
Application development
as an engineering
discipline: Revolution
or evolution?

by N. Bieberstein

The title question is answered differently
according to the nature of the person being
asked. A talented person with a new solution to
a particular problem in the existing technology
may be a revolutionary, gathering devoted
followers who spread the new idea. Such leaders
and their followers then propagate paradigm
shifts promoting the one answer, the “silver
bullet” to solve all problems. When we look more
closely, in most cases only a single aspect was
solved; we were not given a whole new way to
develop software. This confirms the position of
the traditionalists, who continue to keep and
protect what is well known. In the end, in
application development as in any other
discipline, evolution is driven by new inventions
and kept on track by the conservatives among
us. This essay reflects on the historical path of
software development toward an engineering
discipline. It also introduces the papers collected
for this theme on application development, which
demonstrate this progress in selected areas.

A good scientist is a person with original ideas. A good
engineer is a person who makes a design that works
with as few original ideas as possible. There are no
prima donnas in engineering.

-Freeman Dyson’

One has to look out for engineers-they begin with
sewing machines and end up with the atomic bomb.

-Marcel Pagno12

D uring the last 30 years we have experienced sev-
eral waves of ever-improving programming lan-

guages, numbered by generations that represent dis-
tinct degrees of abstraction. More than once we were
introduced to new concepts marking the start of a
new application development era: expert systems or
artificial intelligence, approaches to simplify the

human-computer interaction with languages like
SIMULA or Smalltalk (originally intended to allow
the user to do “small talk” with the computer), or
CUI (graphical user interface) builder approaches,
among others. Visual Basic** became one of the
most widespread of the GUI builders, although
BASIC as a programming language was disdained by
professional software writers.

Was this software engineering? Engineering means
“the application of scientific and mathematical prin-
ciples to practical ends such as the design, manufac-
ture, and operation of efficient and economical struc-
tures, machines, processes, and system^."^

A computer system is a machine that operates ac-
cording to mathematical principles, so any way to
communicate with such an engine requires a lan-
guage that follows strict grammatical rules and se-
mantics, an algebra. Hence computer science was de-
rived from mathematics as an independent subject.
To engineer means “to skillfully or shrewdly manage
an enterpri~e.”~ The engineering of software then
includes all aspects of the software life cycle, and to-
day we have techniques, methods, and methodolo-
gies that address the specification, verification, de-
ployment, and testing of application systems, as well
as their development.

Wopyright 1997 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

4 BIEBERSTEIN 0018-8670/97/$5.00 0 1997 IBM IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

As in other disciplines, each advance in application
development acquired a number of followers and a
fast-growing (and sometimes quickly vanishing) mar-
ket. But with each advance, a few key ideas and el-
ements were adapted by mainstream developers and
introduced into the currently accepted approach. The
technical papers selected for this issue do not pos-
tulate radical paradigm shifts, but illustrate good
ideas for improving application development within
a given environment. For this theme, we chose to
focus on what has found acceptance, rather than to
weigh one approach against another. To measure the
progress toward industrial software development,
experience reports and field studies are necessary.
With this in mind, our theme was initiated and the
authors invited to contribute.

Two of our papers show how existing approaches can
be extended with object-oriented techniques, one us-
ing a construction from parts framework and the
other using objects in COBOL. Another paper provides
a treatise on how to solve the issue of object persis-
tence, either directly in an object database, or bridged
using the gateway-based object persistence (GOP) con-
cept, or with object-relational databases, where rela-
tional database management systems (RDBMSS) are en-
riched with functions managed and executed under a
single control system. Innovative ways to debug code
are required w i t h such a closed system, and one paper
shows a research approach for debugging stored proce-
dures and user-defined functions in Database 2*/Com-
mon Server (DB2*/CS) for uNIX**-based platforms.

A way to structure and build applications by making
them independent, at least to some degree, of con-
trol flow as well as data is explained by another pa-
per. Here the extracted control flow is modeled for
and implemented in a separate workflow system. This
approach changes the structure of programming sys-
tems, and thus the application development process,
quite radically, although it still uses and relies on con-
ventional (this includes object-oriented) develop-
ment for the concrete data transformations, data
stores, and presentations. We see here the potential
for an industrial approach: a plug-in solution with
reuse of well-defined components.

