
Storing and using 
objects in  a  relational 
database 

In today's  heterogeneous  development 
environments, application programmers have the 
responsibility to segment their application data 
and to store those data in different types of 
stores. That means relational data will be stored 
in RDBMSs (relational database  management 
systems), C++ objects in OODBMSs (object- 
oriented database  management  systems), SOM 
(System Object Model) objects in OMG (Object 
Management  Group) persistent stores, and 
OpenDocTM or OLFM (Object Linking and 
Embedding) compound documents in document 
files. In addition, application programmers must 
deal with multiple sewer systems with different 
query  languages as well as large amounts of 
heterogeneous  data. This paper  describes SMRC 
(shared memory-resident cache),  an  RDBMS 
extender that provides the ability to store objects 
created in external type systems like C+ + or 
SOM in a relational database, coresident with 
existing relational or other heterogeneous  data. 
Using SMRC, applications can store and retrieve 
objects via SQL (structured query  language), and 
invoke methods on the objects, without requiring 
any modifications to  the original object 
definitions. Furthermore, the stored objects fully 
participate in all the characteristic features of 
the underlying relational database, e.g., 
transactions, backup,  and authorization. SMRC is 
implemented on top of ISM% DB2@ Common 
Sewer for A l p  relational database  system  and 
heavily exploits the OB2 user-defined types 
(UDTs), user-defined functions (UDFs), and large 
objects (LOBS) technology. In  this paper, the 
C+ + type system  is used as a sample external 
type system to exemplify the SMRC approach, 
Le., storing C+ + objects in relational databases. 
Similar efforts are required for SOM or OLE 
objects. 

I n recent years, object-oriented (00) technology 
has  achieved  wide acceptance, maturity, and mar- 

ket presence. An 00 application development proj- 
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ect often starts with established 00 tools, class  li- 
braries, and  object frameworks,' followed by a cus- 
tomization step, and then is enhanced and refined 
by using features such as inheritance and encapsu- 
lation. This new programming paradigm has signif- 
icantly  improved both  the programmer's produc- 
tivity and the timeliness and cost of application 
development. It is the growing interest in 00 appli- 
cations, coupled with the attractive features of re- 
lational database management systems (RDBMSS), 
that led to  the advent of extended RDBMSs, e.g., sys- 
tems like Postgres and Starburst, as well as object- 
oriented database management systems (OODBMSS), 
e.g., systemslikeObjectStore**, 02**, Gemstone**, 
and Versant" *.2-4 Since these systems were estab- 
lished, OODBMSs have matured significantly, creat- 
ing a market presence and increased market share. 
At  the same time, RDBMS vendors saw some of the 
same 00 trends and subsequently developed object- 
relational database management systems (ORDBMS), 
e.g.,  systems  like UniSQL**,  Illustra**, and D B ~ * . ~ "  
RDBMSS continue to dominate the database market, 
and market analysts  expect that this trend will con- 
tinue. 

Many users of RDBMSs are expanding  toward appli- 
cations that require more effective handling of non- 
traditional data, such as text, voice,  image, and fi- 
nancial data. It is no surprise then, that most users 
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also  desire  their 00 data  to  be  stored in their  da- 
tabases  without  compromising the essential  indus- 
trial-strength  features of RDBMSS that they  already 
rely upon. Such features include robustness, high per- 
formance,  standards  compliance,  and  support  for 
open systems, security, bulk 1i0 capabilities,  and dif- 
ferent levels of concurrency  and  isolation. As a  re- 
sult, there is constant  pressure on RDBMS vendors 
to provide additional functionality for  storing objects 
that were  created in the external  type system of an 
00 programming  language.  This  functionality  goes 
beyond user-defined types (UDTS), user-defined func- 
tions (UDFs), and  large  objects (LOBS) in SQL3.' UDTs 
extend the relational type system  with  new data types, 
based on the relational built-in data types. The uDF 
mechanism provides a way to  add functions to  the 
existing base of relational built-in functions. LOBS give 
the RDBMS a way to  manipulate  large  data objects, 

addition of  UDTs,  UDFs, and LOBS to  an RDBMS in- 
creases its functionality,  these new features do not 
match the functionality of classes, methods,  and  ob- 
jects in an 00 programming  language like C + + .  

This  paper  describes  the  shared  memory-resident 
cache (SMRC) prototype  implementation,  at  the IBM 
Almaden  Research  Center,  that  stores C+ + objects 
in an RDBMS (e.g., D B ~  Common  Server  for AIX*) 
by exploiting the UDT,  UDF, and LOB technology."."' 
The design and  implementation of SMRC" was es- 
pecially driven by the following requirements  and 
goals: 

The  approach must be compatible with existing 
class libraries;  thus there is no opportunity  to in- 
herit  persistence  properties  from  a  common root 
object  and modify class definitions to include  ad- 
ditional  constructors or add  methods  to  support 
persistence  properties. 
The objects  must  be accessible in SQL (structured 
query  language)  queries as  the existing relational 
data. 
The  methods of acquired class libraries  must  be 
usable within SQL queries. 
The performance of queries involving objects must 
be  reasonable. This is particularly an  area of con- 
cern  where  methods, used within query  predicates, 
are applied to millions of database  records. If the 
predicate  evaluator is inefficient in invoking meth- 
ods of objects, then  when invoked millions of times 
on objects, the  response  time will be unacceptable. 

SMRC (mostly) I 2  achieves the above goals by exploit- 
ing advanced  features of RDBMSS and by providing 

1 

1 typically for  multimedia  applications.  Although the 
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an efficient binding to bridge the  gap between  ob- 
jects of external type systems and RDBMSS in an at- 
tractive  and inexpensive way. By external  type sys- 
tem, we refer  to types defined in C+ + , which are 
different from  the tables  and fields defined in SQL. 
Using SMRC, C + +  objects are  stored in the  data- 
base in the  same binary format  as  they  were  created 
in the  C+ + client  application  language.  Thus, no 
translation of C+ + class definitions to relational 
schemata  and no data conversion needs  to  be  per- 
formed.  Standard SQL is used to store  and  retrieve 
the  C+ + objects in the  relational  database.  When 
retrieving an object from  the  database  to client mem- 
ory, SMRC performs  pointer swizzling (due  to  the  re- 
location of the object in the client  memory). Swiz- 
zling  is the conversion of persistent  database  pointers 
into  main  memory  address  pointers.  Whereas 
schema  mapper  products are useful to provide an 
object-oriented view  of existing relational  data, SMRC 
provides persistence  for new 00 data  that  need  to 
be  stored in relational  databases. In this  sense, SMRC 
is complementary to schema  mapper  products like 
Persistence**  (see  the  section  on  traditional  ap- 
proach  and  related  work) that  require substantial 
data  transformation  between  the  relational  repre- 
sentation  and C + +  objects. 

An alternative to using SMRC for  making C+ + ob- 
jects  persistent might be  to use one of the above- 
mentioned OODBMSS. OODBMSS provide many fea- 
tures  that  are not available in most  relational 
databases, such as  a rich object-oriented C+ + data 
model, less impedance  mismatch,  fast navigational 
access, etc. However, OODBMSs offer these  features 
at  the cost of introducing  their own server  environ- 
ment in addition  to  an existing RDBMS environment, 
and  thus  burden  the  user with managing  multiple 
database  servers. In fact, SMRC does  not  compete 
directly with OODBMSS. OODBMSS target different 
market  segments  and work best  for  those  users who 
have mostly 00 applications  and need only persis- 
tence  and  simple  query facilities for  their 00 data. 
OODBMSs offer smaller,  faster  servers  for 00 data, 
and  can  handle varying granularities of data with 
ease.  In  contrast, SMRC supports  a tight C+ + Ian- 
guage  binding as well as  clustering  and  pointer swiz- 
zling for  fast  pointer browsing, seemingly as part of 
the existing RDBMS that users  already  depend  on. 
SMRC is designed to allow users of an RDBMS to in- 
corporate 00 data  into  their existing relational  ta- 
bles and  applications.  Using SMRC is similar to us- 
ing an OODBMS, but SMRC uses a two-level store 
model  rather  than  the  traditional single-level store 
Of most OODBMSs. 
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In this  paper, we describe the design and  implemen- 
tation of SMRC. We first elaborate  on  the  problems 
of storing C+ + objects in relational  databases,  point 
out  the shortcomings of related  approaches,  and 
briefly introduce  the SMRC approach. Next we de- 
scribe the SMRC concepts  and  the  application  pro- 
gramming  interfaces. Then we discuss various im- 
plementation issues and  present  some  performance 
numbers. Finally, we provide  a  summary  and give a 
brief outlook  on  future work. 

