
Automatic code
generation
from design patterns

Design patterns raise the abstraction level at
which people design and communicate design
of object-oriented software. However, the
mechanics of implementing design patterns is
left to the programmer. This paper describes the
architecture and implementation of a tool that
automates the implementation of design
patterns. The user of the tool supplies
application-specific information for a given
pattern, from which the tool generates all the
pattern-prescribed code automatically. The tool
has a distributed architecture that lends itself to
implementation with off-the-shelf components.

E xpertise is an intangible but unquestionably
valuable commodity. People acquire it slowly,

through hard work and perseverance. Expertise dis-
tinguishes a novice from an expert, and it is difficult
for experts to convey their expertise to novices. Cap-
turing expertise is one challenge, communicating it
is another, and assimilating it is yet another. Such
are the difficulties of gaining proficiency in object-
oriented software development. As a result, people
have been slow to realize its touted benefits.

The emerging field of design patterns is a promising
step toward meeting these challenges. Design pat-
terns capture expertise in building object-oriented
software. A design pattern describes a solution to a
recurring design problem in a systematic and gen-
eral way. Beyond a description of the problem and
its solution, moreover, software developers need
deeper understanding to tailor the solution to their
variant of the problem. Hence a design pattern also

by F. J. Budinsky
M. A. Finnie
J. M. Vlissides
P. s. Yu

explains the applicability, trade-offs, and conse-
quences of the solution. It gives the rationale behind
the solution, not just a pat answer. A design pattern
also illustrates how to implement the solution in stan-
dard object-oriented programming languages like
C + + and Smalltalk.'

Over the past two years, a vibrant research and user
community has sprung up around design patterns.
Pattern-related discourse has flourished at object-
oriented conferences, so much so that there is now
a conference* devoted entirely to patterns. Books"'
and articles'-' have been published, and at least one
nonprofit organization (The Hillside Group) has
been established to further the field. One of the most
widely cited books is Design Patterns: Elements ofRe-
usable Object-Oriented Soji~are,~.' which presents a
catalog of 23 design patterns culled from numerous
object-oriented systems. We refer to this book as De-
sign Patterns throughout this paper.

Design Patterns has proven popular with novice and
experienced object-oriented designers alike. It gives
them a reference of proven design solutions along
with guidance on how to implement them. The dis-
cussions of consequences and trade-offs furnish the
depth of understanding that designers need to cus-

Wopyright 1996 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to reppuhlish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996 0018-8670/96/55 00 0 1996 IBM

1
BUDINSKY ET AL. 151

tomize the implementation of a pattern to their sit-
uation. And the names of the patterns collectively
form a vocabulary for design that helps designers
communicate better.

Design patterns are not code; they must be imple-
mented each time they are applied. Designers sup-
ply application-specific names for the key “partic-
ipants”-classes and objects-in the pattern. Then
they implement class declarations and definitions as
the pattern prescribes. If this were all that was needed
to implement a pattern, it would not be a big chore.
But often there are many trade-offs in a pattern to
consider, and different trade-offs often work syner-
gistically, resulting in a proliferation of variant im-
plementations-too many to support through con-
ventional code reuse techniques. Developers are
therefore likely to duplicate their efforts and those
of other developers each time they apply a pattern.

This paper describes an approach to this problem.
We present a tool for generating design pattern code
automatically from a small amount of user-supplied
information. We also describe how the tool incor-
porates a hypertext rendition of Design Patterns to
give designers an integrated on-line reference and
development tool. This tool is not meant to replace
the material in the book. Rather, it takes care of the
mundane aspects of pattern implementation so that
developers can focus on optimizing the design itself.

Describing design patterns

To set the stage for the rest of the paper, we include
here the pattern template used in the Design Pat-
terns book. The template lends a uniform structure
to the information, making design patterns easier to
learn, compare, and use. We describe here each sec-
tion of the template. The book contains a more de-
tailed description of each section, followed by ac-
tual design patterns documented with the template.

Name. The Name of the pattern conveys its essence
succinctly. A good name is vital, because it will be-
come part of your design vocabulary.

Intent. The Intent is a short statement that answers
the following questions: What does the design pat-
tern do? What is its rationale and intent? What par-
ticular design issue or problem does it address?

Also Known As. Other well-known names for the pat-
tern, if any, are included in this section.

152 BUDINSKY ET AL.

Motivation. This section illustrates a design problem
with an example, and shows how the class and ob-
ject structures in the pattern solve the problem. The
example will help you understand the more abstract
description of the pattern that follows.

Applicability. What are the situations in which the
design pattern can be applied? What are examples
of poor designs that the pattern can address? How
can you recognize these situations?

Structure. This section shows a graphical represen-
tation of the classes in the pattern using a notation
based on the Object Modeling Technique (OMT). lo

Participants. Participants are the classes or objects
participating in the design pattern and their respon-
sibilities.

Collaborations. This section describes how the par-
ticipants collaborate to carry out their responsibil-
ities.

Consequences. How does the pattern support its ob-
jectives? What are the trade-offs and results of us-
ing the pattern? What aspect of system structure does
it let you vary independently?

Implementation. What pitfalls, hints, or techniques
should you be aware of when implementing the pat-
tern? Are there language-specific issues?

Sample Code. Code fragments are included that il-
lustrate how you might implement the pattern in
C++ or Smalltalk.

Known Uses. This section contains examples of the
pattern found in real systems. Each pattern includes
at least two examples from different domains.

Related Patterns. What design patterns are closely re-
lated to this one? What are the important differ-
ences? With which other patterns should this one
be used?

Generating code automatically-an example

A design pattern only describes a solution to a par-
ticular design problem; it is not itself code. Some de-
velopers have found it difficult to make the leap from
the pattern description to a particular implementa-
tion, even though the pattern includes code frag-
ments in the Sample Code section. Others have no
trouble translating the pattern into code, but they

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996

Figure 1 Intent page of the Composite pattern

still find it a chore, especially when they have to do
it repeatedly. A design change might require sub-
stantial reimplementation, because different design
choices in the pattern can lead to vastly different
code.

