The COBOL jigsaw
puzzie: Fitting object-
oriented and legacy
applications together

Object wrappers have been presented as a way
to allow legacy applications and object-oriented
applications to work together. However, object
wrappers do not always solve the interoperability
problem for COBOL legacy applications. This
paper examines the use of object wrappers and
introduces two other types of wrappers, the
procedural wrapper and the combination
wrapper, for practical use with COBOL legacy
applications. The main concerns of a developer
of an object-oriented application that uses the
services of or provides services to a legacy
application are addressed. Examples of “real-
world” COBOL legacy applications are cited and
samples of all three types of wrapper code are
provided.

legacy COBOL application can be characterized

as procedure-oriented, with perhaps several leg-
acy programs working together. It can be a puzzle
to get several legacy programs to run as one unit,
and getting a legacy program and an object-oriented
program to run together can be compared to a jig-
saw puzzle. Like the jigsaw puzzle, the final picture
can be formed only if the correct connections are
made between the pieces. In this paper, three types
of “wrapper” programs are presented as techniques
for making the connections between COBOL legacy
programs and object-oriented programs.

Early work proved the applicability of wrappers for
using legacy code as an external object implemen-
tation.! In this paper, a wrapper is considered to be
a “shell” program that hides implementation details
of the legacy program from the object-oriented pro-
gram and provides an interface between the two pro-
grams. This paper describes three types of wrappers:

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

0018-8670/97/$5.00 © 1997 IBM

by E. S. Flint

object-oriented, procedural, and combination. With
one of these wrappers, a COBOL legacy application
is able to work with an object-oriented application.
Further, using these wrappers requires a minimum
number of changes to a legacy application.

The first section explains why COBOL legacy pro-
grams and object-oriented programs do not easily
form interoperable components. Next, a section is
devoted to each of the three wrappers to explain what
the wrapper is, discuss when it should be used, and
provide an example of its use. Sample code is also
provided to illustrate the use of each of the wrap-
pers. Finally, the conclusion summarizes the bene-
fits of using wrappers.

Background

Today most commercial and government enterprises
are becoming increasingly aware of object technol-
ogy and the benefits resulting from its effective de-
ployment. Benefits include:

¢ Increased programmer productivity
¢ Faster development of applications
* Reuse of models, designs, and code
* Preserving existing applications

©Copyright 1997 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

FUNT 49

50 FunT

The last item has generated a great deal of interest
and concern since the introduction of IBM COBOL for
MVS & VM, IBM VisualAge* for COBOL for 0$/2*, and
IBM COBOL Set for AIX*, which are the new object-
oriented COBOL compilers from IBM.

With an estimated 200 billion lines of code in ex-

istence, COBOL is by far the most widely used pro-
gramming language.” Enterprises are dependent on

The conflict between
legacy and object-oriented
applications is in
their method of operation.

existing, large-scale COBOL applications—legacy
COBOL applications. Most enterprises with large in-
vestments in COBOL code are anxious to move for-
ward with state-of-the-art object technology, yet
dread the cost of reprogramming legacy applications
that have been used successfully for many years.

It is difficult to ignore a technology that offers pro-
ductivity and reuse benefits. However, it is equally
difficult to consider rewriting legacy applications that
currently work. The conflict between legacy and ob-
ject-oriented applications is in their method of op-
eration. The legacy application is a linear block of
code with a sequence of PERFORM and CALL state-
ments. The object-oriented application is a fluid, da-
ta-centered collection of classes. It creates object in-
stances and directs messages to their methods,
requesting service. Can two types of applications with
such different modes of operation ever work to-
gether? If so, what are the fundamental issues in de-
signing and building the interoperable components?

This paper addresses these questions through wrap-
pers. A wrapper is code that provides an interface
for one program to access the functionality of an-
other program. For the purpose of this paper, one
program is a COBOL legacy program and the other
is an object-oriented program. The specific respon-
sibilities of a wrapper are to provide translation be-
tween the invocation format of an object-oriented
application and the call format of a legacy applica-
tion, and to provide data in the appropriate form for

the object-oriented application and the legacy ap-
plication.

Given this general definition of a wrapper, the three
wrappers discussed in this paper are defined as fol-
lows:

An object wrapper is an object that acts as a “front
end” to a legacy application, transforming its func-
tional interface to an object interface.

A procedural wrapper is a program that acts as a
“back end” to a legacy application, transforming its
functional interface into an object interface.