Class  definitions  and  relational  schemata 

Many different approaches  are  proposed to  map class 
definitions into a  relational  schema. In this  section, 
we first show why these  approaches  are  inadequate, 
and  then we present  the  approach  pursued by SMRC. 

Traditional approach and related work. Data  to  be 
stored in a  relational  database system must first be 
normalized, following the well-known relational  nor- 
malization rules. l3 Normalization typically results in 
a  corresponding  table  per  object type, with a  cor- 
responding  column  per data  member. l4 Most exist- 
ing database  applications are designed in this way. 
However,  this  approach  poses  some  problems  when 
applied to class definitions that involve additional 
language  concepts like encapsulation,  inheritance, 
and substitutability.  Nevertheless,  some  schema- 
mapper  products available in the  marketplace  sup- 
port  a  (semi-)automatic  mapping of class definitions 
to relational  schemata, e.g., Persistence l5 and Subtle- 
ware**.16 In  these  products class definitions are 
mapped to tables, exposing data  members (even the 
private  ones),  and  nested data  structures  are  spread 
across  tables. Class hierarchies are  mapped  either 
in a  collection of tables or a  “super”  table.  In  the 
first case,  a root table  contains all basic data mem- 
bers  and, additionally, a  discriminant  column to de- 
cide  on  the  subtype of the objects. The tables  for leaf 
classes carry only the  additional  attributes. In  the su- 
per  table case, the class hierarchy is completely  flat- 
tened  into  one  super table. The  records of this  table 
contain null values in the columns of data  members 
that  are  not applicable. In both  approaches,  the C+ + 
main  memory  pointers are replaced by primary key 
and  foreign key relationships,  and system-specific 
constructors,  destructors,  and access methods  inher- 
ited  from  a  persistent  root class are included in the 
C+ + class definitions. The access methods usually 
contain  the  hidden SQL code  to communicate with 
the underlying  database system and  to  destruct  and 
store,  and  retrieve  and  construct  the  objects.  To  be 
fair,  it is important to point  out  that  products  that 
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map classes to tables are typically designed to pro- 
mote 00 views of legacy relational  data.  The  data 
originate in the  relational  database,  and  these  prod- 
ucts offer an 00 view  of the  data. They are not con- 
cerned with destroying the  structure of an object by 
mapping it into a  table  because  they  are  instead  cre- 
ating  objects  from  tables. In contrast, SMRC concen- 
trates on new 00 data  that were  created in an 00 
application  and  then are  stored in an RDBMS. 

Other kinds of products provide portable C+ + class 
library interfaces to relational  databases. For in- 
stance, the class library from  Rogue Wave Software” 
contains classes like column, row, cursor,  table,  etc., 
to communicate with an RDBMS. These class librar- 
ies are mostly useful for an object-oriented access 
to existing relational data in databases (again, where 
the  data originate in the RDBMS), but  are  not  at all 
able to deal with the previously raised issues. They 
offer method  application  programming  interfaces 
(APIS) for  their own generic  storage  libraries  and,  for 
portability  reasons, link in appropriate SQL run-time 
libraries provided by the R D E ”  vendors.  Market ac- 
ceptance  as well as  performance  are critical issues 
for  these  approaches. 

Persistence frameworks like PSOM (SOM [System Ob- 
ject  Model]  persistent  framework), I u 9  OMG (Object 
Management  Group) Persistence Service,*(’ and Tali- 
gent  frameworks  provide an object-oriented  infra- 
structure  to  make  objects  persistent.  Framework 
classes can  be subclassed by the  user in order  to cus- 
tomize how and  where  objects  should be  stored.  The 
application  program  must  use the infrastructure  and 
API of the framework to achieve persistence. 

For  the following varying reasons,  all the above-de- 
scribed  approaches conflict with the SMRC goals 
stated  earlier in the  introduction  to  this  paper: 

Object  nature is destroyed. The proposed mapping 
approaches  destroy  the  object  nature,  as  they  flat- 
ten  the  data  members of objects  into  columns of 
records.  Each  method  application  requires  trans- 
lating  and  even  reassembling the object  into the 
original representation  before  methods  can  be  ap- 
plied on it.  This  approach  degrades the perfor- 
mance of search  queries in decision support sys- 
tems, which apply predicates  to  a  potentially  large 
number (millions) of records  and,  thus, multiply 
the cost of object  reassembling. 
Class libraries are useless. Database  records  are 
not  objects. Since the class methods  are only ap- 
plicable on objects, the acquired class libraries arc 
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useless for the database system without object re- 
creation. 
Encapsulation is broken. Problems also arise with 
the loss of C+ + semantics. Private data members 
in class definitions should be accessible  only  via 
methods or “friends,” and therefore should not be 
exposed  in  columns of relational tables. Although 
one could hide private data members by restrict- 
ing  access to base tables and allowing  access  only 
through views that omit the private data members, 
this  would be different from the original seman- 
tics of private data members. 
Proprietary query languages and access methods 
are used. The above  (briefly introduced) ap- 
proaches use their own query languages and in- 
frastructures, making  it  difficult to develop porta- 
ble database applications. 

1 

1 Some of the above problems may remain even if 00 
features  are  added to existing RDBMSs. For instance, 
systems  such  as  Polyglot’’ and  others22 introduce 
their own type  systems  with their own notions of en- 
capsulation, inheritance, and substitutability. By in- 
troducing their own  type  systems  they remain incom- 
patible with the external type  system of an 00 
programming language and thus do not address the 
problems that SMRC solves. 

The SMRC approach. The previous  section outlined 
certain language concepts and  discussed shortcom- 
ings of existing approaches. The shortcomings exist 
mostly because the described approaches introduce 

system of the programming language to the RDBMS 
type  system. In this section we  give an overview of 
the SMRC approach and list the major concepts re- 
quired to implement the approach. 

Objectpresewing. In SMRC, objects are stored in the 
database as they are  created in the C+ + type  sys- 
tem; therefore, the  nature of the object is preserved. 
No type transformation of the object representation 
is required upon object retrieval, and class  library 
methods can be applied almost immediately on the 
objects without a significant loss of performance, 

ject representation. SMRC takes care of the C+ + lan- 
guage peculiarities in implementing encapsulation, 
inheritance, and substitutability.  Using SMRC, the da- 
tabase system does not have to adopt the specific 
C+ + semantics  and  can retain its  language indepen- 
dence. Objects are stored via SQL in UDT columns 
of binary built-in database types; thus, the approach 
does not introduce yet another query language. The 

1 their own query language and try to map the type 

b since  it  is not necessary to recreate the original ob- 
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object methods are applicable on the client side in 
the application (as regular methods) as well  as on 
the server side (as UDFsZ3). 

SQL. The structured query language, SQL, is a uni- 
versal  basis for data storage and  it appears to be more 
attractive for independent software development 
than start-up query languages. SQL is already used 
by existing database applications. 

Object  containers. The fields of a relational table are 
used  as containers to store objects. SMRC employs 
two mapping schemes to store C+ + objects in con- 
tainers: the abstract data type (ADT) mapping and 
the binary large object  (BLOB) m a ~ p i n g , ’ ~ , ~ ~  depend- 
ing on how the containers are populated with ob- 
jects. The ADT mapping stores a single object of a 
class or class hierarchy in a container, whereas the 
BLOB mapping  clusters  many  objects of different  class 
definitions in a container. 

Pointer  swizzling. As the objects are stored in  native 
main  memory format, pointers in the objects need 
to be  swizzled (converted to main  memory address 
pointers) by SMRC when the objects are retrieved 
from the database and relocated in  main  memory. 
SMRC type-tags the objects  (associates an object  with 
its data type) before storage, which  allows  it to lo- 
cate the pointers within the objects upon retrieval. 
SMRC supports two types of pointers depending on 
the location of the target object of the pointer in the 
database: 

Internal pointer-The referenced object is stored 
within the same container as the current object. 
This model is  used  mostly  in the BLOB mapping. 
External pointer-The referenced object is stored 
in a different container from the current object. 

