192 BENANTAR, BLAKLEY, AND NADALIN

Approach
to object security
in Distributed SOM

We briefly review the IBM System Object Model
(SOM, incorporated in SOMobjects™) and
Distributed SOM (DSOM). We then describe the
base DSOM security architecture characterized
by the presence of the Object Security Service
(OSS) framework in the DSOM run-time
environment. Depending on its implementation,
this framework can be wrapped around
procedural security service providers, thus taking
advantage of existing security mechanisms.
Subsequently we elaborate on the OSS elements
for authentication and authorization and how
they relate to the DSOM Object Request Broker
(ORB™) on the one hand, and to the client

and server applications on the other hand.

We discuss the DSOM approach to object
access control and present a novel method for
enforcing it.

In a distributed environment, client and server ap-
plications cross the boundaries of a single address
space and communicate with each other, passing in-
formation about service requests and receiving re-
sults. The client and the server can be running on
two different hardware and software systems, remote
from each other, and linked through the communi-
cation media and protocols of an underlying network.
Although this paradigm of computing is effective, de-
veloping client/server applications presents some dif-
ficulties and challenges. The Open Software Foun-
dation (OSF) has been involved in a major effort that
addresses these challenges in its Distributed Com-
puting Environment infrastructure, known as OSF
DCE**,! or simply DCE. DCE defines the elements that
make up the basic distributed computing environ-

0018-8670/96/$5.00 © 1996 IBM

by M. Benantar
B. Blakley
A. J. Nadalin

ment, including a service that provides unique names,
a security service, and a service relied on for accu-
rate time, all within a defined network scope called
a cell. DCE application servers advertise their net-
work bindings and programming interfaces through
the naming service, which client applications con-
sult in order to initiate service requests. Remote op-
erations are then triggered by a client application in
a manner similar to invoking local procedures.

With the advent of object-oriented programming, the
need for computing with objects over a network,
transparently from the systems and the hardware
platforms on which they reside, has naturally
evolved. Itis toward meeting this need that the Ob-
ject Management Group (OMG), a consortium of
computer software and hardware vendors, has de-
veloped its Common Object Request Broker Archi-
tecture**, CORBA**.? Its Object Request Broker**
(ORB**) specification defines mechanisms through
which a client is able to retrieve a reference to a re-
mote object and invoke its methods in the same man-
ner as when the object is local to the client appli-
cation.

The 1BM Distributed System Object Model provides
a DSOM ORB consistent with the CORBA specifica-
tion and allows inter-ORB connections in accordance

©Copyright 1996 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996

with the OMG ORB-interoperability specification. This
allows communication and interaction with other
ORB systems that conform to the OMG interoperabil-
ity standard. This support greatly enhances the open-
ness of the DSOM technology and widens the scope
of its use.

While the CORBA architecture addresses the mech-
anisms that enable remote object interactions, the
Object Management Architecture (OMA) specifica-
tion defines a complete set of object services and
common facilities for building distributed object so-
lutions. These services, some of which are still being
developed, include object life cycle, naming, event,
persistence, and security.* In this paper we focus
on the security service designed and integrated with
DSOM and developed in accordance with the OMG
security requirements and guidelines.*® In the next
section we introduce the fundamentals of SOM and
DSOM. In following sections we: describe the DSOM
security architecture and show how it relates to the
DSOM ORB kernel; discuss the establishment of a se-
cure association between DSOM client and server en-
tities; elaborate on the object framework defining
the DSOM security architecture; present the DSOM
approach to object access control and its enforce-
ment; and show how end-user client and server ap-
plication developers can interact with the DSOM se-
curity framework.

