
Object technology
in perspective

~

by G. Radin

Since its beginnings half a century ago, the
technology applied to the development of
software has continually evolved. Object
technology is the result of a long progression of
improvements, from the closed subroutine,
through structured development techniques and
data abstractions, to object-oriented languages,
design patterns, and frameworks. In this essay,
the author reflects on this evolution, specifically
in the areas of development productivity,
software maintainability, and paradigm
consistency.

T his issue of the IBM Systems Journal is devoted
to papers that address various aspects of object

technology. In my role as coordinator for this theme
issue, I want to discuss why the technology deserves
this level of focus. Much has been written about ob-
ject technology, at levels varying from high-level
overviews for business executives to detailed C+ +
code segments that illustrate a sample implemen-
tation of a design pattern. This introductory essay
is not yet another high-level tutorial about encap-
sulation, inheritance, and polymorphism. And it cer-
tainly does not include any C+ + code. Instead it is
an attempt to clarify the scope of this technology and
to identify some of the challenges associated with
its exploitation.

One reason that the term “object oriented,” or “00,”
is often confusing is that it is applied so widely. We
hear about object-oriented user interfaces, object-
oriented programming languages, object-oriented
design methodologies, object-oriented databases,
even object-oriented business modeling. A reason-
able question might be: Is this term used because
00 has become a synonym for “modern and good,”
or is there really some substantial common thread
across all these object-oriented things?

I believe that there is such a common thread, and
that it makes the object paradigm useful in all these
diverse areas. Essentially it is a focus on the “thing”
first and the action second. It has been described as
a noun-verb way of looking at things, rather than
verb-noun. At the user interface, first the object is
selected, then the action to be performed on the ob-
ject. At the programming language level, an object
is asked to perform some action, rather than a pro-
cedure called to “do its thing” on a set of param-
eters. At the design level, the “things” in the appli-
cation are defined, then the behavior (actions) of
these things is described.

Because we see this common thread as a unifying
concept, we have included in this issue papers that
encompass many different aspects of object technol-
ogy.

Object technology provides significant potential
value in three areas, all closely related: productiv-
ity, maintainability, and paradigm consistency. I have
deliberately said “potential” here, because, while
there are already many projects that have benefited
from its use, object technology is not as pervasive in
the information technology world as, for example,
personal computers or the Internet. The Internet is
not yet as pervasive as third-generation languages
or structured programming, but the whirlwind pace
of its acceptance is impressive, and it allows us to
think in new ways. Object technology will play an
important role here in many ways, some of which

Wopyright 1996 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

124 RADIN 0018-8670/96/5500 0 1996 IBM IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996

are not yet clear. 00 programming languages, such
as Java**, provide an example of the use of object
technology on the Internet.3

Productivity

Many technologies have contributed to productiv-
ity improvement in application and system software
development. High-level programming languages,
such as COBOL and FORTRAN, led to a major break-
through in productivity from the 1960s until today.
In fact, it can be argued that most of the significant
improvements in programmer productivity are as-
sociated with the evolution of programming lan-
guages. Symbolic assembly languages gave way to
high-level programming languages, once it was dem-
onstrated that compilers could produce acceptable
code. High-level languages, such as Modula-2 and
Ada, incorporated the notion of “data abstraction”
that underlies the encapsulation aspect of object-ori-
ented languages. Easier-to-use languages like REXX
(Restructured Extended Executor) and BASIC al-
lowed the rapid development of many applications.
In fact, those of us who have worked in the progratn-
ming language world often view object technology
as just another step in the evolution of programming
languages.

Productivity has also been dramatically improved by
the evolution of design methodologies. When I be-
gan to write programs (in the mid-l950s), develop-
ing flowcharts before coding was a radical new idea.
Gradually technologies such as data flow diagrams,
process decomposition, and entity-relationship data
models allowed programming teams to develop cor-
rect programs more effectively. Again we can argue
that object-oriented design methodologies are evo-
lutions of successful design techniques.

But at this point, further significant improvements
in productivity cannot happen simply by making anal-
ysis, design, or coding more efficient. Given the ex-
ponential demand for new applications that exploit
new hardware and networking, the need for busi-
nesses to compete by offering unique new value to
their customers, and the radical increase in the per-
formance of computers, there are just not enough
programmers available to write all the code required.
We must change application development from a
people-intensive discipline to an asset-intensive dis-
cipline. That is, we must encourage and make fea-
sible the widespread reuse of software components.
It is exactly in this “reusable component” arena that
object technology can contribute significantly.