Internal pointers are implemented as normal C+ + 
pointers, declared in the class definitions. External 
pointers, which  have additional semantics with re- 
gard to object faulting, require more structure than 
just C + +  pointers and are  treated separately. We 
implemented two different approaches for external 
pointers, one of  which  is compatible with pre-exist- 
ing  class libraries. 

The use of BLOB fields  as general-purpose object  con- 
tainers is  very powerful from an application devel- 
oper’s point of  view,  as no data structure mappings 
are required; it  is powerful as  well from a database 
system point of  view, as it does not have to deal with 
the inner details of an external type  system. UDFs can 
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be employed to interpret  the  contents of objects  and 
retrieve  certain data  members of objects only. The 
synergy between SMRC,  BLOBS, and UDFs provides the 
additional  functionality  for  relational  databases to 
store C+ + objects,  coresident with existing rela- 
tional or  other kinds of nontraditional  data. How- 
ever,  the BLOB container  approach  also  has  as  a  con- 
sequence,  that  certain  database  operations  cannot 
be  performed directly. Indexes,  join  operations, or 
objects  as part of primary keys are  not possible, as 
the BLOB type  cannot  be assigned or  compared to 
any other type. These  are well-known problems  that 
also exist in other  areas of data  management, e.g., 
the storage of OLE* * objects in any kind of container, 
or text processing documents or spread  sheets in files. 
In any case, only the original  application is capable 
of looking into  the  contents of these  containers or 
files. However, certain  parts of the  container  that are 
accessed frequently or need to be  indexed,  can  al- 
ways be  stored  separately in addition to  the container. 
Technology like Notes/FX**  (Field  exchange) is 
available to automatically  synchronize the values in 
the  container  and  the  separately  stored values.26 
Notes/FX uses OLE embedded  objects  to  provide bi- 
directional data exchange  between fields in a  Notes 
document  and  objects  created by FX-enabled OLE 
server  programs. 

SMRC concept and APls 

In this  section, we first sketch  various SMRC sample 
applications  and give a first impression on how to 
use SMRC in combination with an RDBMS. Then, we 
describe the prerequisites to make  objects  persist- 
ent,  elaborate  on  the application  programming  in- 
terfaces (APIs) for the ADT and BLOB mapping,  and 
show some  examples of using external  pointers. 

Developing applications  in a SMRURDBMS envi- 
ronment. One important  feature of a  relational  da- 
tabase system is that users  can  extend the  database 
by adding  columns to existing (and  populated)  ta- 
bles. In  the case of  SMRC, the application exploits 
this feature by using the additional  columns  as data 
containers  to  store C+ + objects. Using the ADT 
mapping, one C+ + object of a class or class hier- 
archy exists only in one  data  container,  whereas  in 
the BLOB mapping, many objects of different class 
definitions map  into  the  same  data  container.  The 
selection of one of the  proposed mapping approaches 
depends  on  the specifics of an application.  Figure 1 
shows two samples  for the ADT and BLOB mapping, 
explained in more  detail in the next few paragraphs. 
The  top of the figure  describes the C+ + classes, the 
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bottom of the figure describes the relational  tables 
and  the middle part shows C+ + objects to  be  stored 
in the  tables. 

The ADT mapping  applies to applications  where  sin- 
gle C+ + objects may act as  additional  descriptive 
attributes  to  database  entities.  Figure 1A shows 
a  table orders with some typical columns like ordno 
(order  number), prodno (product  number),  and 
quantity, and an additional  column delivery that con- 
tains the C+ + objects  describing the delivery of an 
order.  The  data type of the delivery column is a UDT 
called shipping, which  we will explain later. The C+ + 
objects  belong to  the shipping class hierarchy  con- 
sisting of a  super class shipment for  usual deliveries 
and  a  specialization class overseas in the case of cus- 
toms  being involved in the delivery. The class library 
provides the  required  method  implementations, e.g., 
a  method time() evaluates the itinerary of a delivery 
and  estimates  the delivery time. The  dashed lines  in 
Figure 1A sketch the mapping of single objects of 
the class hierarchy in the delivery column of the  or- 
ders  table. 

One goal of storing the C+ + objects  along with the 
relational  data is to  perform  queries  that  make use 
of both  the relational  and the object-oriented data 
in the  database.  For this  purpose,  the time() method 
of the C+ + class library is registered  as  a UDF in 
the  database system and,  thereafter,  it can be  used 
in SQL queries like the example that follows. Note 
that  the  correct virtual  function  must  be invoked for 
each  select-item of column delivery according to  the 
C + +  type of the delivery argument, which may 
change  from  record to  record,  due  to subclassing. 
(Although  it is not shown in the  sample application, 
SMRC supports  multiple  inheritance.) 

select ordno, prodno 
from orders 
where time(de1ivery) > 5 and quantity = 1.0; 

The BLOB mapping  applies in applications  where  a 
heterogeneous  set of interconnected C+ + objects 
constitutes an additional  attribute of a  database  en- 
tity. Typical BLOB mapping  applications  come  from 
the  areas of project  management,  network  manage- 
ment, workflow management,  and complex geo- 
graphical information system (CIS) applications. Fig- 
ure 1B sketches  a  project  management  sample 
application. It shows a  table projects with columns 
name and budget, and  a BLOB column schedule to 
store  heaps  (collections of memory) of C+ + objects 
representing PERT charts of the  projects. (PERT, or 
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Figure 1 SMRC mapping  samples 

(A) SHIPPING  ADT  MAPPING  SAMPLE (€3)  PERT BLOB  MAPPING  SAMPLE 

typedef union address I... us; ... europe;); 
typedef enum service {priority, overnight); 

class shipment { 
private: timef date; 

address itinerary[lO]; 
address "current; 
service del-service; 

public: virtual int time ( ) 
1; 

4 
class overseas: shipment { 

trade-commerce-auth tca; 
virtual int time ( ); 

1; 

class activity ( CLASS 
activity *next; DESCRIPTIONS 
int time( ); 

class sub-activity { class end-activity { 
activity 'next; int time( ); 
Ref<activity> sub; ); 

1; 

INSTANCE OF overseas c>- - - - - - - - 7 SMRC  HEAPS OF OBJECT  INSTANCES 

INSTANCE OF shipment 0- - - - - - 1 1  ' 
I 1  
1 1  

I 1  
: :  
I I  
i ;  I I L""""-""" 

projects name budget schedule 

p i  1M 

p2 2M +"' ' 
I 

p3 1.5M 
- 

~. ~ ~ 

0 IS A  UDT OF TYPE shipping 0 IS A UDT OF TYPE  PERT 

Project  Evaluation  and Review Technique,  charts il- 
lustrate critical paths  for completion of project tasks.) 
A class hierarchy includes a  super class activity and 
two subclasses for sub and end activities. The figure 
shows C+ + objects of three PERT charts  allocated 
in SMRC heaps, which are  mapped  into  the schedule 
column of the  projects  table. The  sample also shows 
the usefulness of external  pointers,  as one of the ob- 
jects in the PERT chart  for  project p2 refers  to proj- 
ect pl as a  subproject.The  implementation of a "real" 
BLOB mapping  application  (and the  related experi- 
ences) using SMRC is described in a  paper  referenced 
earlier. *' 
SMRC supports  additional  functionality  for external 
pointers  (as  opposed to internal  pointers). An exter- 
nal  pointer  contains all the  information  required to 

retrieve the  referenced object  from the  database. 
SMRC is able  to fault in the  referenced object  from 
the  database automatically when the external pointer 
is  dereferenced. (When  an object is referenced,  but 
is not in main  memory, afault condition  occurs  re- 
sulting in retrieving the object from  the  database.The 
terminology used for this event is fault  in. Derefer- 
encing a pointer  results in the  value at  the location 
that  the  pointer points to.) In the case of the ADT 
mapping, only the  one  referenced object is faulted 
in, whereas in the case of the BLOB mapping, the 
whole heap containing the  referenced object is in- 
stalled in main  memory. 

The application  program  determines how C+ + ob- 
jects  should  be  mapped to  database  containers. The 
application program  creates objects either in the  pro- 
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gram  default  heap  space  (for the ADT mapping) or 
in SMRC heaps  (to cluster  objects  for the BLOB map- 
ping).  Object  creation  happens either via the SMRC 
overloaded new operator  or  the  standard C+ + new 
operator.  When  the  standard C+ + new operator is 
used with the BLOB mapping, an additional SMRC API 
call is required  to  type-tag  the  created  objects  and 
eventually copy the objects into a SMRC heap. 