SOM and DSOM overview

SOM (SOMobjects*) provides the key object-oriented
programming features, including inheritance and
polymorphism.® In addition, SOM makes use of the
metaclass concept that extends the object definition
to the class itself—a SOM class is itself an object that
responds to the interfaces or methods defined by its
metaclass. SOM provides for software development
with objects based on a class inheritance hierarchy.
At the root are two basic SOM run-time classes,
SOMObject and SOMClass. The former is the root
ancestor for all classes defined in a SOM application
and the latter is the root ancestor of all SOM meta-
classes. A SOM object is an instance of a SOM class,
and all SOM classes defined by an application are
ultimately derived from SOMObject, including
SOMClass. Similarly, all metaclasses of SOM classes
are ultimately derived from SOMClass. Because they
are classes, both SOMObject and SOMClass are
instances of the root metaclass, SOMClass. The
SOMObject class introduces generic methods that,
by inheritance, are applicable to all SOM objects of
an application. These methods provide basic SOM

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996

functionality, such as the dispatch mechanism for ex-
ecuting method invocations. Similarly, all SOM class
objects respond to the generic methods defined by
SOMClass, including a method for creating instances
of a class, and methods for creating and modifying
instance methods of a class.” A SOM application pro-
gram can be organized as a set of directed acyclic

The security service integrated
with DSOM was developed
in accordance with OMG
requirements and guidelines.

graphs of classes and subclasses, where computation
consists of invoking methods on objects instantiated
from this class hierarchy. Figure 1 shows the object
and class relationships found in a SOM application.

Distributed SOM, or DSOM, adds the functionality of
an ORB to SOM. A DSOM client application seamlessly
creates and invokes methods on remote objects
through the run-time mechanism of proxy objects.
When a remote object is created through the DSOM
ORB, a reference to a local proxy object is returned
to the client. This object then becomes the local rep-
resentative of the remote object. It receives service
requests through method invocations and forwards
them to its corresponding real object. At the time
the proxy object is created, the interface to the re-
mote object is obtained from the Interface Repos-
itory database maintained by the SOM compiler.

The Implementation Repository, on the other hand,
is used to retrieve information about the implemen-
tation of the server. This includes its host, its imple-
mentation identifier, the class of its server object, and
the path for loading its executable code. The server-
side run-time environment includes a number of ob-
jects. Most important are the SOM Object Adapter
(somMo0A) and the application-specific server object,
which is generally an instance of the predefined
SOMDServer class or one that is user-defined and
derived from SOMDServer.

The SOMOA object defines the main interface be-
tween the server program and the DSOM run-time
environment. After a connection to the server has

BENANTAR, BLAKLEY, AND NADALIN 103

Figure 1 Class hierarchy of a SOM/DSOM application

SOMODject | I

el SUBCLASS OF
=~ = & INSTANCE OF

SOMClassMgr
class object |

been established, the SOMOA object receives client
requests for services, and in cooperation with the
SOMDServer object it creates, resolves DSOM ref-
erences to local objects and dispatches methods on
these objects. In addition to providing an interface
to the SOMOA object, the server object allows object
creation and destruction by client applications and
provides object management services needed by cli-
ents. Figure 2 depicts the basic elements involved in
DSOM client/server interactions.

DSOM security architecture

The functionality of DSOM security is encapsulated
by the Object Security Service (0SS) framework. The
0SS component is transparent to end users; however,
security-aware applications can use the 0SS interfaces
to alter run-time security according to their unique
requirements. The local ORB then applies the se-
lected security features to secure the communica-
tion of the local entity with a remote entity. The en-
capsulation provided by 0SS isolates the security
functions from the rest of the DSOM kernel. It pro-
vides flexibility to implementors concerned with hav-

194 BENANTAR, BLAKLEY, AND NADALIN

ing clear boundaries between a trusted computing
base and the rest of the system in their particular
platform, e.g., the MvS (Multiple Virtual Storage)
operating system. In addition it provides a method
for the DSOM security implementation to be inde-
pendent of underlying mechanisms, as 0SS itself can
bridge to different security mechanisms or security
service providers (SSPs).