To determine progress on the industrialization scale,
reflections on methods and techniques are needed.
So one paper reports experiences using an approach
that applies object thinking and formal structuring
to the development process of banking applications.
An empirical study investigating the effect of differ-
ent business models on object-oriented and “clas-

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

sical” software development shows some results that
make us think (“. . . the classical approach shows
higher on-time delivery than 00 . . .”4), and another
paper reports the findings of an extensive long-term
study on the effects of using computer-aided soft-
ware engineering (CASE) tools (“. . . this implies that
using lower CASE tools increases the likelihood to
run over scheduled time tables . . .”; “. . . CASE tool
usage is related to higher satisfaction . . .”’). These
two field studies make clear that there are human
beings involved in defining and realizing the func-
tionality and behavior of computer systems. This
leads to several questions that I want to discuss in
this essay.

Revolution vs evolution

Looking back, we find that almost all approaches to
improve the way we specify computer programs were
based on a desire to abstract repeatable steps and
to provide an easier-to-learn and more understand-
able language for communicating with the machine.
Today it is taken for granted that formal computer
instructions are generated from higher-level lan-
guages that are based on a set of words derived from
the English language. In general, this is still true for
any 3GL (third-generation language),‘ 4GL, and ob-
ject-oriented programming language, whether com-
piled or interpreted. Because of the higher-speed
processors available today, interpretative systems
have become more competitive than in the past and
can play to their strength, the flexibility allowed by
run-time binding and textual interpretation. Java* *,
the latest “hit” on the programming language mar-
ket, exploits this quite well, no longer even bound
to a single central processing unit.

In parallel with the process that generated higher-
level programming languages, which concentrated
on processing data and controlling program execu-
tion, abstraction occurred in the way data were
stored, managed, and made accessible. We can fol-
low this development from first sequential, then in-
dexed sequential systems, over relational database
management systems and other DBMSs, to the recent
structured query language (SQL) standard7 that al-
lows databases to manage and execute functions on
the data they contain. Based on the scheme used to
define the structure for the stored data and to ac-
cess the data, languages were developed to be as close
to natural language as possible.

Adoption and adaptation of ideas from other dis-
ciplines often leads to improvements. Tools to de-

fine and access data in databases show two trends:
abstractions manifested in graphical representations
based on Chen’sK entity-relationship approach (pri-
marily used for design), and tools using modern
graphical user interfaces with predefined categories
and so-called “intelligent” wizards that allow point-
and-click user interfaces (to easily access the data).
Built on these tools are decision support tools that
exploit data mining concepts.’ Star Trek‘s “Mr. Da-
ta”“’ is not yet perfectly incarnated, but we are get-
ting closer.

When the contemporary approach shows severe
shortcomings, newer concepts are then developed
and invented. Those with a revolutionary mind-set
use the new concept as their vehicle to “fight the es-
tablishment.” They have good arguments, because
the new idea solves a serious problem. This allows
them to quickly gain followers, especially when the
new approach shows very good results in solving the
particular problem. So the new message is spread,
and at every opportunity the flaw in the existing so-
lution is pointed out. However, the traditionalists will
soon find good reasons to defend their old approach,
proclaiming its strengths and detecting weaknesses
in the new solution.

The paper on object persistence” in this issue ex-
amines such a situation. A need to manage complex
structures and to store the newly introduced objects
gave birth to object-oriented databases. Soon these
were challenged by their inability to match the mass
data management capabilities of the older solutions
in other data storage systems. We find similar sit-
uations in nearly all disciplines. The dialectic between
the new, revolutionary approach and the old system
drives the evolution of the industry. A new idea, how-
ever, also provides “buzz words” that are soon ap-
plied as labels for old things. So fashion is created,
as we have most recently encountered with the term
“object-oriented.”

Is the term “objects” misleading?

