172 REINWALD ET AL.

Storing and using
objects in a relational
database

In today’s heterogeneous development
environments, application programmers have the
responsibility to segment their application data
and to store those data in different types of
stores. That means relational data will be stored
in RDBMSs (relational database management
systems), C+ + objects in OODBMSs (object-
oriented database management systems), SOM
(System Object Model) objects in OMG (Object
Management Group) persistent stores, and
OpenDoc™ or OLE™ (Object Linking and
Embedding) compound documents in document
files. In addition, application programmers must
deal with multiple server systems with different
query languages as well as large amounts of
heterogeneous data. This paper describes SMRC
(shared memory-resident cache), an RDBMS
extender that provides the ability to store objects
created in external type systems like C++ or
SOM in a relational database, coresident with
existing relational or other heterogeneous data.
Using SMRC, applications can store and retrieve
objects via SQL (structured query language), and
invoke methods on the objects, without requiring
any modifications to the original object
definitions. Furthermore, the stored objects fully
participate in all the characteristic features of
the underlying relational database, e.g.,
transactions, backup, and authorization. SMRC is
implemented an top of IBM’s DB2® Common
Server for AIX™ relational database system and
heavily exploits the DB2 user-defined types
(UDTs), user-defined functions (UDFs), and large
objects (LOBs) technology. In this paper, the
C++ type system is used as a sample external
type system to exemplify the SMRC approach,
i.e., storing C++ objects in relational databases.
Similar efforts are required for SOM or OLE
objects.

n recent years, object-oriented (00) technology
has achieved wide acceptance, maturity, and mar-
ket presence. An OO application development proj-

0018-8670/96/$5.00 © 1996 IEM

by B. Reinwald
T. J. Lehman
H. Pirahesh
V. Gottemukkala

ect often starts with established 0O tools, class li-
braries, and object frameworks,' followed by a cus-
tomization step, and then is enhanced and refined
by using features such as inheritance and encapsu-
lation. This new programming paradigm has signif-
icantly improved both the programmer’s produc-
tivity and the timeliness and cost of application
development. It is the growing interest in 0O appli-
cations, coupled with the attractive features of re-
lational database management systems (RDBMSs),
that led to the advent of extended RDBMSs, €.g., Sys-
tems like Postgres and Starburst, as well as object-
oriented database management systems (OODBMSs),
e.g., systems like ObjectStore™*, O2**, GemStone™**,
and Versant**,>* Since these systems were estab-
lished, OODBMSs have matured significantly, creat-
ing a market presence and increased market share.
At the same time, RDBMS vendors saw some of the
same 0O trends and subsequently developed object-
relational database management systems (ORDBMS),
e.g., systems like UniSQL**, Illustra**, and DB2*.>”
RDBMSs continue to dominate the database market,
and market analysts expect that this trend will con-
tinue.

Many users of RDBMSs are expanding toward appli-
cations that require more effective handling of non-
traditional data, such as text, voice, image, and fi-
nancial data. It is no surprise then, that most users

©Copyright 1996 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996

also desire their 00 data to be stored in their da-
tabases without compromising the essential indus-
trial-strength features of RDBMSs that they already
rely upon. Such features include robustness, high per-
formance, standards compliance, and support for
open systems, security, bulk IO capabilities, and dif-
ferent levels of concurrency and isolation. As a re-
sult, there is constant pressure on RDBMS vendors
to provide additional functionality for storing objects
that were created in the external type system of an
00 programming language. This functionality goes
beyond user-defined types (UDTs), user-defined func-
tions (UDFs), and large objects (LOBs) in SQL3.® UDTs
extend the relational type system with new data types,
based on the relational built-in data types. The UDF
mechanism provides a way to add functions to the
existing base of relational built-in functions. LOBs give
the RDBMS a way to manipulate large data objects,
typically for multimedia applications. Although the
addition of UDTs, UDFs, and LOBs to an RDBMS in-
creases its functionality, these new features do not
match the functionality of classes, methods, and ob-
jects in an 0O programming language like C+ +.

This paper describes the shared memory-resident
cache (SMRC) prototype implementation, at the IBM
Almaden Research Center, that stores C+ + objects
in an RDBMS (e.g., DB2 Common Server for AIX*)
by exploiting the UDT, UDF, and LOB technology.”'""
The design and implementation of SMRC'! was es-
pecially driven by the following requirements and
goals:

s The approach must be compatible with existing
class libraries; thus there is no opportunity to in-
herit persistence properties from a common root
object and modify class definitions to include ad-
ditional constructors or add methods to support
persistence properties.

s The objects must be accessible in SOL (structured
query language) queries as the existing relational
data.

s The methods of acquired class libraries must be
usable within SQL queries.

s The performance of queries involving objects must
be reasonable. This is particularly an area of con-
cern where methods, used within query predicates,
are applied to millions of database records. If the
predicate evaluator is inefficient in invoking meth-
ods of objects, then when invoked millions of times
on objects, the response time will be unacceptable.

SMRC (mostly) '? achieves the above goals by exploit-
ing advanced features of RDBMSs and by providing

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996

an efficient binding to bridge the gap between ob-
jects of external type systems and RDBMSs in an at-
tractive and inexpensive way. By external type sys-
tem, we refer to types defined in C++, which are
different from the tables and fields defined in SQL.
Using SMRC, C++ objects are stored in the data-
base in the same binary format as they were created
in the C++ client application language. Thus, no
translation of C++ class definitions to relational
schemata and no data conversion needs to be per-
formed. Standard SQL is used to store and retrieve
the C++ objects in the relational database. When
retrieving an object from the database to client mem-
ory, SMRC performs pointer swizzling (due to the re-
location of the object in the client memory). Swiz-
zling is the conversion of persistent database pointers
into main memory address pointers. Whereas
schema mapper products are useful to provide an
object-oriented view of existing relational data, SMRC
provides persistence for new OO data that need to
be stored in relational databases. In this sense, SMRC
is complementary to schema mapper products like
Persistence** (see the section on traditional ap-
proach and related work) that require substantial
data transformation between the relational repre-
sentation and C+ + objects.

An alternative to using SMRC for making C+ + ob-
jects persistent might be to use one of the above-
mentioned OODBMSs. OODBMSs provide many fea-
tures that are not available in most relational
databases, such as a rich object-oriented C+ + data
model, less impedance mismatch, fast navigational
access, etc. However, OODBMSs offer these features
at the cost of introducing their own server environ-
ment in addition to an existing RDBMS environment,
and thus burden the user with managing multiple
database servers. In fact, SMRC does not compete
directly with OODBMSs. OODBMSs target different
market segments and work best for those users who
have mostly 00 applications and need only persis-
tence and simple query facilities for their 00 data.
00DBMSs offer smaller, faster servers for OO data,
and can handle varying granularities of data with
ease. In contrast, SMRC supports a tight C+ + lan-
guage binding as well as clustering and pointer swiz-
zling for fast pointer browsing, seemingly as part of
the existing RDBMS that users already depend on.
SMRC is designed to allow users of an RDBMS to in-
corporate OO data into their existing relational ta-
bles and applications. Using SMRC is similar to us-
ing an OODBMS, but SMRC uses a two-level store
model rather than the traditional single-level store
of most OODBMSs.

REINWALD ET AL. 173

In this paper, we describe the design and implemen-
tation of SMRC. We first elaborate on the problems
of storing C+ + objects in relational databases, point
out the shortcomings of related approaches, and
briefly introduce the SMRC approach. Next we de-
scribe the SMRC concepts and the application pro-
gramming interfaces. Then we discuss various im-
plementation issues and present some performance
numbers. Finally, we provide a summary and give a
brief outlook on future work.

Class definitions and relational schemata

Many different approaches are proposed to map class
definitions into a relational schema. In this section,
we first show why these approaches are inadequate,
and then we present the approach pursued by SMRC.

Traditional approach and related work. Data to be
stored in a relational database system must first be
normalized, following the well-known relational nor-
malization rules. > Normalization typically results in
a corresponding table per object type, with a cor-
responding column per data member.'* Most exist-
ing database applications are designed in this way.
However, this approach poses some problems when
applied to class definitions that involve additional
language concepts like encapsulation, inheritance,
and substitutability. Nevertheless, some schema-
mapper products available in the marketplace sup-
port a (semi-)automatic mapping of class definitions
to relational schemata, e.g., Persistence '° and Subtle-
ware**.'® In these products class definitions are
mapped to tables, exposing data members (even the
private ones), and nested data structures are spread
across tables. Class hierarchies are mapped either
in a collection of tables or a “super” table. In the
first case, a root table contains all basic data mem-
bers and, additionally, a discriminant column to de-
cide on the subtype of the objects. The tables for leaf
classes carry only the additional attributes. In the su-
per table case, the class hierarchy is completely flat-
tened into one super table. The records of this table
contain null values in the columns of data members
that are not applicable. In both approaches, the C+ +
main memory pointers are replaced by primary key
and foreign key relationships, and system-specific
constructors, destructors, and access methods inher-
ited from a persistent root class are included in the
C+ + class definitions. The access methods usually
contain the hidden SQL code to communicate with
the underlying database system and to destruct and
store, and retrieve and construct the objects. To be
fair, it is important to point out that products that

174 REINWALD ET AL.

map classes to tables are typically designed to pro-
mote OO0 views of legacy relational data. The data
originate in the relational database, and these prod-
ucts offer an 00 view of the data. They are not con-
cerned with destroying the structure of an object by
mapping it into a table because they are instead cre-
ating objects from tables. In contrast, SMRC concen-
trates on new OO data that were created in an 00
application and then are stored in an RDBMS.

