
Automatic code 
generation 
from design patterns 

Design patterns raise the abstraction level at 
which people  design and communicate design 
of object-oriented software. However, the 
mechanics of implementing design patterns is 
left to the programmer. This paper describes the 
architecture and implementation of  a  tool that 
automates the implementation of  design 
patterns. The user of the tool supplies 
application-specific information  for  a  given 
pattern, from which the tool generates all the 
pattern-prescribed code automatically. The tool 
has  a distributed architecture that lends  itself to 
implementation with off-the-shelf components. 

E xpertise is an intangible  but  unquestionably 
valuable  commodity.  People  acquire it slowly, 

through  hard work  and  perseverance.  Expertise dis- 
tinguishes  a novice from  an expert,  and  it is  difficult 
for  experts to convey their  expertise to novices. Cap- 
turing  expertise is one challenge,  communicating  it 
is another,  and assimilating it is yet another. Such 
are  the difficulties of gaining proficiency in object- 
oriented  software  development. As a  result,  people 
have been slow to realize  its  touted  benefits. 

The emerging field of design patterns is a  promising 
step toward  meeting  these challenges. Design  pat- 
terns  capture expertise in building object-oriented 
software. A design pattern describes  a  solution to a 
recurring  design  problem in a  systematic and gen- 
eral way. Beyond  a  description of the problem  and 
its  solution,  moreover,  software  developers  need 
deeper understanding to tailor the solution to  their 
variant of the problem. Hence a design pattern also 
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explains the applicability, trade-offs, and  conse- 
quences of the solution. It gives the  rationale behind 
the solution,  not  just  a  pat answer. A design pattern 
also illustrates how to implement the  solution in stan- 
dard object-oriented  programming  languages like 
C + +  and  Smalltalk.' 

Over  the past two years, a  vibrant  research  and  user 
community  has  sprung  up  around design patterns. 
Pattern-related  discourse  has  flourished  at  object- 
oriented  conferences, so much so that  there is now 
a  conference*  devoted  entirely  to  patterns. Books"' 
and articles'-' have been  published,  and at least one 
nonprofit  organization (The Hillside Group) has 
been  established to  further  the field. One of the most 
widely cited books is Design  Patterns: Elements ofRe- 
usable  Object-Oriented Soji~are,~.' which presents  a 
catalog of 23 design patterns culled from  numerous 
object-oriented systems. We refer to this  book  as De- 
sign Patterns throughout  this  paper. 

Design  Patterns has  proven  popular with novice and 
experienced  object-oriented  designers  alike. It gives 
them  a  reference of proven design solutions  along 
with guidance on how to implement  them. The dis- 
cussions of consequences  and trade-offs furnish the 
depth of understanding  that designers need  to cus- 
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tomize the  implementation of a pattern  to  their sit- 
uation.  And  the  names of the  patterns collectively 
form  a vocabulary for design that helps  designers 
communicate  better. 

Design patterns  are  not  code; they  must be imple- 
mented  each  time they are  applied. Designers  sup- 
ply application-specific names  for  the key “partic- 
ipants”-classes and objects-in the  pattern.  Then 
they  implement class declarations  and  definitions as 
the  pattern prescribes. If this were all that was needed 
to implement  a pattern, it would not  be a big chore. 
But  often  there  are many trade-offs in a pattern  to 
consider,  and  different trade-offs often  work syner- 
gistically, resulting in a proliferation of variant im- 
plementations-too many to  support  through con- 
ventional  code  reuse  techniques.  Developers are 
therefore likely to duplicate  their efforts and  those 
of other developers  each  time  they apply a pattern. 

This paper describes an  approach  to  this  problem. 
We  present a tool  for  generating design pattern  code 
automatically  from  a  small  amount of user-supplied 
information. We also  describe how the  tool incor- 
porates a hypertext  rendition of Design  Patterns to 
give designers an integrated  on-line  reference  and 
development  tool.  This  tool is not  meant to replace 
the  material in the  book.  Rather, it takes care of the 
mundane aspects of pattern  implementation so that 
developers  can  focus on optimizing the design itself. 

Describing  design patterns 

To set the  stage for the rest of the  paper, we include 
here  the  pattern  template used  in the Design Pat- 
terns book.  The  template  lends a  uniform  structure 
to  the information,  making design patterns easier to 
learn,  compare,  and  use.  We  describe  here  each sec- 
tion of the  template.  The book  contains  a more  de- 
tailed  description of each  section, followed by ac- 
tual design patterns  documented with the  template. 

Name. The  Name of the  pattern conveys its essence 
succinctly. A good name is vital, because  it will be- 
come  part of your design vocabulary. 

Intent. The  Intent is a short  statement  that answers 
the following questions: What  does  the design pat- 
tern  do?  What is its rationale  and  intent?  What  par- 
ticular design issue or problem  does it address? 

Also Known As. Other well-known names  for  the  pat- 
tern, if any, are included in this  section. 
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Motivation. This  section  illustrates a design problem 
with an example,  and shows how the class and  ob- 
ject  structures in the  pattern solve the  problem.  The 
example will help you understand  the  more abstract 
description of the  pattern  that follows. 

Applicability. What  are  the situations in which the 
design pattern can  be  applied?  What  are  examples 
of poor designs that  the  pattern can  address?  How 
can you recognize  these  situations? 

Structure. This  section shows a  graphical  represen- 
tation of the classes in the  pattern using a notation 
based on the Object  Modeling  Technique (OMT). lo 

Participants. Participants are  the classes or objects 
participating in the design pattern  and  their  respon- 
sibilities. 