During this decade we focused on objects for soft-
ware development. This noun has its root in the me-
dieval Latin language, where objectum means a
“thing put before the mind,” literally translated,
“something that is thrown in front of YOU."^
We perceive things with our senses and observe cer-
tain behavior and relationships among them. We
map what is experienced by our senses onto given,
or learned, patterns using certain rules. According

6 BIEBERSTEIN

to Whorf, l2 these patterns are determined by the lin-
guistic system the individual was brought up with.
He shows that quite different schemes of grammars
generate different types of perception. In our mind
we always deal with abstractions of what we name
“the real world” according to our first adapted pat-
tern. With that we build models using abstractions
to understand certain details filtered from the infi-
nite universe. In each discipline, whether engineer-

The objects we observe are
not really “objectively”

perceived, but are based
on Western abstractions.

ing or science, we encounter models: of buildings,
machines, or the human body, of plants, or the world
and the universe; and the use of models is further
extrapolated to explain political structures and le-
gal situations. Most of the models we encounter to-
day are constructed based on the patterns of the
Indo-European (Western) linguistic system.

This means that the languages we use to commu-
nicate with a computer system, and the basic foun-
dations of our hardware and software, are built on
a common way of abstracting. In other words, for
people raised in the Western cultures, the object in
the mind and in models, such as in a computer pro-
gram, conform to our adapted way to abstract. For
people from other cultures this is not the case, but
to contribute in the modern world they adopt the
Western system in its wholeness. l 3 Hence the ob-
jects we are dealing with are reflected in our mind
as Western abstractions. What we recognize as the
thing thrown in front of us, the objects we observe,
are not really “objectively” perceived. How would
a computer system look if it were based on the Chi-
nese linguistic system?

Therefore we all have a common understanding of
objects, but the underlying language pattern is not
the same for everyone. Also, people have individual
preferences linked to the predominance of a single
sense, or to a combination of a few senses. This is
true not only for blind or deaf persons; all of us are
stamped by our very first experiences of the envi-

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

ronment. The pattern we find in it determines our
way of thinking and further behavior. For more de-
tails, see Vester. l 4

Some of us are very good at expressing ourselves in
words, others can draw pictures, or differentiate tones
or tastes, etc., in an exceptional way. Similarly our
social sense is developed along patterns experienced
in our early childhood. For some, a picture or draw-
ing simplifies and explains everything (for them the
phrase “a picture is worth a thousand words” is true),
but some of us cannot understand graphical repre-
sentations at all. Think of a mathematics teacher try-
ing to help pupils to imagine a three-dimensional
geometrical problem.

This leads to the question of what is intuitive and
so what is the best way to represent and access a com-
puter system. When application and system devel-
opment was done by only the mathematically gifted,
the world was in balance. These persons share com-
mon patterns. The problem occurs when more and
more people with other abstraction templates are
confronted with computers in their daily life. This
is now the case. Graphical user interfaces, multime-
dia, and the first examples of “virtual reality” allow
more senses to be addressed.

To specify and build applications that include all
these different features, the language to express the
requirements becomes less formal, at least less
strictly mathematical, and fuzzier. Human nature in
its whole breadth of diversity demands reflection in
the user interface as well as in the way we capture
the needs and wishes of the user. This is certainly
true for consumer-oriented software (games, for ex-
ample). It is also true for commercial applications,
from business process modeling used by manage-
ment consultants and financial applications to the
cashier systems of a department store or in any other
enterprise.

Al l of these requirements must (still) be transformed
to computer-understandable commands, in the end
to a formal textual language with a Western linguis-
tic pattern. This leads to conflicts and misinterpre-
tations. In order not to broaden the scope of this
short essay too far I will focus on commercial ap-
plication systems. Here business analysts, systems an-
alysts, and programmers must find a common lan-
guage, some way to communicate without generating
too many misunderstandings.

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

With the recent wave of business process and object
models, and the influence of languages, techniques,
and semantics from object-oriented analysis and de-
sign approaches, we encounter the search for com-
munication between the business and the software
development worlds, using and adapting the same
terms and similar representations. But there is dif-
ferent understanding of words and a noncongruity
in the two areas. The words “process” and “object”
mean something different for a programmer than for
a business analyst, and for a chemist still another
meaning applies. Yes, the term “object” is mislead-
ing and confusing.

Is there a common understanding between
application developers and users?