Other kinds of products provide portable C++ class
library interfaces to relational databases. For in-
stance, the class library from Rogue Wave Software 7
contains classes like column, row, cursor, table, etc.,
to communicate with an RDBMS. These class librar-
ies are mostly useful for an object-oriented access
to existing relational data in databases (again, where
the data originate in the RDBMS), but are not at all
able to deal with the previously raised issues. They
offer method application programming interfaces
(APIs) for their own generic storage libraries and, for
portability reasons, link in appropriate SQL run-time
libraries provided by the RDBMS vendors. Market ac-
ceptance as well as performance are critical issues
for these approaches.

Persistence frameworks like PSOM (SOM [System Ob-
ject Model] persistent framework), "' OMG (Object
Management Group) Persistence Service,* and Tali-
gent frameworks provide an object-oriented infra-
structure to make objects persistent. Framework
classes can be subclassed by the user in order to cus-
tomize how and where objects should be stored. The
application program must use the infrastructure and
API of the framework to achieve persistence.

For the following varying reasons, all the above-de-
scribed approaches conflict with the SMRC goals
stated carlier in the introduction to this paper:

« Object nature is destroyed. The proposed mapping
approaches destroy the object nature, as they flat-
ten the data members of objects into columns of
records. Each method application requires trans-
lating and even reassembling the object into the
original representation before methods can be ap-
plied on it. This approach degrades the perfor-
mance of search queries in decision support sys-
tems, which apply predicates to a potentially large
number (millions) of records and, thus, multiply
the cost of object reassembling.

» Class libraries are useless. Database records are
not objects. Since the class methods are only ap-
plicable on objects, the acquired class libraries are

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996

useless for the database system without object re-
creation.

s Encapsulation is broken. Problems also arise with
the loss of C+ + semantics. Private data members
in class definitions should be accessible only via
methods or “friends,” and therefore should not be
exposed in columns of relational tables. Although
one could hide private data members by restrict-
ing access to base tables and allowing access only
through views that omit the private data members,
this would be different from the original seman-
tics of private data members.

s Proprietary query languages and access methods
are used. The above (briefly introduced) ap-
proaches use their own query languages and in-
frastructures, making it difficult to develop porta-
ble database applications.

Some of the above problems may remain even if 00
features are added to existing RDBMSs. For instance,
systems such as Polyglot? and others? introduce
their own type systems with their own notions of en-
capsulation, inheritance, and substitutability. By in-
troducing their own type systems they remain incom-
patible with the external type system of an 0O
programming language and thus do not address the
problems that SMRC solves.

The SMRC approach. The previous section outlined
certain language concepts and discussed shortcom-
ings of existing approaches. The shortcomings exist
mostly because the described approaches introduce
their own query language and try to map the type
system of the programming language to the RDBMS
type system. In this section we give an overview of
the SMRC approach and list the major concepts re-
quired to implement the approach.

Object preserving. In SMRC, objects are stored in the
database as they are created in the C++ type sys-
tem; therefore, the nature of the object is preserved.
No type transformation of the object representation
is required upon object retrieval, and class library
methods can be applied almost immediately on the
objects without a significant loss of performance,
since it is not necessary to recreate the original ob-
ject representation. SMRC takes care of the C+ + lan-
guage peculiarities in implementing encapsulation,
inheritance, and substitutability. Using SMRC, the da-
tabase system does not have to adopt the specific
C+ + semantics and can retain its language indepen-
dence. Objects are stored via SQL in UDT columns
of binary built-in database types; thus, the approach
does not introduce yet another query language. The

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996

object methods are applicable on the client side in
the application (as regular methods) as well as on
the server side (as UDFs®).

SQL. The structured query language, SQL, is a uni-
versal basis for data storage and it appears to be more
attractive for independent software development
than start-up query languages. SQL is already used
by existing database applications.

Object containers. The fields of a relational table are
used as containers to store objects. SMRC employs
two mapping schemes to store C+ + objects in con-
tainers: the abstract data type (ADT) mapping and
the binary large object (BLOB) mapping,** depend-
ing on how the containers are populated with ob-
jects. The ADT mapping stores a single object of a
class or class hierarchy in a container, whereas the
BLOB mapping clusters many objects of different class
definitions in a container.

Pointer swizzling. As the objects are stored in native
main memory format, pointers in the objects need
to be swizzled (converted to main memory address
pointers) by SMRC when the objects are retrieved
from the database and relocated in main memory.
SMRC type-tags the objects (associates an object with
its data type) before storage, which allows it to lo-
cate the pointers within the objects upon retrieval.
SMRC supports two types of pointers depending on
the location of the target object of the pointer in the
database:

» Internal pointer—The referenced object is stored
within the same container as the current object.
This model is used mostly in the BLOB mapping.

» External pointer—The referenced object is stored
in a different container from the current object.

Internal pointers are implemented as normal C++
pointers, declared in the class definitions. External
pointers, which have additional semantics with re-
gard to object faulting, require more structure than
just C++ pointers and are treated separately. We
implemented two different approaches for external
pointers, one of which is compatible with pre-exist-
ing class libraries.

The use of BLOB fields as general-purpose object con-
tainers is very powerful from an application devel-
oper’s point of view, as no data structure mappings
are required; it is powerful as well from a database
system point of view, as it does not have to deal with
the inner details of an external type system. UDFs can

REINWALD ET AL. 175

be employed to interpret the contents of objects and
retrieve certain data members of objects only. The
synergy between SMRC, BLOBs, and UDFs provides the
additional functionality for relational databases to
store C++ objects, coresident with existing rela-
tional or other kinds of nontraditional data. How-
ever, the BLOB container approach also has as a con-
sequence, that certain database operations cannot
be performed directly. Indexes, join operations, or
objects as part of primary keys are not possible, as
the BLOB type cannot be assigned or compared to
any other type. These are well-known problems that
also exist in other areas of data management, e.g.,
the storage of OLE** objects in any kind of container,
or text processing documents or spread sheets in files.
In any case, only the original application is capable
of looking into the contents of these containers or
files. However, certain parts of the container that are
accessed frequently or need to be indexed, can al-
ways be stored separately in addition to the container.
Technology like Notes/FX** (Field eXchange) is
available to automatically synchronize the values in
the container and the separately stored values.®
Notes/FX uses OLE embedded objects to provide bi-
directional data exchange between fields in a Notes
document and objects created by FX-enabled OLE
Server programs.

SMRC concept and APIs

In this section, we first sketch various SMRC sample
applications and give a first impression on how to
use SMRC in combination with an RDBMS. Then, we
describe the prerequisites to make objects persist-
ent, elaborate on the application programming in-
terfaces (APIs) for the ADT and BLOB mapping, and
show some examples of using external pointers.

Developing applications in a SMRC/RDBMS envi-
ronment. One important feature of a relational da-
tabase system is that users can extend the database
by adding columns to existing (and populated) ta-
bles. In the case of SMRC, the application exploits
this feature by using the additional columns as data
containers to store C++ objects. Using the ADT
mapping, one C++ object of a class or class hier-
archy exists only in one data container, whereas in
the BLOB mapping, many objects of different class
definitions map into the same data container. The
selection of one of the proposed mapping approaches
depends on the specifics of an application. Figure 1
shows two samples for the ADT and BLOB mapping,
explained in more detail in the next few paragraphs.
The top of the figure describes the C+ + classes, the

176 REINWALD ET AL.

bottom of the figure describes the relational tables
and the middle part shows C+ + objects to be stored
in the tables.

The ADT mapping applies to applications where sin-
gle C++ objects may act as additional descriptive
attributes to database entities. Figure 1A shows
a table orders with some typical columns like ordno
(order number), prodno (product number), and
quantity, and an additional column delivery that con-
tains the C++ objects describing the delivery of an
order. The data type of the delivery column is a UDT
called shipping, which we will explain later. The C+ +
objects belong to the shipping class hierarchy con-
sisting of a super class shipment for usual deliveries
and a specialization class overseas in the case of cus-
toms being involved in the delivery. The class library
provides the required method implementations, e.g.,
a method time() evaluates the itinerary of a delivery
and estimates the delivery time. The dashed lines in
Figure 1A sketch the mapping of single objects of
the class hierarchy in the delivery column of the or-
ders table.