Collaborations. This  section  describes how the  par- 
ticipants  collaborate  to carry out  their responsibil- 
ities. 

Consequences. How  does  the  pattern  support its ob- 
jectives? What  are  the trade-offs and  results of  us- 
ing the  pattern?  What aspect of system structure  does 
it let you vary independently? 

Implementation. What pitfalls, hints, or techniques 
should you be aware of when  implementing the  pat- 
tern?  Are  there language-specific issues? 

Sample Code. Code  fragments  are  included  that il- 
lustrate how you might implement the  pattern in 
C++  or  Smalltalk. 

Known Uses. This  section  contains  examples of the 
pattern  found in real systems. Each  pattern includes 
at least two examples  from different domains. 

Related  Patterns. What design patterns  are closely re- 
lated  to this one?  What  are  the  important differ- 
ences?  With which other  patterns should  this one 
be  used? 

Generating  code  automatically-an  example 

A design pattern only describes a solution to a par- 
ticular design problem;  it is not itself code.  Some  de- 
velopers have found  it difficult to make the  leap  from 
the  pattern description to a particular  implementa- 
tion,  even  though the  pattern includes  code  frag- 
ments in the Sample Code section. Others have no 
trouble  translating the  pattern  into  code,  but they 
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Figure 1 Intent  page of the  Composite pattern 

still  find  it a  chore, especially  when  they  have to do 
it repeatedly. A design change might require sub- 
stantial reimplementation, because different design 
choices  in the  pattern can lead to vastly  different 
code. 

Our design pattern tool was developed to address 
these needs. From just a few  pieces of information- 
normally application-specific names for the partic- 
ipants in a  pattern along with choices for the design 
trade-offs-the tool creates class declarations and 
definitions that implement the pattern. The user then 
adds this code to  the rest of the application, often 
enhancing  it  with other application-specific function- 
ality. 

The tool also incorporates an on-line, hypertext ren- 
dition of Design Patterns. The  patterns in the book 
lend themselves to a hypertext format because they 
are richly cross-referenced. The on-line version  gives 
users convenient access to the material, letting them 
follow  links between patterns instantaneously and 
search for information quickly. 

Section pages. The tool displays the sections of a pat- 
tern  (Intent, Motivation, etc.) in separate pages. 
These pages mirror the corresponding sections  in the 
book. For example, Figure 1 shows the  Intent page 
for the Composite design pattern. From there,  the 
user can access the  other sections of the Composite 
pattern either randomly or in  sequence. The user  can 
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jump to the  Intent section of  any other  pattern as 
well,  which  is useful for comparison purposes. In ad- 
dition, the text on the page may embed additional 
hypertext  links to related discussions elsewhere, al- 
lowing  quick and easy cross-referencing. 

Clicking on the right arrow button beside the  Intent 
heading advances the user to  the next section in se- 
quence, in  this  case the Motivation section of the 
Composite  design pattern (Figure 2). Notice the sim- 
ilarity between this page and the preceding Intent 
page.  We  have  given  every  page the same basic “look 
and feel” to ensure a consistent and intuitive inter- 
face. To jump to another section in the Composite 
pattern,  the user clicks on the name of the section 
in the list near the  top of the page.  Clicking on the 
name of a  pattern in the list near the bottom of the 
page jumps to the same section in that  pattern. 

Code Generation page. In addition to the sections 
from the book, each design pattern in the tool is  aug- 
mented with a page titled “Code  Generation.” This 
page comes immediately after the  Related  Patterns 
page for the design pattern and can be accessed, just 
as other pages, either sequentially or randomly. The 
Code Generation page lets the user enter informa- 
tion with  which to  generate  a custom implementa- 
tion of the  pattern. This page is  fully integrated with 
the others: references to participants and other  de- 
tails are actually  hyperlinks  back to the relevant dis- 
cussion  in the  pattern.  The effect  is  similar to  a con- 
text-sensitive help system. 

The Code Generation page for the Composite pat- 
tern appears in Figure 3. Some parts of this page are 
specific to code generation for Composite, other 
parts  are specific to all Code Generation pages, and 
the remaining parts  are common to all pages: 

Composite-specific parts  are input fields marked 
“Component:,” “Composite:,” and “Leaf.” 
Code generation-specific parts include the selec- 
tion list marked “Goal:” (currently set to Gener- 
ate declarations) and the “ O K  button  to its right. 
Other  parts  are navigation  aids common to all 
pages. 

The selection list lets the user select one of several 
tasks. Generate declarations, the current selection, 
produces declarations for the classes that implement 
the  pattern; we describe other tasks  shortly. To carry 
out  the selected task, the user presses “OK.” 

The input fields let the user specify application-spe- 
cific names for the  pattern participants-in this case 
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a Component, one or more Composites, and one  or 
more Leaves. If the user needs help remembering 
the roles of these participants, he or she can  click 
on the corresponding labels above the input fields 
to jump to  the description on the Participants page. 
The user can  also see input values that implement 
the example  in the Motivation section. To fill the in- 
put fields  with these values, the user selectsAn Ex- 
ample from the Goal: selection  list and presses “OK.” 

Generating declarations. Figure 4 shows the result 
of choosing Generate declarations as the goal and 
pressing “ O K  with the inputs shown  in Figure 3. 
The page that  appears contains the text of a C+ + 
header file declaring classes for the specified par- 
ticipants. The page  in Figure 4 is scrolled to show 
declarations for the Graphic Component abstract 
base class and the CompositeGraphic Composite ab- 
stract base class. The user may save the generated 
code in a file  using the browser’s  “Save As . . .” com- 
mand. 