A combination wrapper is a program that instanti-
ates one or more objects, all of which act as back
ends to a legacy application, transforming its func-
tional interface into an object interface.

Other papers have described how object wrappers
allow an object-oriented application to use the ser-
vices of a legacy application. In this case, the object-
oriented application is the client, or main program.?
Unfortunately, many COBOL applications require the
legacy program to be the client and to use services
provided by the object-oriented program. For exam-
ple, a new function, which traditionally is added as
a new subroutine, can be added as an object. But
now the legacy program must create an instance of
the object and direct messages to the methods, re-
sulting in many changes to the legacy program. Since
the object wrapper is itself an object, nothing is
gained by attempting to use it in this situation. The
legacy program would have to create an instance of
the object wrapper and send messages to it. Thus,
we need to consider two other types of wrappers.
With the procedural wrapper and the combination
wrapper, minimal changes are necessary for the
COBOL legacy program to remain the client while en-
hancements are added as object-oriented programs.

Object-oriented wrapper

An object-oriented wrapper, or object wrapper as it
is often called, is an object that encapsulates a
COBOL legacy application, transforming its functional
interface to an object interface. Methods for the
wrapper are written and packaged as an object-ori-
ented COBOL class. Other programs can reuse ex-
isting legacy programs by instantiating objects from
the object wrapper class or its descendants. The func-
tional interface and data structures of the legacy ap-

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

Figure 1 Object-oriented wrapper

CUINVOKEUSING.

OBJEGT-ORIENTED PROGRAM .-

plication are hidden from other programs, and it
looks and acts like another object in the system.

The object-oriented wrapper is useful when a leg-
acy program becomes the server in a client/server
application. Consider a legacy program that has an
archaic command-line user interface. To use the pro-
gram in a client/server environment, a graphical user
interface (GUI) is added, written as an object-ori-
ented program. This GUI program acts as the client
program and the legacy program becomes the server
program, responding only to requests. Unfortunately
the objected-oriented GUI program sends messages
and passes large blocks of data, neither of which the
legacy program is equipped to handle.

The object-oriented wrapper solves this communi-
cation problem by serving as the “translator” for both
the messages and the data structures. The object-
oriented wrapper must establish data structures for:

Data passed from the object-oriented program
Data passed to the legacy program

Data returned from the iegacy program

Data returned to the object-oriented program

An object-oriented wrapper organizes the messages
and data from the object-oriented program into a
form the legacy program can handle, as illustrated
in Figure 1.

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

© . ANDRETURNING: 0o 77

LEGACY PROGRAM

Writing an object-oriented wrapper. There are two
steps in writing an object-oriented wrapper.

First, set up the necessary data structures. Deter-
mine all the data that must be passed between the
object-oriented and the legacy programs. Divide the
data into two categories: the data that are always
needed, regardless of the task, and the data that are
specific to a particular task.

The data that are always needed are defined as in-
stance data in the wrapper. The data that are spe-
cific to a particular task are coded in the LINKAGE
SECTION of the appropriate method in the wrapper
program.

Next, perform a task analysis of the legacy program
to determine all of its functions. Usually, each task
corresponds to a method in the object-oriented wrap-
per. The code in a typical method:

1. Contains LOCAL-STORAGE SECTION data items
necessary for the method to complete its task

2. Contains LINKAGE SECTION data items necessary
for passing parameters and return values

3. Parses or translates data items passed from the
object-oriented program

4. CALLs the legacy program. (This can be a CALL
to the main program, a subprogram, or an entry
point.)

5. Parses or translates data items returned from the
legacy program

FLUNT B

6. Returns to the object-oriented program

Example. Consider the command-line legacy pro-
gram and GUI object-oriented program discussed
earlier. Let us assume that the legacy program does
database searches and has a group of subprograms,
each of which gets data for a particular type of search.
One such subprogram might be called NameSearch
and includes the following series of DISPLAY and AC-
CEPT statements:

display ‘What is the name?’.

accept name.

display ‘Search for department (D) or phone (P)?".
accept criteria.

call ‘Searchit’ using name criteria result.

display ‘The result is ’ result.

On the GUI side, a user enters data in entry fields
and presses the push button for the type of search.
The object-oriented GUI program collects all the data
from the screen and sends a Search_Name message.*
The object-oriented wrapper intercepts the message,
prepares the data, and CALLs the search subprogram.
When the legacy program finishes the search, con-
trolis returned to the wrapper, which prepares the data
and returns control to the GUI program. The code for
the object-oriented wrapper is shown in Figure 2.