Our design pattern tool was developed to address
these needs. From just a few pieces of information-
normally application-specific names for the partic-
ipants in a pattern along with choices for the design
trade-offs-the tool creates class declarations and
definitions that implement the pattern. The user then
adds this code to the rest of the application, often
enhancing it with other application-specific function-
ality.

The tool also incorporates an on-line, hypertext ren-
dition of Design Patterns. The patterns in the book
lend themselves to a hypertext format because they
are richly cross-referenced. The on-line version gives
users convenient access to the material, letting them
follow links between patterns instantaneously and
search for information quickly.

Section pages. The tool displays the sections of a pat-
tern (Intent, Motivation, etc.) in separate pages.
These pages mirror the corresponding sections in the
book. For example, Figure 1 shows the Intent page
for the Composite design pattern. From there, the
user can access the other sections of the Composite
pattern either randomly or in sequence. The user can

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996 BUDINSKY ET AL. 153

jump to the Intent section of any other pattern as
well, which is useful for comparison purposes. In ad-
dition, the text on the page may embed additional
hypertext links to related discussions elsewhere, al-
lowing quick and easy cross-referencing.

Clicking on the right arrow button beside the Intent
heading advances the user to the next section in se-
quence, in this case the Motivation section of the
Composite design pattern (Figure 2). Notice the sim-
ilarity between this page and the preceding Intent
page. We have given every page the same basic “look
and feel” to ensure a consistent and intuitive inter-
face. To jump to another section in the Composite
pattern, the user clicks on the name of the section
in the list near the top of the page. Clicking on the
name of a pattern in the list near the bottom of the
page jumps to the same section in that pattern.

Code Generation page. In addition to the sections
from the book, each design pattern in the tool is aug-
mented with a page titled “Code Generation.” This
page comes immediately after the Related Patterns
page for the design pattern and can be accessed, just
as other pages, either sequentially or randomly. The
Code Generation page lets the user enter informa-
tion with which to generate a custom implementa-
tion of the pattern. This page is fully integrated with
the others: references to participants and other de-
tails are actually hyperlinks back to the relevant dis-
cussion in the pattern. The effect is similar to a con-
text-sensitive help system.

The Code Generation page for the Composite pat-
tern appears in Figure 3. Some parts of this page are
specific to code generation for Composite, other
parts are specific to all Code Generation pages, and
the remaining parts are common to all pages:

Composite-specific parts are input fields marked
“Component:,” “Composite:,” and “Leaf.”
Code generation-specific parts include the selec-
tion list marked “Goal:” (currently set to Gener-
ate declarations) and the “ O K button to its right.
Other parts are navigation aids common to all
pages.

The selection list lets the user select one of several
tasks. Generate declarations, the current selection,
produces declarations for the classes that implement
the pattern; we describe other tasks shortly. To carry
out the selected task, the user presses “OK.”

The input fields let the user specify application-spe-
cific names for the pattern participants-in this case

154 BUDINSKY ET AL.

a Component, one or more Composites, and one or
more Leaves. If the user needs help remembering
the roles of these participants, he or she can click
on the corresponding labels above the input fields
to jump to the description on the Participants page.
The user can also see input values that implement
the example in the Motivation section. To fill the in-
put fields with these values, the user selectsAn Ex-
ample from the Goal: selection list and presses “OK.”

Generating declarations. Figure 4 shows the result
of choosing Generate declarations as the goal and
pressing “ O K with the inputs shown in Figure 3.
The page that appears contains the text of a C+ +
header file declaring classes for the specified par-
ticipants. The page in Figure 4 is scrolled to show
declarations for the Graphic Component abstract
base class and the CompositeGraphic Composite ab-
stract base class. The user may save the generated
code in a file using the browser’s “Save As . . .” com-
mand.

The operations shown in the class declarations were
generated automatically based on the participant re-
sponsibilities described for the Composite pattern.
These responsibilities can vary according to the de-
sign trade-offs articulated in the pattern, and the code
we see in Figure 4 reflects one set of trade-offs. One
such trade-off concerns child management opera-
tions (Include and Exclude in this case), which are
defined in the Composite class only. As a conse-
quence, the Graphic base class declares a GetCom-
posite smart downcast” to let clients recover the
Composite interface when all they have are refer-
ences to Graphic objects.

Selecting different trade-offs. Users are not forced
to accept these trade-offs, of course. To choose dif-
ferent ones, the user selects Choose implementation
trade-ofs from the Goal: selection list (Figure 5) and
presses “OK.” The resulting trade-offs page appears
in Figure 6.

The trade-offs page lists the trade-offs in the pattern.
The user selects among them by clicking on the cor-
responding buttons. Some buttons are exclusive, oth-
ers are not. For example, the user may choose to in-
clude child management operations in the base class
simply by pressing the button marked “all classes”
under the heading “Declare child management op-
erations in” near the bottom of the page. Doing so
maintains a uniform interface for Leaf and Compos-
ite classes, but it raises the possibility of run-time
error should a client try to add or remove a child