The operations shown  in the class declarations were 
generated automatically based on the participant re- 
sponsibilities described for the Composite pattern. 
These responsibilities can vary according to  the de- 
sign  trade-offs articulated in the pattern, and the code 
we see in Figure 4 reflects one set of trade-offs. One 
such trade-off concerns child management opera- 
tions (Include and Exclude in this case), which are 
defined  in the Composite class  only. As a conse- 
quence, the Graphic base class declares a GetCom- 
posite smart downcast” to let clients recover the 
Composite interface when  all they have are refer- 
ences to Graphic objects. 

Selecting different  trade-offs. Users are not forced 
to accept these trade-offs, of course. To choose dif- 
ferent ones, the user selects Choose  implementation 
trade-ofs from the Goal: selection list (Figure 5 )  and 
presses “OK.” The resulting trade-offs page appears 
in Figure 6. 

The trade-offs page  lists the trade-offs  in the pattern. 
The user selects among them by clicking on  the cor- 
responding buttons. Some buttons are exclusive, oth- 
ers  are not. For example, the user  may choose to in- 
clude child management operations in the base class 
simply by pressing the  button marked “all classes” 
under  the heading “Declare child management op- 
erations in” near the bottom of the page. Doing so 
maintains a uniform interface for Leaf and Compos- 
ite classes, but it raises the possibility of run-time 
error should a client try to add or remove a child 
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Figure 2 Motivation  page of the Composite pattern 
~~~~ ~~ ~ ~~~~ ~~~~ ~~~ . 
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Figure 3 Code  Generation  page of the Composite pattern 
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Figure 4 Generated  declarations 
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Figure 5 Selecting the trade-offs  page 

from a Leaf object. The alternative puts these op- 
erations solely  in the Composite  class,  as  was the case 
when we generated  the declarations earlier. Either 
way, the user can include any or all of the child  man- 
agement operations listed under “Child  management 
operations:.” 

Here again, key  words  in the  button labels are hy- 
pertext links. Should the user forget the details be- 
hind a trade-off, he or  she can click on the  appro- 
priate link to jump back to the corresponding 
discussion  in the  pattern. When finished  choosing 
trade-offs, the user presses “ O K  to commit the 
changes and return  to  the Code Generation page. 

Global  code  generation options. Users can also con- 
trol certain generation parameters  that apply to all 
the patterns. Selecting Choose  generation  options 
from the Goal: selection  list  and  pressing “ O K  yields 
the page shown  in Figure 7. The user can choose to 

Limit  file names to  an eight-plus-three character 
format (to generate #include directives  properly for 
the target platform) 
Include standard C+ + operations such as copy 
constructors and virtual destructors 
Include operations that generate an execution  trace 
at run time 
Include a main routine that implements an exe- 
cutable example based on the Motivation section. 
The user can compile, run, and exercise the code 
through a simple command-line interface catered 
to each example. 

Figure 8 shows part of the result of choosing Gen- 
erate implementations from the Goal: selection list 
with the generation options selected  in  Figure 7. Note 
the copy constructor and assignment operator im- 
plementations as  well  as the main routine implemen- 
tation. 

System  architecture 

The architecture of the design pattern tool charac- 
terizes the implementation-independent aspects of 
its design.  We describe the architecture here both 
to clarify our design  goals and to provide a backdrop 
for the discussion of the implementation that follows. 

Goals. There  are two contexts in  which to discuss 
design  goals: our goals for the development and 
maintenance of the tool, and our goals for the tool 
itself. Development and maintenance goals  affect  us 
as designers and implementors of the tool; goals for 
the tool itself impact how  well the end-user receives 
and exploits the tool. We refer to the former simply 
as “development goals” and the latter as “end-user 
goals.” 

We have three primary development goals: 

1. Fast turnaround. Because  most of this  work is  new 
and experimental, we must be able to modify the 
system  as  quickly as possible. We cannot afford 
delays in implementing or testing new function- 
ality-we have too many degrees of freedom to 
explore. 
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Figure 6 Composite  Implementation  Trade-offs  page 
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Figure 7 Global Code Generation  Options  page 

2. Flexibility. Fast turnaround means little if adding 
a new feature requires reimplementing a sizable 
chunk of the system. A minor change in function- 
ality should incur a correspondingly small imple- 
mentation effort. But even major changes should 
be well-contained: support for generating code 
in a different programming language should not 
force an overhaul of the  entire system. 

3. Ease of specification. Automatic code generation 
can  be  difficult to implement, especially if the only 
medium of expression  is a conventional program- 
ming language. We wanted a higher-level way to 
specify  how code gets generated without limiting 
flexibility-two conflicting requirements. 

For end-users, three additional goals are paramount: 

1. UtiZity. The tool must  be  easy to use, and the code 
it generates should be ready to use; that is, the 
user should have to make a minimum number of 
changes to make the generated code work in  his 
or  her application. 

2. Seamless  integration. Given a tool that leverages 
the material in Design Patterns, the user will want 
to refer to that material while  using the tool. To 
be  most  effective, therefore, the book’s  contents- 
the precise topic of interest to  the user-should 
be  accessible from the tool. Hence  the tool and 
the book material must be tightly integrated to 
make going from one  to  the  other easy. 

3. Transparent distribution. This work  is experimen- 
tal and  therefore ongoing. We could not expect 
to deliver a polished product without feedback 
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Figure 8 
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Generated  implementations 
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Figure 9 Architecture of the design pattern tool 
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from  users.  We  foresaw  rapid  evolution of the tool 
as users discovered  what  worked  well and what 
did not. Incorporating such feedback quickly  was 
a challenge, and supplying  users  with updated ver- 
sions of the tool was an even greater challenge. 
We needed a way to keep users up-to-date with 
the latest functionality without major disruption 
or prohibitive upgrade costs. 

One approach to achieving these goals  would be to 
build a custom application from scratch. It would  im- 
plement the hypertext presentation and code gen- 
eration for all the  patterns in one large application. 
We would  use conventional development tools, in- 
cluding a general-purpose programming language 
and environment, user interface development tools, 
and support libraries. But we  quickly  dismissed this 
approach as too slow and expensive,  with a high  like- 
lihood of producing an insufficiently  flexible  design. 
Too much had to be homegrown rather than reused. 

Characteristics. Over time we developed an archi- 
tecture having three fundamental characteristics: 

1. It accommodates existing tools and applications 
wherever possible. 

2. It makes  pervasive  use of interpreted specifica- 
tions to minimize turnaround time during devel- 
opment. 

3. It partitions functionality so that key components 
can be distributed, letting us upgrade the system 
without involving or disturbing users. 

Figure 9 depicts the architecture. It has three com- 
ponents: 

1. The Presenter implements the user interface spec- 
ified by Presentation  Descriptions, which  it inter- 
prets. 

2. The Code  Generator generates code that imple- 
ments a pattern. It interprets Code  Generation  De- 
scriptions, each of which captures how to gener- 
ate  the code for a given pattern. 

3. The Mapper specifies how the user interface and 
code generator components cooperate.  It inter- 
prets Mapping  Descriptions that specify connec- 
tions and interactions between the other two  com- 
ponents. 

This partitioning has several advantages over more 
monolithic approaches. The components are de- 
coupled from each other, letting us change them in- 
dependently. We can make an aesthetic modifica- 
tion to the user interface without any changes to  the 
other components. Even substantive changes to  the 
user interface tend  to propagate no further than the 
Mapper, because the mechanics of code generation 
are largely independent of the mechanics of collect- 
ing information from the user. Conversely,  improve- 
ments to the  generated code and changes in the un- 
derlying implementation infrastructure can be 
accommodated without modifying Mapper or  Pre- 
senter functionality. In fact, the most  common sort 
of changes-bug  fixes-rarely span two or more 
components. Best of all, the  interpreted  nature of 
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Figure 10 implementation of the design pattern tool 
~~~~ ~~ ~ ~ ~~~ 