Process for the programmer is the transformation
of input data, following a defined algorithm, to pro-
vide output data, which are the same each time when
executed under the same conditions. An object is
then a set of data values and attached algorithms,
executed when requested. Objects were introduced
to most programmers through object-oriented pro-
gramming languages, where the emphasis was pri-
marily on the notions of class and inheritance. These
are the facets perceived as the most beneficial for
the task of writing applications. The most often used
object-oriented programming languages and also
some object-oriented design techniques reflect ex-
actly this. No wonder, because object concepts were
often introduced as additional abstractions (the next
generation of programming languages) and as the
anticipated formalization of good programming
practices-copying often-used program patterns,
routines, and data structures became easier by re-
ferring to an appropriate superclass.

But what does a business analyst understand of an
object and a process? In business analysis, an object
(called a business object) is an abstraction, an im-
age or stereotype of a real-world thing. It might be
a clerk with a certain task, a customer, a contract,
an account, a specific technical device, etc., mapped
in the mind according to a given pattern. Business
processes are the rules and transformations, the spe-
cific tasks that are needed to maintain a concrete
business. They are executed by and on business ob-
jects. The predominant notion here is that tasks are
carried out obeying given rules in a specified order
with these objects. Inheritance or the concept of
classes in the object-oriented sense has no immedi-
ate meaning. A business analyst does not show, and
in most cases does not need, the deep mathematical

analysis of similarities and patterns of relationships
important to computer systems analysts.

In contrast to this, notions of collaboration and con-
tainment are meaningful to a business person. Con-
tracts are manifested by a collaboration between at
least two different business objects. Containment can
be easily translated to and from business terms: an
invoice almost always contains items such as cus-
tomer identification, parts and their amounts and
unit prices, etc. There is still a gap between the bus-
iness analyst and the systems analyst, however. Al-
though contracts and interaction between the objects
involved in a given business can be seen as collab-
orations, the business objects may not map directly
to a class structure. The invoice, a piece of paper
containing certain items, is naturally perceived as an
entity, not as a relationship between other entities.
You might recall similar difficulties with entity-re-
lationship modeling.

The latest trend in software development and bus-
iness modeling shows the two worlds approaching
each other. This is not yet in mainstream thinking,
but more and more methods appear on the market
that deal with both business process models and ob-
ject models. Also in recent public discussions (e.g.,
at the Object Management Group [OMG] 15), we find
the desire to close the gap between the technical,
mathematical definition of computer instructions and
the rather pragmatic approach used by business an-
alysts and end users.

From another perspective, for some time we have
conceived that application systems could be built
from prefabricated parts like integrated circuits (ICS),
mounted together in accordance with plans, an ar-
chitecture, and design drawings produced by the sys-
tems analyst. The discussion of whether we can find
standards for business objects, or at least a common
classification scheme for components, is public, and
the OMG (founded as a group to define standards
for object-oriented programming) now has several
industry-specific task forces dealing with such ques-
tions. l6

IBM’s Visual Age” family of application development
tools, l7 as well as the workflow-based application de-
velopment approach,’* make use of this new para-
digm of constructing software from parts. The meth-
ods to specify the build plan will improve over time
as an increasing number of providers deliver stan-
dard and special components. This marks the en-
trance to an era of “industrial-strength” software en-

8 BIEBERSTEIN

gineering. The recent efforts to define standards for
business objects, common facilities, and the way to
describe, use, and represent objects highlight this up-
heaval.

The mapping of the specified business items (objects
and processes) to the existing generation of object-
oriented programming languages (OOPLS) will be-
come more and more automated. This is similar to
the situation that existed when compilers became re-
liable and we finally learned to trust them. The cases
where an assembler language programmer could im-
prove the generated instructions in a timely man-
ner, or even detect a compiler error, were diminished
to nearly zero. A compiler is accepted now, as is the
operating system or a disk drive, to be simply per-
forming its task.

Nevertheless, the skills needed to specify an appli-
cation using these new concepts are beyond those
of an average programmer today. An application de-
veloper needs to understand much more of the bus-
iness and the requirements on the computer system
today than in the past. In answer to the question
posed for this section, the application developer and
the user, represented by the business analyst as re-
quirements provider, need to come closer together,
and their concepts and semantics have to converge
in order to ease understanding.