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996

Certainly, the advantages of reusable components
are not just now being recognized. Alan Turing4 used
(invented) subroutines in the 1940s, and one could
argue that everything else has been just a set of in-
cremental improvements. There have been many
“application customizer” products and projects in the
past 30 years. And the “package” concept of Ada was
explicitly invented to allow reuse. In fact, I believe
that reuse has been extraordinarily successful. When

The aspects
of object technology

that help in reuse are
encapsulation and inheritance.

senior citizens like myself first began programming,
we were presented with a bare computer. We had
to write our own input/output packages, our own
loaders, etc. Operating systems are great examples
of real reuse. Subroutine libraries, such as mathe-
matics libraries, are other examples. But object tech-
nology gives us the potential to extend the scope of
reuse beyond systems, subsystems, and low-level sub-
routine libraries to components that constitute el-
ements in the application itself. The recent growing
interest in “business objects”’ is a good example of
this.

The aspects of object technology that help in reuse
are encapsulation (which allows the developer to see
a component as a “black box” with specified behav-
ior) and inheritance (which encourages the reuse of
code to implement identical behavior among differ-
ent kinds of objects). Polymorphismh allows the ap-
plication itself to be reused when bound to different
kinds of objects that support identical behavior. For
instance, an application that provides messaging ca-
pability can be reused in environments supporting
different network protocols, if those protocols are
accessed as objects. (I guess I broke my promise not
to discuss these terms.)

Reuse can occur at many stages in the development
process. Business objects can be reused in design,
and later in source or even binary forms. But there
are many inhibitors to reuse, only some of which are
technical.

We need intelligent search engines so that we can
find the objects that are potential candidates for re-
use. We need natural ways to describe the behavior
of objects, and the descriptions must be precise
enough that the resulting application does exactly
the right thing. The converse of this may be even
more effective, namely to follow the lead of man-
ufacturing industries and standardize components,
so that reuse can happen with little or no customi-
zation. The insurance and banking industries are
moving in this direction by defining standard bus-
iness objects.

We often will need to customize an object that is not
quite what is needed. It is very important to under-
stand that objects will not generally be reusable un-
less they have been written with reusability in mind,
often at the expense of performance, size, and com-
plexity. Customization can be made possible in many
different ways. The reusable object itself can be cre-
ated so that many expected variations are available
within the object. Object-oriented “frameworks” al-
low customization by subclassing and overriding de-
fault methods. And even black box components can
be customized by wrapping “ s~r ip t s”~ around them.

We need a run-time facility to allow late binding of
reusable components to applications, so that several
applications can share code. Dynamic link libraries
(DLLS), for example, provide this capability.

We need a common run-time infrastructure so that
diverse components can work together coherently
(e.g., a common transaction facility).

But as important as these technical requirements are,
the application development organization must make
it advantageous for component developers to make
the extra effort required to produce reusable com-
ponents, and for application developers to take the
effort to find and use them. This requires a renumera-
tion approach with scope beyond that of a partic-
ular programmer doing a particular task. Unfortu-
nately, object technology has no good solution for
this.

Maintainability

Generally, it is not possible to distinguish maintenance
from development in a way that satisfies everyone.
Is the modification of a tax algorithm maintenance
or development? Is a new function implemented
against an existing database maintenance or devel-
opment? Many of our customers, using their own

126 RADIN

definitions, assert that they spend as much as 80 to
90 percent of their information technology dollars
on what they call “maintenance.” So it is clearly a
very important aspect of computing.

No matter how it is defined, the essential aspect of
maintenance is that some code must be changed (or
added, or deleted) while other related code is un-
changed and must continue to run correctly.

All of the essential aspects of object technology (en-
capsulation, inheritance, polymorphism, late bind-
ing) can contribute significantly in making mainte-
nance more efficient and reliable. In fact, it can be
argued that all of the aspects of object technology
that support reuse also support maintainability.

Paradigm consistency

Because object technology is so pervasive across the
life cycle of application development, it can be re-
markably effective in allowing the structure of the
application to be consistent throughout its develop-
ment and maintenance phases. One of the great
weaknesses of the “Information Engineering”8 anal-
ysis and design methodology was the need to dra-
matically change the structure and components of
an application when going from analysis to design
to code. This had two disadvantages:

The change in paradigm made it very difficult to
go from phase to phase. And it made it difficult
to ensure that the design really reflected the anal-
ysis, and that the code really reflected the design.
Even when the team of analysts, designers, and
coders was successful at each phase, the relation-
ship between the phases did not last very long.
When new requirements emerged they were of-
ten implemented directly, by changing the code.
As a result the design no longer really represented
the application.

Some CASE (computer-assisted software engineer-
ing) tool vendors attempted to address this problem
by automatically generating code from design. Oth-
ers required developers to first change analysis and
design work products as needed, then proceed once
more through the entire life cycle, disallowing
changes attempted in any other way.

