
profile with the dimensioning data at the bottom and
left side of the graphic screen. This particular cur-
sor was implemented by the user-defined cursor ca-
pability (facility-type 5G).

The type designation of the target facility is used by
the automatic link-function generator when a sys-
tem link is implemented. The generator uses it to
define and include a generic version of the partic-
ular cursor and the corresponding data. This is done
to ensure that the particular link can be immediately
activated on switching to run mode. Furthermore,
the data provided with the generic cursor exemplify
the particular data structure associated with each
type of cursor. This likeness simplifies its replace-
ment by data relevant to the actual application.

All graphic cursors are associated with data included
in two global variables:

HERE-including the coordinates of the moving

POINTERDATA-including the data specifying the ge-

These variables are specified in the incoming link
function to preset the corresponding cursor. New
data are included in these variables in response to
cursor movement and which interactive key is
pressed. The new data are available for processing
within the local response function or the correspond-
ing link function.

A graphic processor. The graphic processor is in-
voked by the ASG process cycle any time a key is
pressed. A universal data-driven draw function is ini-
tially available and thus activated by the availability
of the appropriate data. This universal draw proces-
sor may be preempted by a screen-dependent draw
processor designed to respond to specialized require-
ments of a particular screen and all the facilities shar-
ing this screen definition. The screen-dependent
draw processor may be preempted by a facility-de-
pendent graphic processor customized to the needs
of a particular facility. Access to these graphic pro-
cessors is available through the facility-focus editor.

Editor encapsulation. The term encapsulation per-
tains to a process that ensures that an application,
or part of it, is implemented in a totally self-contained
structure. This structure is codified in a way that dis-
tinguishes it from other encapsulated components,
as well as the underlying ASG/PC editor network.

center of the cursor

ometry of the particular cursor

IBM SYSTEMS JOURNAL, VOL 35, NO 1, 1996

The automatic encapsulation is designed to facili-
tate the modular development of an application and
to allow parallel efforts by a team of engineers. Sim-
ilarly, it facilitates the separate archiving of an ed-
itor and the merging of several editors, developed
for different applications or by different members of
a team. Both the start-up facility and the facility-
table editor provide a key to obtain a nested-array
view of the application. This view separates encap-
sulated components (editors) that comprise the ap-
plication.

Figure 9 shows the editor/screen/facility/link layout
for the Factory Redesign Modeling System, which
is discussed briefly later. The encapsulation struc-
ture is depicted by the three large rectangles labeled
NE, WM, and DA. This structure is dictated by the in-
put naming convention used by the facility-table ed-
itor.

The archive, legacy-files, and activity-log facilities.
The archive facility is built on the base of the DOS
file system. It includes generic services for system
and application backup. It creates and uses an ASG
subdirectory, employing two distinct file extensions
for system backup and application backup. It includes
a command column for selection of the particular
version of software to be restored (ASG system),
loaded (application files), or deleted. The screen also
includes a file-description field, which includes de-
scriptors specified during invocation of the backup
of either system or application.

The SDTM application (Figure 3) also provides team-
work services. To this end, it includes a facility for
“user authorization” and for automatic management
of “legacy files” and an “activity log.” These activ-
ities can reside on the local hard disk drive, on a disk
drive residing on a network server, or on the diskette
drive.

Export of ASG/pc applications

The present version of the ASG/~C is running under
the DOS operating system. It is used on 90-MHz Pen-
tium computers with 32 megabytes (MB) of RAM.
However, the system also runs comfortably on
Intel 486 (33-MHz, 8 MB RAM) processors. At the low
end, the ASG@ runs on an Intel 386 (~O-MHZ, 4 MB
RAM) processor. However, the development of an
application such as described in the next section
would be tedious using this configuration. The ASG
software needs less than 1 MB of storage with ap-
plication software not included. A “run-only” ver-

HAZONY 85

Figure 9 A nested array view of the editor/screen/facility/link diagram for Factory Redesign Modeling System

sion of the ASG occupies under 400 KB of memory
and can be used to extend the usefulness of the lower-
end computer configuration. The APL2/pc has the ca-
pability to package an application in an “execution-
only” mode.’ This capability permits shipping out
legal “samples” for testing before committing the cus-
tomer to purchase the underlying APL2/pc platform.