the  components lets us see  the effects of a  change 
immediately. 

Another nice  property of the partitioning is that it 
maps well to existing software,  both in granularity 
and capability. This greatly reduced  the  development 
burden  and  freed  us  to  focus on more novel aspects 
of the  implementation.  We  can  also  distribute  the 
components  across  machines  and  computing  plat- 
forms.  Distribution  lets you take advantage of more 
powerful hardware  than you might have on your 
desk, and  a multiplatform capability widens the tool's 
appeal. 

Implementation 

Figure 10 is a more  detailed version of Figure 9 re- 
vealing the  implementation technologies we use. 
The Presenter is simply a  World  Wide  Web (WWW) 
browser  such  as IBM WebExplorer, Mosaic, or 
Netscape  Navigator* * that displays pages specified 
in hypertext markup  language  (HTML). '' Whenever 
the  user  enters information  into  a Code  Generation 
page, the browser  transmits the  information  to  the 
Mapper  through  the  Web-standard CGI (Common 
Gateway Interface). '* Our mapping  descriptions are 
Perl scripts; l3 hence  the  Mapper is a  Perl  interpreter. 
The Perl  scripts invoke a COGENT (Code  GENera- 
tion  Template)  interpreter, which serves as the  Code 
Generator. COGENT is a simple code  generation spec- 
ification language we developed. COGENT lets us de- 

INTERPRETER  INTERPRETER 

1.. I I 

~. - .. . ." 

scribe  the  generated  code succinctly and quickly 
change  what is generated. 

The Web-based  approach  provides  a natural  parti- 
tion  between  user  interface  and  input  processing 
components.  In  fact,  the  Web  architecture itself 
makes it just  as easy to process  inputs  remotely  as 
it does locally. That  means we can distribute the pro- 
cessing by putting  the  Mapper  and  Code  Generator 
on a  server with only the  Presenter on the client- 
that is, the user's  machine. 

Web browser as Presenter. The  Web browser-HTML 
combination offers a  ready  platform  for  presenting 
and navigating text of rich structure  and  formatting. 
The preexistence of this  platform saved us much im- 
plementation effort. All we had  to  do was translate 
the  contents of the Design Patterns book  into HTML 
and GIF (Graphics  Interchange  Format) files, a 
straightforward exercise. We  added just two en- 
hancements  to  the text: we incorporated  a  user in- 
terface  for navigation from  page to page,  and we re- 
placed textual  cross-references with hypertext links. 
Designing an easy-to-use navigation interface  took 
some  trial  and error,  but overall the  enhancements 
were easy to  make. 

Adding the  Code  Generation pages was more dif- 
ficult, largely because the typical Code  Generation 
page is not  static like the pages  from the book-its 
appearance may depend on the trade-offs the  user 
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Figure 11 Mapping  an  input  value to a COGENT parameter 

USER  INTERFACE 

ENTER DATA 1 I 
I COGENT  SCRIPT I 

I 
while ( #XXX# ) { 

dosomething ( )  ; 

selects. For example, some patterns require addi- 
tional input fields  when certain trade-offs are in ef- 
fect. Unfortunately, current versions of HTML do not 
allow  modifying a page in-place. (We describe our 
solution to this problem later when we discuss the 
Mapper implementation.) 