In  the ADT mapping,  internal  pointers are  hidden 
pointers,  introduced by the C+ + compiler to im- 
plement  inheritance  and  substitutability,  as well as 
pointers  referring to a data  member within the  same 
object. In  the BLOB mapping, additionally, internal 
pointers  can  refer  to  objects  allocated within the 
same SMRC heap.  External  pointers  are  supported 
for  the ADT and BLOB mapping,  and  they have to  be 
assigned by a  special SMRC API call. 

The decision whether to use ADT or BLOB mapping 
depends on the access patterns  to  the objects  used 
by the application. The BLOB mapping offers two ma- 
jor advantages  over the ADT mapping.  First, the  ap- 
plication programmer  has  the ability to cluster many 
objects of different class definitions in the  same con- 
tainer, in the event that they are logically related to 
each  other  and  are  often  requested  at  the  same  time. 
Second, many related objects can  be  retrieved by one 
database  operation,  as  opposed to  the ADT mapping 
that retrieves one object at a  time. On the  other  hand, 
retrieving one object at a  time might be  more useful 
for  applications that  require a  fine-grained access to 
data. 

With SMRC, C + +  applications  use  standard SQL 
(query  language) to  store objects  (or SMRC heaps of 
objects) in object  containers of the  database (i.e., ta- 
ble fields). Objects are  stored in binary format of the 
C+ + type system without any data conversions. The 
table  columns  for  the  object  containers are defined 
as UDT types of some built-in binary  datatype of the 
database system. 

The SMRC persistence schema. A SMRC persistence 
schema is a  collection of application type descrip- 
tions  created by the SMRC schema  compiler. The 
schema essentially describes the layout of all of the 
persistent C+ + objects  for the application, which 
is needed  for memory management  and  pointer swiz- 
zling. The schema includes structural  information (in 
particular, size and  pointer offset information)  that 
contains  the type  information of embedded struc- 
tures,  unions,  and dynamic arrays. In addition,  the 
type  information  contains  the offsets of the  hidden 
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pointers, i.e., offsets of virtual  function  table  (vtable) 
and  virtual  base  (vbase)  pointers. To  create a  per- 
sistence  schema, the SMRC schema  compiler  takes 
as input  an application  schema  source file that in- 
cludes the  header files containing the C+ + class def- 
initions  and SMRC flags that  mark which classes 
should be  made persistent. The schema  compiler 
produces  a  named  persistence  schema  that is stored 
in the schema database. A persistence schema is com- 
piler-specific due  to  the compiler-specific allocation 
of the  hidden  pointers within the objects, but  not  ma- 
chine-dependent,  as the persistence schema uses only 
symbolic information. 27,28 The  current SMRC imple- 
mentation uses IBM’S C Set+ + * compiler. 29 

The application schema source file that follows shows 
the flagging of the  shipping  application in Figure 1A. 
The  purpose of the file essentially is to include the 
header files with the C+ + class definitions  and  se- 
lectively flag those classes (within a dummy function 
just for  compilation  purposes) that might have per- 
sistent  objects. Similar approaches  to  capture C+ + 
class information  are  pursued by OODBMSs. The use 
of additional flagging macros in an application 
schema  source file provides  a way for  users to plug 
in user-provided  functions  for  unions, or repeating 
functions  for dynamic arrays. The overall  schema 
compilation  process is described in Reference 10. 

#include “smrc-macr0s.h” 
#include “shipping.h” 
void  dummy () { 

SMRC-TYPE (shipment); 
SMRC-TYPE (overseas); 

1: 

Application programming interface for ADT map- 
ping. In this  section we describe the SMRC ADT map- 
ping API, and  employ  a  more  comprehensive version 
of the previously introduced  shipping  application  to 
demonstrate  the  use of the AH. 

SMRC tracks type and  relocation  information  for 
pointer swizzling purposes. The type  information 
provides the  pointer offsets to achieve  addressabil- 
ity  of the  pointer  data  members in the objects. The 
relocation  information provides the basics to calcu- 
late  the load differences of the  objects  required  for 
pointer swizzling. Since the  database system does  not 
know about C+ + class definitions  (and C+ + does 
not  support  run-time type information), SMRC at- 
taches type tags to  the objects  before  they are  stored 
in the  database system. After an object is retrieved 
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from  the  database, all the  internal  pointers  (the  hid- 
den  pointers in the AD’r mapping) within the objects 
are swizzled before object usage. The external  point- 
ers  are swizzled transparently  at  dereference  time. 

The following SMRC API calls provide the  required 
functionality  for type information  and  pointer swiz- 
zling: 

Type tag C+ + object: smrc-tag (objptr, type-name, 
schema-name,  hv). Before an object is stored, smrc- 
tag() is called to copy the object referenced by objptr 
into  the SQL host variable hv, deswizzle the (hid- 
den) pointers,  and type-tag the object copy. Type- 
name and  persistence schema-name are used by 
SMRC to create a unique  type  tag.  The tag call is 
required  for newly created  objects  (created by the 
standard C+ + new operator) as well as updated 

of pointers in this call. After tagging an object, the 
object in the SOL host variable is stored in the  da- 
tabase via an SQL insert or  update  statement. 

Swizzle pointers: swizzle (hvptr). Objects are re- 
trieved  from the  database  into  an SQL host vari- 
able hvptr via select  statements.  The swizzle() call 
takes as an  input a pointer  to  the retrieved (un- 
swizzled) object in the host variable, swizzles the 
object,  and  returns a pointer  to  the swizzled C+ + 
object. 

1 

1 retrieved  objects, as SMRC performs deswizzling 

Get  the type of an  object: smrc-object-type (hvptr). 
When  object  instances of a class hierarchy are 
stored in a column,  it is useful to  be  able  to dynarn- 
ically identify the type of a particular  object in the 
column. The smrc-object-type() call returns a char- 
acter  string identifying the type of the  object  cur- 
rently  retrieved  into the SUL host variable hvptr. 

The following steps  show  the use of the ADT map- 
ping API for  the shipping  sample  application in Fig- 
ure 1A. We start with the  database description  and 
then  insert  and  retrieve  objects to  and  from  the  ta- 
ble. 

1 Create tableladd additional  column. The objects of 
the C+ + class hierarchy in Figure 1A are  stored in 
a table  column delivery based  on a distinct type. A 
distinct type essentially is a renamed built-in data- 
base  type.X  The size of the distinct type is the size 
of the  largest class in the class hierarchy  (plus 4 bytes 
for  the  type  tag).  The following statements  can  be 
performed in dynamic SQL in order  to  determine  the 
830 varchar size (size of class overscas + 4) and  de- 

fine the  table: 

create distinct  type  shipping as varchar (830) 

create table orders (ordno int,  prodno int, . . . , 
for bit data  with comparisons; 

delivery shipping); 

If orders is an already existing (populated)  table, col- 
umn delivery is simply added  to it by modifying the 
table. 

Register class methods  as UDFs. Class methods  to  be 
used within SQL must be registered with the RDBMS. 
As  the class methods  cannot directly be registered 
as UDFs-they do  not follow the SUL UDF calling con- 
ventions-SMRC generates  external UDF gateway 
functions  for  each class method to  be used within 
SQL statements. ‘The signature of a UDF gatewayfunc- 
tion  has the  appropriate UDT as an input type and 
the result  type of the class method as an  output type. 
The  implementation of the UDF gateway function 
obeys the SOL UDF calling conventions. It first 
swizzles the  input,  and  then calls the original class 
method. 

create function  time (shipping) 
returns integer 
language c 
external name ’Mreinwaldhdf-lib!time’; 

Znsert objects into  the database. Objects are  created 
via the  standard C+ + new operator  and inserted into 
the  database via the  standard SQL insert ~tatement .~” 
In  the  sample smrc-tag call, “overseas” is the type 
name within the “shipping”  application  schema. An 
object is created,  tagged in an SQL host variable hv 
of an  appropriate size and  inserted into a  table. 

struct {unsigned short len; char data[830];} hv; 
overseas *delptr = new overseas(); 

smrc-tag (delptr,’overseas’,’shipping’,&hv); 
exec sql insert into 

orders (ordno, prodno, quantity, delivery) 
values (IO, 20, 10, :hv); 

. . .  