One goal of storing the C+ + objects along with the
relational data is to perform queries that make use
of both the relational and the object-oriented data
in the database. For this purpose, the time() method
of the C+ + class library is registered as a UDF in
the database system and, thereafter, it can be used
in SQL queries like the example that follows. Note
that the correct virtual function must be invoked for
each select-item of column delivery according to the
C++ type of the delivery argument, which may
change from record to record, due to subclassing.
(Although it is not shown in the sample application,
SMRC supports multiple inheritance.)

select ordno, prodno
from orders
where time(delivery) > 5 and quantity = 10;

The BLOB mapping applies in applications where a
heterogencous set of interconnected C++ objects
constitutes an additional attribute of a database en-
tity. Typical BLOB mapping applications come from
the areas of project management, network manage-
ment, workflow management, and complex geo-
graphical information system (GIS) applications. Fig-
ure 1B sketches a project management sample
application. It shows a table projects with columns
name and budget, and a BLOB column schedule to
store heaps (collections of memory) of C+ + objects
representing PERT charts of the projects. (PERT, or

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996

Figure 1 SMRC mapping samples
(A} SHIPPING ADT MAPPING SAMPLE (B) PERT BLOB MAPPING SAMPLE
typedef union address {... us; ... europe;}; class agtivity { CLASS
typedef enum service {priority, overnight}; activity *next; DESCRIPTIONS
int time();
class shipment { ;
private: time_t date; ————-l
address itinerary[10]; ;
address *current; - -
service del_service; classt§gt3_actl\{(|ty { clﬁs erzc;t_actlwty {
e v) activity *next; int time();
publlc. virtual int time () Ref<activity> sub; J;
class overseas: shipment {
trade_commerce_auth tca;
virtual int time ();
INSTANCE OF overseas (=== ~ == SMRC HEAPS OF OBJECT INSTANCES
i ! OBJECTS
INSTANCE OF shipment (e w m = m e 1 : 1O BE
by {O} = = STORED
1! :
1! H
1! i
1! T T]
1
i 1 Lo mm e e 1
1! 1 ',
!l eewmsmem——— - - =1 I
T i e
1 [B
orders ordno | prodno | quanti delivery o ¥ projects name | budget | schedule [
! 1 : 1
S [
o1 p1 10 = p1 | 1M A aniak :
02 p2 20 PR p2 2M PRE S B
1
o3 3 10 p3 1.5M Jp—
p J S U fQ
(1 1S A UDT OF TYPE shipping [1S A UDT OF TYPE PERT

Project Evaluation and Review Technique, charts il-
lustrate critical paths for completion of project tasks.)
A class hierarchy includes a super class activity and
two subclasses for sub and end activities. The figure
shows C+ + objects of three PERT charts allocated
in SMRC heaps, which are mapped into the schedule
column of the projects table. The sample also shows
the usefulness of external pointers, as one of the ob-
jects in the PERT chart for project p2 refers to proj-
ect p1 as a subproject. The implementation of a “real”
BLOB mapping application (and the related experi-
ences) using SMRC is described in a paper referenced
earlier.'

SMRC supports additional functionality for external

pointers (as opposed to internal pointers). An exter-
nal pointer contains all the information required to

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996

retrieve the referenced object from the database.
SMRC is able to fault in the referenced object from
the database automatically when the external pointer
is dereferenced. (When an object is referenced, but
is not in main memory, a fault condition occurs re-
sulting in retrieving the object from the database.The
terminology used for this event is fault in. Derefer-
encing a pointer results in the value at the location
that the pointer points to.) In the case of the ADT
mapping, only the one referenced object is faulted
in, whereas in the case of the BLOB mapping, the
whole heap containing the referenced object is in-
stalled in main memory.

The application program determines how C+ + ob-
jects should be mapped to database containers. The
application program creates objects either in the pro-

REINWALD ET AL. 177

gram default heap space (for the ADT mapping) or
in SMRC heaps (to cluster objects for the BLOB map-
ping). Object creation happens either via the SMRC
overloaded new operator or the standard C+ + new
operator. When the standard C+ + new operator is
used with the BLOB mapping, an additional SMRC API
call is required to type-tag the created objects and
eventually copy the objects into a SMRC heap.

In the ADT mapping, internal pointers are hidden
pointers, introduced by the C++ compiler to im-
plement inheritance and substitutability, as well as
pointers referring to a data member within the same
object. In the BLOB mapping, additionally, internal
pointers can refer to objects allocated within the
same SMRC heap. External pointers are supported
for the ADT and BLOB mapping, and they have to be
assigned by a special SMRC API call.

The decision whether to use ADT or BLOB mapping
depends on the access patterns to the objects used
by the application. The BLOB mapping offers two ma-
jor advantages over the ADT mapping. First, the ap-
plication programmer has the ability to cluster many
objects of different class definitions in the same con-
tainer, in the event that they are logically related to
each other and are often requested at the same time.
Second, many related objects can be retrieved by one
database operation, as opposed to the ADT mapping
that retrieves one object at a time. On the other hand,
retrieving one object at a time might be more useful
for applications that require a fine-grained access to
data.

With sMRC, C++ applications use standard SQL
(query language) to store objects (or SMRC heaps of
objects) in object containers of the database (i.c., ta-
ble fields). Objects are stored in binary format of the
C+ + type system without any data conversions. The
table columns for the object containers are defined
as UDT types of some built-in binary datatype of the
database system.

The SMRC persistence schema. A SMRC persistence
schema is a collection of application type descrip-
tions created by the SMRC schema compiler. The
schema essentially describes the layout of all of the
persistent C++ objects for the application, which
isneeded for memory management and pointer swiz-
zling. The schema includes structural information (in
particular, size and pointer offset information) that
contains the type information of embedded struc-
tures, unions, and dynamic arrays. In addition, the
type information contains the offsets of the hidden

178 REINWALD ET AL.

pointers, i.e., offsets of virtual function table (vtable)
and virtual base (vbase) pointers. To create a per-
sistence schema, the SMRC schema compiler takes
as input an application schema source file that in-
cludes the header files containing the C+ + class def-
initions and SMRC flags that mark which classes
should be made persistent. The schema compiler
produces a named persistence schema that is stored
in the schema database. A persistence schema is com-
piler-specific due to the compiler-specific allocation
of the hidden pointers within the objects, but not ma-
chine-dependent, as the persistence schema uses only
symbolic information.?”* The current SMRC imple-
mentation uses IBM’s C Set++* compiler.”

The application schema source file that follows shows
the flagging of the shipping application in Figure 1A.
The purpose of the file essentially is to include the
header files with the C+ + class definitions and se-
lectively flag those classes (within a dummy function
just for compilation purposes) that might have per-
sistent objects. Similar approaches to capture C+ +
class information are pursued by OODBMSs. The use
of additional flagging macros in an application
schema source file provides a way for users to plug
in user-provided functions for unions, or repeating
functions for dynamic arrays. The overall schema
compilation process is described in Reference 10.

#include “smrc_macros.h”

#include “shipping.h”

void dummy () {
SMRC_TYPE (shipment);
SMRC_TYPE (overseas);

I3

Application programming interface for ADT map-
ping. In this section we describe the SMRC ADT map-
ping API, and employ a more comprehensive version
of the previously introduced shipping application to
demonstrate the use of the APL

SMRC tracks type and relocation information for
pointer swizzling purposes. The type information
provides the pointer offsets to achieve addressabil-
ity of the pointer data members in the objects. The
relocation information provides the basics to calcu-
late the load differences of the objects required for
pointer swizzling. Since the database system does not
know about C+ + class definitions (and C+ + does
not support run-time type information), SMRC at-
taches type tags to the objects before they are stored
in the database system. After an object is retrieved

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996

from the database, all the internal pointers (the hid-
den pointers in the ADT mapping) within the objects
are swizzled before object usage. The external point-
ers are swizzled transparently at dereference time.

The following SMRC API calls provide the required
functionality for type information and pointer swiz-
zling:

s Type tag C+ + object: smrc_tag (objptr, type_name,
schema_name, hv). Before an object is stored, smrc_
tag() is called to copy the object referenced by objptr
into the SQL host variable hv, deswizzle the (hid-
den) pointers, and type-tag the object copy. Type_
name and persistence schema_name are used by
SMRC to create a unique type tag. The tag call is
required for newly created objects (created by the
standard C+ + new operator) as well as updated
retrieved objects, as SMRC performs deswizzling
of pointers in this call. After tagging an object, the
object in the SQL host variable is stored in the da-
tabase via an SQL insert or update statement.

» Swizzle pointers: swizzle (hvptr). Objects are re-
trieved from the database into an SQL host vari-
able hvptr via select statements. The swizzle() call
takes as an input a pointer to the retrieved (un-
swizzled) object in the host variable, swizzles the
object, and returns a pointer to the swizzled C++
object.

¢ Get the type of an object: smrc_object_type (hvptr).
When object instances of a class hierarchy are
stored in a column, it is useful to be able to dynam-
ically identify the type of a particular object in the
column. The smrc_object_type() call returns a char-
acter string identifying the type of the object cur-
rently retrieved into the SQL host variable hvptr.

The following steps show the use of the ADT map-
ping API for the shipping sample application in Fig-
ure 1A. We start with the database description and
then insert and retrieve objects to and from the ta-
ble.

Create table/add additional column. The objects of
the C+ + class hierarchy in Figure 1A are stored in
a table column delivery based on a distinct type. A
distinct type essentially is a renamed built-in data-
base type.® The size of the distinct type is the size
of the largest class in the class hierarchy (plus 4 bytes
for the type tag). The following statements can be
performed in dynamic SQL in order to determine the
830 varchar size (size of class overseas + 4) and de-

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996

fine the table:

create distinct type shipping as varchar (830)
for bit data with comparisons;

create table orders (ordno int, prodno int, ...,
delivery shipping);

If orders is an already existing (populated) table, col-
umn delivery is simply added to it by modifying the
table.