The commercial realization of the algebra of nested
arrays, used in the work reported in this paper, is
part of APL2/pq6 which runs under the DOS oper-
ating system. Powerful implementations of the al-
gebra of nested arrays are also available for the
UNIX* */C environment running on various “work-
stations,” for Operating System/2* OS/^*) (C-based),
and for the IBM mainframe computer environment.

86 HAZONY

All of these are available under various implemen-
tations of APL2.

The screen-control and graphic processors used by
the ASG/~C were based on software provided by the
commercial product (ap124 and ap207).’ These pro-
cessors facilitated the development of the easy-to-
invoke, extensive color coding used for both textual
and graphic interactions, as illustrated in the figures
shown in this paper. The archive system described
below is using the corresponding auxiliary proces-
sors (apl01, ap103, and ap210), providing access to
the DOS file system. Dependence on the simultaneous
use of these auxiliary processors makes the “port-
ing” of the A S G / ~ C to other APL2 implementations
a nontrivial undertaking.

IBM SYSTEMS JOURNAL, VOL 35, NO 1, 1996

Applications

Powerful applications of the predecessor system are
described elsewhere. * 3 s 5 In comparison, the ASG/PC
was developed over the past two years, and thus the
examples for its application are limited. Three such
examples are discussed briefly in this section. The
purpose of these descriptions is to illustrate the
power of the ASG in the rapid creation of custom-
ized systems and to provide the reader with the
“touch and feel” of the approach. A detailed descrip-
tion of these applications is beyond the scope of this
paper. The examples include systems for

The seamless design to manufacture on a turning

The Factory Redesign Modeling System, based on

The ASG, which was designed and implemented in

center

the Ward-Mellor modeling methodology

itself

Seamless design to manufacture on a turning cen-
ter. This package was customized for use in the class-
room to demonstrate the feasibility of “instant-re-
sponse” manufacture with numerically controlled
conventional machines. The topic of SDTM has been
touched upon earlier in this paper and discussed in
more detail elsewhere. 293 The present application
evolved out of this discussion, which was used as part
of a tutorial in a course providing hands-on expo-
sure to the topics of manufacturing system design.
This tutorial was further developed to provide a
hands-on demonstration of the power of rule-based,
parametric, engineering design. It is used presently
as a classroom assignment for a senior course on
computer-controlled manufacturing.

Figure 10 illustrates one of the displays generated
in this application. It shows the tool trajectories for
a three-stage manufacturing process: facing, profile-
cutting, and cutoff. It also shows the difference be-
tween designed and feasible (tool-dependent) pro-
files. The screen also includes the command-key
specification row (bottom), the message field (sec-
ond row from the bottom), and several title fields.

The effort invested in this package so far amounts
to six person-weeks. It is an excellent hands-on dem-
onstration of the underlying basic concepts, but it
does not cover the full range of capabilities of the
two-axis turning center. It is estimated that the ef-
fort to extend the package to cover a comprehen-
sive set of tools and process rules will require six per-
son-months, whereas the further extension of the

IBM SYSTEMS JOURNAL, VOL 35, NO 1, 1996

package to include the capabilities of the third-axis
of the three-axis turning center will require another
six person-months.

The Factory Redesign Modeling System. A version
of the Ward-Mellor modeling system ’” was imple-
mented as a tool to achieve improvements in man-
ufacturing productivity through factory redesign. The
objective is to achieve improvement in productivity
in the factory-redesign process itself. This achieve-
ment will make it a realistic exercise in a real-life
operational manufacturing environment. The target
cycle time for such a factory-redesign exercise is un-
der a week.