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996

Figure 2 Motivation page of the Composite pattern
~~~~ ~~ ~ ~~~~ ~~~~ ~~~ . 

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996 

1 
BUDINSKY ET AL. 155 



Figure 3 Code  Generation  page of the Composite pattern 

156 BUDINSKY ET AL. IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996 



Figure 4 Generated  declarations 

I I 

I 

I 
BM SYSTEMS JOURNAL, VOL 35, NO 2, 1996 BUDINSKY ET AI -. 157 



Figure 5 Selecting the trade-offs  page 

from a Leaf object. The alternative puts these op- 
erations solely  in the Composite  class,  as  was the case 
when we generated  the declarations earlier. Either 
way, the user can include any or all of the child  man- 
agement operations listed under “Child  management 
operations:.” 

Here again, key  words  in the  button labels are hy- 
pertext links. Should the user forget the details be- 
hind a trade-off, he or  she can click on the  appro- 
priate link to jump back to the corresponding 
discussion  in the  pattern. When finished  choosing 
trade-offs, the user presses “ O K  to commit the 
changes and return  to  the Code Generation page. 

Global  code  generation options. Users can also con- 
trol certain generation parameters  that apply to all 
the patterns. Selecting Choose  generation  options 
from the Goal: selection  list  and  pressing “ O K  yields 
the page shown  in Figure 7. The user can choose to 

Limit  file names to  an eight-plus-three character 
format (to generate #include directives  properly for 
the target platform) 
Include standard C+ + operations such as copy 
constructors and virtual destructors 
Include operations that generate an execution  trace 
at run time 
Include a main routine that implements an exe- 
cutable example based on the Motivation section. 
The user can compile, run, and exercise the code 
through a simple command-line interface catered 
to each example. 

Figure 8 shows part of the result of choosing Gen- 
erate implementations from the Goal: selection list 
with the generation options selected  in  Figure 7. Note 
the copy constructor and assignment operator im- 
plementations as  well  as the main routine implemen- 
tation. 

System  architecture 

The architecture of the design pattern tool charac- 
terizes the implementation-independent aspects of 
its design.  We describe the architecture here both 
to clarify our design  goals and to provide a backdrop 
for the discussion of the implementation that follows. 

Goals. There  are two contexts in  which to discuss 
design  goals: our goals for the development and 
maintenance of the tool, and our goals for the tool 
itself. Development and maintenance goals  affect  us 
as designers and implementors of the tool; goals for 
the tool itself impact how  well the end-user receives 
and exploits the tool. We refer to the former simply 
as “development goals” and the latter as “end-user 
goals.” 

We have three primary development goals: 

1. Fast turnaround. Because  most of this  work is  new 
and experimental, we must be able to modify the 
system  as  quickly as possible. We cannot afford 
delays in implementing or testing new function- 
ality-we have too many degrees of freedom to 
explore. 

158 BUDINSKY ET AL IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996 



Figure 6 Composite  Implementation  Trade-offs  page 
- 

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996 BUDINSKY ET AL. 159 



Figure 7 Global Code Generation  Options  page 

2. Flexibility. Fast turnaround means little if adding 
a new feature requires reimplementing a sizable 
chunk of the system. A minor change in function- 
ality should incur a correspondingly small imple- 
mentation effort. But even major changes should 
be well-contained: support for generating code 
in a different programming language should not 
force an overhaul of the  entire system. 

3. Ease of specification. Automatic code generation 
can  be  difficult to implement, especially if the only 
medium of expression  is a conventional program- 
ming language. We wanted a higher-level way to 
specify  how code gets generated without limiting 
flexibility-two conflicting requirements. 

For end-users, three additional goals are paramount: 

1. UtiZity. The tool must  be  easy to use, and the code 
it generates should be ready to use; that is, the 
user should have to make a minimum number of 
changes to make the generated code work in  his 
or  her application. 

2. Seamless  integration. Given a tool that leverages 
the material in Design Patterns, the user will want 
to refer to that material while  using the tool. To 
be  most  effective, therefore, the book’s  contents- 
the precise topic of interest to  the user-should 
be  accessible from the tool. Hence  the tool and 
the book material must be tightly integrated to 
make going from one  to  the  other easy. 

3. Transparent distribution. This work  is experimen- 
tal and  therefore ongoing. We could not expect 
to deliver a polished product without feedback 

160 BUDINSKY ET AL. IBM SYSTEMS JOURNAL,  VOL 35, NO 2, 1996 



Figure 8 
_ _ ~  

Generated  implementations 

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996 

I 

BUDINSKY ET  AL. 161 



Figure 9 Architecture of the design pattern tool 

I ISFR GENERATOR 

U r PRESENTATION 
DESCRIPTIONS 

u u 

CODE GENERATION 
DESCRIPTIONS  DESCRIPTIONS 

from  users.  We  foresaw  rapid  evolution of the tool 
as users discovered  what  worked  well and what 
did not. Incorporating such feedback quickly  was 
a challenge, and supplying  users  with updated ver- 
sions of the tool was an even greater challenge. 
We needed a way to keep users up-to-date with 
the latest functionality without major disruption 
or prohibitive upgrade costs. 

One approach to achieving these goals  would be to 
build a custom application from scratch. It would  im- 
plement the hypertext presentation and code gen- 
eration for all the  patterns in one large application. 
We would  use conventional development tools, in- 
cluding a general-purpose programming language 
and environment, user interface development tools, 
and support libraries. But we  quickly  dismissed this 
approach as too slow and expensive,  with a high  like- 
lihood of producing an insufficiently  flexible  design. 
Too much had to be homegrown rather than reused. 

Characteristics. Over time we developed an archi- 
tecture having three fundamental characteristics: 

1. It accommodates existing tools and applications 
wherever possible. 

2. It makes  pervasive  use of interpreted specifica- 
tions to minimize turnaround time during devel- 
opment. 

3. It partitions functionality so that key components 
can be distributed, letting us upgrade the system 
without involving or disturbing users. 

Figure 9 depicts the architecture. It has three com- 
ponents: 

1. The Presenter implements the user interface spec- 
ified by Presentation  Descriptions, which  it inter- 
prets. 

2. The Code  Generator generates code that imple- 
ments a pattern. It interprets Code  Generation  De- 
scriptions, each of which captures how to gener- 
ate  the code for a given pattern. 

3. The Mapper specifies how the user interface and 
code generator components cooperate.  It inter- 
prets Mapping  Descriptions that specify connec- 
tions and interactions between the other two  com- 
ponents. 

This partitioning has several advantages over more 
monolithic approaches. The components are de- 
coupled from each other, letting us change them in- 
dependently. We can make an aesthetic modifica- 
tion to the user interface without any changes to  the 
other components. Even substantive changes to  the 
user interface tend  to propagate no further than the 
Mapper, because the mechanics of code generation 
are largely independent of the mechanics of collect- 
ing information from the user. Conversely,  improve- 
ments to the  generated code and changes in the un- 
derlying implementation infrastructure can be 
accommodated without modifying Mapper or  Pre- 
senter functionality. In fact, the most  common sort 
of changes-bug  fixes-rarely span two or more 
components. Best of all, the  interpreted  nature of 

162 BUDINSKY ET AL. IBM SYSTEMS  JOURNAL,  VOL 35, NO 2, 1996 



Figure 10 implementation of the design pattern tool 
~~~~ ~~ ~ ~ ~~~ 