Distributed computing with objects is a client/server
paradigm in which a client application locates a re-
mote object reference, binds to its serving applica-
tion, and invokes methods on the target object. From
the security perspective we must prove the identity
of the client to the serving DSOM application and also
provide the ability for the serving application to au-
thenticate itself to the client. This establishes a peer-
to-peer level of trust and achieves a mutual authen-
tication “handshake.” Once this is accomplished,
subsequent communication between the client and
the server entities carries the seal of the established
security context. Optional access control to the serv-
er’s objects will also be enforced by 0sS. It is at the
discretion of a server application whether or not to

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996

Figure 2 Basic DSOM client/server interactions

DSOM ORB
CLIENT

SERVER PLATFORM

WP b
kel 1

SERVER1
PROXY

SOMOAS |

SOMOA2

ﬂ‘

“w
SERVER2 RO
PROXY «|

~ [SOMDServert J

(SOMDSQNEPE] [;OMDSEI’VGI’S]

-

(INTERFAGE REPOSITORY

[IMPLEMENTATION REPOSITORY

protect its objects. Since authorization functionality
is in the 0SS framework, rather than the DSOM ker-
nel, no overhead is incurred when authorization is
not used. As illustrated in Figure 3, the DSOM ORB
engages in a two-way interaction, requesting secur-
ity services from 0SS and receiving responses, while
end-user client and server applications affect the set-
tings of the 0SS environment in a one-way interac-
tion.

Establishing a secure client/server
association

To establish a connection with a server in a separate
address space or on a remote host machine, the

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996

DSOM ORB for the secure client transparently com-
municates the client’s credentials and privileges to the
server’s ORB. A credential is something that can be
used to prove the client’s identity—for example, a
secret password or a Kerberos ticket.® While a priv-
ilege represents a special authority, it might simply
be a list of groups of which the client is an autho-
rized member. The authority of each group in the
list is then granted to the client. Client privileges are
used by the server in enforcing specific access con-
trol policies for its objects. The process of commu-
nicating a client’s credentials and privileges to a
server is referred to as establishing a shared security
context. This process is transparently performed
through the cooperation of the client and the server

BENANTAR, BLAKLEY, AND NADALIN 105

Figure 3 DSOM security architecture layers
DSOM ORB

08s
FRAMEWORK

APPLICATION
CLIENT/SERVER /.

Figure 4 The CORBA Principal class inherits from the
0SS Principal class

0Sss
PRINCIPAL

CORBA
PRINCIPAL

ORBs, and results in the creation of an 0SS principal
object, local to the secure server and representing
the secure client, that the server uses to compute ac-
cess decisions to its protected objects. The principal
object holds the client’s credentials and privileges.

The CORBA specification requires that an instance
method, called get_principal, be defined by the ob-
ject adapter class or its subclass (SOMOA for DSOM)
to allow the server application to retrieve the iden-
tity (ID) of its caller at any point during its applica-
tion. SOM implements this method by returning an
object instantiated from its CORBA-compliant Prin-

196 BENANTAR, BLAKLEY, AND NADALIN

cipal class. This principal object can be queried, us-
ing the get_userName method, to obtain the ID of
the client.

We redefine the Principal class to be a subclass of
the 0SS Principal class. Thus invocation of the
get_principal method returns an object, with all of the
CORBA-compliant behavior expected by SOM, that
also encapsulates a sct of privileges defining the
scope of the client’s authority while engaged in ser-
vice requests.

In a prototype integration with DCE security, the cli-
ent privileges were represented by a DCE privilege
attribute certificate (PAC) that the DCE access con-
trol mechanism can interpret. Similarly, these can
be in a format useful to any other supported access
control mechanism. Figure 4 shows the relationship
between the 0SS and the CORBA principal objects.

Authentication objects and flows

Atrun time, OSS contains a set of objects—some that
encapsulate authentication functions and others that
deal with object access control. These two functions
are, generally, tightly coupled with each other. The
shared security context established upon successful
authentication of a principal (user or application) is
the foundation for controlling access to a server’s
objects.

There are four primary authentication objects: the
quality of protection, the persona, the shared secur-
ity context, and the vault objects.