Register class methods as UDFs. Class methods to be
used within SQL must be registered with the RDBMS.
As the class methods cannot directly be registered
as UDFs—they do not follow the SQL UDF calling con-
ventions—SMRC generates external UDF gateway
functions for each class method to be used within
SOL statements. The signature of a UDF gateway func-
tion has the appropriate UDT as an input type and
the result type of the class method as an output type.
The implementation of the UDF gateway function
obeys the SQL UDF calling conventions. It first
swizzles the input, and then calls the original class
method.

create function time (shipping)
returns integer
language ¢
external name '/u/reinwald/udf_lib!time’;

Insert objects into the database. Objects are created
via the standard C+ + new operator and inserted into
the database via the standard SQL insert statement.*
In the sample smrc_tag call, “overseas” is the type
name within the “shipping” application schema. An
object is created, tagged in an SQL host variable hv
of an appropriate size and inserted into a table.

struct {unsighed short len; char data[830];} hv;
overseas “delptr = new overseas();

smrc_tag (delptr,’overseas’, shipping’,&hv);
exec sgl insert into
orders (ordno, prodno, quantity, delivery)
values (10, 20, 10, :hv);

Retrieve objects from the database. Objects are re-
trieved using the standard SQL select statement. We
do not impose any additional restrictions on such
statements. These statements can be dynamic, or
static for better performance, and can flow across
any supported APL such as DRDA,* ODBC,* etc. They
can also be interactive or embedded in applications.

REINWALD ET AL. 179

The SMRC swizzle call may be used from within the
client application after retrieving the C++ object
into an SQL host variable, or from within the UDF
gateway implementation. The following two exam-
ples demonstrate both cases: in the first example, a
delivery object is retrieved into an SQL host variable
and swizzled on the client side. As the object can be
either of C+ + type shipment or overseas, proper type
casting needs to be done. The second example shows
the use of the time UDF gateway function; thus, the
swizzle call is hidden in this UDF. The UDF runs on
the server side.

Case 1: Client side swizzling.

select ordno, delivery
into :ordno, :del_obj
from orders
where quantity > 10;
if (!stremp{smrc_object_type(&del_obj),
“shipment”)) {
dp = (shipment *) swizzle(&del_obj);
} else {
dp = (overseas *) swizzle(&del_obj);

b
Case 2: Server side swizzling.

select ordno, prodno, time(delivery)
into :ordno, :prodno, :time_delivery
from orders

where quantity > 10;

Application programming interface for BLOB map-
ping. The API for the BLOB mapping essentially con-
sists of the methods of the SMRC heap class. The
SMRC heap class provides the necessary methods to
both manage objects in memory heaps and swizzle
the pointers in the objects after retrieval from disk.
Given that the objects within a SMRC heap are stored
and retrieved in one database operation, it is rea-
sonable to consider a SMRC heap as the unit of per-
sistence as well as the swizzle unit.

A SMRC heap is associated with a persistence schema
at heap creation time. Many different heaps with dif-
ferent schemata can exist in an application simul-
taneously. An application can allocate objects di-
rectly in the SMRC heap, via the SMRC overloaded
new operator, or it can alternatively create C+ + ob-
jects in its own heap and then later call the SMRC
“deep object copy” routine, which copies a complex
network of referenced objects into a SMRC heap (sce

180 REINWALD ET AL.

Reference 10 for details). Each SMRC heap has a root
object (or, potentially multiple root objects) that
gives the application an entry point to the network
of objects within a heap. The entire heap of objects
is stored in binary format in a relational table.

Upon retrieval of a heap in main memory, all the
internal pointers within a heap are swizzled at one
time (“heap-at-a-time” swizzle approach), after
which, a user can navigate through the objects at
main memory speed by dereferencing the C++
pointers. External pointers are swizzled lazily at de-
reference time, when a heap containing a referenced
object gets faulted in by SMRC. Retrieving only a sub-
set of the objects in a heap is not supported, although
the user might have a UDF operating on the heap,
which returns only a value, or a table function which
returns a set of tuples. Currently, table functions are
currently not supported by DB2.

The following API calls are listed in the order of typ-
ical usage in an application:

* Create heaps—A SMRC heap is created with an as-
sociated persistence schema. Objects of class def-
initions within this schema can be allocated in the
created heap. The size of a heap grows dynamically.

smrc_heap *hp = new smrc_heap({'PERT’);

¢ Create and delete objects—Obijects are allocated in
a heap via a SMRC overloaded new operator and
removed from the heap via a cancel method.

// create new object in heap

obj = new (hp, ‘activity’) activity;
// remove existing object
hp—cancel (obj);

* Root objects—Root objects provide entry points
to a heap. They can be set (set_root) and retrieved
(get_root) via heap methods.

hp—set_root (objptr);
objptr = (activity *) hp—get_root();

e Store heaps in database—SMRC heaps comprise
multiple memory segments to allow dynamic
growth. Thus, before a SMRC heap can be stored
as avalue in the database, it must first be “packed”
into a contiguous memory segment. However, the
SMRC heap management avoids this copy step if
the heap is not segmented. As shown in the sam-

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996

Figure 2 External pointer sample application

C++ CLASS DEFINITION:

class shipment {
public: ...
Ref<package> pkg:}

RELATIONAL SCHEMA:
orders | ordno delivery
10 <shipment>
20 <OVErSeas> e w m v o om =
30 <shipment> ol e m o o

APPLICATION PROGRAM:

shipment *sp;

exec sql select prodno, delivery into :pno, :ship_hv
from orders where ordno = 20;
sp = swizzle (&ship_hv);
printf {"Shipment of %i weighs %i", pno, sp->pkg->weight);

- o e 2 _.--% <package>

class package {
public: ...
int weight }

posting | post_no wrapping

1 _.-w <package>

Fld

ple below, SMRC sets up the SQL host variable (hv)
to store the heap into the database (the 500k size
in the declaration of the host variable is required
by the RDBMS for range checking).

sql type is blob(500k) *hv;
hv = hp—pack(); // pack heap hp and setup hv
insert into projects (schedule) values (:*hv);

Retrieve heaps from database—SMRC heaps are re-
trieved from the database into an SQL host vari-
able.

sqgl type is blob(500k) hv;
select schedule into :hv
from projects;

Swizzle heaps—A retrieved heap in a host variable
(hv) is swizzled and assigned to a SMRC heap vari-
able. After this, all the SMRC heap methods can
be applied (e.g., get the entry point of the heap
with hp—get_root()).

smrc_heap *hp;

hp = swizzle (&hv);
objptr = (activity *) hp—get_root();

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996

// Now the application can access objects in the heap
// via (pure) C++ pointer browsing.

Working with external pointers and object caching.
SMRC supports external pointers,** which extend
the scope of pointers and refer to objects stored in
other fields of the same column, other columns in
the same table, and even columns in other tables.
Figure 2 shows an extension of the shipping ADT sam-
ple application. Class shipment contains an external
pointer pkg to class package. The shipment objects
are stored in column delivery of table orders and
the package objects in column wrapping of table
posting. The sample application code first shows re-
trieving and swizzling of a shipment object from the
orders table. From an application programmer’s
point of view, the external pointer pkg behaves ex-
actly like an internal pointer. But in a normal C+ +
application, the dereferencing of the pkg pointer in
the shipment object would cause a segmentation vi-
olation, as the appropriate package object might not
be resident in memory. However, as the pkg pointer
is declared as a SMRC external pointer, SMRC is able
to catch this violation, automatically query the da-
tabase for the referenced package object, swizzle the
retrieved object, and install it in main memory so
that the object can be referenced by C+ +.

REINWALD ET AL. 181

The assignment of external pointers is different from
internal pointers, as additional information is re-
quired, such as the table and column in which an ap-
plication stored the referenced object. This infor-
mation is provided in an assighment method. At as-
signment time, SMRC creates object identifications
(01Ds) and stores them as external pointers, which
are used to fault in the referenced objects.

SMRC supports two different approaches to “declare”
external pointers, and the application programmer
can opt between the two choices as appropriate.

» Template-based approach—An external pointer is
declared within the C++ class definition via a
SMRC-provided Ref template. This approach is like
the ODMG-93 C+ + language binding.*

class shipment {

Ref(package) pkg;
5

* Flagging-based approach—An external pointer is
flagged via a SMRC macro in the application schema
source file.

void dummy () {

SMRC_Ref(shipment, pkg);
¥

In the template-based approach, SMRC uses an over-
loaded dereference operator that checks object res-
idency at dereference time and queries the database
in case of an object fault. The flagging-based ap-
proach uses the ability of the paging hardware to trap
access violations in order to catch object faults at de-
reference time. For the application programmer, the
choice between the template-based or the flagging-
based approach depends on whether the class def-
initions can be modified to use the SMRC Ref tem-
plate and to have a portable application, or to not
modify the class definitions but depend on page pro-
tection in the hardware.

Whether an object is faulted in via the overloaded
dereference operator or via page protection, SMRC
allocates the faulted in objects in an object cache.
From an application programmer’s point of view,
there is no distinction whether an object exists in the
application address space or the object cache, which
is part of the application address space.

182 REINWALD ET AL.

Nevertheless, the application programmer must be
aware of the object cache to exploit its additional
tunctionality. The object cache offers the following
API (we introduce it without the syntax):

* Flush cache—All of the objects in the object cache
are written back into the database and removed
from the cache. This operation is useful at the end
of application execution.