the components lets us see the effects of a change
immediately.

Another nice property of the partitioning is that it
maps well to existing software, both in granularity
and capability. This greatly reduced the development
burden and freed us to focus on more novel aspects
of the implementation. We can also distribute the
components across machines and computing plat-
forms. Distribution lets you take advantage of more
powerful hardware than you might have on your
desk, and a multiplatform capability widens the tool's
appeal.

Implementation

Figure 10 is a more detailed version of Figure 9 re-
vealing the implementation technologies we use.
The Presenter is simply a World Wide Web (WWW)
browser such as IBM WebExplorer, Mosaic, or
Netscape Navigator* * that displays pages specified
in hypertext markup language (HTML). '' Whenever
the user enters information into a Code Generation
page, the browser transmits the information to the
Mapper through the Web-standard CGI (Common
Gateway Interface). '* Our mapping descriptions are
Perl scripts; l3 hence the Mapper is a Perl interpreter.
The Perl scripts invoke a COGENT (Code GENera-
tion Template) interpreter, which serves as the Code
Generator. COGENT is a simple code generation spec-
ification language we developed. COGENT lets us de-

INTERPRETER INTERPRETER

1.. I I

~. -"

scribe the generated code succinctly and quickly
change what is generated.

The Web-based approach provides a natural parti-
tion between user interface and input processing
components. In fact, the Web architecture itself
makes it just as easy to process inputs remotely as
it does locally. That means we can distribute the pro-
cessing by putting the Mapper and Code Generator
on a server with only the Presenter on the client-
that is, the user's machine.

Web browser as Presenter. The Web browser-HTML
combination offers a ready platform for presenting
and navigating text of rich structure and formatting.
The preexistence of this platform saved us much im-
plementation effort. All we had to do was translate
the contents of the Design Patterns book into HTML
and GIF (Graphics Interchange Format) files, a
straightforward exercise. We added just two en-
hancements to the text: we incorporated a user in-
terface for navigation from page to page, and we re-
placed textual cross-references with hypertext links.
Designing an easy-to-use navigation interface took
some trial and error, but overall the enhancements
were easy to make.

Adding the Code Generation pages was more dif-
ficult, largely because the typical Code Generation
page is not static like the pages from the book-its
appearance may depend on the trade-offs the user

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996 BUDINSKY ET AL. 163

Figure 11 Mapping an input value to a COGENT parameter

USER INTERFACE

ENTER DATA 1 I
I COGENT SCRIPT I

I
while (#XXX#) {

dosomething () ;

selects. For example, some patterns require addi-
tional input fields when certain trade-offs are in ef-
fect. Unfortunately, current versions of HTML do not
allow modifying a page in-place. (We describe our
solution to this problem later when we discuss the
Mapper implementation.)

On the other hand, the pages for specifying imple-
mentation trade-offs (e.g., Figure 6) and global code
generation options (Figure 7) are simple HTML
forms. Providing context-sensitive help for these
pages was just a matter of linking key words and
phrases back to the relevant discussions in the pages
from the book. The result is an effective interface
for a modest effort.

One other aspect of the user interface was difficult
to support in HTML: persistent fields. We wanted
users to see default input values on their initial visit
to a Code Generation page. If they changed anyval-
ues, the changes should reappear the next time they
visited the page-that is, the last input values should
persist across visits. HTML does not support these se-
mantics, so we relegated their implementation to the
Mapper, as explained in the next section.

Perl interpreter as Mapper. The Mapper has two
basic responsibilities:

1. Connect user interface elements to COGENT pa-
rameters

2. Respond to user actions by either
(a) displaying another page, or
(b) selecting an appropriate COGENT script for
the Code Generator to interpret

164 BUDINSKY ET AL.

Figure 11 illustrates the first responsibility. The Map-
per takes values from input fields in the user inter-
face and supplies them to the Code Generator in the
form of parameters to the COGENT script. By adher-
ing to standard naming conventions in the HTML
forms and COGENT files, this mapping can be made
through a single Perl library function.

The other Mapper responsibility is to respond to user
actions. Figure 12 shows a case where a user action-
pressing an "Options" button-produces another
HTML page for specifying user options.

In the previous section, we mentioned that the ap-
pearance of a Code Generation page often depends
on the trade-offs a user selects, but HTML does not
allow changing a page dynamically. Thus an existing
Code Generation page cannot change to reflect a
change in trade-offs. The Mapper helps us get around
this problem. It may not be apparent to the user, but
Code Generation pages are actuallygenerated when-
ever they are accessed, as opposed to simply re-
trieved. When the user commits a set of trade-offs,
the browser returns not to the previous Code Gen-
eration page but to a newly created one, which may
reflect the new trade-offs in its user interface. The
Mapper is the appropriate place to implement this
behavior: architecturally, the Presenter only presents
the user interface as specified by Presentation De-
scriptions. How the user interface reflects the seman-
tics of code generation is the responsibility of the
Mapper.