What modifications need to be made to the legacy pro-
gram? In Figure 2, the wrapper program makes the
CALL directly to the subprogram, Searchlit, bypass-
ing NameSearch. Alternatively, NameSearch could
be CALLed if the DISPLAY and ACCEPT statements
were commented out or removed. If a legacy pro-
gram is not organized into logical, structured sub-
programs, it may need to be restructured or have en-
try points added.

Procedural wrapper

A procedural wrapper is a program that reconciles
a COBOL legacy application’s functional interface to
an object interface. Modules are written and pack-
aged as entry points in a COBOL program, which is
the procedural wrapper. Existing legacy programs
can reuse object-oriented programs by calling the ap-
propriate entry point in the procedural wrapper. The
invocation interface and data structures of the object-
oriented application are hidden from the legacy ap-
plication, which sees a functional interface that looks
like another subroutine in the system.

In the COBOL environment, legacy programs must
frequently continue to be the main, or client, pro-

B2 FLINT

grams. Often a legacy program needs either an ex-
isting function changed or a new function added, but
this function is a subprogram, or server, to the leg-
acy program. Often the function can be modeled as
a class, resulting in an object-oriented program. Now
the legacy program is trying to CALL the function
modeled by the class, but the object instantiated from
the class responds only to messages.

This problem can be solved by a procedural wrap-
per if the following conditions are true:

e The number of methods in the class is predictable.
The object-oriented program is stable; methods are
added or deleted either rarely or not at all. The
hierarchy of subclasses is stable and the probabil-
ity of adding new subclasses is very low. This re-
sults in a stable procedural wrapper that can be
used by multiple legacy applications.

* A small number of data items are shared between
the legacy program and the object-oriented pro-
gram. The size of the LINKAGE SECTION in the pro-
cedural wrapper depends on how many different
types of data items must be passed as parameters.
If there are many different types of data items, a
combination wrapper should be considered (see
Figure 3).

A procedural wrapper allows the legacy program to
continue as the main program by answering CALLs
from the legacy program and sending INVOKE mes-
sages to the object-oriented program as illustrated
in Figure 4. The parameters passed to the procedurat
wrapper are (1) a data item or data structure (re-
quired) and (2) a status flag (optional).

Writing a procedural wrapper. To write a proce-
dural wrapper:

1. Identify all the data items that must be passed be-
tween the legacy and object-oriented programs.
The data are coded in the LINKAGE SECTION of
the wrapper program.

2. Match each method in the object-oriented pro-
gram to an entry point in the wrapper program.
The code after the ENTRY statement:

a. Creates an instance of the object
b. Parses or translates data items passed from the
legacy program
c. INVOKEs the appropriate method
d. Parses or translates data items returned from
the object-oriented program
. Frees the instance of the object
. Returns to the legacy program

—

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

Figure 2 Object- onented wrapper code

Identlflcatwn Dlvismn TR
Class-Id4. Wrapperl :mherlts SOMDb:;ec
Bovironment Divigion. O AT
Configuration Sectwn
Repository.
: Class Wrapperl ia 'Wrayperl'
‘Clapa SOMObject! gt
Data Division. . ., ;
. erking-swrage Section. R
‘Date structures. for. tha la,ss
Procedure Dwmsmn PR

Identification Dwislon' :
Hethod-I1d. 'Eeareh Name’

. .
* ' Data structures far thls speclf‘m ta.sk
Data Dlvismn :

. . .

* Data 1tems p&rsed ‘bywrapper & 'passe
Local-Btorage Seetion. i
01 - name pic: x(80y. "
01 result pic x{25}).
[¢23 arlterm plc ®(LY

*

move input-data(l: 20) 40 na.me,, !
move mput data(%‘l 1) ta emtema
*

* Gall the 1egacy pmgr_am, m thi", case. & subp

Return to the absee’
exit method. |

: - en’cea program | i
End Method ! Search Name‘ ' :

End Clags Wrap"perl

3. Add other data items and code to complete the
wrapper. Include:

a. A class definition in the REPOSITORY PARA-
GRAPH

b. One or more OBJECT REFERENCE data items

Example. A major concern today is the “year 2000”
problem. Consider a legacy program with the fol-
lowing lines of code:

accept gregorian from date.
move corresponding gregorian to edited-gregorian.