* Save cache—All of the objects in the object cache
are written back to the database, but still exist in
the cache. This operation is useful for saving ob-
ject changes in the database while continuing the
application.

* Register objects in cache—In the event that an ob-
ject is retrieved separately (manually) by the ap-
plication via SQL, it can later on be registered in
the object cache.

* Remove objects from cache—OQObjects can be explic-
itly removed from the object cache. One might use
this to avoid having modifications stored back to
the database during flushing or saving cache.

Implementation

In this section, some of the specifics of implement-
ing SMRC are addressed. We start with an architec-
tural overview and briefly introduce the SMRC heap
manager. The main part of the section is concerned
with pointer swizzling in ADT and BLOB mapping as
well as implementing external pointers.

Implementation overview. SMRC runs under the con-
trol of an RDBMS server and uses the SQL query lan-
guage. This makes it relatively easy to extend exist-
ing relational database applications to use SMRC for
additional storage of C+ + objects and to have the
stored objects be part of an integrated client/server
database solution. Additionally, SMRC benefits from
all the industrial-strength RDBMS features with re-
gard to concurrency control, recovery, etc., of the
underlying database system.

Figure 3 describes the environment one would use
to develop an application with SMRC and an RDBMS,
and shows the road map for this implementation sec-
tion. SMRC can run on the client side as well as on
the server side. Figure 3A shows the SQL API used
by the C+ + application as well as the SMRC APL. The
SMRC schema compiler (not shown in the figure) pro-
vides the required type information for type-tagging
and pointer swizzling. A SMRC heap manager pro-
vides the object clustering functionality for the BLOB
mapping. The cache manager faults ir and allocates

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996

Figure 3 SMRC overview

(A) CLIENT SIDE

Ty C++ APPLICATION

CLASS SMRC AP
LIBRARY HEAP MANAGER
SWIZZLER

CACHE MANAGER

SQL AP

RDBMS
SERVER

(B) SERVER SIDE

C++ APPLICATION
SQL AP
RDBMS
SERVER
T
CLASS
LIBRARY

objects referenced via external pointers. At the server
side (Figure 3B), C+ + objects can participate in SOL
queries by registering the class methods as UDFs.
Since the UDFs are executed on the server side, SMRC
performs pointer swizzling before the methods are
applied.

SMRC heap manager. The SMRC heap manager is
the key component for the BLOB mapping. It sup-
ports the functionality of a full-fledged heap man-
ager on the client side, including main memory man-
agement of all the objects that should be stored
within the same field of a relational table. A SMRC
heap is segment-oriented and grows dynamically in
size.

SMRC maintains two auxiliary data structures for the
management of the objects within a heap: a type ta-
ble and an object table for each type. The type table
refers to the complete type description in the schema
database and thus provides the heap manager with
the required object layout information. The type ta-
ble is built at heap creation time and is related to
the persistence schema specified at heap creation
time. The object table for each type is updated dur-
ing each object allocation or deletion in a heap. The
object tables grow dynamically. The entries in the
object table refer to the objects within the heap. Type

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996

table and object tables are persistent, along with the
objects in a heap. They provide addressability of each
object and pointer within the objects in a heap, which
is required for pointer swizzling. Thus, a heap is
completely self-contained; it can be shipped in
client/server environments and interpreted at each
destination.

Pointer swizzling. When objects are retrieved from
disk and reloaded into main memory, all main mem-
ory pointers within the objects must be swizzled due
to object relocation. SMRC supports three different
approaches for pointer swizzling—all three ap-
proaches are implemented to support either the ADT
mapping, the BLOB mapping, or external pointers.

* Deswizzle pointers—All the pointers within an ob-
ject are deswizzled, i.e., the current object address
is subtracted from all the pointer addresses before
an object is saved on disk, thereby making them
offsets to the beginning of the object. After object
retrieval, the pointers are swizzled by adding the
new object address to all the pointer addresses.
Save previous object load address—The previous ob-
ject load address is saved on disk along with the
object. After object retrieval from disk, the point-
ers are swizzled by the difference between the pre-
vious and the new object load address.

REINWALD ET AL. 183

* Object identifications (OIDs)—Main memory point-
ers are replaced by persistent OIDs, which are in-
dependent of the current location of a referenced
object in main memory. A referenced object can
always be identified with an OID, either in main
memory or on disk.

For the ADT mapping, we have implemented the de-
swizzle approach, as it is the more efficient way in
terms of memory space (the old object load address
does not have to be saved along with the objects on
disk). Deswizzling happens when an object is type-
tagged with the SMRC type-tag call introduced in the
ADT mapping API. The type tag is used after object
retrieval to swizzle the pointers according to the new
object location, i.e., we add the address of the new
object location to the offsets in the deswizzled ob-
ject. For the ADT mapping, swizzling is performed
one object at a time.

For the BLOB mapping, we basically apply the sec-
ond approach. However, it is not necessary to save
the previous load address for all the objects in a heap,
as it is sufficient to save just the load address of the
entire heap itself. The relative address of an object
to the load address of a heap remains the same, as
a heap is relocated as a whole. Saving the previous
load address of a heap is the more efficient swizzle
approach for the BLOB mapping than traversing and
deswizzling all the objects in a heap. This approach
is similar to the memory-mapped segments in Ob-
jectStore,* of course without doing memory-map-
ping. In ObjectStore, the pointers in the pages of a
segment are swizzled on the basis of the relocation
of the segment. In the case of SMRC, a whole heap
of objects is loaded by the application into main
memory, and SMRC swizzles the internal pointers of
all the objects in a heap with the heap load address
as a reference point. The type table and object ta-
bles in a heap are scanned to gain addressability of
the objects, and the associated type information pro-
vides the offset information of the pointers within
the objects. Thus, the SMRC swizzler is able to di-
rectly address and swizzle all the pointers in a heap
without any search or navigational overhead.

For external pointers, SMRC performs pointer swiz-
zling based on OIDs. If an object is referenced via an
external pointer and the referenced object is not yet
in main memory, the referenced object is faulted in
and the location of the object is used as a main mem-
ory pointer (swizzled pointer). Details on swizzling
external pointers are described later.

184 REINWALD ET AL.

The previously described pointer swizzling ap-
proaches are used for user-defined pointers. The
swizzling of virtual function table (vtable) pointers
(the same approach is applied for function pointers)
is described in the next section. Reference 10 clab-
orates on incorporation of user-provided functions
to swizzle unions and dynamic arrays.

Hidden pointers. C++ compilers implement dy-
namic dispatching and substitutability* via two types
of “hidden” pointers: vtable pointers and virtual base
offset pointers. Figure 4 shows the object layout of
the shipping class hierarchy introduced in Figure 1A
and highlights the compiler-introduced vtable and
virtual base offset pointers. The hidden pointers are
introduced by the C++ compiler for class defini-
tions that contain virtual functions or virtual base
classes. Just like any normal pointer, these hidden
pointers need to be swizzled when the object is re-
located in main memory. The location of the hid-
den pointers within an object depends on the spe-
cific C++ compiler. At this point, the SMRC schema
compiler is compiler-dependent (IBM’s C Set++),
as it relies on the C++ compiler to specify the off-
sets of the hidden pointers.

Virtual base offset pointers refer within an object and
can be swizzled using conventional methods. How-
ever, the vtable pointers (pointers to the table that
implements dynamic dispatching of virtual functions)
depend on the allocation of the current instance of
the vtable in an application and cannot be swizzled
on the basis of object relocation. The best solution
would be to let the C++ run-time system swizzle
the hidden pointers, since it knows exactly how to
set these pointers. Unfortunately, C+ + sets the hid-
den pointers only when an object is created with the
new operator as part of the constructor execution
and does not export a callable “swizzle” function. A
thorough discussion of the whole hidden pointers is-
sue can be found in Reference 37.

SMRC swizzles the vtable pointers by allocating
dummy objects with a correct vtable pointer (one that
was created in the current instance of the applica-
tion) and “steals” the correct value of the vtable
pointer from this object. The SMRC schema compiler
provides the location of the vtable pointer in an ob-
ject. This approach is similar to the ObjectStore ap-
proach®® that maintains a hash table, mapping type
names into vtable addresses.

The table is created during the ObjectStore internal
schema generation time at application startup time.

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996

Figure 4 Main memory layout of C++ objects

SHIPMENT 0 | | vTABLE T

4| | DATE
8 | 1 ITINERARY[O]
48 | | ITINERARY]T]

OVERSEAS 0 VTABLE

4| | VBASE
OVERSEAS ___|
PART 8 VBASE

12 TCA I
VIABLE »

SHIPMENT ___| DATE
PART ITINERARY[0]

Ontos’ approach (Vbase), making the vtables per-
sistent as well, does not seem to be appropriate.®
A constructor approach is exploited by O++
(Ode),® that introduces a “faked” new operator
(does not allocate memory). The new operator trig-
gers the execution of a constructor that fixes all the
hidden pointers. As no data members should be ini-
tialized with the constructor, all the default class con-
structors of an application have to be rewritten in
order to distinguish whether they are used for pointer
fixing or usual object initialization. This approach is
not useful for SMRC, as it would require a recom-
pilation of parts of a class library, although the con-
structor rewriting can be triggered automatically by
a C++ precompiler.

