
The COBOL jigsaw
puzzle: Fitting object-
oriented and legacy
applications together

by E. S. Flint

Object wrappers have been presented as a way
to allow legacy applications and object-oriented
applications to work together. However, object
wrappers do not always solve the interoperability
problem for COBOL legacy applications. This
paper examines the use of object wrappers and
introduces two other types of wrappers, the
procedural wrapper and the combination
wrapper, for practical use with COBOL legacy
applications. The main concerns of a developer
of an object-oriented application that uses the
services of or provides services to a legacy
application are addressed. Examples of “real-
world” COBOL legacy applications are cited and
samples of all three types of wrapper code are
provided.

A legacy COBOL application can be characterized
as procedure-oriented, with perhaps several leg-

acy programs working together. It can be a puzzle
to get several legacy programs to run as one unit,
and getting a legacy program and an object-oriented
program to run together can be compared to a jig-
saw puzzle. Like the jigsaw puzzle, the final picture
can be formed only if the correct connections are
made between the pieces. In this paper, three types
of “wrapper” programs are presented as techniques
for making the connections between COBOL legacy
programs and object-oriented programs.

Early work proved the applicability of wrappers for
using legacy code as an external object implemen-
tation.’ In this paper, a wrapper is considered to be
a “shell” program that hides implementation details
of the legacy program from the object-oriented pro-
gram and provides an interface between the two pro-
grams. This paper describes three types of wrappers:

object-oriented, procedural, and combination. With
one of these wrappers, a COBOL legacy application
is able to work with an object-oriented application.
Further, using these wrappers requires a minimum
number of changes to a legacy application.

The first section explains why COBOL legacy pro-
grams and object-oriented programs do not easily
form interoperable components. Next, a section is
devoted to each of the three wrappers to explain what
the wrapper is, discuss when it should be used, and
provide an example of its use. Sample code is also
provided to illustrate the use of each of the wrap-
pers. Finally, the conclusion summarizes the bene-
fits of using wrappers.

Background

Today most commercial and government enterprises
are becoming increasingly aware of object technol-
ogy and the benefits resulting from its effective de-
ployment. Benefits include:

Increased programmer productivity
Faster development of applications

9 Reuse of models, designs, and code
Preserving existing applications

Wopyright 1997 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
outpayment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997 0018-8670/97/$5.00 0 1997 IBM FLINT 49

The last item has generated a great deal of interest
and concern since the introduction of IBM COBOL for
MVS & VM, IBM VisualAge* for COBOL for 0s/2*, and
IBM COBOL Set for AIX*, which are the new object-
oriented COBOL compilers from IBM.

With an estimated 200 billion lines of code in ex-
istence, COBOL is by far the most widely used pro-
gramming language.’ Enterprises are dependent on

The conflict between
legacy and object-oriented

applications is in
their method of operation.

existing, large-scale COBOL applications-legacy
COBOL applications. Most enterprises with large in-
vestments in COBOL code are anxious to move for-
ward with state-of-the-art object technology, yet
dread the cost of reprogramming legacy applications
that have been used successfully for many years.

It is difficult to ignore a technology that offers pro-
ductivity and reuse benefits. However, it is equally
difficult to consider rewriting legacy applications that
currently work. The conflict between legacy and ob-
ject-oriented applications is in their method of op-
eration. The legacy application is a linear block of
code with a sequence of PERFORM and CALL state-
ments. The object-oriented application is a fluid, da-
ta-centered collection of classes. It creates object in-
stances and directs messages to their methods,
requesting service. Can two types of applications with
such different modes of operation ever work to-
gether? If so, what are the fundamental issues in de-
signing and building the interoperable components?

This paper addresses these questions through wrap-
pers. A wrapper is code that provides an interface
for one program to access the functionality of an-
other program. For the purpose of this paper, one
program is a COBOL legacy program and the other
is an object-oriented program. The specific respon-
sibilities of a wrapper are to provide translation be-
tween the invocation format of an object-oriented
application and the call format of a legacy applica-
tion, and to provide data in the appropriate form for

50 FLINT

the object-oriented application and the legacy ap-
plication.