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

st .
Pracedure Dzvamon usmg 1nput d,ata. returning'

* - Parse da,ta. structure recewed i‘rom ob;ect LB

* Other methods to handle. messages from the GUI Interfe.ce progra.m ’

prégran

The date obtained here has a two-digit year. How-
ever, we now need a date with the four-digit year.

Assume that we have an object-oriented program
that determines a Gregorian date, a Julian date, or
a Lilian date, all of which have a four-digit year. The
class name is Year2000Date and its methods have the
following signatures:

GregorianDate returns PIC 9(8)
JulianDate returns PIC 9(7)
LilianDate returns PIC 9(7)

FLNT 53

Figure 3 Procedural wrapper

T

ENTRY POINT

. LEGACYPROGRAM .

A procedural wrapper will allow a legacy program
to use the object-oriented program. The wrapper will
have an ENTRY statement that corresponds with each
method in the class and a data item that corresponds
with each data item returned from the object-ori-
ented program. The code for the procedural wrap-
per is shown in Figure 4.

What changes are required to the legacy program? In
the example legacy program, the ACCEPT statement
will be replaced by the following statement:

call ‘AcptDate’ using gregorian.

Also, all data declarations for the year must be
changed from PIC 99 to PIC 9999. If the date data
declarations are in a COPYLIB, this change is rela-
tively easy.

Combination wrapper

A combination wrapper is a program that instanti-
ates one or more objects, all of which reconcile a
COBOL legacy application’s functional interface to
an object interface. The combination wrapper is
made up of two parts: the procedural portion and
the object-oriented portion. Modules are written and
packaged as entry points in a COBOL program, the
procedural portion. Methods are written and pack-
aged as object-oriented COBOL classes, the object-
oriented portion. Existing legacy programs can
reuse object-oriented programs by calling the appro-
priate entry point in the procedural portion, which

B4 runt

creates the appropriate objects in the object-oriented
portion. The invocation interface and data structures
of the object-oriented application are hidden from
the legacy application. As with the procedural wrap-
per, the object-oriented applications look like an-
other subroutine to the legacy application.

The combination wrapper is more effective than the
procedural wrapper for larger applications. The ob-
ject portion is essentially a hierarchy of object wrap-
pers. The highest level is a basic object wrapper that
provides only the most general methods. At lower
levels are specific object wrappers, each abstracting
properties of legacy-to-object-oriented application
interaction. If a COBOL legacy program needs to use
services provided by an object-oriented application
and a stable combination wrapper exists, then one
of the following applies:

* One of the existing objects in the object-oriented
portion can be reused.

* Asubclass can be created from one of the existing
objects in the object-oriented portion.

The “year 2000” problem is easily solved with a pro-
cedural wrapper because the object-oriented pro-
gram has a fixed number of methods and a small
number of shared data items. If the legacy program
requires that many different data structures be shared
with the object-oriented program, then a combina-
tion wrapper is easier to design and maintain.

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

Figure 4 Procedural wrapper code

Identification Divigion.
Program-Id. ’Wrappera'
Environment Divigion:
Gonflguratzon S@ctlo
Repository. . L
C o Clasg. Year2000
> Data Division,
'wOrk1ng*StG‘
*

Data items needed by Droce Tre.
Ol anQbj ohject reference valu
Linkage Section LRIy

* - Data items pagsed between 1egaey ar
01 gregorian pit 9(8)
01 julian: pig 9(T};
01 1lilien - ‘plc 9(7)L
Procedure Dlvxsion i

. ; s
* Entry point for Gregorlan ﬁate
*

entry 'AcptDate u31ng gregorlan

. Create instance of object‘

* Invoke the method:

* -Free jinstance of ubaect
invoke anlbj 'somPFree';

*

. Return to legacy progrém
exit program.

¥ X ¥ k

Entry point. for Julian daté

entry 'AcptDay using Jullan ;
invoke Year2000Date 'somiew’ return1ng,~
invoke anObj
invoke an0Obj

‘somFreE‘
exit program,

* * ¥ ¥

" Entry point for Lilian date

entry 'AeptInt! using lilian.”
invoke Year2000Date . 'somNew'.

invoke anObj 'somFree’.
exit program.

End program“Wrappeyﬂi.,f'

The combination wrapper combines the procedural
wrapper and the object-oriented wrapper as illus-
trated in Figure 5. The procedural portion of the
combination wrapper takes CALLs from the legacy
program and creates the appropriate object instance

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

invoke Yeargo00Date’ 'samNew’ returning an 3
invioke an0bj ’Gregorianbate returnlng gregm
tJulianDate* return;ng Jull&

returning anObJ o
invoke an0bj ’Lillanbate' returnlng lillan o

teg‘yrqgr&méyﬂ

from the object-oriented portion of the combination
wrapper. The parameters passed to the procedural
portion are the subclass name (required), a data
structure (optional, depending on action), and a sta-
tus flag (optional).