Retrieve objects from the database. Objects are re- 
trieved using the  standard SQL select  statement.  We 
do  not impose any additional  restrictions on such 
statements.  These  statements  can  be dynamic, or 
static  for better  performance,  and can flow across 
any supported API, such as DRDA,~’ ODBC,” etc. They 
can also be interactive or embedded in applications. 
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The SMRC swizzle call may be used from within the 
client application  after retrieving the C+ + object 
into  an SQL host variable, or from within the UDF 
gateway implementation. The following two exam- 
ples demonstrate  both cases: in the first example,  a 
delivery object is retrieved  into  an SQL host variable 
and swizzled on the client side. As the object can  be 
either of C+ + type shipment or overseas, proper type 
casting needs  to  be  done. The second example shows 
the use of the time UDF gateway function;  thus, the 
swizzle call is hidden in this UDF. The UDF runs on 
the server  side. 

Case 1: Client side swizzling. 

select ordno, delivery 
into :ordno, :del-obj 
from orders 
where quantity > 10; 
if (!strcmp(smrc-object-type(&del-obj), 

dp = (shipment *) swizzle(&del-obj); 

dp = (overseas *) swizzle(&del-obj); 

“shipment”)) { 

} else { 

1; 

Case 2: Server side swizzling. 

select ordno, prodno, time(de1ivery) 
into :ordno, :prodno, :time-delivery 
from orders 
where quantity > 10; 

Application programming interface for BLOB map- 
ping. The API for  the BLOB mapping essentially con- 
sists of the  methods of the SMRC heap class. The 
SMRC heap class provides the necessary methods  to 
both  manage objects in memory heaps  and swizzle 
the pointers in the objects after  retrieval  from disk. 
Given that  the objects within a SMRC heap  are stored 
and  retrieved in one  database  operation, it is rea- 
sonable  to  consider  a SMRC heap as the unit of per- 
sistence as well as the swizzle unit. 

A SMRC heap is associated with a persistence schema 
at  heap  creation  time. Many different heaps with dif- 
ferent  schemata  can exist in an application simul- 
taneously. An  application  can  allocate  objects di- 
rectly in the SMRC heap, via the SMRC overloaded 
new operator,  or it  can alternatively create C t  + ob- 
jects in its own heap  and then  later call the SMRC 
“deep object copy” routine, which copies  a complex 
network of referenced objects into  a SMRC heap  (see 
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Reference 10 for details). Each SMRC heap has a  root 
object  (or, potentially multiple root objects) that 
gives the application  an  entry  point  to the network 
of objects within a  heap.  The  entire  heap of objects 
is stored in binary format in a  relational  table. 

Upon retrieval of a  heap in main memory, all the 
internal  pointers within a  heap  are swizzled at  one 
time (“heap-at-a-time’’ swizzle approach),  after 
which, a  user  can navigate through the objects at 
main memory speed by dereferencing the C++ 
pointers.  External  pointers are swizzled  lazily at  de- 
reference time, when a  heap containing a  referenced 
object getsfaulted in by  SMRC. Retrieving only a sub- 
set of the objects in a  heap is not  supported,  although 
the user might have a uDF operating  on  the  heap, 
which returns only a value, or  a  table  function which 
returns  a  set of tuples.  Currently,  table  functions are 
currently  not  supported by DB2. 

The following API calls are listed in the  order of typ- 
ical usage in an application: 

Create heaps-A SMRC heap is created with an as- 
sociated persistence  schema.  Objects of class def- 
initions within this schema can be allocated in the 
created heap. The size of a  heap grows  dynamically. 

smrc-heap *hp = new  smrc-heap(‘PERT’); 

Create and delete  objects-Objects are allocated in 
a  heap via a SMRC overloaded new operator  and 
removed from the  heap via a  cancel  method. 

/I create new object in heap 
obj = new (hp, ‘activity’) activity; 
// remove existing object 
hp+cancel (obj); 

Root objects-Root objects provide entry  points 
to a  heap. They can be  set (set-root) and  retrieved 
(get-root) via heap  methods. 

hp-set-root (objptr); 
objptr = (activity *) hp+get-root(); 

Store heaps in database-SMRC heaps comprise 
multiple memory segments to allow dynamic 
growth. Thus,  before  a SMRC heap  can be stored 
as a value in the database, it must first be  “packed” 
into  a  contiguous memory segment. However, the 
SMRC heap  management avoids this copy step if 
the  heap is not  segmented. As shown in the sam- 
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Figure 2 External  pointer  sample  application 

C++ CLASS DEFINITION: 

class shipment ( 
public: ... 

Ref<package> pkg:} 

RELATIONAL  SCHEMA: 

"""-" 

class package [ 
public: ... 

int weight } 

L 

APPLICATION PROGRAM: 
shipment "sp; 
exec sql select prodno, delivery into :pno,  :ship-hv 

from orders where ordno = 20; 
sp = swizzle  (&ship-hv); 
printf ("Shipment of %i weighs %i", pno, sp->pkg->weight); 

ple below, SMRC sets up  the SQL host  variable (hv) 
to store  the  heap  into  the  database  (the 500k size 
in the  declaration of the host  variable is required 
by the RDBMS for  range  checking). 

sql type is blob(500k) *hv; 
hv = hp+pack(); 11 pack heap hp and setup hv 
insert into  projects (schedule) values (:*hv); 

Retrieve heapsfiom database-SMRC heaps  are re- 
trieved from  the  database  into  an SQL host vari- 
able. 

sql type is blob(500k) hv; 
select schedule into :hv 
from projects; 

Swizzle heaps-Aretrieved heap in a  host  variable 
(hv) is  swizzled and assigned to a SMRC heap vari- 
able.  After this, all the SMRC heap  methods can 
be applied (e.g., get the  entry point of the  heap 
with hp+get-root()). 

smrc-heap *hp; 
hp = swizzle (&hv); 
objptr = (activity *) hp+get-root(); 

I/ Now the application  can access objects in the heap 
11 via (pure) C++ pointer  browsing. 

Working  with external pointers and object caching. 
SMRC supports  external  pointer^,^^,^^ which extend 
the scope of pointers  and  refer to objects  stored in 
other fields of the  same column, other columns in 
the  same  table,  and  even  columns in other tables. 
Figure 2 shows an extension of the shipping ADT sam- 
ple  application. Class shipment contains  an  external 
pointer pkg to class package. The  shipment objects 
are  stored in column delivery of table orders and 
the package  objects in column wrapping of table 
posting. The sample  application  code first shows re- 
trieving and swizzling  of a  shipment  object  from  the 
orders table. From  an application  programmer's 
point of  view, the external  pointer pkg behaves ex- 
actly like an  internal  pointer.  But in a  normal C+ + 
application, the  dereferencing of the pkg pointer in 
the  shipment object would cause  a  segmentation vi- 
olation,  as the  appropriate  package  object might not 
be resident in memory.  However,  as the pkg pointer 
is declared  as  a SMRC external  pointer, SMRC is able 
to catch  this violation, automatically  query the  da- 
tabase  for the referenced package object, swizzle the 
retrieved  object,  and install it in main  memory so 
that  the object  can  be  referenced by C+ +. 
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The assignment of external pointers is different  from 
internal pointers, as additional information is re- 
quired, such as the table and column  in  which an ap- 
plication stored the referenced object. This infor- 
mation is provided in an assignment method. At as- 
signment time, SMRC creates object identifications 
(OIDS) and stores them as external pointers, which 
are used to fault in the referenced objects. 

SMRC supports two  different approaches to “declare” 
external pointers, and the application programmer 
can opt between the two choices as appropriate. 

Template-based  approach-An external pointer is 
declared within the C++ class definition via a 
SMRC-provided Ref template. This approach is like 
the ODMG-93 C+ + language binding.35 

class shipment { 
. . .  
Ref(package) pkg; 

1; 

Flagging-based  approach-An external pointer is 
flaggedvia a SMRC macro in the application  schema 
source file. 

void  dummy () { 
. I .  

SMRC-Ref(shipment, pkg); 
1; 

In the template-based approach, SMRC uses an over- 
loaded dereference operator  that checks object res- 
idency at dereference time and queries the database 
in  case of an object fault. The flagging-based ap- 
proach uses the ability of the paging  hardware to trap 
access  violations  in order  to catch  object faults at de- 
reference time. For the application programmer, the 
choice between the template-based or  the flagging- 
based approach depends on whether the class  de,f- 
initions can be modified to use the SMRC Ref tem- 
plate and to have a portable application, or  to not 
modify the class definitions but depend on page pro- 
tection in the hardware. 