But where development is object oriented through
all phases, it is much easier to do rapid prototyping,
to maintain consistency across the life cycle, and even
to reuse components. If a “customer” object, for in-

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996

stance, is represented consistently at each phase, it
can be reused. But if its run-time implementation is
spread across the application’s running code, it isvery
difficult to reuse it in another application.

Requirements for exploiting object
technology

Exploiting these reuse, maintainability, and perva-
sive paradigm potentials requires:

Tools that allow the creation, discovery, and cus-
tomization of object-oriented components at all
levels of abstraction (e.g., executable code, source
code, design patterns, frameworks, and analysis
and design constructs)
Tools that support the composition of the com-
ponents into applications, again at all levels of ab-
straction
A run-time infrastructure of system, middleware,
and class libraries that ensures that these compo-
nents can, when combined, run seamlessly in a
common environment

It is, therefore, toward the development and en-
hancement of such tools and infrastructure that ob-
ject technology is primarily directed. This technol-
ogy has moved well beyond its somewhat narrow
beginnings. It reaches into systems areas, such as per-
sistence, transactions, security, distributed directo-
ries, etc. It reaches into business analysis and mod-
eling as well as programming.

It must be noted, in conclusion, that many risks and
potential problems arise in the move to object tech-
nology. There are not enough experienced 00 de-
velopers to meet the demand. And inexperienced
developers often write 00 programs that have per-
formance problems and are difficult to test and de-
bug. So the transition to object technology may well
take longer than we would hope. But as we begin to
have, through education, mentoring, and experience,
enough 00 developers to meet the demand for pro-
grams that execute efficiently and are easy to reuse
and maintain, the wait will have been worth it.

Contents of this issue

This issue of the IBM Systems Journal includes pa-
pers that span the wide scope of object technology.
Their authors are very much aware of the difficul-
ties, as well as the potential advantages, that object
technology may bring. They will likely be leaders in
realizing this potential.

**Trademark or registered trademark of Sun Microsystems, Inc.

Cited references and notes

1. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Pat-
terns: Elements of Reusable Object-Oriented Software, Addison-
Wesley Publishing Co., Reading, MA (1995).

2. F. J. Budinsky, M. A. Finnie, J. M. Vlissides, and P. S. Yu,
“Automatic Code Generation from Design Patterns,”IBM Sys-
tems Journal 3.5, No. 2, 151-171 (1996, this issue).

3. J. Gosling and H. McGilton, The Java Language Environment:
A White Paper; view on the WWW via URL http://java.
sun.com/whitePaper/java-whitepaper-1.html.

4. B. E. Carpenter, R. W. Doran, M. Woodger, and A. M. Tur-
ing, A. M. Turing’s Ace Report of 1946 and Other Papers, The
MIT Press, Cambridge, MA (1986).

5. 0. Sims, Business Objects: Delivering Cooperative Objects for
ClientiServer, McGraw-Hill, Inc., New York (1994).

6. Quoting from David Taylor, “Hiding alternative procedures
behind a common interface is called polymorphism.” See Ref-
erence 9, below.

7. In this context, “scripts” are (generally) small programs, usu-
ally written in an interpreted language such as BASIC or
REXX, used to customize the behavior of the black box com-
ponent wrapped inside.

8. J. Martin and C. McClure, Structured Techniques: The Basis
for CASE, Prentice-Hall, Inc., Englewood Cliffs, NJ (1988).

9. D. A. Taylor, Object-Oriented Technology: A Manager’s Guide,
Addison-Wesley Publishing Co., Reading, PA (1981).

General references

G. Booch, Object-OrientedAnaIysis and Design with Applications,
Second Edition, Benjamin/Cummings Publishing Company, Inc.,
Redwood City, CA (1994).
A. Goldberg and D. Robson, Smalltalk-80: The Language, Ad-
dison-Wesley Publishing Co., Reading, MA (1989).
B. Stroustrup, The C+ + Programming Language, Addison-Wes-
ley Publishing Co., Reading, MA (1986).

Accepted for publication Februaly 5, 1996.

George Radin IBM Research Division, Thomas J. Watson Re-
search Center, P.O. Box 704, Yorktown Heights, New York 10598
(electronic mail: radin@watson.ibm.com). Mr. Radin, an IBM Fel-
low, began programming in 1955. Among many accomplishments
in his long career, he led the team that produced the PL/I pro-
gramming language and the research team that produced the first
reduced instruction set computer. He was manager of architec-
ture for the IBM Future Systems project in the mid-l970s, Di-
rector of Architecture for the Systems Products Division in the
early 1980s, Chief Architect for AD/Cycle@ in the early 1990%
and is currently on the technical staff in Software Group. Mr. Ra-
din was awarded the B.A. degree from Brooklyn College in 1951,
and the M.A. degree in English literature in 1952 and the M.S.
degree in mathematics in 1961, both from Columbia University.

Reprint Order No. G321-5597.

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996