On  the  other hand, the pages for specifying imple- 
mentation trade-offs (e.g., Figure 6) and global code 
generation options (Figure 7) are simple HTML 
forms. Providing context-sensitive help for these 
pages was just a  matter of linking  key  words and 
phrases back to  the relevant discussions  in the pages 
from the book. The result is an effective interface 
for a modest effort. 

One  other aspect of the user interface was  difficult 
to support in  HTML: persistent fields. We wanted 
users to see default input values on their initial visit 
to a Code Generation page. If they changed anyval- 
ues, the changes should reappear  the next time they 
visited the page-that  is, the last input values should 
persist across visits. HTML does not support these se- 
mantics,  so we relegated their implementation to the 
Mapper, as  explained  in the next section. 

Perl interpreter as Mapper. The Mapper has two 
basic responsibilities: 

1. Connect user interface elements to COGENT pa- 
rameters 

2. Respond to user actions by either 
(a) displaying another page, or 
(b) selecting an  appropriate COGENT script for 
the Code Generator  to  interpret 
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Figure 11 illustrates the first  responsibility. The Map- 
per takes values from input fields  in the user inter- 
face  and supplies them to the Code Generator in the 
form of parameters to the COGENT script. By adher- 
ing to standard naming conventions in the HTML 
forms and COGENT files,  this mapping can  be made 
through a single Perl library function. 

The other Mapper responsibility  is to respond to user 
actions.  Figure 12 shows a case where a user  action- 
pressing an "Options" button-produces another 
HTML page for specifying user options. 

In the previous section, we mentioned that  the  ap- 
pearance of a Code Generation page often depends 
on the trade-offs a user selects, but HTML does not 
allow  changing a page dynamically. Thus an existing 
Code Generation page cannot change to reflect a 
change in  trade-offs. The Mapper helps us get around 
this problem. It may not be apparent to the user, but 
Code Generation pages are actuallygenerated  when- 
ever they are accessed, as opposed to simply re- 
trieved. When the user commits a set of trade-offs, 
the browser returns  not to the previous Code Gen- 
eration page but to  a newly created  one, which  may 
reflect the new trade-offs in  its user interface. The 
Mapper is the  appropriate place to implement this 
behavior:  architecturally, the Presenter only presents 
the user interface as  specified by Presentation De- 
scriptions.  How the user interface reflects the seman- 
tics of code generation is the responsibility of the 
Mapper. 

An example of a user action that results in code gen- 
eration appears in Figure 13. Here,  the Mapper se- 
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Figure 12 Invoking  another  user  interface 

USER  INTERFACE 1 USER  INTERFACE 2 

1 1 

I I 
I 

1 OPTIONCHECKBOX I 

Figure 13 Selecting COGENT code and  invoking  the  COGENT  interpreter 

COGENT  FRAGMENT #1 

USER  INTERFACE 
while ( #XXX# ) { 

F""" dosomething ( )  ; 

ENTER DATA 

J 
COGENT  FRAGMENT #2 

L""" 

lects one of two  possible COGENT code fragments 
depending on some criterion (the  state of the  op- 
tion checkbox  in Figure 12, for example). Based on 
this criterion, the Mapper will either choose the CO- 
GENT fragment that calls dosomething( ) repeatedly, 
passing in the user-supplied value #XXX#, or it will 
choose another fragment that executes dosome- 
thing( )just once. 

In general, such logic can be expressed  in either the 
Mapping Description (i.e., Perl) or in the Code Gen- 
eration Description itself  (i.e., COGENT). For exam- 
ple, the Perl script can choose between two hard- 

wired COGENT fragments, or it  may  supply a 
parameter  to  the COGENT code to let it  make the 
choice. Deciding which  of these approaches is best 
boils  down to  a complexity  trade-off between the 
Mapping and Code Generation Descriptions. We 
discuss  this  issue further in the next section. 

An added responsibility of the Mapper arises as an 
artifact of our implementation. Beyond  choosing the 
page to display based on a user's inputs, the Mapper 
must  initialize inputs to the  proper defaults or-if 
the user changed the inputs at any  point-the  most 
recent inputs. Since HTML cannot express this  logic, 
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it is the Mapper’s responsibility. Persistence is ac- 
tually a side effect of the Mapper’s other responsi- 
bilities: the  same  mechanism  for  storing  and  retriev- 
ing user  settings  lets the  Mapper  store  and retrieve 
other  input values as well, such as variable  names. 
Thus  the  Mapper  ensures  that  the most  recent  in- 
put values persist  across visits to a pattern’s Code 
Generation page. 

COGENT interpreter as Code Generator. Once  the 
Mapper  has  chosen  the  appropriate COGENT script, 
it tells the  Code  Generator  to  interpret it. The  prime 
benefit of using COGENT is that we can modify the 
generated  code  without  disturbing  other  parts of the 
system. For example, we can generate Smalltalk in- 
stead of C+ + simply by writing new COGENT scripts. 

We were  careful to design COGENT so that it is easy 
to transform  source files into COGENT scripts. We 
wanted to  be  able  to write  prototypical  code  frag- 
ments  (such as the  sample  code in Design Patterns) 
and  convert  them to COGENT format with a mini- 
mum of editing. To speed  the process, we augmented 
our local text editors (emacs and Ipex) with COGENT 
parsers  to  make  the editing job even  easier. 