One of the graphical tools employed by the Ward-
Mellor (WM) modeling m e t h ~ d ’ ” ’ ~ consists of the
data-flow diagram. It is a multilevel network of “bub-
bles” and “links.” It utilizes bubbles to represent data
transformation and links to represent flows. Figure
11 represents one of the displays used by the WM
model to characterize the activity flow in a factory.
A bubble is added to a “level” through the invoca-
tion of the circular pointer (facility type 6G), followed
by scaling and placing it at a chosen location. At this
point a textual screen with a graphic display window
(facility type OT) appears for the specification of the
bubble label, color code, and attributes.

The specification of a new WM link entails a five-step
successive process:

1. Invocation of a positional pointer (facility type
OG) to choose a link origin, which may or may
not be a bubble

2. A “single rubber-band’’ pointer (1 G) to pick a link
destination

3. A “double-link rubber-band’’ pointer (2G) to de-
termine the curvature of the link

4. A textual screen with a graphic window (OT) for
the specification of a link label and link attributes

5. A TG-type screen having the link label as the mov-
ing cursor for placement at a nonambiguous lo-
cation

Figure 11 corresponds to the third step above. It dis-
plays a level of the bubble/link network represent-
ing a WM model. It also displays the double-link, rub-
ber-band cursor used to specify the curvature of the
new WM link. Accepting the location of the curva-
ture control point activates the facility used to spec-
ify the title and attributes of the new link. The newly
accepted link is represented as an arc similar to all

HAZONY 87

Figure 10 Rule-driven tool-trajectory generation by SDTM system for two-axis turning center

l..."l"""-." """"1""". "."

other links shown. The data shown in Figure 11 cor-
respond to a particular factory.'*

The WM system implemented so far includes rule
checkers developed to enforce model completeness
and data integrity. Rule checkers represent an ex-
tension to the original Ward-Mellor modeling sys-
tem.'O A mixed textual-graphic screen displays the
corresponding network while a table shown on the
left of the screen lists incomplete model-data items.
This list was automatically generated by a rule
checker. A command column at the left of the table
permits the selection of any of the listed data items
for the appropriate action. If the specific action com-
plies with the rules, this data item is automatically
removed from the list.

The effort of developing the present version of the
WM-ASG modeling system is estimated at three per-
son-months. This effort includes the stages of sys-
tem conceptualization, system development, and
model data entry. The system developed so far con-
sists of 15 facilities sharing five screens encapsulated
into three main editors (Figure 9). It includes 75 pro-
grams that handle all aspects of the computerized
application. Most of these programs were automat-
ically generated by the A S G / ~ C and subsequently up-
graded by the developer through the use of the ASG
editors. The effort required for the development of
a comprehensive rule-based Ward-Mellor modeling
system for factory redesign is estimated at one per-
son-year.

IBM SYSTEMS JOURNAL, VOL 35, NO 1, 1996

Figure 11 A data entry screen of the Factory Redesign Modeling System

The Application System Generator. The design and
implementation of ASG/PC was carried out in itself
using a “boot-strap’’ method. As such, it represents
the most extensive application of the ASG/~C so far.
An initial graphic processor was implemented and
used to build a simple graphic editor for the graphic
design of the 110 fields of an interactive computer
screen. This primitive graphic screen-layout editor
was used to develop the screen layout of an initial
facility-table editor. This editor was designed for the
definition of new facilities and for the management
of a facility table. The two editors were used to de-
sign the link-table editor and the graphic-link edi-
tor. In this way the present version of ASG/pc evolved
using itself as a system development platform. Dur-
ing this process, an ASG processor, the initial graphic

processor, and the initial editors were gradually up-
graded to accommodate the emerging requirements
of the ASG/PC development process.