An example of a user action that results in code gen-
eration appears in Figure 13. Here, the Mapper se-

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996

Figure 12 Invoking another user interface

USER INTERFACE 1 USER INTERFACE 2

1 1

I I
I

1 OPTIONCHECKBOX I

Figure 13 Selecting COGENT code and invoking the COGENT interpreter

COGENT FRAGMENT #1

USER INTERFACE
while (#XXX#) {

F""" dosomething () ;

ENTER DATA

J
COGENT FRAGMENT #2

L"""

lects one of two possible COGENT code fragments
depending on some criterion (the state of the op-
tion checkbox in Figure 12, for example). Based on
this criterion, the Mapper will either choose the CO-
GENT fragment that calls dosomething() repeatedly,
passing in the user-supplied value #XXX#, or it will
choose another fragment that executes dosome-
thing()just once.

In general, such logic can be expressed in either the
Mapping Description (i.e., Perl) or in the Code Gen-
eration Description itself (i.e., COGENT). For exam-
ple, the Perl script can choose between two hard-

wired COGENT fragments, or it may supply a
parameter to the COGENT code to let it make the
choice. Deciding which of these approaches is best
boils down to a complexity trade-off between the
Mapping and Code Generation Descriptions. We
discuss this issue further in the next section.

An added responsibility of the Mapper arises as an
artifact of our implementation. Beyond choosing the
page to display based on a user's inputs, the Mapper
must initialize inputs to the proper defaults or-if
the user changed the inputs at any point-the most
recent inputs. Since HTML cannot express this logic,

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996 BUDINSKY ET AL. 165

it is the Mapper’s responsibility. Persistence is ac-
tually a side effect of the Mapper’s other responsi-
bilities: the same mechanism for storing and retriev-
ing user settings lets the Mapper store and retrieve
other input values as well, such as variable names.
Thus the Mapper ensures that the most recent in-
put values persist across visits to a pattern’s Code
Generation page.

COGENT interpreter as Code Generator. Once the
Mapper has chosen the appropriate COGENT script,
it tells the Code Generator to interpret it. The prime
benefit of using COGENT is that we can modify the
generated code without disturbing other parts of the
system. For example, we can generate Smalltalk in-
stead of C+ + simply by writing new COGENT scripts.

We were careful to design COGENT so that it is easy
to transform source files into COGENT scripts. We
wanted to be able to write prototypical code frag-
ments (such as the sample code in Design Patterns)
and convert them to COGENT format with a mini-
mum of editing. To speed the process, we augmented
our local text editors (emacs and Ipex) with COGENT
parsers to make the editing job even easier.

An important thing to consider when implementing
a code generator is how much variation logic belongs
in the Mapper component (Perl) versus the Code
Generator component (COGENT). The more deci-
sion-making done in COGENT, the more information
the Mapper must pass to the Code Generator, and
the more complex the COGENT scripts. Fear of in-
venting yet another Turing-complete language con-
strained our design of COGENT to a bare minimum
of constructs-a set sufficient to express five com-
mon variations that support the variability we have
encountered in design pattern implementations:

1. Simple macro replacement with optional transfor-
mation. Optional transformation functions mod-
ify a macro before it is expanded. For example,
XXX:toupper expands to XXX with each character
capitalized: supplying Hello as a parameter would
yield HELLO upon expansion. Several common
transformations are built into the language. CO-
GENT lets you define your own transformation
functions as well.

2. Conditionalinclusion. Include other COGENT code
according to a predicate, such as the definition
or nondefinition of a macro.

3. Repetitive inclusion. Include other COGENT code
repeatedly. Macros can be assigned multiple val-
ues. Each time a macro is assigned a value, it ac-

tually appends the value to the end of its list of
values. When a macro that contains a list of val-
ues is expanded normally, the values are concat-
enated and returned as a single value. But when
the macro is supplied as a parameter to a <repeat>
directive, the number of values in the list deter-
mines the number of iterations. Each consecu-
tive iteration uses the consecutive value in the list
rather than the concatenation of those values.

4. Code reuse. A code segment is simply a named sec-
tion of COGENT code that can be interpreted or
expanded where referenced. Code segments give
you a way to decompose code into smaller, re-
usable pieces, much like procedures do.

5. Macro assignment in code segments. At one ex-
treme, macros are always assigned values ahead
of time (e.g., through arguments to the interpreter
at invocation), and then code segments are ex-
panded with those values. This extreme is simple
but not very flexible-it is hard to vary the way
macros get initialized. At another extreme, mac-
ros are assigned only by expanding code segments
that define macros, thereby delegating the assign-
ments to the code segments. That lets you vary
the assignments without modifying code that uses
the macros.

This set of constructs, coupled with user-defined
transformation functions, lets us express nearly all
code variants entirely in COGENT. Nonetheless, im-
plementing everything in COGENT can be inconve-
nient, particularly when user-supplied transforma-
tions proliferate. The implementation of these
transformations is not well-integrated with the CO-
GENT language-they are independent executables
that COGENT calls. The main problem here is that
they are platform-specific: shell scripts on AIX* (Ad-
vanced Interactive Executive*), REXX (Restructured
Extended Executor) scripts on OW* (Operating
System/2*), etc. Performance is also a concern, since
each user-supplied transformation forks a process.
We have used user-defined transformations primar-
ily as a prototyping mechanism for built-in transfor-
mations; once we encountered a particular transfor-
mation more than a couple of times, we made it a
built-in transformation (e.g., toupper). As a result,
we limit our COGENT code to expressing language-
specific syntax and semantics that require a minimum
of user-supplied transformations, leaving the rest to
the Mapper Perl scripts.