Given this general definition of a wrapper, the three
wrappers discussed in this paper are defined as fol-
lows:

A n object wrapper is an object that acts as a “front
end” to a legacy application, transforming its func-
tional interface to an object interface.

A procedural wrapper is a program that acts as a
“back end” to a legacy application, transforming its
functional interface into an object interface.

A combination wrapper is a program that instanti-
ates one or more objects, all of which act as back
ends to a legacy application, transforming its func-
tional interface into an object interface.

Other papers have described how object wrappers
allow an object-oriented application to use the ser-
vices of a legacy application. In this case, the object-
oriented application is the client, or main p r ~ g r a m . ~
Unfortunately, many COBOL applications require the
legacy program to be the client and to use services
provided by the object-oriented program. For exam-
ple, a new function, which traditionally is added as
a new subroutine, can be added as an object. But
now the legacy program must create an instance of
the object and direct messages to the methods, re-
sulting in many changes to the legacy program. Since
the object wrapper is itself an object, nothing is
gained by attempting to use it in this situation. The
legacy program would have to create an instance of
the object wrapper and send messages to it. Thus,
we need to consider two other types of wrappers.
With the procedural wrapper and the combination
wrapper, minimal changes are necessary for the
COBOL legacy program to remain the client while en-
hancements are added as object-oriented programs.

Object-oriented wrapper

An object-oriented wrapper, or object wrapper as it
is often called, is an object that encapsulates a
coso~legacy application, transforming its functional
interface to an object interface. Methods for the
wrapper are written and packaged as an object-ori-
ented COBOL class. Other programs can reuse ex-
isting legacy programs by instantiating objects from
the object wrapper class or its descendants. The func-
tional interface and data structures of the legacy ap-

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

Figure 1 Object-oriented wrapper

plication are hidden from other programs, and it
looks and acts like another object in the system.

The object-oriented wrapper is useful when a leg-
acy program becomes the server in a clientherver
application. Consider a legacy program that has an
archaic command-line user interface. To use the pro-
gram in a clienthewer environment, a graphical user
interface (CUI) is added, written as an object-ori-
ented program. This GUI program acts as the client
program and the legacy program becomes the server
program, responding only to requests. Unfortunately
the objected-oriented CUI program sends messages
and passes large blocks of data, neither of which the
legacy program is equipped to handle.

The object-oriented wrapper solves this communi-
cation problem by serving as the “translator” for both
the messages and the data structures. The object-
oriented wrapper must establish data structures for:

Data passed from the object-oriented program
Data passed to the legacy program
Data returned from the legacy program
Data returned to the object-oriented program

An object-oriented wrapper organizes the messages
and data from the object-oriented program into a
form the legacy program can handle, as illustrated
in Figure 1.

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

Writing an object-oriented wrapper. There are two
steps in writing an object-oriented wrapper.

First, set up the necessary data structures. Deter-
mine all the data that must be passed between the
object-oriented and the legacy programs. Divide the
data into two categories: the data that are always
needed, regardless of the task, and the data that are
specific to a particular task.

The data that are always needed are defined as in-
stance data in the wrapper. The data that are spe-
cific to a particular task are coded in the LINKAGE
SECTION of the appropriate method in the wrapper
program.

Next, perform a task analysis of the legacy program
to determine all of its functions. Usually, each task
corresponds to a method in the object-oriented wrap-
per. The code in a typical method:

1. Contains LOCAL-STORAGE SECTION data items
necessary for the method to complete its task

2. Contains LINKAGE SECTION data items necessary
for passing parameters and return values

3. Parses or translates data items passed from the
object-oriented program

4. CALLS the legacy program. (This can be a CALL
to the main program, a subprogram, or an entry
point.)

5. Parses or translates data items returned from the
legacy program

6. Returns to the object-oriented program

Example. Consider the command-line legacy pro-
gram and CUI object-oriented program discussed
earlier. Let us assume that the legacy program does
database searches and has a group of subprograms,
each of which gets data for a particular type of search.
One such subprogram might be called Namesearch
and includes the following series of DISPLAY and AC-
CEPT statements:

display ‘What is the name?’.
accept name.
display ‘Search for department (D) or phone (P)?’
accept criteria.
call ‘Searchlt’ using name criteria result.
display ‘The result is ’ result.