The quality of protection object. The quality of pro-
tection (QOP) object encapsulates security services
used by the ORB run-time environment. Security-
aware applications also may use the QOP interface
to query and set QOP information for their partic-
ular security needs. The local ORB uses the infor-
mation encapsulated by the QOP to set up the user’s
or the application server’s local security constructs
as well as the shared security contexts. Among
the data present in a QOP is an indicator of the
desired level of message protection during a DSOM
client/server exchange. In turn, this includes differ-
ent levels of message integrity and privacy (encryp-
tion), and possibly a particular integrity or message
privacy algorithm.

In addition to message protection, the QOP object

indicates the authentication protocol that a client will
use in authenticating itself to the server, or that a

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996

server requires for such authentication to take place.
This can be cither a third-party protocol or a two-
party protocol. In the former the authentication to-
ken is acquired by the client from a third-party net-
work security server, and in the latter the token is
acquired from the local operating system.

A client may indicate in its QOP object whether or
not its local ORB should require a remote server to
authenticate itself to the client’s ORB prior to engag-
ing in service requests. Current prototype implemen-
tation provides for either the local operating system
authentication token in the form of a password, a
DCE authentication token, or a token generated by
the 1BM NetSP Secured Logon Coordinator (NetSP
SLC).° This is a third-party network program used
to authenticate the identities of two communicating
network principals to one another, whether users,
applications, or a combination of both.

The flexibility of DSOM authentication results from
adopting the Generic Security Services Application
Programming Interface (GSS-AP1)," a standard in-
terface adopted by X/Open Ltd., integrated by OSF
in its DCE 1.1 release and by IBM in its NetSP SLC
product. The philosophy behind this standard is to
isolate the communication protocol from the under-
lying implementation of the security mechanism. In
our case, it is the DSOM ORB that becomes indepen-
dent of the security mechanisms by using GSS-APL
Although the services provided by GSS-API are trans-
parent to the requesting applications, NetSP SLC pro-
vides advantages over the DCE implementation. The
technology used by NetSP is optimized for network-
layer applications due to its small token size, flex-
ible connectivity, and access to the network security
server. Either a client or a server has the ability to
initiate an authentication session. In addition, NetSP
has a “lighter” run-time environment than DCE.

The persona object. The persona object represents
an authenticated identity to the local ORB and de-
fines an established local security context that en-
capsulates the credentials and privileges of its iden-
tity. Without a valid persona, a client’s request for
remote services is rejected by the local ORB. Sim-
ilarly, without a persona a server application is pre-
vented by its local ORB from receiving connections
from its clients.

The shared security context object. While a persona
relates an identity to its local process or address
space, the shared security context object is created
only in conjunction with a DSOM client/server dia-

iBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996

log; thus, it is a relation between two separate and
possibly remote address spaces. This relationship de-
fines the type and the parameters of the secure as-
sociation that are applicable to the communication
exchanges between a client and a server. It includes
a common QOP object supported by both the ORB
at the client and the ORB at the server, an authen-
tication token proving the identity of the client, and
the client’s privileges as defined and interpreted by
the security service provider indicated in the QOP ob-
ject. Upon successful creation of the shared security
context object by the client and its acceptance by the
target server, authentication is established and the
security parameters driving the communication be-
tween the two entities become active. Usually the
client ORB sets up those parameters, and it is up to
the server’s ORB to refuse or accept them according
to the security services that it supports.

The vault object. In order to isolate the DSOM au-
thentication services and establish a trust boundary,
the authentication objects just described reside
within the scope of the vault object, thus hiding and
encapsulating the security constructs. The QOP, the
persona, and the shared security context objects are
manipulated only through methods defined on the
vault object. Outside the vault object, persona and
shared security context objects are referenced
through “opaque handles” that protect their encap-
sulation. In our prototype implementation, the cli-
ent and the server run-time ORBs invoke DSOM meth-
ods on the vault object, which is part of the 0SS
framework, while the vault object communicates with
underlying security service providers through a GSS-
APl layer (Figure 5). This implementation of OSS was
built by the Object Services Technology Center on
the 0s/2* (Operating System/2*) Warp and AIX*
(Advanced Interactive Executive*) 4.0 platforms in
order to validate the model. Experiments were con-
ducted using different types of authentication pro-
tocols, including a two-party protocol based on
local operating system registries and third-party pro-
tocols that include IBM DCE 2.1 and IBM NetSP.