An  important  thing to consider  when  implementing 
a code  generator is  how much variation logic belongs 
in the  Mapper  component  (Perl) versus the  Code 
Generator  component (COGENT). The more deci- 
sion-making done in COGENT, the  more information 
the  Mapper must pass to  the  Code  Generator,  and 
the  more complex the COGENT scripts. Fear of in- 
venting yet another Turing-complete  language  con- 
strained  our design of COGENT to a bare minimum 
of constructs-a set sufficient to express five com- 
mon  variations that  support  the variability we have 
encountered in design pattern implementations: 

1. Simple macro replacement with optional transfor- 
mation. Optional  transformation  functions  mod- 
ify a macro  before  it is expanded.  For example, 
XXX:toupper expands to XXX with each  character 
capitalized: supplying Hello as a parameter would 
yield HELLO upon  expansion. Several common 
transformations  are  built  into  the  language. CO- 
GENT lets you define  your own transformation 
functions as well. 

2. Conditionalinclusion. Include  other COGENT code 
according to a predicate,  such as the definition 
or nondefinition of a macro. 

3. Repetitive inclusion. Include  other COGENT code 
repeatedly.  Macros  can  be assigned multiple val- 
ues. Each  time a macro is assigned a value, it ac- 

tually appends  the value to  the  end of its list of 
values. When a macro  that  contains a list of val- 
ues is expanded normally, the values are  concat- 
enated  and  returned as a single value.  But  when 
the macro is supplied as a parameter to a <repeat> 
directive, the  number of values in the list deter- 
mines the  number of iterations. Each consecu- 
tive iteration uses the consecutive value in the list 
rather  than  the  concatenation of those values. 

4. Code reuse. A code segment is simply a named sec- 
tion of COGENT code  that can be  interpreted  or 
expanded  where  referenced. Code segments give 
you a way to  decompose  code  into  smaller,  re- 
usable pieces, much like procedures  do. 

5. Macro assignment in code  segments. At  one ex- 
treme,  macros are always assigned values ahead 
of time (e.g., through  arguments to  the  interpreter 
at  invocation),  and  then  code  segments are ex- 
panded with those values. This  extreme is simple 
but  not very flexible-it  is hard  to vary the way 
macros  get initialized. At  another extreme, mac- 
ros are assigned only by expanding code  segments 
that define macros, thereby  delegating  the assign- 
ments to  the  code segments. That lets you vary 
the assignments without modifying code  that uses 
the macros. 

This  set of constructs,  coupled with user-defined 
transformation  functions,  lets us express nearly all 
code  variants  entirely in COGENT. Nonetheless, im- 
plementing everything in COGENT can  be inconve- 
nient,  particularly  when  user-supplied  transforma- 
tions  proliferate. The  implementation of these 
transformations is not well-integrated with the CO- 
GENT language-they are  independent  executables 
that COGENT calls. The main  problem  here is that 
they are platform-specific: shell scripts on AIX* (Ad- 
vanced Interactive Executive*), REXX (Restructured 
Extended  Executor)  scripts on OW* (Operating 
System/2*), etc.  Performance is also a concern, since 
each  user-supplied  transformation  forks a process. 
We have used  user-defined  transformations  primar- 
ily as a prototyping  mechanism  for built-in transfor- 
mations;  once we encountered a particular  transfor- 
mation  more  than a couple of times, we made it a 
built-in transformation (e.g., toupper). As a  result, 
we limit our COGENT code to expressing language- 
specific  syntax and semantics that  require a minimum 
of user-supplied  transformations, leaving the rest to 
the  Mapper  Perl scripts. 

COGENT example. Figure 14 shows a fragment of 
COGENT code  that  generates C +  + function defini- 
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Figure 14 COGENT code fragment 

<code GEN-CODE> 
#include <stdlib.h> 
<repeat USER-DATA> 
#A-SEGMENT# 
</repeat USER-DATA> 
#MAIN# 
</code GEN-CODE> 

<code A-SEGMENT> 
<clear CLASS-NAME> 
<define CLASS-NAME>#USER-DATA#Class\</define> 
void 

<test ?TRACE-CODE> 
#CLASS-NAME#::#CLASS-NAME#-operation ( )  { 

cout << ". . . void 'I 

<< "#CLASS-NAME#::#CLASS-NAME#-operation 0" 
<< endl; 

</test> 
) 
</code A-SEGMENT> 

<code MAIN> 
void main ( )  { 

1 
</code MAIN> 

cout << "In main ( )  . . . " << endl: 

tions. To  generate  the code, the  Mapper invokes the 
COGENT interpreter with the following arguments: 

generate USER-DATA=First USER-DATA=Second 
TRACE-CODE=l examp1e.t - - GEN-CODE > 
examp1e.C 

where 

generate invokes the  interpreter. 
USER-DATA is a  macro that will be  expanded twice, 
first with First and  then with Second. 
TRACE-CODE is a  macro that is used as a flag to 
indicate whether extra tracing code should be emit- 
ted  for  debugging  purposes. 
examp1e.t is the file containing COGENT code. 
GEN-CODE specifies the  code segment with which 

examp1e.C is the file in which to  store  the  gener- 
to  generate code. 

ated C++ code. 

Note  that USER-DATA,  TRACE-CODE, and 
GEN-CODE are  not COGENT keywords but  merely 
user-defined  macro  names  used in examp1e.t. 