On the CUI side, a user enters data in entry fields
and presses the push button for the type of search.
The object-oriented CUI program collects all the data
from the screen and sends a Search-Name me~sage.~
The object-oriented wrapper intercepts the message,
prepares the data, and CALLS the search subprogram.
When the legacy program finishes the search, con-
trol is returned to the wrapper, which prepares the data
and returns control to the CUI program. The code for
the object-oriented wrapper is shown in Figure 2.

What modifications need to be made to the legacypro-
gram? In Figure 2, the wrapper program makes the
CALL directly to the subprogram, Searchlt, bypass-
ing Namesearch. Alternatively, Namesearch could
be CALLed if the DISPLAY and ACCEPT statements
were commented out or removed. If a legacy pro-
gram is not organized into logical, structured sub-
programs, it may need to be restructured or have en-
try points added.

Procedural wrapper

A procedural wrapper is a program that reconciles
a COBOL legacy application’s functional interface to
an object interface. Modules are written and pack-
aged as entry points in a COBOL program, which is
the procedural wrapper. Existing legacy programs
can reuse object-oriented programs by calling the ap-
propriate entry point in the procedural wrapper. The
invocation interface and data structures of the object-
oriented application are hidden from the legacy ap-
plication, which sees a functional interface that looks
like another subroutine in the system.

In the COBOL environment, legacy programs must
frequently continue to be the main, or client, pro-

grams. Often a legacy program needs either an ex-
isting function changed or a new function added, but
this function is a subprogram, or server, to the leg-
acy program. Often the function can be modeled as
a class, resulting in an object-oriented program. Now
the legacy program is trying to CALL the function
modeled by the class, but the object instantiated from
the class responds only to messages.

This problem can be solved by a procedural wrap-
per if the following conditions are true:

The number of methods in the class is predictable.
The object-oriented program is stable; methods are
added or deleted either rarely or not at all. The
hierarchy of subclasses is stable and the probabil-
ity of adding new subclasses is very low. This re-
sults in a stable procedural wrapper that can be
used by multiple legacy applications.
A small number of data items are shared between
the legacy program and the object-oriented pro-
gram. The size of the LINKAGE SECTION in the pro-
cedural wrapper depends on how many different
types of data items must be passed as parameters.
If there are many different types of data items, a
combination wrapper should be considered (see
Figure 3) .

A procedural wrapper allows the legacy program to
continue as the main program by answering CALLS
from the legacy program and sending INVOKE mes-
sages to the object-oriented program as illustrated
in Figure 4. The parameters passed to the procedural
wrapper are (1) a data item or data structure (re-
quired) and (2) a status flag (optional).

Writing a procedural wrapper. To write a proce-
dural wrapper:

1. Identify all the data items that must be passed be-
tween the legacy and object-oriented programs.
The data are coded in the LINKAGE SECTION of
the wrapper program.

2. Match each method in the object-oriented pro-
gram to an entry point in the wrapper program.
The code after the ENTRY statement:
a. Creates an instance of the object
b. Parses or translates data items passed from the

c. INVOKES the appropriate method
d. Parses or translates data items returned from

the object-oriented program
e. Frees the instance of the object
f. Returns to the legacy program

legacy program

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

3. Add other data items and code to complete the
wrapper. Include:
a. A class definition in the REPOSITORY PARA-

b. One or more OBJECT REFERENCE data items
GRAPH

Example. A major concern today is the “year 2000”
problem. Consider a legacy program with the fol-
lowing lines of code:

accept gregorian from date.
move corresponding gregorian to edited-gregorian

The date obtained here has a two-digit year. How-
ever, we now need a date with the four-digit year.