Authorization is encapsulated through the system
authorization policy (SAP) and the system authori-
zation oracle (SAO) objects in the server’s run-time
environment. The SAP object is responsible for main-
taining and retrieving the security attributes on pro-
tected objects; the SAO object is responsible for ac-
cess control decisions. Both of these objects are
architected so that they can become “wrappers”
around existing procedural authorization mecha-
nisms.

BENANTAR, BLAKLEY, AND NADALIN 197

Figure 5 OSS flows using a procedural SSP

— —— Y
1BM NETSP OTHER '
MECHANISM -

DSOM approach to object access control

The access control mechanism in an object-oriented
system provides natural protection—the data encap-
sulated by an object can be transformed only through
its method interface.'"'> Object access control may
fit with the evolving role-based access control, or
RBAC. *'* In the RBAC model, access to resources is
based on the transformation that would be effected
on the resource as a result of the access. Thus, the
transformation is confined to the initiator’s role in
his or her organization. In this respect, access con-
trol in object systems presents a departure from its
counterpart in procedural systems.

Traditionally, control of access to a resource has been
based on whether or not the data can be disclosed,
altered, or destroyed. Controlling access to objects
at the interface level implies that the space of access
rights, or the set of allowable permissions, becomes
proportional to the number of methods in the class
library. We need to determine a fixed set of usable
and manageable access rights that can be used by
application developers to provide secure class librar-
ies. Having a fixed set of rights is important for ap-
plication portability and for reducing the complex-
ity of access control administration. "

1098 BENANTAR, BLAKLEY, AND NADALIN

We address this problem by breaking an access right
into two components: a type and a value. Our goal
is to define a small number of families of access
rights, each containing a manageable set of permis-
sions. A family, or access-right type, is intended to
be generic and to encompass a wide semantic scope,
while an access-right value is more specific within
its type. An access-right type can be thought of as
being equivalent to the POSIX (Portable Operating
System Interface for Computer Environments) se-
mantic' of a DCE Access Control List manager. The
example in Figure 6 shows two access-right types,
OPERATION_RIGHTS and ROLE_RIGHTS.

Instead of using the DSOM kernel to intercept a
method request in order to check access control, we
encapsulate this function into 0SS by making use of
the SOMMBeforeAfter metaclass framework. A
class that is directly or indirectly an instance of the
SOMMBeforeAfter metaclass inherits “before” and
“after” behavior. This means that the execution of
any method on an instance of the class will be pre-
ceded by the execution of a before method and fol-
lowed by the execution of an after method. The
SOMMBeforeAfter metaclass implementation over-
rides the method somDispatch introduced by the
SOMObject class. As a result, stubs are placed in

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996

the class’s method table'® to call the somDispatch - -
. . . Fi M -right
override. A stub looks like this: rigure ?sgfssaccfss,ﬂgﬂei,,

somDispatch(self, primaryMethod, .. .) { Access-Right Access-Right Intended
retval = BeforeMethod(class(self), Types Values Interpretation
self,

primaryMethod, . . .); OPERATION_RIGHTS

Read
if (retval) {
primaryMethod (self, . ..);
AfterMethod(class (self),
self,
primaryMethod, ...);

Write
eXecute
Create

Delete

}

where primaryMethod is the target method to be ex- ROLE_RIGHTS
ecuted on an object of the underlying SOM class. The
SOMMBefore After metaclass provides an intercep-
tion point from which access control can be triggered.
Thus, by overriding the before method to perform
authorization checking, the requested method will
be executed only if the client is authorized for the
object of the protected target class and method. "