FLINT 5§

Figure 5 Combination wrapper

The object-oriented portion of the combination
wrapper is an inheritance hierarchy in which the par-
ent is an abstract class. Each child is a concrete class
that corresponds to a data structure used in a legacy
program. Methods in a child correspond to the var-
ious tasks performed on the data structure. The pa-
rameters passed to the object-oriented portion are
a POINTER to the data structure (required) and a sta-
tus flag (optional).

Writing a combination wrapper. 1t is usually easier
to start with the object-oriented portion of the com-
bination wrapper. To write the subclasses, or child
programs:

1. Identify all the different data structures that exist
in the legacy program. Each data structure de-
fines a subclass. To make maintenance easier, give
the subclass a name similar to the name of the
program and the function of the data structure.
For example, if PROGRAM]I has an input data

56 runT

ENTRY PO

structure, name the subclass that manipulates this
data structure ProgOnelnput. These data struc-
tures must be coded in the subclass LINKAGE
SECTION.

. Identify the actions performed on or with each

of the data structures from the legacy program.

Each action on a data structure defines a method

in the subclass. The code in a typical method in

the object-oriented portion of the wrapper does

the following:

a. If necessary (OPEN, for example), creates an
instance of the object

b. Sets ADDRESS OF the data structure in the
LINKAGE SECTION to the POINTER passed from
the procedural portion of the combination
wrapper

c. Establishes the data for parameters passed to
the object-oriented program

d. INVOKES the appropriate method

¢. Parses or translates data items returned from
the object-oriented program

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

Figure 6 COmblnatlon wrapper code—object orlented portlon (part 1 of 5)

Identifzcatlon D1v1alon
* - Abstract parent clasy, ;
Class-1d. Wrapper%&bjectﬁrlented
Environment Divigion. :
Configuration Baction,
Repository. %

T Class ?Hrapp‘eﬂx:i%

Proceduré Elv1$l,”
« :

*! General methnds"
*

End Class Wrapyer&@hgect@rlenta

f. If necessary (CLOSE, for example), frees the
instance of the object

g. Returns to the procedural portion of the wrap-
per

Usually, writing the procedural portion of the com-
bination wrapper is similar to writing a procedural
wrapper. There are some differences:

* A large data item, for example PIC X(1000), must
be defined in the wrapper’s LINKAGE SECTION to
hold the largest possible data structure that can
be passed from the legacy program. The use of a
large, generic data item shields the wrapper from
knowing the exact data structures it is passing. A
POINTER is used to pass the generic data item be-
tween the procedural and the object-oriented por-
tions of the combination wrapper.

¢ A large table must be defined in the wrapper’s
LOCAL-STORAGE SECTION to hold subclass names
and their OBJECT REFERENCEs. Each legacy pro-
gram that uses the wrapper has an entry point,
called a program entry point, in the wrapper. Each
unique action in the legacy program has an entry
point, called an action entry point, in the wrapper.

The code after the ENTRY statement in the proce-
dural portion does the following:

* A program entry point (1) creates an instance of
the appropriate subclass, (2) puts the subclass
name and OBJECT REFERENCE in the table, and
(3) returns to the legacy program.

* An action entry point (1) sets a pointer to the ad-
dress of the data structure passed from the legacy
program, (2) finds the subclass name in the table,

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

(3) INVOKEs the appropriate method in the sub-
class using the OBJECT REFERENCE from the ta-
ble, (4) if necessary (CLOSE, for example), frees
the instance of the subclass and cleans up the ta-
ble entry, and (5) returns to the legacy program.

Subclass definitions in the REPOSITORY PARAGRAPH
complete the procedural portion code.

Example. Suppose an old file system is to be replaced
by a CD-ROM file system with an object-oriented in-
terface. And a large group of legacy programs that
used the old file system now must be migrated to the
CD-ROM system. It is likely that every legacy program
in the group has one or more different record struc-
tures. One program might have only name and ad-
dress fields in its record. Another program might have
name, age, and salary fields. Since these two programs
have different data structures, the result is two dif-
ferent subclasses in the object-oriented portion of
the combination wrapper.