Assume that we have an object-oriented program
that determines a Gregorian date, a Julian date, or
a Lilian date, all of which have a four-digit year. The
class name is Year2000Date and its methods have the
following signatures:

GregorianDate returns PIC 9(8)
JulianDate returns PIC 9(7)
LilianDate returns PIC 9(7)

FLINT 53

Figure 3 Procedural wrapper
- ~~~ -

A procedural wrapper will allow a legacy program
to use the object-oriented program. The wrapper will
have an ENTRY statement that corresponds with each
method in the class and a data item that corresponds
with each data item returned from the object-ori-
ented program. The code for the procedural wrap-
per is shown in Figure 4.

What changes are required to the legacyprogram? In
the example legacy program, the ACCEPT statement
will be replaced by the following statement:

call ‘AcptDate’ using gregorian.

Also, all data declarations for the year must be
changed from PIC 99 to PIC 9999. If the date data
declarations are in a COPYLIB, this change is rela-
tively easy.

Combination wrapper

A combination wrapper is a program that instanti-
ates one or more objects, all of which reconcile a
COBOL legacy application’s functional interface to
an object interface. The combination wrapper is
made up of two parts: the procedural portion and
the object-oriented portion. Modules are written and
packaged as entry points in a COBOL program, the
procedural portion. Methods are written and pack-
aged as object-oriented COBOL classes, the object-
oriented portion. Existing legacy programs can
reuse object-oriented programs by calling the appro-
priate entry point in the procedural portion, which

54 FLINT

creates the appropriate objects in the object-oriented
portion. The invocation interface and data structures
of the object-oriented application are hidden from
the legacy application. As with the procedural wrap-
per, the object-oriented applications look like an-
other subroutine to the legacy application.

The combination wrapper is more effective than the
procedural wrapper for larger applications. The ob-
ject portion is essentially a hierarchy of object wrap-
pers. The highest level is a basic object wrapper that
provides only the most general methods. At lower
levels are specific object wrappers, each abstracting
properties of legacy-to-object-oriented application
interaction. If a COBOL legacy program needs to use
services provided by an object-oriented application
and a stable combination wrapper exists, then one
of the following applies:

One of the existing objects in the object-oriented

A subclass can be created from one of the existing
portion can be reused.

objects in the object-oriented portion.

The “year 2000” problem is easily solved with a pro-
cedural wrapper because the object-oriented pro-
gram has a fixed number of methods and a small
number of shared data items. If the legacy program
requires that many different data structures be shared
with the object-oriented program, then a combina-
tion wrapper is easier to design and maintain.

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

The combination wrapper combines the procedural from the object-oriented portion of the combination
wrapper and the object-oriented wrapper as illus- wrapper. The parameters passed to the procedural
trated in Figure 5. The procedural portion of the portion are the subclass name (required), a data
combination wrapper takes CALLS from the legacy structure (optional, depending on action), and a sta-
program and creates the appropriate object instance tus flag (optional).

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997 FLINT 55

The object-oriented portion of the combination
wrapper is an inheritance hierarchy in which the par-
ent is an abstract class. Each child is a concrete class
that corresponds to a data structure used in a legacy
program. Methods in a child correspond to the var-
ious tasks performed on the data structure. The pa-
rameters passed to the object-oriented portion are
a POINTER to the data structure (required) and a sta-
tus flag (optional).

Writing a combination wrapper. It is usually easier
to start with the object-oriented portion of the com-
bination wrapper. To write the subclasses, or child
programs:

1. Identify all the different data structures that exist
in the legacy program. Each data structure de-
fines a subclass. To make maintenance easier, give
the subclass a name similar to the name of the
program and the function of the data structure.
For example, if PROGRAM has an input data

structure, name the subclass that manipulates this
data structure ProgOneZnput. These data struc-
tures must be coded in the subclass LINKAGE
SECTION.

2. Identify the actions performed on or with each