Append
Guest

User
Operator
adMinistrator

audiTor

w 4 2 0 c Q> U 0 X g ®

Super

Figure 7 Protected objects inherit from the DSOM secure class

0SS
FRAMEWORK

e mmeemnenly. S JBCLASS OF
¥ INSTANCE OF

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996 BENANTAR, BLAKLEY, AND NADALIN 1G9

Figure 8 SOM 0SS access control flows

P 8 get_mrars

<

Registry

Manager

5 get ACL_mgr

6 ACL_manager_access_allowed

7 get_mrars
9 get ACL

ACL
Repository

10 method dispatch

4 access_allowed

3 get_principal

SOM
—————————— secure
Metaclass

2 method request

1

requestor’s ID.

required access rights).

and returns them to the ACL Manager.

the requestor.

method can be dispatched.

Step 1: A method request arrives against a secure object (an instance of SOMSecure).
Step 2: The method request goes to SOMSecure (an instance of SOMSecureMetaclass).
Step 3: SOMSecure’s before method issues the get_principal method against the SOMOA object to obtain the

Step 4: SOMSecure’s before method queries the SAO/SAP objects, using the access_allowed method (SAO=system
authorization oracle; SAP=gystem authorization policy).

Step 5: The SAP sends a get_ ACL_mgr request to the Registry object (ACL=access control list); the Registry returns
the list of ACL Managers that control access to the secure object.
Steps 6-9 are repeated for each ACL Manager in the list.
Step 6: The SAP sends an ACL_manager_access_allowed request to the ACL Manager.
Step 7: The ACL Manager object asks the SAP to retrieve the mrars, via the get_mrars method (mrars=method

Step 8: The SAP asks the Registry for the mrars, via the get_mrars method (if they are not already in the cache),
Step 9: The ACL Manager gets the ACL entry from the ACL Repository database (if it is not already in the
cache). The ACL Manager evaluates all the access rights required by the method against those held by

The SAO reviews all the decisions of the ACL Managers and makes the final decision on whether or not the

Step 10: If the SAO approves, the SOMSecure before method dispatches the requested method against the secure object.

The strength of this access control technique is char-
acterized in two ways:

¢ The before behavior during which access control
takes place cannot be executed on the target ob-
ject’s proxy that resides on the client side; it ex-
ecutes only on the real object within the server.
Thus, the client is prevented from tampering with
the authorization process.

¢ If a client application attempts to directly in-
voke somdDispatchMethod® on the server’s proxy,

200 BENANTAR, BLAKLEY, AND NADALIN

SOMDServer, or a descendant of it, then the re-
quest automatically fails.

In this way, DSOM access control is seamlessly en-
abled by making a class, designated to be protected
by its developer, inherit from the DSOM secure class
provided by the 0SS framework as shown in Figure
7. Our prototype included an implementation of a
native capability model as well as an integration with
the access control list (ACL) mechanism based on IBM
DCE 2.1. Figure 8 shows the execution flow that com-

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996

Figure 9 A DSOM client or server setting up a new QOP object

APPLICATION DEVELOPER

set_QOP

0ss
FRAMEWORK

‘| PERSONA

QoP

putes an access decision (step 4) prior to dispatch-
ing a method on a secure object (step 10). Although
current SOMobjects 3.0 makes use of a native DSOM
mechanism as a Security Service Provider, later re-
leases of SOMobjects will integrate with DCE for both
authentication and authorization services.

Application developer interaction with OSS

Developers of client or server applications may not
want to use the default ORB security features, but
instead customize the security based on their own
requirements. If the selected security features are
available through 08S, a DSOM principal can be de-
veloped that creates a new QOP object, sets its in-
stance values, then communicates with the 0SS envi-
ronment using the set_QOP method on the vault
object, as shown in Figure 9. Subsequent shared se-
curity contexts will be created under the new QOP
object.