Let us assume that the first program, ProgOne, se-
quentially READs the entire file. Thus, the methods
in the first subclass, ProgOnelnput, are open, read,
and close. Also, let us assume that the second pro-
gram, ProgTwo, sequentially WRITEs records to a file.
So the methods in the second subclass, Prog TwoQOut-
put, are open, write, and close. The code for the object-
oriented portion of the combination wrapper is
shown in Figure 6.

The procedural portion of the combination wrap-
per has an ENTRY statement to correspond to each
legacy program and each unique action in the group

FUNT §7

Figure 6 Combination wrapper code —object-oriented portion {part 2 of 5)

of legacy programs. The unique actions in these two
legacy programs are OPEN, READ, WRITE, and CLOSE.
In the DATA DIVISION, the procedural portion has
a large data item to facilitate movement of the dif-
ferent data structures from the legacy program to
the object-oriented portion of the wrapper. Also in
the DATA DIVISION is a table to track subclass names
and OBJECT REFERENCES. The code for the proce-
dural portion of the combination wrapper is shown
in Figure 7.

How does this combination wrapper affect the legacy
program? In the example, all input and output state-

B8 FuUNT

ments must be changed to CALL statements. In the
first program, the statement

open input input-file.
changes to

call ‘ProgOne’
using by content z'ProgOneln’.
call ‘Open’
using by content z‘ProgOneln
by reference status-flag.

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

Figure 6 Combination wrapper code —object-oriented portion (part 3 of 5)

Identlflcatlon D1V151on
* QOpen aegtion -
Method~Id. 'Open‘

Data Divigion. S
Loeal-Storage. Sectlan | T
01 - fil&-name’ pig x(zﬂ) value spac

,‘Llnkage Sedtion
0L - file~flag pic. x, 0 L. 0 A
Procedure’ DlVlSIDn returnmng flle fl g.ﬂ

* Create instance of. cb;ect , !
invoke CDROM 'somﬂew’ returnlng fllaObg

* Eatabllsh parameter for obgect—orlenteﬂ yrogram ,
move . z‘FLIGHT FILE' to lee«name ‘ !

* Invoke method - ‘ ’
1nvoke flleﬂbg ‘Gpenlnputvlle us1ng by contsnt flle~name
. a0 returning flle flag :

% Return ko proce&ural portaon
. exit: method. S
hod 'Open’

Identxflcatlan ﬂ'vislun)

- Close action . !
Methad Ia. 'Glose"
Data Division.. - ‘

Tocal-Storage Sactlun ’
01 file-nmame pic X(SO) value spaces
Linkage Bection.

01 file-flag pic x.

Procedure Division returnlng flle—flag

*. Bstablish parameter for obJect orlented pragram,”
o move z'FLIGHT FILE’ o flle nsme R

i Qmethod T '
invoke f1leDb3_ Closaﬂile us1ng by content flle*name
L : S réturnlng fll[gf

: Frea lnstance of obaect
1nv0ke £ileOby 'somFree'

* Return to procedural partxon
exit method. ;
Brid Methnd 'Close'f"

Fnd Class ProgOneInput.

and the statement also the statement
read input-file into input-record . .
at end set eof to true. close input-file.
changes to changes to
call ‘Read-Seq’ call ‘Close’
using by content z‘ProgOneln’ using by content z'‘ProgOneln’
by reference input-record eof-flag. by reference status-flag.

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997 FLINT 59

Figure 6 Combination wrapper code —object-oriented portion (part 4 of 5)

Similar changes must be made to all the input and
output statements in the second program.

Conclusion

To convert a COBOL legacy program to an object-
oriented program, a complete restructuring of the
legacy program is required. Objects and their inher-
itance structure must be identified, data usage and
data flow must be analyzed, and instructions allo-
cated to objects. The high costs and risks of this tran-
sition are too much for many organizations at a time

60 FuNT

when budgets are tight. Thus, interoperable legacy
and object-oriented applications are highly desirable.