of the data structures from the legacy program.
Each action on a data structure defines a method
in the subclass. The code in a typical method in
the object-oriented portion of the wrapper does
the following:
a. If necessary (OPEN, for example), creates an

instance of the object
b. Sets ADDRESS OF the data structure in the

LINKAGE SECTION to the POINTER passed from
the procedural portion of the combination
wrapper

c. Establishes the data for parameters passed to
the object-oriented program

d. INVOKES the appropriate method
e. Parses or translates data items returned from

the object-oriented program

56 FLINT IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

f. If necessary (CLOSE, for example), frees the

g. Returns to the procedural portion of the wrap-
instance of the object

per

Usually, writing the procedural portion of the com-
bination wrapper is similar to writing a procedural
wrapper. There are some differences:

A large data item, for example PIC X(lOOO), must
be defined in the wrapper’s LINKAGE SECTION to
hold the largest possible data structure that can
be passed from the legacy program. The use of a
large, generic data item shields the wrapper from
knowing the exact data structures it is passing. A
POINTER is used to pass the generic data item be-
tween the procedural and the object-oriented por-
tions of the combination wrapper.
A large table must be defined in the wrapper’s
LOCAL-STORAGE SECTION to hold subclass names

gram that uses the wrapper has an entry point,
called aprogram entrypoint, in the wrapper. Each
unique action in the legacy program has an entry
point, called an action entrypoint, in the wrapper.

The code after the ENTRY statement in the proce-
dural portion does the following:

A program entry point (1) creates an instance of
the appropriate subclass, (2) puts the subclass
name and OBJECT REFERENCE in the table, and
(3) returns to the legacy program.
An action entry point (1) sets a pointer to the ad-
dress of the data structure passed from the legacy
program, (2) finds the subclass name in the table,

and their OBJECT REFERENCES. Each legacy pro-

IBM SYSTEMS JOURNAL, VOL 36, NO 1 , 1997

(3) INVOKES the appropriate method in the sub-
class using the OBJECT REFERENCE from the ta-
ble, (4) if necessary (CLOSE, for example), frees
the instance of the subclass and cleans up the ta-
ble entry, and (5) returns to the legacy program.

Subclass definitions in the REPOSITORY PARAGRAPH
complete the procedural portion code.

Example. Suppose an old file system is to be replaced
by a CD-ROM file system with an object-oriented in-
terface. And a large group of legacy programs that
used the old file system now must be migrated to the
CD-ROM system. It is likely that every legacy program
in the group has one or more different record struc-
tures. One program might have only name and ad-
dress fields in its record. Another program might have
name, age, and sala ry fields. Since these two programs
have different data structures, the result is two dif-
ferent subclasses in the object-oriented portion of
the combination wrapper.

Let us assume that the first program, ProgOne, se-
quentially READS the entire file. Thus, the methods
in the first subclass, ProgOneInput, are open, read,
and close. Also, let us assume that the second pro-
gram, ProgTwo, sequentially WRITES records to a file.
So the methods in the second subclass, ProgTwoOut-
put, are open, write, and close. The code for the object-
oriented portion of the combination wrapper is
shown in Figure 6.

The procedural portion of the combination wrap-
per has an ENTRY statement to correspond to each
legacy program and each unique action in the group

FLINT 57

Figure 6 Combination wrapper code-object-oriented portion (part 2 of 5)
- . ~ _ _ _ _ . ~

of legacy programs. The unique actions in these two
legacy programs are OPEN, READ, WRITE, and CLOSE.
In the DATA DIVISION, the procedural portion has
a large data item to facilitate movement of the dif-
ferent data structures from the legacy program to
the object-oriented portion of the wrapper. Also in
the DATA DIVISION is a table to track subclass names
and OBJECT REFERENCES. The code for the proce-
dural portion of the combination wrapper is shown
in Figure 7.

How does this combination wrapper affect the legacy
program? In the example, all input and output state-

ments must be changed to CALL statements. In the
first program, the statement

open input input-file.

changes to

call ‘Progone’

call ‘Open’
using by content z‘ProgOneln’

using by content z‘ProgOneln’
by reference status-flag.

58 FLINT IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

Figure 6 Combination wrapper code-object-oriented portion (part 3 of 5)
~~~~ 