When a server application is started, it usually ac-
quires the security context of the principal, possibly
an end-user administrator who started it. In order
for a server to engage in a complete mutual authen-
tication process with its clients, it should run under
its own identity, and hence its own security context.
A server application, once started, can run under its

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996

own identity by creating its own persona object us-
ing the instantiate_persona method on the vault ob-
ject, then making the new persona object active in
the 0SS environment by invoking activate_persona,
asillustrated in Figure 10. Note that running a server
under its own authenticated identity encapsulates the
trust into a program principal, rather than a human
principal who may be susceptible to voluntarily com-
promising this trust.

Conclusion

We have designed an object security framework that
is an integral part of DSOM object services and de-
fined its boundaries with respect to the DSOM ker-
nel ORB and to application developers. This solution
is characterized by two factors:

* It is seamless to end-user clients and application
developers in that it is the duty of the DSOM object
request broker to transparently provide security.

* The solution is designed to be independent of un-
derlying security services. Furthermore, it can
make use of the existing procedural security ser-
vice providers such as the DCE security services.

We described an authorization model based on
method-level granularity. We introduced its basic el-

BENANTAR, BLAKLEY, AND NADALIN

201

Figure 10 A DSOM application server changing to a new identity

0SS FRAMEWORK

| PERSONA

SHARED
i SECURITY
A CONTEXT

activate_persona (persona_h};

persona_h=instantiate_persona (principal, ...);

ements, including a way to manage the set of allow- 7.
able access rights. We presented a novel way to en-
able DSOM object access control that simply makes
usc of the existing SOM before/after metaclass frame-
work. This method is safe from client tampering and, 9
although unique to DSOM, it can be adopted by other

object systems providing support for the before and

after behavior or its equivalent. 10.
*Trademark or registered trademark of International Business 11.
Machines Corporation.
**Trademark or registered trademark of the Open Software 12
Foundation or the Object Management Group. ’
Cited references

13.

1. Open Software Foundation, OSF DCE Application Develop-
ment Reference, Prentice-Hall, Inc., Englewood Cliffs, NJ
(1993). 14

2. The Common Object Request Broker: Architecture and Spec-
ification, Revision 2.0, Object Management Group, Framing-
ham, MA (1995).

3. White Paper on Security, Document 94.4.16, Object Manage-
ment Group, Framingham, MA (1994).

4. Object Services Request for Proposals (RFP3), Object Man-
agement Group, Framingham, MA (1994).

5. 8. L. Chapin, W. R. Herndon, L. Notariacomo, M. L. Katz,
and T. J. Mowbray, “Security for the Common Object Re-
quest Broker Architecture (CORBA),” Proceedings of the 10th 17
Annual Computer Security Applications Conference, Orlando,

FL (December 1994), pp. 21-30.

6. SOMobjects Users Guide, SC23-2680, IBM Corporation

(1994); available through IBM branch offices.

15.

16.

202 BENANTAR, BLAKLEY, AND NADALIN

SOMobjects Program Reference, SC23-2681, IBM Corpora-
tion (1994); available through IBM branch offices.

. M. Benantar, R. Guski, and K. M. Troidle, “Access Control

Systems: From Host-Centric to Network-Centric Comput-
ing,” IBM Systems Journal 35, No. 1, 94-112 (1996).

. Network Security Program Security Developer’s Guide, SC31-

6500-01, IBM Corporation (1994); available through IBM
branch offices.

J. Linn, “Generic Security Service Application Program In-
terface,” Internet Draft (June 1991).

C. Bryce, “Protection in Object-Oriented Software,” Proceed-
ings of the 2nd International Conference on Achieving Quality
in Software, Venice, Italy (October 1993), pp. 97-109.

P. S. Deng, “Fast Control in Object-Oriented Repetitive Ac-
cess,” IEEE Proceedings of the 28th Annual International Car-
nahan Conference on Security Technology, Albuquerque, NM
(October 1994), pp. 173-175.