Can software engineering really happen?

As in any other industry, in computer science there
are some things that are understood by the layper-
son. There are also secrets-specific languages, tools,
and processes, that are mastered only by the pro-
fessional. From first Babylonian, Greek, and Roman
cultures, then from medieval guilds to modern Eu-
rope, we have the concept of apprenticeship, a more
or less formal way to become educated in a certain
profession. An apprentice has a contract to gain well-
defined knowledge and skills in his or her mttier of
choice. In this case a master (Meister, maitre), a sen-
ior qualified person, transfers his or her knowledge
and skills to the apprentice, while performing cus-
tomary tasks.

Today we find this path to becoming a professional
in “trainee” programs and “learning-on-the-job” sit-
uations. These terms, introduced from the United
States, have made their way into European every-
day usage and sometimes replace the more tradi-
tional expressions. Having gone through the phase
of apprenticeship, a professional is accepted as qual-

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

ified, differentiating him or herself from the ama-
teur.

In the field of software, the range of knowledge and
skills that define the profession of application de-
veloper should include more than merely knowing
and mastering certain programming languages. Yet
today we encounter in nearly all information systems
organizations programmers who were employed be-
cause of the high demand for programming skills.

Most of us
do not trust an unknown thing

when it first appears;
we want to see that it works.

Many of these programmers originally intended to
enter other professions, and were trained for them.
But a programming job often meant a higher income
or simply a safer position. This phenomenon is char-
acteristic of a young, developing industry. We may
compare it to the time of the Industrial Revolution,
when unskilled and poorly educated people, mostly
small farmers from underdeveloped areas, were
hired to work in mines and factories in Europe and
North America during the last century. None of these
was considered an engineer.

But in both situations we find that soon a group of
people emerged who were capable of controlling the
development process, building an architecture, and
designing particular parts in enough detail to be con-
structed by others. As discussed in the introduction
to this essay, in our situation methods, tools, and
techniques were developed to automate certain pro-
gramming tasks (e.g., the higher-level programming
languages and data storage systems). There are also
methods, methodologies, techniques, and tools that
were invented and, over time, refined to improve the
software development process itself. The first cat-
egory of methods and tools is analogous to machines
and engines, the latter covers engineering aspects
including software architecture, quality assurance,
requirements analysis, and other aspects.

The approaches that use languages and symbols sim-
ilar to those of systems analysts to describe a bus-

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

iness situation demonstrate that we have passed a
milestone along our path toward software engineer-
ing. There is also reason for hope that bridges over
the gap between the requirements providers and the
software developers will be in place soon. Techniques
that reflect the customer requirements in a way that
is closer to the language and abstraction patterns of
the business will be even more helpful when they are
automated, or at least capable of being transformed
(see compilers) to executable systems without intro-
ducing errors. We find already a number of tools on
the market providing animation, execution of mod-
els, and simulation capabilities. These tools are based
on virtual machines, some capitalizing on expert sys-
tem concepts. Here the artificial intelligence wave
finds its renaissance in new clothes.

Must we always find new solutions, or can
we use existing solutions?

You may think this is an unfair question. We have
always reused software; in the era of the punched
card we copied control cards. (To copy is one of the
first things a programmer learns.) Many algorithms
are no longer coded and invented by every program-
mer. Dynamic link libraries (DLLS) allow the com-
mon use of general functions; data storage patterns
for standard situations are used without question.
Yet there are discussions on reuse and complaints
that we do not take advantage of other people’s work
and ideas.

It seems to be part of human nature that most of us
do not trust an unknown thing when it first appears.
People need to become familiar with a new thing;
we want to see that it works before accepting and
using it. Most of us hesitate; only a few are coura-
geous enough to fearlessly try everything they en-
counter. The latter find their own path to the new
thing and may soon demand improvements and new
“toys”; the former need guidance before they can
welcome new approaches.

Experience has shown that certain approaches to
software systems development have been very suc-
cessful in keeping to the schedule, or in producing
extremely low error rates. As we examine these ap-
proaches, we find that they were intensively devel-
oped over a long time by an intimate team. The pro-
cess and the techniques used were improved and
refined again and again, and became very compre-
hensive, but also less simple and therefore harder
to teach and to adopt.

