
Bridging traditional
and object technologies:
Creating transitional
applications

by A. H. Lindsey
P. R. Hoffman

Object technology is a well-known advance for
developing software that is receiving a great deal
of attention. Unfortunately, the educational
investment required and the additional
complexity introduced by most tools that support
this technology have dampened its rate of
adoption by many enterprise developers. To
bridge this skills and technology gap,
development tool strategies are presented that
encourage a more evolutionary approach, easing
the transition. Rather than requiring totally new
skills and tools, these strategies take advantage
of the strengths and familiarity of traditional
facilities-they hide much of the raw
technological complexities and yet exploit the
strengths of object technology by supporting the
creation of transitional applications. The
strategies described fall into two categories:
bridging between the traditional and object
worlds, and masking the complexities of object
technology by exploiting higher-level rapid
application development techniques.

0 bject technology, a software technique that has
been well known within the research and ad-

vanced development communities for many years,
has recently begun to receive attention in commer-
cial environments. This attention has resulted in in-
flated productivity and cost-savings claims, numer-
ous product renamings (to add the “00” badge for
“object-oriented”), and a never-ending stream of ar-
ticles, books, and seminars on all facets of this tech-
nology. While nothing could deliver all the benefits
that the hyperbole suggests, object technology ap-

pears ; to have enough mome mtum to be a major force
in the software arena for many years.

Unfortunately, the exploitation of object technology
has been difficult for many enterprise development
organizations. This difficulty can be attributed to
many factors, but the most prominent is a widespread
lack of skills. Most object technology practitioners
believe that there is a real and nontrivial paradigm
shift that must occur when moving from the proce-
dural world into the object world. In his widely read
book on object technology,2 Taylor defines a par-
adigm as:

An acquired way of thinking about something that
shapes thought and action in ways that are both
conscious and unconscious. Paradigms are essen-
tial . . . , but they can present major obstacles to
adopting newer, better approaches.

He then defines paradigm shift as:

A transition from one paradigm to another. Par-
adigm shifts typically meet with considerable re-
sistance followed by gradual acceptance as the su-
periority of the new paradigm becomes apparent.

Wopyright 1997 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

32 LINDSEY AND HOFFMAN 0018-8670/97/$5.00 0 1997 IBM IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

Object-oriented technology is regarded by many
of its advocates as a paradigm shift in software de-
velopment.

Because most enterprise developers are not currently
skilled in object technology, this required paradigm
shift is one of the major inhibitors to its adoption.

Many new tools have emerged in the last few years
designed to exploit object technology. These tools,
such as VisualAge* for Smalltalk3 and VisualAge
for C+ + *, generally require that an object-oriented
language be learned. Thus, due to the paradigm shift,
most of these tools are not easily used by most en-
terprise developers.

This paper proposes an approach that eliminates
many of the obstacles just described. Rather than
requiring enterprise developers to learn new anal-
ysis and design techniques and a new programming
language, we assert that most of the benefits of ob-
ject technology can be realized more quickly by ex-
ploiting a combination of new and traditional tech-
nologies.

Visual programming, as implemented in the “con-
struction from parts” framework within the Visual-
Age family of product^,^ appears to be usable by
developers with varying backgrounds, including en-
terprise developers. To extend their applicability, tra-
ditional languages can be minimally altered to make
their capabilities fully accessible within this visual ob-
ject technology context and to support part and ob-
ject ~cripting.~ Languages that use a procedural par-
adigm, including fourth-generation languages (4GLs),
do not require the paradigm shift required by object-
oriented languages. As Goetz states, “COBOL and
other programmers can learn to use these new 4GLs
in a matter of days, unlike object-oriented program-
ming, which requires months of training.’”j Further-
more, significantly higher productivity can be
achieved by hiding much of the initial and ongoing
complexity associated with object technology. By ex-
ploiting rapid application development (RAD) tech-
niques, such as data-driven template technology,
much of the manual visual and procedural program-
ming and the complex system infrastructure pro-
gramming can be eliminated or hidden. In combi-
nation, these techniques remove many of the
inhibitors to object technology that enterprise de-
velopers experience today. Therefore, the resulting
hybrid or transitional7 applications can exploit the
strengths of visual programming for the graphical
user interface (GUI) while maintaining the scalabil-

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

ity, maturity, and familiarity of traditional languages
for business logic, data access, and transaction pro-
cessing.