D. Ferraiolo and R. Kuhn, “Role-Based Access Controls,”
Proceedings of the 15th National Computer Security Confer-
ence, Baltimore, MD (October 1992).

. R. S. Sandhu and H. Feinstein, “A Three Tier Architecture

for Role-Based Access Control,” Proceedings of the 17th Na-
tional Computer Security Conference, Baltimore, MD (Octo-
ber 1994).

G. Karjoth, “A Formal Model of OSS Authorization,” un-
published paper, available on request from gka@ibm.vnet.com.
I. Forman, S. Danforth, and H. Madduri, “Composition of
Before/After Metaclass in SOM,” OOPSLA 94 Conference
Proceedings, Portland, OR, ICM Press (1994), pp. 427-439.
M. Benantar, B. Blakley, and A. Nadalin, “Use of DSOM
Before/After Metaclass for Enabling Object Access Control,”
presented at the IFIP/IEEE International Conference on Dis-
tributed Platforms (ICDP96), Dresden, Germany (February
27-March 3, 1996).

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996

Accepted for publication January 22, 1996.

Messaoud Benantar [BM System/390 Division, 522 South
Road, Poughkeepsie, New York 12601 (electronic mail: benantar
@vnet.ibm.com). Dr. Benantar is an advisory programmer with
the RACF (Resource Access Control Facility)/MVS development
group in Poughkeepsie. He received his diploma d’ingenieur in
computer science from the Université des Sciences et de Tech-
nologie, Algiers, in 1983, and the M.S. degree in 1986 and the
Ph.D. degree in 1992, both in computer science from Rensselaer
Polytechnic Institute. He spent one year on assignment at the Ob-
ject Services Technology Center in Austin, Texas, as a member
of the IBM interdivisional team working on the object security
services project. His interests include system and network secur-
ity, object-oriented computing systems, and parallel algorithms.

Bob Blakley IBM Personal Systems Products Division, 11400
Burnet Road, Austin, Texas 78758 (electronic mail: biakley
@vnet.ibm.com). Mr. Blakley, who joined IBM in 1989, is the OS/2
LAN system security architect. He is also the lead security ar-
chitect for the Personal Systems Products (PSP) Division and in
this role is responsible for the development of security technol-
ogy to be included in the SOM product line. He is IBM’s security
representative to the OMG and coedited the OMG CORBA se-
curity standard, which defines the interface and services needed
to secure a CORBA-based object-oriented environment. He is
the OS/2 LAN Systems representative to the IBM Security Ar-
chitecture Board and the LAN Systems representative to the OSF
Security Special Interest Group. He has served for two years as
the chair of the OSF Distributed Management Environment/
Distributed Computing Environment security working group. Mr.
Blakley holds an A.B. degree in classics from Princeton Univer-
sity, and M.S. and Ph.D. degrees in computer and communica-
tions sciences from the University of Michigan. He has been in-
volved in cryptography and data security design work since 1979.

Anthony J. Nadalin /BM Personal Systems Products Division,
11400 Burnet Road, Austin, Texas 78758 (electronic mail:
anthonyn@vnet.ibm.com). Mr. Nadalin joined the IBM Federal
Systems Division in 1983, where he worked on secure projects
for the government. In 1989 he began working on secure oper-
ating systems design. This work, including evaluations of the MVS
and VM (virtual machine) operating systems, was in support of
the IBM development laboratories, with the goal of developing
commercial “off-the-shelf” secure operating systems. In 1992 he
transferred to the Application System/400 Division to complete
an evaluation of secure operating systems and databases. While
on special assignment to the PSP division he worked on the spec-
ification and prototype of OSS. In 1995 Mr. Nadalin joined the
PSP division, where he is now part of the security design team
for base operating system and distributed computing and is as-
sisting in the transfer of the OSS prototype to the SOMobjects

group.

Reprint Order No. G321-5601.

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1986

BENANTAR, BLAKLEY, AND NADALIN 203