The present version consists of the 10 editors de-
scribed earlier. It includes 16 screens shared by 30
facilities and connected via 87 links. Any application
being developed may be viewed as an extension to
the ASG-ISW network. New facilities can be devel-
oped and then added to the basic system. A system-
control mechanism makes the system facilities and
network invisible during the development of a new
application. The same mechanism permits the re-
assignment of newly developed facilities to become
part of the underlying system itself. Figure 12 illus-
trates this evolution process. It shows the network,

IBM SYSTEMS JOURNAL, VOL 35, NO 1, 1996 HAZONY 89

Figure 12 Complete facilityhink network

including both the facilities that constitute the de-
velopment platform itself and those representing the
evolving new extensions and applications. The sub-
network of the newly developed facilities are shown
in the rectangular zoom box. The system-control
mechanism determines which part of this combined
network will be encapsulated as part of ASG/PC and
thus become invisible to the application developer
or user. The boundary may be perceived as an ar-
bitrary vertical partition line that may be moved to
accommodate new capabilities.

The underlying system variables and functions are
not locked (hidden), but they are prefixed by iden-
tification characters. In this way the system is pro-
tected from inadvertent changes. However, in the

event that a system function or variable is compro-
mised, a system restoration mechanism is included
as part of the archive facility.

The total development effort invested in the ASG/~C
is estimated at two person-years, not counting expe-
rience with its predecessor mainframe system. This
amount of work represents an extremely low figure
for a system having such power and capabilities.

Discussion

A major issue of concern with the methodology de-
scribed in this paper is the very high level of com-
plexity of the hardware and software platform uti-
lized. It is clear that for this technology to gain

90 HAZONY IBM SYSTEMS JOURNAL, VOL 35, NO 1, 1996

credibility in manufacturing engineering, the details
of the hardware configuration and of the underlying
operating system must be hidden from the user. At
its present state of development, the ASG goes a long
way toward accomplishing this goal. To this end it
requires that the application developer acquire a cer-
tain level of proficiency in the algebra of nested ar-
rays. However, the availability of commercial com-
puter implementations of this algebra, in the context
of an application development platform, makes it
susceptible to an incremental self-learning process.

A related issue is the use of APL2/pC as an under-
lying programming language that matches the power
and sophistication of the mathematical methodol-
ogy. Although interfaces exist for calling programs
written in C, FORTRAN, or Pascal, attempts to do so
will very quickly compel the user to invest in the APL2
notation. The combination of nested arrays and
graphical programming, offered by the ASG, makes
APL2 programmingper se to be a rather small com-
ponent of the system development process.

Maintenance of such sophisticated computer systems
and networks is still a bottleneck. A qualified, ad-
equate organization is necessary to maintain network
reliability compatible with the requirements of man-
ufacturing. This problem is critical, independent of
whether or not ASG/PC applications are being used
on such a network.

Another issue touched upon is that of accommodat-
ing and supporting teamwork. Although the ASG was
designed to facilitate the work by an individual en-
gineer, the encapsulation mechanism described pre-
viously is designed to support the integration of in-
dividually developed modules into a comprehensive
application. It is accomplished while maintaining the
identity of the builders of the original components.
The encapsulation mechanism used in ASG/pC may
be viewed as “coarse-grained object-oriented pro-
gramming,” where this phrase is used in a very loose
sense. It provides some of the advantages offered by
object-oriented programming without the constraints
imposed by such programming environments. This
difference is significant particularly for applications
that could benefit from a highly mathematical ap-
proach.

The teamwork support extends beyond encapsula-
tion to include facilities for user authorization, ac-
tivity log, legacy files, and an archive. The different
data logging activities serve different purposes, and
these facilities provide the foundation for extensive

IBM SYSTEMS JOURNAL, VOL 35, NO 1, 1996

support for a team environment. However, large-
scale teamwork activity could benefit from the ad-
vantages of an interface to an adequate commercial
database management system.