Object cache and OIDs. The object cache, similar
to the SMRC heap (a superset, really), is part of the
application address space and can grow dynamically
in size. SMRC uses the object cache to manage au-
tomatically faulted in objects via external pointers.
SMRC maintains an in-memory object table (hash ta-
ble) with the object identifications (OIDs) of all the
loaded objects in an object cache. An OID uniquely
identifies an object in the database and thus can be
used for the following two purposes:

1. Object residency checks—Before an object is faulted
in automatically, SMRC must check whether or not
the referenced object is already loaded in the ob-
ject cache.

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996

2. Object faulting—When an object must be faulted
in, SMRC needs to be able to retrieve it from the
database.

SMRC launches an “under the cover” SQL state-
ment to retrieve objects from the database:

select (object_column)
from (table)
where (predicate)

The SQL statement takes the OID as an input, which
is kept along with the external pointer causing the
object fault. To provide all the input for the select-
statement, an OID contains the following informa-
tion (20-byte structure):

OID = {table_id, column_id, row_id}

Table_id and column_id are created out of the data-
base catalogs for the tables and columns in a data-
base. Database catalog information is cached to
quickly translate the table_ids and column_ids in OIDs
to the corresponding table and column names for
the setup of the SQL statements. A row_id is similar
to a system-generated primary key, but is not reus-
able. It uniquely identifics a record within a table
and contains physical information to speed up da-
tabase access.*! By having a row_id as part of the OID
in an external pointer, the faulting in of referenced
objects can be very fast.

REINWALD ET AL. 185

Swizzling external pointers. SMRC swizzles external
pointers in a “lazy” fashion, depending on whether
the template-based approach or the flagging-based
approach has been chosen to declare an external
pointer. In the template-based approach, SMRC pur-
sues “swizzling on discovery.” *** Unswizzled point-
ers in loaded objects are swizzled as soon as they are
discovered, i.e., during assignment or pointer deref-
erencing. For this purpose, the Ref template imple-
ments overloaded assignment and dereference op-
erators. The approach avoids having unswizzled
pointers in local variables and unnecessary object
loading. In the flagging-based approach with page pro-
tection, SMRC supports “swizzling at dereference
time,” as only pointer dereferencing can be trapped
and not the assignment of an unswizzled pointer to
a local variable. At object load time, SMRC swizzles
an external pointer to a protected page and installs
a signal handler to catch the segmentation violation
at dereference time (page protection traps).**

Similar page protection approaches are implemented
in ObjectStore,* Texas Persistent Store,* and
QuickStore.* However the SMRC implementation
differs in two important aspects from the above ap-
proaches:

* 0IDs of different objects can share protected pages
for trapping purposes—When SMRC loads an ob-
ject with external pointers, it stores the object iden-
tifier of the target objects for the external pointer
on a protected page (with other object identifiers).
On a protection trap, the SMRC handler knows the
object identifier on the protected page (based on
its location on the page) and is therefore able to
query the database (as previously explained). The
retrieved object is not allocated on the protected
page, but in the object cache, which is not page
protected (see the next bullet on how to assign the
address of the faulted-in object to the fault-caus-
ing pointer). By putting many different OID targets
on a single protected page we avoid “the fan-out
problem,” where whole page frames would be al-
located for each external pointer in memory.

* Reverse reference lists (RRLs)—SMRC uses RRLs to
track all references to an object. An RRL is a list
of back pointers to objects (actually to pointers
within objects) that reference the same object, i.c.,
the same object identifier allocated in a protected
page. Using RRLs, SMRC is able to (1) redirect the
fault-causing pointer to the address of the faulted
in object during protection trap handling, and (2)
avoid additional page faults caused by other ob-
jects that refer to the same object. Consequently,

186 REINWALD ET AL.

irrelevant residency checks are avoided and per-
formance is improved. Additionally the RRLs can
be used for garbage collection (reallocating unused
memory) in the object cache. Given their useful-
ness, we feel that the time and space overhead for
maintaining RRLs is justified.

Comparing the two external pointer approaches, the
page protection approach makes object faulting en-
tircly transparent to the compiled code, as opposed
to the overloaded dereference operator that requires
source code modification to define external point-
ers. On the other hand, fielding a page protection
trap from the operating system is an expensive op-
eration. Studies by Hosking and Moss*"* show that
software solutions can be more efficient. Detailed
performance comparisons and a discussion of the
trade-offs between software dereferencing and mem-
ory-mapped storage systems with page protection
traps (E versus QuickStore) can be found in Ref-
erence 46. The “unduly large granularity of virtual
memory pages”—as stated by Hosking and
Moss*’—is not a problem in SMRC, as the virtual
memory primitives are only used for page protec-
tion traps and the protected pages can serve many
different external pointers.

Performance

We evaluated the performance of SMRC through ex-
periments that were implemented on an IBM RISC
System/6000* with 128 megabytes of main memory
running AIX 3.2.5 and DB2 Version 2.1. Client ap-
plications and the database server run on the same
machine. Here we present some of our experimen-
tal results for the ADT and BLOB mapping.

ADT mapping performance. With regard to space
efficiency, SMRC requires only 4-byte storage over-
head for the type tag of each object—a type tag is
stored as part of an object. With regard to the per-
formance of storing the objects, the type tag oper-
ation requires a memory copy (the memcpy routine)
of the object to get the data into the SQL host vari-
able, plus an address assignment operation for each
deswizzled vbase pointer. If an application uses the
SMRC overloaded new operator, copying of the ob-
ject is not necessary, as SMRC directly allocates the
object along with the required type tag. For the SOL
insert operation of the host variable, SMRC relies on
the performance of the applied database operation.

For object retrieval, there is the performance of the
select statement and the swizzle operation itself. The

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996

swizzle operation costs an address assignment for
each vbase pointer as well as for each vtable pointer.
The SMRC internal persistence schema with the class
layout description is built at startup time. It is global
information that is used by all swizzle operations in
an application.

We have not yet run any commercial relational or
de facto 00 benchmarks, as none are specifically
geared to measure the unique set of features in SMRC.
Relational benchmarks do not exploit the SMRC tech-
nology, and 0O benchmarks do not incorporate the
unique SMRC functionality of having coexistence be-
tween relational and object-oriented data. However,
to gain an understanding of our relative performance
to OODBMSs, we are preparing to run the 007 bench-
mark.

In the meantime, we developed the following exper-
iment. We compared the SMRC ADT mapping ap-
proach (which maps an object to a single column)
to an approach that completely “flattens” the C+ +
class definitions and stores all the data members in
additional table columns.” In both cases, however,
we required that the language object be available so
that it can be passed to the UDF (time) to compute
the query predicate. In the SMRC case, the object can
simply be retrieved and passed to the time method.
In the flattened case, however, the object must be
reassembled before it can be passed to the time
method (this work of reassembling the object is done
in the UDF before the method call).”!

We populated the orders table from Figure 1A with
2000 C+ + objects and executed a query that did a
table scan and invoked the time method on the C+ +
objects. We made the query result empty, to factor
out the client/server communication costs and thus
focus on the overhead of running SMRC in the server.

Table 1 shows the performance of the two queries.
In both cases—the SMRC approach and the class flat-
tening approach—the same original C++ time
method was executed as part of the UDF invocation.
The experiment shows that SMRC is able to preserve
the C++ object nature; C+ + methods can be ap-
plied after object retrieval from the database and ob-
ject relocation in main memory. SMRC also performs
slightly better (approximately 7 percent in the ex-
periment) in comparison to a class flattening ap-
proach. Before conducting this experiment, we
thought that the SMRC approach might be faster than
a normalized approach, mostly because of the over-
head in restoring the objects from the normalized

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996

Table 1 ADT mapping performance results

Approach Query (scans Elapsed
2000 tuples) Time
SMRC ADT select prodno, quantity 2.66 sec.
mapping from orders
where time (delivery) = 0
Class select prodno, quantity 2.89 sec.
“flattening” from orders where time
(...32 parameters...) = 0
Table 2 BLOB mapping performance results
Type information type table entries 230
pointer definitions 610
user-provided 22
functions
Sample query heap size 85 kilobytes
number of objects 950
swizzled pointers 4300
elapsed time 83 milliseconds

tables. However, this experiment compares the SMRC
approach against an unnormalized table, and SMRC
was still faster.

BLOB mapping performance. The BLOB mapping
approach was applied in a nontrivial sample appli-
cation.!® The persistence schema contained more
than 160 SMRC flagged class definitions with approx-
imately 260 persistent pointer definitions and sev-
eral definitions for unions, dynamic arrays, and func-
tion pointers (see Table 2). The type table in a heap
had more than 230 type entries (it included the em-
bedded types) with more than 610 pointer definitions
(including the transient pointers). A typical heap size
contained approximately 950 objects that allocated
85 kilobytes of object memory and contained 4300
swizzled pointers. Given the size of the application,
swizzling of the entire heap was completed in a re-
spectable 83 milliseconds of elapsed time. If we were
to flatten this data rather than use the BLOB map-
ping, the equivalent relational operation would in-
volve multiple joins across many tables to reassem-
ble the C++ objects. Actually, the worst case of
normalizing all the data types—which could result
in 160 tables (and could require a 160-way join)—
would probably cause the database system to run out
of memory.