The first statement in Figure 14 marks  the begin- 
ning of the GEN-CODE code  segment. The line  after 
it will be  emitted as is, because  it is not modified by 
COGENT directives. The next line tells the COGENT 
interpreter  to  iterate  over  the  subsequent  code  up  to 
the <repeat> directive. In each iteration, USER-DATA 
will be assigned one of the values  supplied to  the in- 
terpreter when  it was invoked, in the  order they  were 
supplied (First, then Second in this  case). 

Whenever  a  macro  name  appears  between "#" sym- 
bols (e.g., #USER-DATA#), it is expanded  to its cur- 
rent value. When  the  name of an  undefined  macro 
is referenced in this way, it  expands to  the  code seg- 
ment with that  name, if any. 

In this  case, A-SEGMENT is the  code  segment  de- 
fined immediately  after GEN-CODE.  A-SEGMENT 
produces  a  function  definition.  It defines a 
CLASS-NAME macro  that must be  cleared  on  each 
iteration,  because  the <define> directive  concate- 
nates  the definition  and the macro's existing values. 
The code in A-SEGMENT will be  evaluated  and  sub- 
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Figure 15 Generated code 

#include  <stdlib.h> 
void 
FirstC1ass::FirstClass-operation ( )  { 

cout << ". . . void " 

<< "FirstC1ass::FirstClass-operation 0" 
<< endl; 

} 

void 
SecondC1ass::SecondClass-operation ( )  1: 

cout << " .  . . void " 

<< "SecondC1ass::SecondClass-operation 0" 
<< endl; 

) 

void  main ( )  { 
tout << "In main ( )  . . . " << endl; 

stituted where it  was referenced. Similarly, #MAIN# 
will evaluate to  the MAIN code segment. 

Figure 15 shows the code generated from the 
COGENT code in Figure 14 given the  parameters 
mentioned earlier. 

Observations 

Several characteristics of our design became clear 
only after we had implemented it. Indeed, some  were 
not evident until we had used it for a while. For ex- 
ample, though we had predicted some of the ben- 
efits of distributing the user interface, code gener- 
ation, and mapping components, we did not realize 
such distribution would enable interactive, near-real- 
time customer support. A late addition was a ques- 
tion and answer  link at  the bottom of every page. 
Clicking on "Q&A takes the user to  a page where 
he or she can type  in questions. The person respon- 
sible for providing  answers can respond immediately 
through the same page, exploiting  rich text, embed- 
ded diagrams, links to supplemental materials-the 
full range of HTML capabilities. 

The following are  other characteristics we noted in 
retrospect. 

Presentation. Although a Web-based interface works 
well  in  many  ways, the  current limitations of HTML 
(such as static pages and lack of support for drag- 
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and-drop and other direct-manipulation techniques) 
have led to compromises in the user interface de- 
sign. Another drawback  lies  in the Web's clientherver 
split. Because the Code Generator relies on HTML 
forms, it  must run in the server process space. As a 
result, the user must  explicitly  save generated code 
on his or her machine. The split  also  complicates  sav- 
ing  trade-off and code-generation settings  across  ses- 
sions. 

Without abandoning HTML as a user interface de- 
scription, we could overcome many of these limita- 
tions by designing our own customized browser or 
by adopting a browser that supports extension 
through an  interpreted language. But by constrain- 
ing ourselves to standard Web  browser capabilities, 
we  maximize the audience for our tools. Moreover, 
HTML is  undergoing  vigorous  development  in the ser- 
vice  of an exploding user community. So we expect 
these limitations to gradually disappear. 

It is  easy to envision more sophisticated user inter- 
faces. One  area for improvement is the integration 
of pattern  and code generation. Here  are two  ex- 
amples: 

1. As the user selects trade-offs, associated parts of 
the  pattern could change to reflect them. The 
relationships in the Structure diagram would 
change, for example, as would the descriptions 
of the participants and their collaborations. Mu- 
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2. 

tually  exclusive  trade-offs  would elide each other 
automatically to reduce clutter in the trade-offs 
page. 
Rather than having a  separate Code Generation 
page, the user could  specify code generation in- 
formation through the pattern itself. A direct-ma- 
nipulation interface could let the user edit the 
Structure diagram to add, remove, reorganize, 
and otherwise redefine the class structure, sub- 
ject to pattern constraints. 

Interfaces like these would  offer a much more dy- 
namic and compelling metaphor than  the current 
HTML forms-based interface. 

Mapping. Perhaps the most troublesome aspect of 
the Web-based implementation had to do with  mak- 
ing data persist across visits to Code Generation 
pages. As long as the user jumps from page to page 
and backtracks only  via the browser’s “Back” but- 
ton, the user will see only the most recent inputs de 
facto. But  when the user shuts down and restarts the 
browser, or if the user  revisits a page through a hy- 
perlink rather than the “Back” button, he or she may 
see obsolete data-that  is,  unless the system  saves 
input information and recreates potentially stale 
pages when they are accessed through a link. This 
approach required 

Persistent storage on the server side for each cli- 
ent 
A unique identifier per client so that information 
can be  saved on a per-user basis, thus avoiding po- 
tential conflicts.  Because we did not want to bother 
the user for this identifier, the Mapper synthesizes 
it transparently. 

An alternative approach would  let the browser  save 
client-specific state locally. Unfortunately, no cur- 
rent Web protocol supports this  capability. 

Code generation. Though we are satisfied  with 
COGENT as a way to express code generation, we are 
much  less  satisfied  with the way  we integrate the gen- 
erated code into  an application-that  is, by cut and 
paste. Two problems are endemic to the cut-and- 
paste approach: 

9 Invasiveness. The user  must understand what  to  cut 
out and where to paste it, and both may be non- 
obvious. 
Irreversibility. Once a user has incorporated gen- 
erated code into an application, any change that 
involves regenerating the code will force the user 
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to reincorporate it into the application. As a cor- 
ollary, the user cannot see changes to the gener- 
ated code through the tool. 