Whether an object is  faulted in  via the overloaded 
dereference operator  or via page protection, SMRC 
allocates the faulted in objects in an object cache. 
From an application programmer’s point of  view, 
there is no distinction whether an object exists  in the 
application address space or the object cache, which 
is part of the application address space. 
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Nevertheless, the application programmer must be 
aware of the object cache to exploit its additional 
functionality. The object cache offers the following 
API (we introduce it without the syntax): 

Flush cache-All  of the objects in the object cache 
are written back into  the database and removed 
from the cache. This operation is  useful at the end 
of application execution. 
Save  cache-All  of the objects in the object cache 
are written back to the database, but still  exist  in 
the cache. This operation is useful for saving ob- 
ject changes in the database while continuing the 
application. 
Register  objects  in  cache-In the event that an ob- 
ject is retrieved separately (manually) by the ap- 
plication via SQL, it can later on be registered in 
the object cache. 
Remove  objectsfiom  cache-Objects  can  be  explic- 
itly  removed from the object  cache. One might  use 
this to avoid  having  modifications stored back to 
the  database during flushing or saving cache. 

Implementation 

In this section, some of the specifics of implement- 
ing SMRC are addressed. We start with an architec- 
tural overview  and  briefly introduce the SMRC heap 
manager. The main part of the section is concerned 
with pointer swizzling  in ADT and BLOB mapping as 
well as implementing external pointers. 

Implementation overview. SMRC runs under the con- 
trol of an RDBMS server and uses the SQL query Ian- 
guage. This makes  it  relatively  easy to extend  exist- 
ing relational database applications to use SMRC for 
additional storage of C+ + objects and to have the 
stored objects be part of an integrated clientherver 
database solution. Additionally, SMRC benefits from 
all the industrial-strength RDBMS features with re- 
gard to concurrency control, recovery, etc., of the 
underlying database system. 

Figure 3 describes the environment one would  use 
to develop an application with SMRC and an RDBMS, 
and  shows the road map for this implementation sec- 
tion. SMRC can run on the client side as well  as on 
the server side. Figure 3A shows the SQL AH used 
by the C+ + application as  well  as the SMRC ApI. The 
SMRC schema  compiler (not shown  in the figure) pro- 
vides the required type information for type-tagging 
and pointer swizzling. A SMRC heap manager pro- 
vides the object clustering functionality for the BLOB 
mapping. The cache manager fauZts  in and allocates 
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Figure 3 SMRC overview 
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objects referenced via external pointers. At the server 
side (Figure 3B), C +  + objects  can participate in SQL 
queries by registering the class methods as UDFS. 
Since the UDFs are executed on the server side, SMRC 
performs pointer swizzling before the methods are 
applied. 

SMRC heap manager. The SMRC heap manager is 
the key component for the BLOB mapping. It sup- 
ports the functionality of a full-fledged heap man- 
ager on the client side, including  main  memory man- 
agement of all the objects that should be stored 
within the same field of a relational table. A SMRC 
heap is segment-oriented and grows  dynamically  in 
size. 

SMRC maintains two auxiliary data structures for the 
management of the objects within a heap: a type ta- 
ble and an object table for each type. The type table 
refers to the complete type description in the schema 
database and thus provides the  heap manager with 
the required object layout information. The type ta- 
ble  is built at  heap creation time and is related to 
the persistence schema  specified at  heap creation 
time. The object table for each type  is updated  dur- 
ing each object allocation or deletion in a heap. The 
object tables grow  dynamically. The entries in the 
object  table refer to the objects  within the heap. Type 

table and object tables are persistent, along with the 
objects  in a heap. They  provide  addressability of each 
object  and pointerwithin the objects  in a heap, which 
is required for pointer swizzling. Thus, a  heap is 
completely self-contained; it  can be shipped in 
clientherver environments and interpreted at each 
destination. 

Pointer swizzling. When objects are retrieved from 
disk and reloaded into main  memory,  all  main  mem- 
ory pointers within the objects must be swizzled due 
to object relocation. SMRC supports three different 
approaches for pointer swizzling-all three  ap- 
proaches are implemented to support either the ADT 
mapping, the BLOB mapping, or external pointers. 

Deswizzlepointers-All the pointers within an ob- 
ject are deswizzled,  i.e., the current object address 
is subtracted from all the pointer addresses before 
an object  is  saved on disk, thereby making them 
offsets to the beginning of the object. After object 
retrieval, the pointers are swizzled  by adding the 
new object address to all the pointer addresses. 
Saveprevious object load address-The  previous ob- 
ject load address is  saved on disk along with the 
object. After object retrieval from disk, the point- 
ers are swizzled  by the difference between the pre- 
vious  and the new object load address. 
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Object  identifications (0IDs)”Main memory point- 
ers are replaced by persistent OIDS, which are in- 
dependent of the  current location of a referenced 
object in  main  memory. A referenced object can 
always be identified with an OID, either in  main 
memory or  on disk. 

For  the ADTmapping,  we have implemented the  de- 
swizzle approach, as  it is the more efficient way in 
terms of memory space (the old object load address 
does not have to be saved along with the objects on 
disk). Deswizzling happens when an object is  type- 
tagged  with the SMRC type-tag call introduced in the 
ADT mapping API. The type tag is used after object 
retrieval to swizzle the pointers according to the new 
object location, i.e., we add the address of the new 
object location to the offsets  in the deswizzled ob- 
ject. For  the ADT mapping, swizzling is performed 
one object at a time. 

For  the BLOB mapping, we  basically  apply the sec- 
ond approach. However, it  is not necessary to save 
the previous  load address for all the objects  in a heap, 
as it  is  sufficient to save just the load address of the 
entire  heap itself. The relative address of an object 
to  the load address of a  heap remains the same, as 
a  heap is relocated as a whole.  Saving the previous 
load address of a  heap is the more efficient  swizzle 
approach for the BLOB mapping than traversing and 
deswizzling  all the objects in a heap. This approach 
is  similar to  the memory-mapped segments in Ob- 
jectStore,36 of course without doing memory-map- 
ping. In ObjectStore, the pointers in the pages of a 
segment are swizzled on  the basis of the relocation 
of the segment. In the case of SMRC, a whole heap 
of objects is loaded by the application into main 
memory, and SMRC swizzles the internal pointers of 
all the objects in a  heap with the  heap load address 
as a reference point. The type table and object ta- 
bles in a  heap  are scanned to gain addressability of 
the objects, and the associated  type information pro- 
vides the offset information of the pointers within 
the objects. Thus, the SMRC swizzler  is able to di- 
rectly address and swizzle  all the pointers in a  heap 
without any search or navigational overhead. 

For external pointers, SMRC performs pointer SWiZ- 
zling based on OIDS. If an object is referenced via an 
external pointer and the referenced object is not yet 
in  main  memory, the referenced object isfaulted in 
and the location of the object is  used as a main  mem- 
ory pointer (swizzled pointer). Details on swizzling 
external pointers are described later. 

The previously described pointer swizzling ap- 
proaches are used for user-defined pointers. The 
swizzling  of virtual function table (vtable) pointers 
(the same approach is applied for function pointers) 
is described in the next section. Reference 10 elab- 
orates on incorporation of user-provided functions 
to swizzle unions and dynamic arrays. 

Hidden pointers. C++ compilers implement dy- 
namic  dispatching and s~bstitutability~~ via two types 
of “hidden” pointers: vtable pointers and  virtual base 
offset pointers. Figure 4 shows the object layout of 
the shipping  class hierarchy introduced in Figure 1A 
and highlights the compiler-introduced vtable and 
virtual base offset pointers. The hidden pointers are 
introduced by the C+ + compiler for class  defini- 
tions that contain virtual functions or virtual base 
classes. Just like  any normal pointer, these hidden 
pointers need to be  swizzled  when the object is re- 
located in main  memory. The location of the hid- 
den pointers within an object depends on  the spe- 
cific c+ + compiler. At this point, the SMRC schema 
compiler is compiler-dependent (IBM’S C Set+ +), 
as  it relies on  the C+ + compiler to specify the off- 
sets of the hidden pointers. 