An object-oriented wrapper is useful when a COBOL
legacy program is going to become either the server
in a client/server system or another object in an ob-
ject-oriented system. This wrapper encapsulates a
COBOL legacy application, transforming its functional
interface to an object interface and acting as a “front
end” to the legacy application. The object-oriented
wrapper is not useful when an object-oriented en-
hancement is added to the COBOL legacy applica-

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

Figure 6 Combination wrapper code —object-oriented portion (part 5 of 5)

Identlflcatlan D1v1510n.f_
* Open action.
Method-Id. 'Opén’.
Data Division: .
Local-B8torage Bection. !
01. file-name pié: x(aﬁ) va
Linkage Seetlan v

. 017 file- flag plc X

*

Create instanee cf objeot
invoke CDROM ‘somNew' return iy

* HEstablish parameter For obgect¢
 move z'PRINT- FILE' to flle'nam

* Invoke method R
invoke flleGbJ 'Openmutputlee’ using by

¥ Returu to’ prccedural pbrtian
. L axit imethodl .
. En& Method 'Dpan'

Idant1f1catlon Blv

* . Close action.

. Method-Id. 'Closi
Data Divisioh. ;
Local-Btorage Section.
01 file-name pic x{20) value spaced..
Linkage Section. h : ;

01 file-flag pic = .-
Procedure DlVlSan returnlng file ,lag

*

* REatablish parameter “for. ﬂb;act,
L meve z‘PRIHT—FILE’ to fxle—nam

Free inatance of: obie
s 1nvoke leeDbJ YaomFreet.

* Return to procedural portion
exit method.)
End Method - *Close’.

HEnd (lass ProgTwoOutpnt.

tion and the legacy application needs to use the en-
hancement in the same way it would use the services
provided by a subroutine, because an object-oriented
wrapper is itself an object.

The procedural wrapper is useful when a COBOL leg-
acy program must be the main, or client, program
and use services provided by an object-oriented pro-
gram. It is effective if the number of methods in the
object-oriented program is known and the number

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

of data items shared between the legacy program and
the object-oriented program is small.

The combination wrapper is useful when a COBOL
legacy program must be the client program, using
services provided by an object-oriented program, but
the problem is too complex for a procedural wrap-
per. The object portion of the combination wrapper
is a hierarchy of object wrappers that allow users to
take advantage of inheritance to simplify the wrap-

FLINT 61

Figure 7 Combination wrapper code—procedural portion (part 1 of 3)

ping process. Existing legacy programs can reuse ob-
ject-oriented programs by calling the appropriate en-
try point in the procedural portion, which creates the
appropriate objects in the object-oriented portion.

These three wrappers provide viable solutions to the
COBOL legacy and object-oriented application in-
teroperability problem for several reasons.

62 FunT

Minimal changes are required to the legacy code.
Without a wrapper, for a legacy program to interact
with an object-oriented program the long names op-
tion, which affects all the subprogram and entry point
names in the program, is required. A REPOSITORY
paragraph must be added in the ENVIRONMENT
DIVISION and OBJECT REFERENCE data items must
be added in the DATA DIVISION. The PROCEDURE

iBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

Figure 7

Combination wrapper code —procedural portion (part 2 of 3)

* - Program entry point. - Program Two
entry 'Proglwo! usmg data»namey, ;
move O to len, ‘ s
rlnspect data-name.’

-tallying lew PO ’

- . for characters befors X100
f,psrfnrm ‘yarying ndx. frcm by 1
o class name(
end- perform

exxt prugrmm
* ‘Action entry poznt S Read Sequentlal
* Set pointer to 1nput data structure r"‘

‘set aPtr to address cf data—araaaf o

, *;'Parse name nf subclasa :

'1‘1nspeet dﬁta—n&me ,
tallying lem o
. for characters befure X’QG'

* Flnd subal&as name in table ," i
perform varying ndx from 1 by L

until cla35¢name(ndx)
end perform

* Invoke method
“invoke. class oh;(ndx) ’Read‘ uﬂlng aPtr

* Beturn to legacy program o
el X1t ogram ;

1y puint - erte Saquent
entry 'WriteSeq' using datawname'
~set aPtr to addréss of data*araa;V/' o
move O to len,
inspect data-name
tallying len
for chédracters wefore X100,
perform varying ndx from 1 by 1 ‘
until plags-nams(ndx) = data~name(l 1en)
end-~-perform.

exit program, '

DIVISION must be rewritten to create object instances
and INVOKE methods, a monumental task.

With a wrapper, a few selected statements in the
PROCEDURE DIVISION are replaced or removed. In
some cases, minor changes are needed in the DATA
DIVISION. If the wrapper and the object-oriented pro-
gram have already been debugged and tested with
a stub program, it is easy to test the new application
and quickly get it into production.