Clearly we need a  better way to decouple generated 
code from a user’s  modifications. One approach in- 
volves doubling the number of classes the tool gen- 
erates.  For each class generated currently, we could 
generate two  classes in its stead: a core  class that is 
identical to the original  class  except for its name, and 
a trivial  subclass  thereof-the  core subclasswhose 
name matches that of the original class. Thus code 
that instantiates the original class ends up instanti- 
ating the corresponding core subclass. 

Any  user-specified changes to the generated code 
must be made to  the core subclass  only; the user 
never alters the core class. The inheritance relation- 
ship lets the user redefine or extend generated  op- 
erations, add new operations, and add new instance 
variables.  Should the code require regeneration later, 
the tool overwrites only the core class. The user’s 
changes remain unaffected. Unless the user subse- 
quently regenerates radically  different code with the 
tool, the core subclass should continue to work  with 
the new core class. 

This approach has been used  successfully  in ibuild, 
a user interface builder, l4 and  it should work  in this 
context as  well. There is,  however, at least one case 
in  which  it does not work  well, and that is  when the 
user  must incorporate generated code into  an exist- 
ing class hierarchy. This is  usually not  a problem for 
user interface builders, which generate code that is 
largely  self-contained  and  has  comparatively  few  con- 
nections to  the rest of the application. But the code 
that the design pattern tool generates is more broadly 
applicable. It is therefore likely that  the generated 
code will require more intimate integration with  ex- 
isting code. 

Our initial solutions to this problem focused on us- 
ing multiple inheritance to mix generated code into 
existing code. Multiple inheritance is not a compre- 
hensive solution, though, because not all languages 
support it. Besides,  it  is  arguably too low-level for 
what we are trying to  do. In our experience, mul- 
tiple inheritance is best suited to designing  type  flex- 
ibility into a system a priori, specifically through in- 
terface “mixins.” In contrast, our goal  is to integrate 
code segments that were not designed to work to- 
gether. 
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So we need a mechanism that supports code inte- 
gration explicitly  and  conveniently. Subject-oriented 
pr~gramming’~,’’ promises just that, and we are ex- 
ploring its ramifications for our tool. 

Related work 

Most elements of this  work  have had long research 
histories. The  pattern concept arose from the work 
of Christopher Alexander  in the 1970s. I8,l9 Alexander 
sought to capture on paper the essence of great ar- 
chitecture in a  structured, repeatable way. He fo- 
cused on the design and construction of buildings 
and towns, but gradually  his ideas took root in the 
software community,  blossoming  only recently. Ac- 
tually, Design  Patterns was influenced less by Alex- 
ander and more by the Ph.D. research of Erich 
Gamma, which accounts for the substantial differ- 
ences in these works. 

Template-based code generation is a well-researched 
area as  well,  going  back to Floyd’s  work on symbol 
manipulation specification.20 In the wake of Knuth’s 
seminal paper on context-free languages, 21 the 1970s 
and 1980s saw prodigious research into  attribute 
grammars. They were applied broadly, first  as a ve- 
hicle for expressing programming language seman- 
tics, then as an aid  in compiler construction, and ul- 
timately  as a basis for generating entire programming 
environments. 22-24 The foundations of today’s  com- 
mercial software development tools-user interface 
builders, 4GL (fourth-generation language) applica- 
tion generators, “wizards,” and CASE tools of every 
persuasion-rest on these research strata. 

Finally, there is the Web.  Few could have  missed  its 
rise to ubiquity.  We are convinced  it represents a 
whole  new application platform, although there is 
much  controversy  over its ultimate destiny: whether 
it  will  assimilate  today’s applications or vice versa, 
for example.  But  even  as-is, the Web gave us all  we 
had hoped for-a viable front-end to our design pat- 
tern tool-and some things we had not thought to 
hope for, like interactive questions and answers. 

In fact, the Web, design patterns, and our tool share 
a salient attribute: each is deliberately unnovel in  its 
constituent parts, but as an amalgam,  they  offer  com- 
pelling  new  capabilities. The Web introduced no new 
technologies; it just composed existing ones syner- 
gistically.  Likewise,  design patterns recast proven 
techniques in a new  expository form. We  merely 
combined equal parts  patterns,  the Web, and code 
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generation to help automate some mundane aspects 
of pattern application. 

Conclusion 

Automatic code generation adds a dimension of util- 
ity to design patterns. Users can see how domain  con- 
cepts map into code that implements the  pattern, 
and they  can see how different trade-offs change the 
code. Once generated,  the user can put the code to 
work immediately, if not quite noninvasively. 

Much remains to be explored. The concept of de- 
sign patterns is  in  its  infancy-the tools that support 
the concept, even more so. Our tool is just a  start. 
It exploits  only a fraction of the intellectual lever- 
age that design patterns provide. For example, the 
tool is limited to system  design and implementation; 
it does not support domain analysis, requirements 
specification, documentation, or debugging.  All of 
these areas stand to benefit from design patterns, 
though at this point it  might not be clear exactly  how. 
Then again, the principles underpinning our tool 
were not clear until we had experience using pat- 
terns for design. Application is the first and neces- 
sary step; only then can we hope to  automate prof- 
itably. 

*Trademark or registered trademark of International Business 
Machines Corporation. 

**Trademark or registered trademark of Netscape. 
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