Virtual base offset pointers refer  within an object  and 
can be swizzled  using conventional methods. How- 
ever, the vtable pointers (pointers to  the table that 
implements  dynamic  dispatching of virtual  functions) 
depend  on  the allocation of the  current instance of 
the vtable in an application and cannot be  swizzled 
on  the basis of object relocation. The best solution 
would be to let the C++ run-time system  swizzle 
the hidden pointers, since  it  knows  exactly how to 
set these pointers. Unfortunately, C+ + sets the hid- 
den pointers only  when an object is created with the 
new operator as part of the constructor execution 
and does not export a callable ‘‘swizzle’’ function. A 
thorough discussion of the whole hidden pointers is- 
sue can be found in Reference 37. 

SMRC swizzles the vtable pointers by allocating 
dummy  objects  with a correct vtable pointer (one that 
was created in the  current instance of the applica- 
tion) and “steals” the correct value of the vtable 
pointer from this object. The SMRC schema compiler 
provides the location of the vtable pointer in an ob- 
ject. This approach is  similar to  the ObjectStore ap- 
p r ~ a c h ~ ~  that maintains a hash table, mapping  type 
names into vtable addresses. 

The table is created during the ObjectStore internal 
schema generation time at application startup time. 
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Figure 4 Main memory layout of C++ objects 
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Ontos’  approach  (Vbase), making the vtables  per- 
sistent  as well, does  not  seem  to  be a p ~ r o p r i a t e . ~ ~  
A  constructor  approach is exploited by O+ + 
(Ode),40  that  introduces a  “faked” new operator 
(does  not  allocate  memory).  The new operator trig- 
gers  the  execution of a  constructor  that fixes all the 
hidden  pointers.  As  no  data  members  should  be ini- 
tialized with the  constructor, all the  default class con- 
structors of an application have to  be rewritten in 
order  to distinguish whether they are used for pointer 
fixing or usual  object  initialization.  This  approach is 
not useful for SMRC, as  it would require  a  recom- 
pilation of parts of a class library, although  the con- 
structor rewriting can be triggered  automatically by 
a C + +  precompiler. 

Object cache and OIDs. The object  cache, similar 
to  the SMRC heap  (a  superset, really), is part of the 
application  address  space  and  can grow dynamically 
in size. SMRC uses the object  cache to manage  au- 
tomatically faulted in objects via external  pointers. 
SMRC maintains an in-memory object  table  (hash  ta- 
ble) with the object  identifications (OIDS) of all the 
loaded  objects in an object cache. An OID uniquely 
identifies an object in the  database  and  thus can  be 
used  for the following two purposes: 

1. Object  residency  checks-Before an object is faulted 
in automatically, SMRC must check whether  or not 
the  referenced object is already  loaded in the  ob- 
ject  cache. 
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2. Object  faulting-When an object  must  be faulted 
in, SMRC needs  to  be  able  to retrieve it from the 
database. 

SMRC launches  an  “under  the cover” SQL state- 
ment to retrieve  objects  from the  database: 

select  (object-column) 
from  (table) 
where (predicate) 

The SQL statement  takes  the OID as an  input, which 
is kept  along with the external  pointer causing the 
object  fault. To provide all the input  for  the  select- 
statement,  an OID contains the following informa- 
tion (20-byte structure): 

OID = {table-id,  column-id,  row-id} 

Table-id and column-id are  created  out of the  data- 
base  catalogs  for the tables  and  columns in a data- 
base.  Database  catalog  information is cached to 
quickly translate  the table-ids and column-ids in OIDs 
to the  corresponding  table  and  column  names  for 
the  setup of the SQL statements.  A row-id is similar 
to a  system-generated  primary key, but is not  reus- 
able. It uniquely identifies a  record within a  table 
and  contains physical information  to  speed  up  da- 
tabase acces~ .~’  By having a row-id as part of the OID 
in an  external  pointer, the faulting in  of referenced 
objects  can  be very fast. 
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Swizzling external pointers. SMRC swizzles external 
pointers in a ‘‘lazy” fashion, depending on whether 
the template-based approach or  the flagging-based 
approach has been chosen to declare an external 
pointer. In the template-based  approach, SMRC pur- 
sues “swizzling on d i ~ c o v e r y . ” ~ ~ ~ ~ ~  Unswizzled point- 
ers in loaded objects are swizzled  as soon as they are 
discovered, i.e., during assignment or pointer deref- 
erencing. For this purpose, the Ref template imple- 
ments overloaded assignment and dereference op- 
erators.  The approach avoids  having  unswizzled 
pointers in  local variables and unnecessary object 
loading. In theflagging-based approach withpagepro- 
tection, SMRC supports “swizzling at dereference 
time,” as  only pointer dereferencing can be trapped 
and not the assignment of an unswizzled pointer to 
a local variable. At object load time, SMRC swizzles 
an external pointer to a protected page and  installs 
a signal handler to catch the segmentation violation 
at dereference time (page protection  trap^).^^,^^ 

Similar  page protection approaches are implemented 
in Obje~tStore,~’ Texas Persistent Store,45 and 
Q ~ i c k S t o r e . ~ ~  However the SMRC implementation 
differs  in  two important aspects from the above ap- 
proaches: 

OIDS of different objects can share protected pages 
for trapping purposes-When SMRC loads an ob- 
ject with external pointers, it stores the object iden- 
tifier of the target objects for the external pointer 
on aprotected page  (with other object identifiers). 
On a protection trap,  the SMRC handler knows the 
object identifier on the protected page (based on 
its location on the page) and is therefore able to 
query the database (as previously explained). The 
retrieved object is not allocated on the protected 
page, but in the object cache, which  is not page 
protected (see the next bullet on how to assign the 
address of the faulted-in object to  the fault-caus- 
ing pointer). By putting many  different OID targets 
on a single protected page we  avoid “the fan-out 
problem,” where whole page frames would be al- 
located for each external pointer in memory. 
Reverse reference lists (RRLs)-SMRC uses RRLs to 
track all references to an object. An RRL is a list 
of back pointers to objects (actually to pointers 
within objects) that reference the same object, i.e., 
the same object identifier allocated in a protected 
page.  Using RRLs,  SMRC is able to (1) redirect the 
fault-causing pointer to  the address of the faulted 
in object during protection trap handling, and (2) 
avoid additional page faults caused by other ob- 
jects that refer to  the same object. Consequently, 

irrelevant residency  checks are avoided and per- 
formance is improved. Additionally the RRLs can 
be  used for garbage  collection  (reallocating  unused 
memory)  in the object cache. Given their useful- 
ness, we feel that  the time and space overhead for 
maintaining RRLs is justified. 

Comparing the two external pointer approaches, the 
page protection approach makes object faulting en- 
tirely transparent to  the compiled code, as opposed 
to the overloaded dereference operator that requires 
source code modification to define external point- 
ers. On the  other hand, fielding a page protection 
trap from the operating system  is an expensive op- 
eration. Studies by Hosking and M O S S ~ ~ , ~ ’  show that 
software solutions can be more efficient. Detailed 
performance comparisons and a discussion of the 
trade-offs  between  software dereferencing and  mem- 
ory-mapped storage systems  with page protection 
traps (E versus Quickstore) can be found in Ref- 
erence 46. The “unduly large granularity of virtual 
memory  pages”-as stated by Hosking and 
Moss~~-~s not a problem in SMRC, as the virtual 
memory  primitives are only  used for page protec- 
tion traps and the protected pages can serve  many 
different external pointers. 

Performance 

We evaluated the performance of SMRC through ex- 
periments that were implemented on  an IBM RISC 
System/6000*  with 128 megabytes of main  memory 
running AIX 3.2.5 and DB2 Version 2.1. Client ap- 
plications and the database server run on the same 
machine. Here we present some of our experimen- 
tal results for the ADT and BLOB mapping. 

ADT mapping performance. With regard to space 
efficiency, SMRC requires only  4-byte storage over- 
head for the type tag of each object-a  type tag is 
stored as part of an object. With regard to  the  per- 
formance of storing the objects, the type  tag oper- 
ation requires a memory  copy (the memcpy routine) 
of the object to get the  data into the SQL host vari- 
able, plus an address assignment operation for each 
deswizzled  vbase pointer. If an application uses the 
SMRC overloaded new operator, copying of the ob- 
ject is not necessary, as SMRC directly allocates the 
object along  with the required type tag. For the SQL 
insert operation of the host variable, SMRC relies on 
the performance of the applied database operation. 