Inspection of the various ASG/pC screens displayed
in this paper reveals a different “touch and feel” than
the window-style screens prevailing in contemporary
personal-computer applications. The main differ-
ences are,

Only one “window” is open at any time.
Each “window” occupies the full screen.
Switching between windows is through single key
control.
Switching between windows is facilitated by an ir-
regular spider-web network rather than a tree net-
work structure.
There is extensive (and easy) use of color coding.
There is extensive use of various graphic cursors
as design and programming tools. These cursors
are provided by the ASG/PC system or easily gen-
erated by the application developer.

Experience with student developers reveals that,
given the facility, the design of a facility display
evolves into one with an extensive amount of coher-
ent data on a screen. This design is often accompa-
nied by a wide choice of options through numerous
control-key designations. It all has the effect of min-
imizing the number of interactions required for the
completion of a task.

An alternative “touch and feel” could be achieved
if the screen-control mechanisms provided by the
commercial product APL2/pC were augmented to in-
clude interfaces to Windows**-style screens. An ex-
ample of such a possible enhancement could be an
interface to a popular product like Visual Basic**.
Such an interface could serve as a substitute to the
underlying mechanisms provided by the ap124 and
ap207 auxiliary processors. However, Visual Basic
and the standard auxiliary processors by themselves
provide acceptable tools for the development of very
simple applications that may be served by several “fa-
cilities” or “windows.” Both methods become tedious
and unyielding when a much higher level of com-
plexity is called for, especially where a rule-based ap-
proach could be advantageous.

System-development tools such as Visual Basic may
be viewed as a potential substitute for the auxiliary
processors ap124 and ap207 used by the ASG/PC sys-
tem. However, such a substitution will lead to an al-

HAZONY 91

ternative but entirely different interactive paradigm.
In contrast to the touch and feel described above,
a Visual-Basic-style system generates numerous
overlapping windows. For a complex application, the
overlapping may be viewed as an extensive clutter
of information on a single screen. This clutter often
requires a substantial involvement by the user, who
is called upon to clean up the screen by selectively
closing unnecessary windows.

Ideally, both types of screen interfaces should be
made available, giving the user or developer a choice
between two alternative styles. It would be even bet-
ter if both interfaces are made to coexist under
ASG/PC, to be used within the same application. The
choice between the alternative styles may be a
consequence of performance considerations or in-
dividual stylistic preference, or both. In both cases,
however, the ASG/~C would provide a higher-level
productivity tool. The Visual Basic option was not
available during the development of the present ver-
sion of ASG/~C and is not accommodated by more
recent APL2 products.

The rapid development of computer technology
makes it extremely difficult to provide a compara-
tive performance evaluation with respect to past sys-
tems. The Pentium-type personal computer is sub-
stantially more powerful than the mainframe
computer used for the development of the prede-
cessor system of the ASG/PC. Furthermore, the per-
sonal computer is used as a dedicated machine,
whereas the mainframe computer was employed as
a time-sharing system. In addition, the projects ad-
dressed within the present implementation are dif-
ferent from those implemented in the past. Since the
computer platform, the ASG/~C environment, and the
application projects have all changed, it is impossi-
ble to provide a quantitative comparison between
past and present performance.

The design objectives for the ASG/~C were substan-
tially more ambitious than those for its mainframe
predecessor, the ESG.’ Furthermore, experience
gained from past implementations was taken advan-
tage of, and thus the ASG/~C may be viewed as the
next generation of the ESG. A brief summary of the
differences between the two implementations was
given in an earlier section of this paper.

Performance evaluation may be provided, however,
in terms of the definition and attainment of new per-
formance objectives. The Factory Redesign Model-

92 HAZONY

ing System, briefly described earlier in the paper, was
undertaken to verify a two-level objective:

Application system implementation has to be fea-
sible as part of a master’s degree thesis project,
imposing a time constraint of one year, which must
allow for both student training and system imple-
mentation.
The resulting modeling system should make it
possible to implement a small-scale factory model,
of the kind described by Ebner, Sharara, and
Torres, 11,12 within 30 hours.