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

data~name(l lsn)‘ o

returnlng data flag ?

invoke clags- obg(ndx) ‘erte uslng aPtr
returnmng data»flag

giauaréaféaigéilag,[

New features can be written using object-oriented
technology. This provides all the benefits of object-
oriented technology, allowing fast response to sys-
tem development needs. Thus higher quality soft-
ware for more complex data types and problem
domains can be developed.

The object-oriented code is easier to maintain and
changes do not affect the legacy program.® The ob-
ject-oriented code does not have to be written in

FLINT 63

Action’ entry point 0
osentry. 'Open’’ using
L HoYet0 e ey s

COBOL. If the new feature is easier to write and main-
tain in another object-oriented language, the wrap-
pers presented in this paper can still be used.

Object-oriented programs can reuse or be reused
by any number of legacy programs. An object wrap-
per provides a way to reuse the functionality of a leg-
acy program as a black box, without duplicating the
functions for every new application. Further, the ob-
ject wrapper ensures that the client program can han-
dle different legacy programs with the same user in-
terface standards.

Procedural and combination wrappers provide a way
for a legacy program to reuse object-oriented pro-
gram functionality, again with no duplication. These
two wrappers are building blocks that provide a bind-
ing of data and function and enable the appropriate
object creation and method invocation.

Since reuse is one of the biggest benefits of object-
oriented technology, care should be taken to make
the wrapper extensible. Imagine that a wrapper might
be used eventually by every legacy program. Al-

64 FunT

though a gross generalization, this mind-set helps the
wrapper to be easily modified when another legacy
program does want to use it.

Wrappers allow legacy applications to find their way
into new applications that were once technically dif-
ficult or economically infeasible. Making legacy and
object-oriented applications work together is like a
jigsaw puzzle—the connecting piece that completes
the picture is not always easy to find. The sugges-
tions in this paper may reveal a missing piece.

Acknowledgments

Many people at the Santa Teresa Lab worked very
hard to make the new object-oriented COBOL com-
pilers a reality. I want to acknowledge Tom Dun-
ham, who made my work with object-oriented
COBOL possible, and Connie Nelin and Steve Miller,
who taught me well.

*Trademark or registered trademark of International Business
Machines Corporation.

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

Cited references and notes

1. W. Dietrich, L. Nackman, and F. Gracer, “Saving a Legacy
with Objects,” OOPSLA ‘89 Conference Proceedings, New Or-
leans, LA, ACM Press (1989), pp. 77-83.

. Gartner Group, 1996.

. A. W. Hui, “An Object Wrapper for a Legacy System,” pre-
sented at the 1995 International Conference on Object Tech-
nology, available from the author (alanhui@raleigh.ibm.com).

4. Since the wrapper is an object-oriented program, the program

that creates an instance of the GUI object must also create
an instance of the wrapper object.

5. It is important to note, however, that a signature change in

a method in the object-oriented code does require a change
in the wrapper.

W N

General references

E. C. Arranga and F. P. Coyle, “Object COBOL,” Object Mag-
azine 4, No. 5, 56-62 (September 1994).

E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Pat-
terns: Elements of Reusable Object-Oriented Software, Addison-
Wesley Publishing Co., Reading, MA (1995).

L. Hellenack, “IBM Object-Oriented COBOL: It’s Ready for
Prime Time,” Report No. 10100, International Data Corpora-
tion, Framingham, MA (July 1995).

A. V.Hense, “Denotational Semantics of an Object-Oriented Pro-
gramming Language with Explicit Wrappers,” Format Aspects of
Computing 5, No. 3, 181-207 (1993).

T. W. Miller, G. Miller, and M. P. Nally, “Interfacing Between
Structured and Object-Oriented Languages,” IBM Technical Dis-
closure Bulletin 37, No. 3 (March 1994).

Accepted for publication July 2, 1996.

Elizabeth Spangler Flint /BM Software Solutions Division, Santa
Teresa Laboratory, 555 Bailey Avenue, San Jose, California 95161-
9023 (electronic mail: esflint@vnet.ibm.com). Ms. Flint has been
an IBM employee for the past ten years with work assignments
in Cary and Charlotte, North Carolina, and with IBM Education
and Training. Currently, Ms. Flint is a member of the Year 2000
Technical Support Center at the Santa Teresa Laboratory, al-
though she works from her home in Union, South Carolina. Ms.
Flint earned her B.S. degree in mathematics and computer sci-
ence from Virginia Polytechnic Institute and State University and
her M.S. degree in computer science from North Carolina State
University.

Reprint Order No. G321-5634.

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

FLINT 65