L 

and  the  statement also the  statement 

read input-file into input-record 
at end set eof to true. 

changes  to 

call ‘Read-Seq’ 
using by content z‘ProgOneln’ 

by reference input-record eof-flag. 

close input-file. 

changes to 

call ‘Close’ 
using by content z‘ProgOneln’ 

by reference status-flag. 

IBM SYSTEMS JOURNAL, VOL 36, NO 1 ,  1997 FLINl 



Similar changes must be made to all the input and 
output  statements in the second program. 

Conclusion 

To convert a COBOL legacy program to an object- 
oriented program, a complete restructuring of the 
legacy program is required. Objects and their inher- 
itance structure must be identified, data usage and 
data flow must be analyzed, and instructions allo- 
cated to objects. The high  costs and risks of this tran- 
sition are  too much for many organizations at a time 

when budgets are tight. Thus, interoperable legacy 
and object-oriented applications are highly  desirable. 

An object-oriented wrapper is  useful  when a COBOL 
legacy program is  going to become either  the server 
in a client/server system or  another object in an ob- 
ject-oriented system. This wrapper encapsulates a 
COBOL legacy  application,  transforming  its  functional 
interface to an object interface and  acting  as a “front 
end”  to  the legacy application. The object-oriented 
wrapper is not useful  when an object-oriented en- 
hancement is added  to  the COBOL legacy applica- 

60 FLINT IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997 



tion and the legacy application needs to use the  en- 
hancement in the same way  it  would use the services 
provided by a subroutine, because an object-oriented 
wrapper is itself  an object. 

The procedural wrapper is useful  when a COBOL leg- 
acy program must  be the main, or client, program 
and use  services  provided by an object-oriented pro- 
gram. It is  effective if the number of methods in the 
object-oriented program is  known and the number 

of data items shared between the legacy  program  and 
the object-oriented program is  small. 

The combination wrapper is  useful  when a COBOL 
legacy program must be the client program, using 
services  provided by an object-oriented program, but 
the problem is too complex for a procedural wrap- 
per. The object portion of the combination wrapper 
is a hierarchy of object wrappers that allow users to 
take advantage of inheritance to simplify the wrap- 



Figure 7 Combination wrapper code-procedural portion (part 1 of 3) 

ping  process.  Existing  legacy programs can reuse ob- 
ject-oriented programs by calling the appropriate en- 
try point in the procedural portion, which creates the 
appropriate objects in the object-oriented portion. 

These three wrappers provide  viable solutions to the 
COBOL legacy and object-oriented application in- 
teroperability problem for several reasons. 

62 FLINT 

Minimal changes are required  to  the  legacy code. 
Without a wrapper, for  a legacy program to interact 
with an object-oriented program the long names op- 
tion, which  affects  all the subprogram and entry point 
names in the program, is required. A REPOSITORY 
paragraph must  be added in the ENVIRONMENT 
DIVISION and OBJECT REFERENCE data items must 
be added in the DATA DIVISION. The PROCEDURE 

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997 



Figure 7 Combination  wrapper  code-procedural  portion  (part 2 of 3) 
~~ ~ 

DIVISION must be rewritten to create object  instances 
and INVOKE methods, a monumental task. 

With a wrapper, a few selected statements in the 
PROCEDURE DIVISION are replaced or removed. In 
some cases, minor changes are needed in the DATA 
DIVISION. If the wrapper and the object-oriented pro- 
gram have already been debugged and tested with 
a  stub program, it  is  easy to test the new application 
and quickly  get it into production. 

New features can be written using object-oriented 
technology. This provides all the benefits of object- 
oriented technology, allowing fast response to sys- 
tem development needs. Thus higher quality soft- 
ware for more complex data types and problem 
domains can be developed. 

The object-oriented code is easier to maintain and 
changes do not affect the legacy p r ~ g r a m . ~  The ob- 
ject-oriented code does not have to be written in 

IBM SYSTEMS JOURNAL, VOL 36, NO 1,  1997 FLINT 63 



Figure 7 Combination  wrapper  code-procedural  portion  (part 3 of 3) 
~~ .. . ". -~ 

COBOL. If the new feature is easier to write  and  main- 
tain in another object-oriented language, the wrap- 
pers presented in  this paper can still be used. 

Object-oriented  programs  can  reuse  or be reused 
by  any number of legacy  programs. An object wrap- 
per provides a way to reuse the functionality of a leg- 
acy program as a black  box, without duplicating the 
functions for every  new application. Further,  the ob- 
ject wrapper ensures that the client program can han- 
dle different legacy programs with the same user in- 
terface standards. 