Both targets have been achieved as reported by Eb-
ner and Godika. 13,14 Similarly, the SDTM system de-
scribed earlier is used as a classroom exercise in an
ASG/pc-based system design course. Furthermore,
the ASG/~C was implemented “in itself” single-hand-
edly, over a period of two years.

The system described here provides rapid-response
solutions to emergency situations. The application
systems implemented in the past all fell into that cat-
eg01-y.~ For a system to be effective in this domain
it has to display both time efficiency and effective-
ness in adapting to the diversity of requirements
posed by manufacturing applications. In addition, the
ASG/~C application development platform is aimed
at the end user being both developer and user of an
application. This dictates avery short learning curve
and reliance on further improvements through in-
cremental self-learning. It is important to give an en-
gineer the opportunity for a short-term initial suc-
cess story, which can be used to justify further
investments in time and equipment for the imple-
mentation of the next step.

Concluding remarks

The Application System Generator, implemented on
Pentium-class personal computers, offers powerful
capabilities for the integration of the personal com-
puter into the problem-solving process for manufac-
turing engineering. It is an easy-to-use, application-
building platform for mathematically based solutions
to a variety of engineering problems. The ASG/~C is
designed for use by the application-domain engineer,
who will also be the end user of the technology. This
goal is attained by software automation reducing the
need for teams of application development special-
ists. The focus on the manufacturing engineer, both
as an application builder and an end user of the tech-
nology, dictates a design methodology that facilitates
an incremental self-learning process. This is signif-

IBM SYSTEMS JOURNAL, VOL 35, NO 1, 1996

icant in view of the fact that higher productivity is
attained by increased use of tools of applied math-
ematics, such as the algebra of nested arrays.

The continued advancement in hardware technol-
ogy is manifested in the emergence of new and faster
processors and in multiprocessor configurations. In
addition, advertised new versions of the commonly
available operating systems would provide access to
multitasking, multiprocessing, and high-speed net-
working. This trend is matched by a similar evolu-
tion of large-scale parallel machines in the direction
of coarse-grained parallelism using a network of
small machines. These trends introduce “coarse-
grained parallelism” as an option for manufactur-
ing applications.

These trends emphasize the need for application-
development platforms that can harness the ever-
increasing power of computers. An exploratory im-
plementation of a “server network generator’’ has
been described elsewhere’ as an extension of the pre-
decessor to the ASG. The ASG can be extended to
encompass the functionality of the server network
generator and thus demonstrate that such a technol-
ogy can be realized and further developed.

Acknowledgment

The author expresses his appreciation to Merrill L.
Ebner for numerous discussions and a critical read-
ing of the manuscript.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Intel Corp., Digital
Equipment Corporation, X-Open Company, Ltd., or Microsoft
Corporation.

Cited references

1. T. More, A Theory of Arrays with Application to Databases,
IBM Cambridge Scientific Center Report G320-2106 (Sep-
tember 1975). Also, Notes on the Diagrams, Logic and Op-
eration ofArray Theory, G320-2137, IBM Corporation (Sep-
tember 1981).

2. L. E. Zeidner and Y. Hazony, “Seamless Design to Manu-
facture (SDTM),” Journal of Manufacturing Systems 11, No.
4, 269-284 (1992).

3. Y. Hazony and L. E. Zeidner, “Seamless-Design-to-Manu-
facture of Marine Propulsers: A Case Study of Rapid Re-
sponse Machining,” Journal of Manufacturing Systems 13, No.

4. L. Zeidner, Y. Hazony, and A. C. Williams, “An Expert Sys-
tem Generator,” U S T E D Journal of Control and Computers

5 . Y. Hazony and L. E. Zeidner, “Customized Systems for En-

5 , 333-345 (1994).

15, NO. 1, 22-33 (1987).

IBM SYSTEMS JOURNAL, VOL 35, NO 1. 1996