In contrast to the ADT mapping, which maps an ob-
ject to a single container, the BLOB mapping maps
a heap of (possibly) heterogeneous objects to a sin-

REINWALD ET AL. 187

gle container. It is this primary difference (with more
detail provided below) that gives the BLOB mapping
better performance:

* No deswizzling—As the old heap load address is
kept in the heap header information, no deswiz-
zling of the pointers within objects of a heap is re-
quired. Therefore, the storage operation of a heap
is confined to just loading the entire heap of ob-
jects into a column of a table.

* Direct addressability for pointer swizzling—All of the
pointers can be swizzled without search or navi-
gational overhead. The swizzle operation itself con-
sists of a single addition and assignment operation.
Obviously, if the heap is loaded in its original lo-
cation, then no pointers need to be modified (ex-
cept the vtable pointers).

o Cluster of objects—Since a heap represents a self-
contained set of objects and references (external
pointers are treated differently), the entire heap
can be adjusted in one swizzle call. No further 1/0
or memory allocation operations would be re-
quired to additionally load or swizzle internally ref-
erenced objects.

Summary and outlook

In this paper, we have described an approach to mak-
ing C+ + persistent using an RDBMS. Although many
bridge technologies between object-oriented and re-
lational systems have recently appeared in research
publications and product lists, the SMRC approach
is still unique, as it pursues a tight language binding
by storing objects in the same binary format in which
they were created in the host language. As this bi-
nary format is a “black box,” the database system can
only provide container functionality, i.e., storage
management, and not use the data contents directly
in most relational operations, although we have dis-
cussed alternatives that use UDFs to expose parts of
the object. SMRC does not require a new object model
or database language for persistence, but instead sim-
ply employs C++ and the industry standard SQL.
This approach preserves the object-oriented lan-
guage features of C+ +, such as inheritance and sub-
stitutability, while adding persistence and object re-
location. Objects are stored via the ADT or BLOB
mappings, as appropriate for the application, and can
be cross-referenced via external pointers. Our ap-
proach is compatible with class libraries, as it does
not require a modification of the class definitions to
inherit persistence properties from a common root
class. Thus, third party C+ + class library software
can be used on both client and server sides.

188 REINWALD ET AL.

Although our general design is complete, there are
still some implementation details missing. A primary
issue is heterogencous portability. Currently, the
SMRC schema compiler works only with the IBM AIX
C Set++ compiler. However, as the schema com-
piler generates schema information as C+ + source
code, the produced schema files then can be used
on any platform. Furthermore, SMRC requires a ho-
mogeneous client/server platform for the object for-
mat. Unfortunately, the problem of building a
general-purpose object translator (including the
translation of the method code) across multiple
platforms is extremely difficult. Interestingly, the
solution may lic in a different language such as
Java**® a new object-oriented programming
language offered by Sun Microsystems, Inc. Java,
an interpreted language, is machine-independent
and can be used to create stand-alone applications
or program fragments. Java methods can easily
be moved across platforms to any machine that
has a Java interpreter. We are exploring this
possibility.

A secondary issue is the implementation of external
references. One of our goals was to work with ex-
isting class libraries. Unfortunately, our preferred so-
lution (software swizzling using smart pointers) is not
compatible with existing class libraries—the code
must be recompiled to use the overloaded derefer-
ence (—) operator. Only the less preferred, platform-
dependent solution (the page-fault method) is truly
compatible with existing class libraries. We are still
battling with this dilemma. Furthermore, we must
explore other kinds of external references, such as
uniform reference locators (URLs) and OLE refer-
ences.

Acknowledgments

Our thanks to Patrick Gainer, V. Srinivasan, and Ste-
fan Dessloch for their help in preparing this paper.
Mike Carey gave us valuable comments to present
and relate our work to the state of the art.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of CI Labs, Microsoft Cor-
poration, Object Design, Inc., 02 Technology, Servio Corpora-
tion, Versant Object Technology, UniSQL, Inc., Illustra Infor-
mation Technologies, Inc., Persistence Software, Inc., Subtle
Software, Inc., Lotus Development Corporation, or Sun Micro-
systems, Inc.

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996

Cited references and notes

1.

10.

il.

12.

13.

14.

15.

16.

17.

18.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley Publishing Co., Reading, MA (1995).

. R. Cattell, Object Data Management: Object-Oriented and Ex-

tended Relational Database Systems, Addison-Wesley Publish-
ing Co., Reading, MA (1991).

. Communications of the ACM, R. Cattel, editor of special sec-

tion on next-generation database systems 34, No. 10, 30-120
(October 1991).

. A. Kemper and G. Moerkotte, Object-Oriented Database Man-

agement: Applications in Engineering and Computer Science,
Prentice Hall, Englewood Cliffs, NJ (1994).

. W.Kim, “UniSQL/X Unified Relational and Object-Oriented

Database System,” Proceedings of the SIGMOD International
Conference on Management of Data (Minneapolis), ACM
Press, New York (1994), p. 481.

. Hlustra User’s Guide, lllustra Server, 2.1 edition, Illustra In-

formation Technologies Inc., 111 Broadway, 20th floor, Oak-
land, CA 94607 (June 1994).

. D. Chamberlin, Using the New DB2: IBM’s Object-Relational

Database System, Morgan-Kaufmann, San Francisco, CA
(1996).

. Database Language SQL3, J. Melton, Editor, American Na-

tional Standards Institute (ANSI) Database Committee
(X3H2), (August 1994).

. R. Ananthanarayanan, V. Gottemukkata, W. Kafer, T. Leh-

man, and H. Pirahesh, “Using the Co-Existence Approach
to Achieve Combined Functionality of Object-Oriented and
Relational Systems,” Proceedings of the SIGMOD International
Conference on Management of Data (Washington, DC), ACM
Press, New York (1993), pp. 109-118.

B. Reinwald, S. Dessloch, M. Carey, T. Lehman, H. Pirahesh,
and V. Srinivasan, “Making Real Data Persistent: Initial Ex-
periences with SMRC,” Proceedings of the International Work-
shop on Persistent Object Systems, M. Atkinson, D. Maier, and
V. Benzaken, Editors, Tarascon, France, 1994, Workshops
in Computing, Springer-Verlag, Berlin (1995), pp. 202-216.
SMRC (shared memory-resident cache) is commonly pro-
nounced “smarc,” and should be on CompuServe™ under
the GO DB2 area. Contact the authors for more informa-
tion.

We must honestly say that we “mostly” achieve these goals
because although our general design does achieve them, our
prototype implementation only comes close. However, parts
of the SMRC implementation are already used in the DB2
common server for storage and retrieval of C+ + objects used
in its sophisticated visual explain tool. We point out the dif-
ferences between the SMRC design and implementation at
the appropriate points in this paper.

C. Date, An Introduction to Database Systems, sixth edition,
Addison-Wesley Publishing Co., Reading, MA (1995).

M. Loomis, “Object and Relational Technologies,” Object
Magazine 35-43 (Jan. 1993).

Persistence User Manual, 1.2 edition, Persistence Software Inc.,
1650 S. Amphlett Blvd., Suite 100, San Mateo, CA 94402
(1993).

Subtleware for C++/SQL: Product Concepts and Overview,
Subtle Software Inc., 1 Albion Road, Billerica, MA 01821
(1994).

D. Linthicum, “Rethinking C++,” DBMS Magazine 8, No.
5, 1-2 (1995).

SOMobjects, User’s Guide, SC23-2680, IBM Corporation
(June 1993); available through IBM branch offices.

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996

19

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34,

35.

36.

. C. Lau, Object-Oriented Programming Using SOM and DSOM,
Van Nostrand Reinhold, Thomson Publishing Company, New
York (1994).

R. Sessions, Object Persistence—Beyond Object-Oriented Da-
tabases, Prentice Hall, Englewood Cliffs, NJ (1996).

L. DeMichiel, D. Chamberlin, B. Lindsay, R. Agrawal, and
M. Arya, “Polyglot: Extensions to Relational Databases for
Sharable Types and Functions in a Multi-Language Environ-
ment,” Proceedings of the International Conference on Data
Engineering (Vienna), IEEE Computer Society, New York
(1993), pp. 651-661.

H. Pirahesh and C. Mohan, Evolution of Relational DBMSs
Toward Object Support: A Practical Viewpoint, Research Re-
port RJ8324, IBM Almaden Research Center, 650 Harry
Road, San Jose, CA 95120 (1991).

The class library with the method implementation has to be
compiled for the same platform, on the client and server side.
Otherwise, an object conversion (from the originating client
representation to the server representation) is required to
incorporate different architectures.

The name “BLOB mapping” has been chosen, as the fields
of the relational table are of database type BLOB. The BLOB
type is a special form of LOB. In DB2, it can contain up to
two gigabytes of binary data.?

T. Lehman and P. Gainer, “DB2 Lobs: The Teenage Years,”
Proceedings of the 12th International Conference on Data En-
gineering (New Orleans), IEEE Computer Society, New York
(1996), pp. 192-199.

Application Program Interface (API) User Guide Release 4.0,
Lotus Development Corporation, 55 Cambridge Parkway,
Cambridge, MA 02142 (1995).