BIEBERSTEIN 9

We can find analogies to this in many fields. For ex-
ample, a skilled cabinetmaker, either alone or with
a team of skilled workers, can produce a custom-built
kitchen that is beautifully made and exactly meets
all requirements of the homeowner. In contrast, a
contractor can be hired who purchases factory-made
cabinets and, with his or her team, fits them into the
kitchen, adding and adjusting pieces to adequately
meet the requirements. This solution, although not
precisely what the customer imagined, can be done
for a much lower price.

We would like to find the industrial, or factory, so-
lution for building software. Although the industrial
approach may not produce the quality of the cus-
tom approach, especially in the beginning, it is the
only way for our profession to truly become an en-
gineering discipline and to satisfy the accelerating
demand for software solutions.

To achieve a high volume of custom-made solutions,
we would need many more highly skilled teams than
we can produce. We cannot teach all the skills needed
for perfect craftsmanship to so many people in a rea-
sonable amount of time. Therefore we need to con-
centrate on the key ingredients of an industry, i.e.,
the sophisticated parts and assembly-line production.

To successfully sell software components or parts,
precise descriptions of their interfaces are needed,
but not information about their insides. A standard
description format helps, as well. It reduces the
amount that must be learned. Look at what engineer-
ing means in other industries, e.g., manufacturing.
We need tools to develop parts. Such tools have been
used successfully to produce custom-built software
systems. To reach our goal of software engineering,
we also need tools that are appropriate for the as-
sembly of factory-produced software parts.

We can take from the papers in this theme ways to
rearrange and compose existing software systems, or
parts of them, so that they can become components
and be assembled into new applications. The paper
on workflow-based application development l8 shows
how new systems can be built taking advantage of
the results of business process models. Here the pro-
cesses can be defined to fit the workflow, and
wrapped components can be inserted. There are still
drawbacks caused by the way software is currently
constructed. Not every monolithic program can be
wrapped so elegantly that it is of use for this kind
of software development.

10 BIEBERSTEIN

This and many of the recently published ap-
proaches’’ allow application development to more
closely resemble the way other industries engineer
their products. In other words, we are in the middle
of the industrial revolution of the software industry.
The vision of CASE gets another assist from the use
of formal descriptions to solve business issues. So-
phisticated metamodels supporting these approaches
allow automation and bring us a step beyond the use
of graphical editors instead of paper and pencil to
draw nice diagrams.

As with its historic model in manufacturing, the In-
dustrial Revolution, we will encounter powerful
changes in the software business and in the profes-
sions in this field. It will proceed, however, as a fast-
paced evolution rather than as a radical change in
the development process. To this, all the approaches
contribute that combine modern ideas with tradi-
tional procedures or adopt newer concepts to be used
in older systems. You will find a few of them here,
collected for this theme on application development.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Microsoft Corp. or Sun
Microsystems, Inc.

Cited references and notes

1. F. Dyson, Disturbing the Universe, Harper & Row, New York

2. M. Pagnol, Critique des Critiques, Nagel, Paris (1949).
3. American Heritage Dictionay of the English Language, sec-

ond edition.
4. T. E. Potok and M. A. Vouk, “The Effects of the Business

Model on Object-Oriented Software Development Produc-
tivity,” IBM Systems Journal 36, No. 1, 140-161 (1997, this
issue).

5. P. J. Guinan, J. G. Cooprider, and S. Sawyer, “The Effective
Use of Automated Application Development Tools,” IBM
Systems Journal 36, No. 1, 124-139 (1997, this issue).

6. First-generation languages are at the level of machine instruc-
tions; second-generation languages have a higher level of ab-
straction (FORTRAN, COBOL, and ALGOL). Third-gen-
eration languages add strong procedural and data structuring
capabilities (Pascal, Modula-2, C, and Ada), and fourth-gen-
eration languages raise the level of abstraction still further.
Program generators, decision-support languages, prototyp-
ing languages, and the formal specification languages that pro-
duce executable code are considered to be 4GLs. (See R. s.
Pressman, Software Engineering: A Practitioner’s Approach,
second edition, McGraw-Hill, New York [1987].)