COGENT example. Figure 14 shows a fragment of
COGENT code that generates C + + function defini-

166 BUDINSKY ET AL. IBM SYSTEMS JOURNAL, VOL 35, NO 2 , 1996 1

Figure 14 COGENT code fragment

<code GEN-CODE>
#include <stdlib.h>
<repeat USER-DATA>
#A-SEGMENT#
</repeat USER-DATA>
#MAIN#
</code GEN-CODE>

<code A-SEGMENT>
<clear CLASS-NAME>
<define CLASS-NAME>#USER-DATA#Class\</define>
void

<test ?TRACE-CODE>
#CLASS-NAME#::#CLASS-NAME#-operation () {

cout << ". . . void 'I

<< "#CLASS-NAME#::#CLASS-NAME#-operation 0"
<< endl;

</test>
)
</code A-SEGMENT>

<code MAIN>
void main () {

1
</code MAIN>

cout << "In main () . . . " << endl:

tions. To generate the code, the Mapper invokes the
COGENT interpreter with the following arguments:

generate USER-DATA=First USER-DATA=Second
TRACE-CODE=l examp1e.t - - GEN-CODE >
examp1e.C

where

generate invokes the interpreter.
USER-DATA is a macro that will be expanded twice,
first with First and then with Second.
TRACE-CODE is a macro that is used as a flag to
indicate whether extra tracing code should be emit-
ted for debugging purposes.
examp1e.t is the file containing COGENT code.
GEN-CODE specifies the code segment with which

examp1e.C is the file in which to store the gener-
to generate code.

ated C++ code.

Note that USER-DATA, TRACE-CODE, and
GEN-CODE are not COGENT keywords but merely
user-defined macro names used in examp1e.t.

The first statement in Figure 14 marks the begin-
ning of the GEN-CODE code segment. The line after
it will be emitted as is, because it is not modified by
COGENT directives. The next line tells the COGENT
interpreter to iterate over the subsequent code up to
the <repeat> directive. In each iteration, USER-DATA
will be assigned one of the values supplied to the in-
terpreter when it was invoked, in the order they were
supplied (First, then Second in this case).

Whenever a macro name appears between "#" sym-
bols (e.g., #USER-DATA#), it is expanded to its cur-
rent value. When the name of an undefined macro
is referenced in this way, it expands to the code seg-
ment with that name, if any.

In this case, A-SEGMENT is the code segment de-
fined immediately after GEN-CODE. A-SEGMENT
produces a function definition. It defines a
CLASS-NAME macro that must be cleared on each
iteration, because the <define> directive concate-
nates the definition and the macro's existing values.
The code in A-SEGMENT will be evaluated and sub-

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996 BUDINSKY ET AL. 167

Figure 15 Generated code

#include <stdlib.h>
void
FirstC1ass::FirstClass-operation () {

cout << ". . . void "

<< "FirstC1ass::FirstClass-operation 0"
<< endl;

}

void
SecondC1ass::SecondClass-operation () 1:

cout << " . . . void "

<< "SecondC1ass::SecondClass-operation 0"
<< endl;

)

void main () {
tout << "In main () . . . " << endl;

stituted where it was referenced. Similarly, #MAIN#
will evaluate to the MAIN code segment.

Figure 15 shows the code generated from the
COGENT code in Figure 14 given the parameters
mentioned earlier.

Observations

Several characteristics of our design became clear
only after we had implemented it. Indeed, some were
not evident until we had used it for a while. For ex-
ample, though we had predicted some of the ben-
efits of distributing the user interface, code gener-
ation, and mapping components, we did not realize
such distribution would enable interactive, near-real-
time customer support. A late addition was a ques-
tion and answer link at the bottom of every page.
Clicking on "Q&A takes the user to a page where
he or she can type in questions. The person respon-
sible for providing answers can respond immediately
through the same page, exploiting rich text, embed-
ded diagrams, links to supplemental materials-the
full range of HTML capabilities.

The following are other characteristics we noted in
retrospect.

Presentation. Although a Web-based interface works
well in many ways, the current limitations of HTML
(such as static pages and lack of support for drag-

168 BUDINSKY ET AL.

and-drop and other direct-manipulation techniques)
have led to compromises in the user interface de-
sign. Another drawback lies in the Web's clientherver
split. Because the Code Generator relies on HTML
forms, it must run in the server process space. As a
result, the user must explicitly save generated code
on his or her machine. The split also complicates sav-
ing trade-off and code-generation settings across ses-
sions.

Without abandoning HTML as a user interface de-
scription, we could overcome many of these limita-
tions by designing our own customized browser or
by adopting a browser that supports extension
through an interpreted language. But by constrain-
ing ourselves to standard Web browser capabilities,
we maximize the audience for our tools. Moreover,
HTML is undergoing vigorous development in the ser-
vice of an exploding user community. So we expect
these limitations to gradually disappear.

It is easy to envision more sophisticated user inter-
faces. One area for improvement is the integration
of pattern and code generation. Here are two ex-
amples:

1. As the user selects trade-offs, associated parts of
the pattern could change to reflect them. The
relationships in the Structure diagram would
change, for example, as would the descriptions
of the participants and their collaborations. Mu-

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996

2.

tually exclusive trade-offs would elide each other
automatically to reduce clutter in the trade-offs
page.
Rather than having a separate Code Generation
page, the user could specify code generation in-
formation through the pattern itself. A direct-ma-
nipulation interface could let the user edit the
Structure diagram to add, remove, reorganize,
and otherwise redefine the class structure, sub-
ject to pattern constraints.

Interfaces like these would offer a much more dy-
namic and compelling metaphor than the current
HTML forms-based interface.

Mapping. Perhaps the most troublesome aspect of
the Web-based implementation had to do with mak-
ing data persist across visits to Code Generation
pages. As long as the user jumps from page to page
and backtracks only via the browser’s “Back” but-
ton, the user will see only the most recent inputs de
facto. But when the user shuts down and restarts the
browser, or if the user revisits a page through a hy-
perlink rather than the “Back” button, he or she may
see obsolete data-that is, unless the system saves
input information and recreates potentially stale
pages when they are accessed through a link. This
approach required

Persistent storage on the server side for each cli-
ent
A unique identifier per client so that information
can be saved on a per-user basis, thus avoiding po-
tential conflicts. Because we did not want to bother
the user for this identifier, the Mapper synthesizes
it transparently.