Object-level incompatibility is created by competing compiler
vendors, and could be solved by language-neutral develop-
ment environments like SOM (System Object Model). 1819
SOM supports the building and packaging of binary class li-
braries so that object classes produced by one C++ com-
piler can be used from C++ programs (or even other lan-
guages) built with another compiler. An interpreted language
such as Java®® might also be able to solve the heterogeneity
problem.

A. Van Hoff, S. Shaio, and O. Starbuck, Hooked on Java, Ad-
dison-Wesley Publishing Co., Reading, MA (December 1995).
C Set + + for AIX/6000, User’s Guide, SC09-1605, IBM Cor-
poration (1993); available through IBM branch offices.
Typically, users store many columns with one SQL insert state-
ment, including the C++ object column. This is important
for performance. SQL even allows multiple record inserts,
resulting in better performance due to more set-oriented pro-
cessing.

M. Zimowski, “DRDA, ISO RDA, X/Open: A Comparison,”
Database Programming & Design, 54—61 (June 1994).

R. Orfali, D. Harkey, and J. Edwards, Essential Client/Server
Survival Guide, Van Nostrand Reinhold, Thomson Publish-
ing Company, New York (1994).

In C+ +, a similar concept to external pointers is called smart
pointers, because they behave more intelligently and perform
additional work compared to normal C++ pointers.*

M. Ellis and B. Stroustrup, The Annotated C++ Reference
Manual, Addison-Wesley Publishing Co., Reading, MA
(1990).

R. Cattell, The Object Database Standard: ODMG-93, Morgan-
Kaufmann, San Francisco, CA (1994).

S. White and D. Dewitt, “A Performance Study of Alterna-
tive Object Faulting and Pointer Swizzling Strategies,” Pro-

REINWALD ET AL.

189

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

ceedings of the Conference on Very Large Data Bases (VLDB),
Vancouver, Canada (1992), pp. 419-431.

A. Biliris, S. Dar, and N. Gehani, “Making C+ + Objects Per-
sistent: The Hidden Pointers,” Software—Practice and Expe-
rience 23, No. 12, 1285-1303 (1993).

C.Lamb, G. Landis, J. Orenstein, and D. Weinreb, “The Ob-
jectStore Database System,” Communications of the ACM 34,
No. 10, 50-63 (1991).

T. Andrews, The Vbase Object Database Environment, A. Car-
denas and D. McLeod, Editors, Research Foundations in Ob-
ject-Oriented and Semantic Database Systems, Prentice-Hall,
Inc., Englewood Cliffs, NJ (1990).

R. Agrawal, S. Dar, and N. Gehani, “The O+ + Database
Programming Language: Implementation and Experience,”
Proceedings of the International Conference on Data Engineer-
ing (Vienna), IEEE Computer Society, New York (1993), pp.
61-70.

The row_id consists of a temporary and a permanent part.
The temporary part is used as a hint only. If the referenced
object is part of a table that is reorganized, the record may
get a new row_id. In this case, the permanent part of the
row_id is used to find the record. The temporary and per-
manent part of a row_id might be implemented as rids
(record ids) in relational databases.

J. Moss, “Working with Persistent Objects: To Swizzle or Not
to Swizzle,” IEEE Transactions on Software Engineering 18,
No. 8, 657-673 (1992).

Many operating systems provide primitives for memory map-
ping, manipulation of page protection, and setting up of sig-
nal handlers to be invoked in the event of an access violation
(e.g., mmap, mprotect, and sigaction*). In this way, the abil-
ity of the paging hardware to trap access violations can be
exploited by systems like SMRC.

AIX General Programming Concepts, SC23-2205, IBM Cor-
poration (1993); available through IBM branch offices.

P. R. Wilson and S. V. Kakkad, “Pointer Swizzling at Page
Fault Time: Efficiently and Compatibly Supporting Huge Ad-
dress Spaces on Standard Hardware,” Proceedings of the In-
ternational Workshop on Object Orientation in Operating Sys-
tems (Paris, France), IEEE Computer Society, New York
(1992), pp. 364-377.

S. White and D. DeWitt, “QuickStore: A High Performance
Mapped Object Store,” Proceedings of the SIGMOD Interna-
tional Conference on Management of Data (Minneapolis),
ACM Press, New York (1994), pp. 395-406.

A. Hosking and E. Moss, “Protection Traps and Alternatives
for Memory Management of an Object-Oriented Language,”
Proceedings of the 14th Symposium on Operating Systems
Principles (Asheville, NC), ACM Press, New York (1993),
pp. 106-119.

A. Hosking and E. Moss, “Object Fault Handling for Per-
sistent Programming Languages: A Performance Evaluation,”
Proceedings of the International Conference on Object-Oriented
Programming Systems, Languages, and Applications (Wash-
ington, DC), ACM Press, New York (1993), pp. 288-303.
M. Carey, D. DeWitt, and J. Naughton, “The OO7 Bench-
mark,” Proceedings of the SIGMOD International Conference
on Management of Data (Washington, DC), ACM Press, New
York (1993), pp. 12-21.

It was awkward to program this case, as we had to expose
private data members. We could not keep inheritance and
C++ enumerated types, and we flattened out arrays and re-
placed pointers by indices. For performance, however, this
seemed to be the fastest approach to store the data in re-
lational tables.

190 REINWALD ET AL.

51. For fairness, we also plan to run the test where the flattened
object can use one or more attributes to answer the query
directly, without requiring the C++ object to be reassem-
bled first.

Accepted for publication December 22, 1995.

Berthold Reinwald /BM Research Division, Almaden Research
Center, 650 Harry Road, San Jose, California 95120 (electronic mail:
reinwald@ almaden.ibm.com). Dr. Reinwald has been a research
associate at the IBM Almaden Research Center since December
1995, joining IBM in July 1993 as a postdoctoral fellow. He de-
signed and implemented a persistent object system on top of DB2
Common Server, and was involved in the development of IBM’s
Visual Explain™ tool as part of DB2 Common Server. Dr.
Reinwald has significantly contributed to the area of workflow
management, and has been active in several areas of object-ori-
ented languages and systems. His recent research activities cover
several aspects of workflow and data management systems, in-
cluding transactions, distributed architectures, communication in-
frastructures, object-oriented extensions, and persistence. Dr.
Reinwald received a Ph.D. in computer science from the Uni-
versity of Erlangen-Niirnberg in 1993 (best Ph.D. thesis award
from the university). He is the author and coauthor of several
conference and journal papers, and has published a book about
workflow management (in German).

Tobin J. Lehman IBM Research Division, Almaden Research Cen-
ter, 650 Harry Road, San Jose, California 95120 (electronic mail:
toby@almaden.ibm.com). Dr. Lehman joined the IBM Almaden
Research Center in 1986, shortly after finishing his Ph.D. degree
from the University of Wisconsin-Madison. His thesis introduced
a number of novel concepts for memory-resident database sys-
tems, such as the T-Tree index structure, dynamic lock granu-
larity, and partition-based logging and recovery. At IBM Research,
he participated in a number of projects, including the R* Dis-
tributed database project, the ARBRE (a teradata-like database
machine) project, the Almaden Computing Environment proj-
ect, the Starburst extensible database system project (designing
and implementing both a large object system and a memory-res-
ident storage system). Dr. Lehman codirected the successful
SMRC (shared memory-resident cache) project and, with the
SMRC project coming to an end, he is currently leading the ef-
fort to take the lessons learned there and apply them to general-
purpose abstract data type (ADT) support in a relational DBMS.

Hamid Pirahesh /BM Research Division, Almaden Research Cen-
ter, 650 Harry Road, San Jose, California 95120 (electronic mail:
pirahesh@almaden.ibm.com). Dr. Pirahesh has been a research
staff member at the IBM Almaden Research Center since 1985,
involved in research, design, and implementation of the Starburst
extensible database system. Dr. Pirahesh has close cooperations
with the IBM Database Technology Institute and IBM product
divisions. He also has direct responsibilities in the development
of IBM’s DB2 Common Server product. He has been active in
several areas of database management systems, computer net-
works, and object-oriented systems, and has served on many pro-
gram committees of major computer conferences. His recent re-
search activities cover various aspects of database management
systems, including extensions for object-oriented systems, com-
plex query optimization, deductive databases, concurrency con-
trol, and recovery. Dr. Pirahesh is an associate editor of ACM
Computing Surveys journal. He received M.S. and Ph.D. degrees
in computer science from the University of California at Los An-
geles and a B.S. in electrical engineering.

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996

Vibby Gottemukkala /BM Research Division, Thomas J. Watson
Research Center, P.O. Box 704, Yorktown Heights, New York 10598
(electronic mail: vibby@watson.ibm.com). Dr. Gottemukkala is a
research staff member in the Data Intensive Systems department
at the IBM Thomas J. Watson Research Center, where he is cur-
rently investigating issues in interfacing parallel applications and
databases, integrating database systems with tertiary storage, and
designing databases for 64-bit architectures. His research inter-
ests also include storage architectures for parallel and distributed
databases, distributed shared memory and its application in da-
tabase systems, and database concurrency and coherence con-
trol. He received a Ph.D in computer science from the Georgia
Institute of Technology in 1995.

Reprint Order No. G321-5600.

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996

REINWALD ET AL. 101