For object retrieval, there is the performance of the 
select statement and the swizzle operation itself. The 
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swizzle operation  costs an address  assignment  for 
each vbase pointer  as well as  for  each  vtable  pointer. 
The SMRC internal  persistence  schema with the class 
layout description is built at  startup time. It is global 
information that is used by all swizzle operations in 
an application. 

We have not yet run any commercial  relational or 
de facto 00 benchmarks,  as  none are specifically 
geared  to  measure  the  unique  set of features in SMRC. 
Relational  benchmarks do not exploit the SMRC tech- 
nology, and 00 benchmarks  do not  incorporate  the 
unique SMRC functionality of having coexistence be- 
tween relational  and  object-oriented data. However, 
to gain an  understanding of our relative performance 
to OODBMSs, we are  preparing  to run the 0 0 7  bench- 
mark.4y 

In  the  meantime, we developed the following exper- 
iment.  We  compared  the SMRC ADT mapping  ap- 
proach (which maps  an object to a single column) 
to  an  approach  that completely “flattens” the C+ + 
class definitions and  stores all the  data  members in 
additional  table columns.s‘) In  both cases, however, 
we required  that  the  language  object  be available so 
that it  can be passed to  the UDF (time) to compute 
the query  predicate.  In  the SMRC case, the  object  can 
simply be retrieved  and  passed to  the  time  method. 
In the  flattened case, however, the object  must be 
reassembled  before  it  can  be  passed to  the  time 
method  (this work of reassembling the  object is done 
in the UDF before  the  method call).” 

We  populated  the orders table  from  Figure 1A with 
2000 C+ + objects  and  executed  a  query that did  a 
table scan and invoked the time method  on the C+ + 
objects. We  made  the query  result  empty, to factor 
out  the  clientherver communication  costs  and  thus 
focus on the  overhead of running SMRC in the  server. 

Table 1 shows the  performance of the two queries. 
In  both cases-the SMRC approach  and  the class flat- 
tening approach-the same  original C + +  time 
method was executed as  part of the UDF invocation. 
The experiment shows that SMRC is able  to preserve 
the C+ + object  nature; C+ + methods  can  be  ap- 
plied after  object retrieval from  the  database  and  ob- 
ject  relocation in main memory. SMRC also performs 
slightly better (approximately 7 percent in the ex- 
periment) in comparison to a class flattening  ap- 
proach.  Before  conducting  this  experiment, we 
thought that  the SMRC approach might be  faster  than 
a  normalized  approach, mostly because of the over- 
head in restoring  the  objects  from the normalized 
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Table 1 ADT mapping  performance  results 

Approach  Query  (scans  Elapsed 
2OOO tuples)  Time 

SMRC ADT select prodno,  quantity 2.66 sec. 
mapping from orders 

where time (delivery) = 0 
Class select prodno, quantity 2.89 sec. 

“flattening” from orders where time 
( . . . 32  parameters. . . ) = 0 

Table 2 BLOB mapping  performance  results 

Type information type table  entries 230 
pointer definitions 610 
user-provided 22 

functions 

Sample query heap size 85 kilobytes 
number of objects 950 
swizzled pointers 4300 
elapsed  time 83 milliseconds 

tables. However, this experiment  compares  the SMRC 
approach  against  an  unnormalized  table,  and SMRC 
was still faster. 

BLOB mapping performance. The BLOB mapping 
approach was applied in a nontrivial sample  appli- 
cation. lo The persistence  schema  contained more 
than 160 SMRC flagged class definitions with approx- 
imately 260 persistent  pointer  definitions  and sev- 
eral definitions for unions, dynamic arrays, and func- 
tion  pointers  (see  Table 2). The type table in a heap 
had  more  than 230 type entries  (it  included  the  em- 
bedded types) with more  than 610 pointer definitions 
(including the transient  pointers).  A typical heap size 
contained  approximately 950 objects that allocated 
85 kilobytes of object  memory  and  contained 4300 
swizzled pointers. Given the size of the application, 
swizzling  of the  entire  heap was completed in a  re- 
spectable 83 milliseconds of elapsed  time. If  we were 
to flatten  this data  rather  than use the BLOB map- 
ping, the equivalent  relational  operation would in- 
volve multiple  joins  across many tables to reassem- 
ble the C + +  objects. Actually, the worst case of 
normalizing all the  data types-which could  result 
in 160 tables  (and  could  require  a 160-way join)- 
would probably cause the  database system to run  out 
of memory. 

In  contrast to  the ADT mapping, which maps an ob- 
ject to a single container,  the BLOB mapping  maps 
a  heap of (possibly) heterogeneous  objects  to  a sin- 
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gle container. It is  this  primary  difference  (with more 
detail provided  below) that gives the BLOB mapping 
better performance: 

No deswizzling-As the old heap load address is 
kept in the  heap header information, no deswiz- 
zling of the pointers within objects of a  heap is re- 
quired. Therefore, the storage operation of a heap 
is  confined to just loading the  entire heap of ob- 
jects into a column of a table. 
Direct  addressability  forpointerswizzling-All  of the 
pointers can be swizzled without search or navi- 
gational  overhead. The swizzle operation itself  con- 
sists of a single addition and  assignment operation. 
Obviously, if the  heap is loaded in its original lo- 
cation, then no pointers need to be  modified  (ex- 
cept the vtable pointers). 
Cluster of objects-Since a heap represents a self- 
contained set of objects and references (external 
pointers are  treated differently), the  entire  heap 
can  be adjusted in one swizzle  call. No further I/O 
or memory allocation operations would  be re- 
quired to additionally  load or swizzle internally  ref- 
erenced objects. 

Summary  and  outlook 

In this paper, we  have described  an approach to mak- 
ing C+ + persistent using an RDBMS. Although many 
bridge  technologies between object-oriented and re- 
lational systems  have recently appeared in research 
publications and product lists, the SMRC approach 
is  still unique, as  it pursues a tight language binding 
by storing objects in the same binary format in  which 
they were created in the host language. As  this  bi- 
nary format is a “black  box,” the database system  can 
only  provide container functionality, i.e., storage 
management, and not use the  data contents directly 
in most relational operations, although we have  dis- 
cussed alternatives that use UDFs to expose parts of 
the object. SMRC does not require a new object  model 
or database language for persistence,  but  instead  sim- 
ply employs C + +  and the industry standard SQL. 
This approach preserves the object-oriented lan- 
guage features of C+ + , such  as inheritance and sub- 
stitutability, while adding persistence and object re- 
location. Objects are stored via the ADT or BLOB 
mappings,  as appropriate for the application,  and  can 
be cross-referenced via external pointers. Our  ap- 
proach is compatible with  class libraries, as  it does 
not require a modification of the class definitions to 
inherit persistence properties from a common root 
class. Thus, third party C+ + class  library software 
can be used on both client and server sides. 

Although our general design  is complete, there  are 
still some implementation details missing. A primary 
issue  is heterogeneous portability. Currently, the 
SMRC schema compiler works  only  with the IBM AIX 
C Set+ + compiler. However, as the schema com- 
piler generates schema information as C+ + source 
code, the produced schema files then can be used 
on any platform. Furthermore, SMRC requires a ho- 
mogeneous clienthewer platform for the object for- 
mat. Unfortunately, the problem of building a 
general-purpose object translator (including the 
translation of the method code) across multiple 
platforms is  extremely  difficult. Interestingly, the 
solution may lie in a different language such  as 
Java* *,28 a new object-oriented programming 
language offered by Sun  Microsystems, Inc. Java, 
an  interpreted language, is machine-independent 
and can be used to create stand-alone applications 
or program fragments. Java methods can  easily 
be moved across platforms to any machine that 
has a Java interpreter. We are exploring this 
possibility. 

A secondary issue  is the implementation of external 
references. One of our goals  was to work  with  ex- 
isting  class  libraries. Unfortunately, our preferred so- 
lution (software  swizzling  using smart pointers) is not 
compatible with  existing  class  libraries-the code 
must  be recompiled to use the overloaded derefer- 
ence (+) operator. Only the less preferred, platform- 
dependent solution (the page-fault method) is truly 
compatible with  existing  class libraries. We are still 
battling with  this dilemma. Furthermore, we must 
explore other kinds of external references, such as 
uniform reference locators (URLS) and OLE refer- 
ences. 
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