An alternative approach would let the browser save
client-specific state locally. Unfortunately, no cur-
rent Web protocol supports this capability.

Code generation. Though we are satisfied with
COGENT as a way to express code generation, we are
much less satisfied with the way we integrate the gen-
erated code into an application-that is, by cut and
paste. Two problems are endemic to the cut-and-
paste approach:

9 Invasiveness. The user must understand what to cut
out and where to paste it, and both may be non-
obvious.
Irreversibility. Once a user has incorporated gen-
erated code into an application, any change that
involves regenerating the code will force the user

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996

to reincorporate it into the application. As a cor-
ollary, the user cannot see changes to the gener-
ated code through the tool.

Clearly we need a better way to decouple generated
code from a user’s modifications. One approach in-
volves doubling the number of classes the tool gen-
erates. For each class generated currently, we could
generate two classes in its stead: a core class that is
identical to the original class except for its name, and
a trivial subclass thereof-the core subclasswhose
name matches that of the original class. Thus code
that instantiates the original class ends up instanti-
ating the corresponding core subclass.

Any user-specified changes to the generated code
must be made to the core subclass only; the user
never alters the core class. The inheritance relation-
ship lets the user redefine or extend generated op-
erations, add new operations, and add new instance
variables. Should the code require regeneration later,
the tool overwrites only the core class. The user’s
changes remain unaffected. Unless the user subse-
quently regenerates radically different code with the
tool, the core subclass should continue to work with
the new core class.

This approach has been used successfully in ibuild,
a user interface builder, l4 and it should work in this
context as well. There is, however, at least one case
in which it does not work well, and that is when the
user must incorporate generated code into an exist-
ing class hierarchy. This is usually not a problem for
user interface builders, which generate code that is
largely self-contained and has comparatively few con-
nections to the rest of the application. But the code
that the design pattern tool generates is more broadly
applicable. It is therefore likely that the generated
code will require more intimate integration with ex-
isting code.

Our initial solutions to this problem focused on us-
ing multiple inheritance to mix generated code into
existing code. Multiple inheritance is not a compre-
hensive solution, though, because not all languages
support it. Besides, it is arguably too low-level for
what we are trying to do. In our experience, mul-
tiple inheritance is best suited to designing type flex-
ibility into a system a priori, specifically through in-
terface “mixins.” In contrast, our goal is to integrate
code segments that were not designed to work to-
gether.

BUDINSKY ET AL. 169

So we need a mechanism that supports code inte-
gration explicitly and conveniently. Subject-oriented
pr~gramming’~,’’ promises just that, and we are ex-
ploring its ramifications for our tool.

Related work

Most elements of this work have had long research
histories. The pattern concept arose from the work
of Christopher Alexander in the 1970s. I8,l9 Alexander
sought to capture on paper the essence of great ar-
chitecture in a structured, repeatable way. He fo-
cused on the design and construction of buildings
and towns, but gradually his ideas took root in the
software community, blossoming only recently. Ac-
tually, Design Patterns was influenced less by Alex-
ander and more by the Ph.D. research of Erich
Gamma, which accounts for the substantial differ-
ences in these works.

Template-based code generation is a well-researched
area as well, going back to Floyd’s work on symbol
manipulation specification.20 In the wake of Knuth’s
seminal paper on context-free languages, 21 the 1970s
and 1980s saw prodigious research into attribute
grammars. They were applied broadly, first as a ve-
hicle for expressing programming language seman-
tics, then as an aid in compiler construction, and ul-
timately as a basis for generating entire programming
environments. 22-24 The foundations of today’s com-
mercial software development tools-user interface
builders, 4GL (fourth-generation language) applica-
tion generators, “wizards,” and CASE tools of every
persuasion-rest on these research strata.

Finally, there is the Web. Few could have missed its
rise to ubiquity. We are convinced it represents a
whole new application platform, although there is
much controversy over its ultimate destiny: whether
it will assimilate today’s applications or vice versa,
for example. But even as-is, the Web gave us all we
had hoped for-a viable front-end to our design pat-
tern tool-and some things we had not thought to
hope for, like interactive questions and answers.

In fact, the Web, design patterns, and our tool share
a salient attribute: each is deliberately unnovel in its
constituent parts, but as an amalgam, they offer com-
pelling new capabilities. The Web introduced no new
technologies; it just composed existing ones syner-
gistically. Likewise, design patterns recast proven
techniques in a new expository form. We merely
combined equal parts patterns, the Web, and code

170 BUDINSKY ET AL.

generation to help automate some mundane aspects
of pattern application.

Conclusion

Automatic code generation adds a dimension of util-
ity to design patterns. Users can see how domain con-
cepts map into code that implements the pattern,
and they can see how different trade-offs change the
code. Once generated, the user can put the code to
work immediately, if not quite noninvasively.

Much remains to be explored. The concept of de-
sign patterns is in its infancy-the tools that support
the concept, even more so. Our tool is just a start.
It exploits only a fraction of the intellectual lever-
age that design patterns provide. For example, the
tool is limited to system design and implementation;
it does not support domain analysis, requirements
specification, documentation, or debugging. All of
these areas stand to benefit from design patterns,
though at this point it might not be clear exactly how.
Then again, the principles underpinning our tool
were not clear until we had experience using pat-
terns for design. Application is the first and neces-
sary step; only then can we hope to automate prof-
itably.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Netscape.

Cited references and notes

1. Portions of this paper are adapted from Design Patterns: El-
ements of Reusable Object-Oriented Software by E. Gamma,
R. Helm, R. Johnson, and J. Vlissides, 01995 by Addison-
Wesley Publishing Co., Reading, MA. Used by permission.

2. “Pattern Languages of Programming,” held annually on the
campus of the University of Illinois.

3. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software, Ad-
dison-Wesley Publishing Co., Reading, MA (1995).

4. Pattern Languages ofProgram Design, J. 0. Coplien and D. C.
Schmidt, Editors, Addison-Wesley Publishing Co., Reading,
MA (1995).

5. P. Coad, D. North, and M. Mayfield, Object Models: Strat-
egies, Patterns, andApplications, Yourdon Press, Englewood
Cliffs, NJ (1995).

6 . R. Gabriel, “Pattern Languages,” Journal of Object-Oriented
Programming 5, No. 8, 72-75 (January 1994).

7. K. Beck, “Patterns and Software Development,” Dr. Dobb’s
Journal 19, No. 2, 18-23 (1994).

8. J. 0. Coplien, “Generative Pattern Languages: An Emerg-
ing Direction of Software Design,” C+ + Report 6, No. 6, 18
(July/August 1994).

9. This book was reviewed by Kent Beck in the IBM Systems
Journal 34, No. 3, 544-545 (1995).

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996

10. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and
W. Lorenson, Obje~t-OrientedModelingandDesi~n, Prentice-
Hall, Inc., Englewood Cliffs, NJ (1991).

11. “Downcast” is the C+ + term for changing the type of an ob-
ject to that of a descendent type.

12. I. S. Graham, The HTML Sourcebook, John Wiley & Sons,
Inc., New York (1995).

13. L. Wall and R. L. Schwartz, Programming Ped, O’Reilly &
Associates, Inc., Sebastopol, CA (1991).

14. J. M. Vlissides and S . Tang, “A Unidraw-based User Inter-
face Builder,” Proceedings of the ACM SIGGRAPH Fourth
Annual Symposium on User Interface Software and Teehnol-
ogy, Hilton Head, SC, November 1991, pp. 201-210.

15. A “mixin” class is used to augment the protocol or function-
ality of other classes through multiple inheritance; for exam-
ple, a mixin class might provide persistence.

16. W. Harrison and H. Ossher, “Subject-Oriented Programming
(A Critique of Pure Objects),” OOPSLA ’93 Conference Pro-
ceedings, Washington, DC, ACM Press, New York (1993),
pp. 411-428.

17. W. H. Harrison, H. Kilov, H. L. Ossher, and I. Simmonds,
“Technical Note-From Dynamic Supertypes to Subjects: A
Natural Way to Specify and Develop Systems,” IBM Systems
Journal 35, No. 2, 244-256 (1996, this issue).

18. C. Alexander, The Timeless Way of Building, Oxford Univer-
sity Press, New York (1979).

19. C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiks-
dahl-King, and S. Angel, A Pattern Language, Oxford Uni-
versity Press, New York (1977).

20. R. W. Floyd, “A Descriptive Language for Symbol Manip-
ulation,“ Journal of the ACM 8, 579-584 (October 1961).

21. D. E. Knuth, “Semantics of Context-Free Languages,”Math-
ematical Systems Theory 2, No. 2, 127-145 (1968).

22. K. Raiha, “Bibliography on Attribute Grammars,”ACMSIG-
PLAN Norices 15, No. 3, 35-44 (March 1980).

23. S. L. Graham, “Table-Driven Code Generation,” Computer
13, No. 8, 23-34 (August 1980).

24. A. N. Habermann and D. Notkin, “Gandalf Software De-
velopment Environments,” IEEE Transactions on Software
Engineering 12, No. 12, 1117-1127 (December 1986).

Accepted for publication January 4, 1996.

Frank J. Budinsky IBM Software Solutions Division, Toronto
Laboratory, IBM Canada Ltd., 1150 Eglinton Avenue East,
North York. Ontario, M3C lH7, Canada (electronic mail:
~fbudins~~.vnet. ibm.com). Mr. Budinsky, an advisory engineer,
has developed numerous object-oriented applications and is cur-
rently lead designer for the Compound Document Framework
support to be included in the IBM Open Class product. His in-
terests include subject-oriented programming and design patterns,
particularly their applicability in framework programming envi-
ronments. He holds B.S. and MS. degrees in electrical engineer-
ing from the University of Toronto.

Marilyn A. Finnie IBM Software Solutions Division, Toronto
Laboratory, IBM Canada Ltd., 1150 Eglinton Avenue East,
North York. Ontario, M3C IH7, Canada (electronic mail:
mfnnie~~,net. ibm.com). Ms. Finnie is a member of the Advanced
Tools Development area. She joined IBM in 1983 with a B.Sc.
from the University of Western Ontario. She worked in various
projects dealing with distributed systems (electronic mail proto-
cols, X.500, and Open Systems Foundation Distributed Comput-

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996

ing Environment) before becoming involved with design patterns
and code generation technology.

John M. Vlissides IBMResearch Division, Thomas J. Watson Re-
search Center, P.O. Box 704, Yorktown Heights, New York 10598
(electronic mail: vlis@watson.ibm.com). Dr. Vlissides is a mem-
ber of the research staff at the Thomas J. Watson Research Cen-
ter. He has practiced object-oriented technology for over a de-
cade as a designer, implementor, researcher, lecturer, and
consultant. He has published widely and is a columnist for C+ +
Report. He holds a B.S. degree from the University of Virginia
and M.S. andl3h.D. degrees from Stanford University, all in elec-
trical engineering.

Patsy S. Yu IBM Software Solutions Division, Toronto Labora-
toy, IBM Canada Ltd., I150 Eglinton Avenue East, North York,
Ontario, M3C lH7, Canada (electronic mail:patsyyu@yu.torolab.
ihm.com). Ms. Yu worked for many years in compiler develop-
ment. Over the past few years her focus has been on object-ori-
ented design and tool integration technology. Currently she is a
member of the design patterns tool team. She holds a B.Sc. de-
gree in computer science for data management from the Uni-
versity of Toronto.

Reprint Order No. (3321-5599.

BUDINSKY ET AL. 171