Procedural and combination wrappers provide a way 
for a legacy program to reuse object-oriented pro- 
gram functionality, again with no duplication. These 
two wrappers are building  blocks that provide a bind- 
ing of data and function and enable the  appropriate 
object creation  and method invocation. 

Since reuse is one of the biggest benefits of object- 
oriented technology, care should be taken to make 
the wrapper extensible.  Imagine that a wrapper might 
be used eventually by every  legacy program. Al- 

though a gross generalization, this mind-set helps the 
wrapper to be  easily  modified  when another legacy 
program does want to use it. 

Wrappers allow  legacy applications to find their way 
into new applications that were once technically  dif- 
ficult or economically infeasible. Making legacy and 
object-oriented applications work together is like a 
jigsaw  puzzle-the connecting piece that completes 
the picture is not always  easy to find. The sugges- 
tions in this paper may  reveal a missing  piece. 

Acknowledgments 

Many people at  the Santa Teresa Lab worked  very 
hard to make the new object-oriented COBOL com- 
pilers a reality. I want to acknowledge Tom Dun- 
ham, who made my work  with object-oriented 
co~o~poss ib l e ,  and Connie Nelin and Steve Miller, 
who taught me well. 

*Trademark or registered trademark of International Business 
Machines Corporation. 

64 FLINl IBM SYSTEMS JOURNAL,  VOL 36, NO 1, 1997 



Cited references and  notes 

1. W. Dietrich, L. Nackman, and F. Gracer, “Saving a Legacy 
with Objects,” OOPSLA ’89 Conference Proceedings, New Or- 
leans, LA, ACM Press (1989), pp. 77-83. 

2. Gartner  Group, 1996. 
3. A. W. Hui,  “An Object Wrapper for  a Legacy System,” pre- 

sented at the I995 International  Conference on Object  Tech- 
nology, available from the  author (alanhui@raleigh.ibm.com). 

4. Since the  wrapper is an object-oriented  program, the program 
that creates  an instance of the CUI object must also create 
an instance of the  wrapper object. 

5. It is important  to  note, however, that a  signature change in 
a  method in the  object-oriented  code  does  require  a change 
in the  wrapper. 

General references 

E. C. Arranga  and F. P. Coyle, “Object  COBOL,” Object Mag- 
azine 4, No. 5 ,  56-62 (September 1994). 
E. Gamma, R. Helm, R. Johnson,  and J. Vlissides, Design Pat- 
terns: Elements of Reusable Object-Oriented Software, Addison- 
Wesley Publishing Co., Reading, MA (1995). 
L. Hellenack, “IBM  Object-Oriented COBOL It’s Ready for 
Prime  Time,” Report No. 10100, International Data Corpora- 
tion, Framingham, MA (July 1995). 
A. V. Hense, “Denotdtional Semantics of an Object-Oriented Pro- 
gramming Language with Explicit Wrappers,” Format Aspects of 
Computing 5 ,  No. 3, 181-207 (1993). 
T. W. Miller, G. Miller, and M. P. Nally, “Interfacing Between 
Structured and Object-Oriented Languages,” IBM Technical Dis- 
closure Bulletin 37, No. 3  (March 1994). 

Accepted for publication July 2, 1996. 

Elizabeth  Spangler  Flint IBMSofnvare Solutions Division, Santa 
Teresa Laboratov, 555 Bailey Avenue, San Jose, California 95161- 
9023 (electronic mail: esflint~vnet.ibm.com). Ms. Flint has been 
an IBM employee for the past ten years with work assignments 
in Cary and  Charlotte, North Carolina,  and with IBM Education 
and Training. Currently, Ms. Flint is a  member of the  Year 2000 
Technical Support  Center at the  Santa  Teresa Laboratory, al- 
though she works from her home in Union,  South  Carolina. Ms. 
Flint earned  her B.S. degree in mathematics and computer sci- 
ence from Virginia Polytechnic Institute  and  State University and 
her MS. degree in computer science from North Carolina State 
University. 

Reprint Order No. (321-5634. 

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997 