7. C. J. Date, Guide to the SQL Standard, third edition, Addison-
Wesley Publishing Co., Reading, MA (1993).

8. P. P. Chen, “The Entity-Relationship Model-Towards a Uni-
fied View of Data,” ACM Transactions on Database Systems
1, No. 1, 9-36 (March 1976).

9. “Data mining” is a way to search through a large amount of

(1 979).

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

information, using user-supplied parameters, in an attempt to IBM’s OMG activities in the areas of object-oriented analysis
to find meaningful and useful relationships between varia- and design, meta-object facilities, and business object facilities
bles. It is up to the user to determine whether or not the cor- related to proposals for standards to be adopted in 1997.
relations thus found are meaningful or simply coincidental.

10. Lt. Cmdr. (Mr.) Data, a character on the 1987-1994 science Reprint Order No. G321-5631,
fiction television series “Star Trek: The Next Generation,”
was a state-of-the-art android with encyclopedic knowledge.
As operations manager of the starship “Enterprise,” he rep-
resented the voice of logic.

11. V. Srinivasin and D. T. Chang, “Object Persistence in Object-
OrientedApplications,”ZBMSystemsJournal36, No. 1,66-87
(1997, this issue).

12. B. L. Whorf, Language, Thought and Real@, MIT Press, Cam-
bridge, MA (1963).

13. Ibid., see second chapter, “The Linguistic Relativity Princi-
ple.”

14. F. Vester, Denken, Lernen, Vergessen (Thinking, Learning,
Forgetting), Deutsche Verlagsanstalt, Stuttgart, Germany
(1975).

15. The Object Management Group is a software development
consortium with more than 600 members, formed to create
a component-based software marketplace. Its charter includes
the establishment of industry guidelines and object manage-
ment specifications to provide a common framework for ap-
plication development. See http://www.omg.orgibacgrnd.htm
for more information.

16. From the OMG home page at http://www.omg.org, use the
internal search capability to find more on these topics.

17. A. H. Lindsey and P. R. Hoffman, “Bridging Traditional and
Object Technologies: Creating Transitional Applications,”
IBM Systems Journal 36, No. 1, 32-48 (1997, this issue).

18. F. Leymann and D. Roller, “Workflow-based Applications,”
ZBM Systems Journal 36, No. 1, 102-123 (1997, this issue).

19. For example, those proposed in I. Jacobson, M. Ericsson, and
A. Jacobson, The Object Advantage: Business Process Reengi-
neering with Object Technology, Addison-Wesley Publishing
Co., Reading, MA (1995) and D. Taylor, Business Engineer-
ing with Object Technology, John Wiley & Sons, Inc., New York
(1996).

Accepted for publication November 11, 1996.

Norbert Bieberstein IBM Arthur X Watson International Edu-
cation Center, Chausee de Bruxelles, 135, 1310 La Hulpe, Belgium
(electronic mail: bsn@vnet.ibm.com). Mr. Bieberstein is a German-
born software architect, developer, development project coach,
and teacher. He received master’s degrees in mathematics and
geography from Aachen University of Technology, Aachen, Ger-
many. Before joining IBM in 1989 he taught high school (math-
ematics, computer science, and geography) and developed soft-
ware for technical and commercial application systems. He joined
IBM’s Software Development Laboratory in Hannover, Germany,
as a consultant on software engineering. He later consulted on
customer projects and taught courses at IBM’s International Ed-
ucation Center in La Hulpe, Belgium. These experiences are re-
flected in his book, CASE Tools: Auswahl, Bewertung, Einsatz
(CASE Tools: Selection, Evaluation, Usage), published by Han-
ser-Verlag, Munich, in 1993. From 1994 to 1996 he was on the
staff of the technical director for application development at IBM’s
software headquarters in Somers, New York. In August, 1996,
he accepted his current job as relationship manager for IBM’s
software products to the banking, finance, and insurance solu-
tion units of IBM in La Hulpe. During 1996 he also contributed

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997 BIEBERSTEIN 11