The remainder of this paper describes several tool
strategies that we believe make it easier to use ob-
ject technology. We propose:

Introducing traditional parts within the construc-
tion from parts architecture
Addingpart and object scripting capabilities to tra-
ditional languages
Exploiting RAD templates to automatically create
complete transitional applications (CUI, client, and
server logic parts, as well as the associated visual
links) tailored to customer data specifications

We assert that most
of the benefits of object

technology can be
realized more quickly.

Finally, because VisualAge Generator* x and
BW/Wizard* * support most of these techniques, we
will use them throughout for illustrative purposes.

Bridging between the traditional and object
technology worlds

Object technology, whether or not explicitly iden-
tified as such, has been around for about 30 years.
Most technologists trace its roots to Simula 67 and
early versions of Smalltalk. ‘0”3 Re gardless of this
long history, object technology has only recently be-
gun to gain widespread awareness and acceptance.
No longer is it a technology reserved for academics
and researchers and running on only a few special-
ized machines. Rather, there now exist many robust
development environments, supporting languages
such as Smalltalk, C+ +, Java**, and Eiffel, that are
available on most of the popular platforms. These
development environments typically include brows-
ers for viewing and editing source code, debuggers
for detecting and correcting problems, and compil-
ers and linkers for turning the source into execut-
able code. Some of the environments even include
or can exploit “object-aware” code repositories, con-

LINDSEY AND HOFFMAN 33

figuration management tools, version control tools,
and distribution services.

One of the technologies that has helped accelerate
the acceptance of object technology in recent years
is the construction from parts form of visual program-
ming.14 Virtually all construction from parts envi-
ronments support WYSIWYG (what you see is what
you get) layout of the GUI controls, a technique that
has existed for several years. However, these envi-
ronments go further by eliminating the need to write
some of the code. Instead, the developer connects
parts together with visual links to trigger user inter-
face actions, run logic, and move data. The fact that
many new integrated development environments
(IDES) contain a construction from parts facility in-
dicates that this technique is gaining interest as an
alternative to textual coding for GUIS and their as-
sociated logic. Some tool vendors and industry ar-
ticles even suggest that nonprogrammers can create
complete applications simply by linking parts to-
gether (the GUI and non-GUI elements).”

While the goal of developing programs without writ-
ing any code is desirable and worth pursuing, reality
and the current state of the reusable parts market
indicate that trained programmers need not worry
about losing their jobs any time soon. However, vi-
sual programming is a technology that is as appli-
cable to the programming community as it is to the
world of nonprogrammers. Especially given the re-
cent push toward client/server and World Wide Web
architectures, more and more new applications will
require a graphical interface. Programmers can ex-
pedite the creation of applications by using one of
the many construction from parts environments for
the GUI, l6 allowing more time for the application ar-
chitecture, client and server business logic, database
design, etc.

Unfortunately, the object-oriented tools that support
this form of visual programming are disjoint from
the mainstream programming world. When creat-
ing the client and, if supported, server logic with these
tools, the programmer is strongly encouraged to use
the associated object-oriented programming lan-
guage, generally Smalltalk or C+ +. l7 However, the
vast majority of programmers today (91 percent ac-
cording to a 1994 surveylS) have traditional skills and
do not yet know object technology or its associated
languages. Because almost all interesting applica-
tions today still require that logic be written, the re-
quirement to use an object-oriented language sig-
nificantly curtails the adoption of this class of

construction from parts tools by a large percentage
of programmers. Thus, the power and benefits as-
sociated with construction from parts and object
technology are not yet being used by most
programmers.

To remedy this situation, techniques have been de-
veloped to bridge between the construction from
parts world and the traditional world. One approach
is to attach construction from parts facilities to tra-
ditional languages. This is an initially attractive so-
lution because the WYSIWYG and visual linking met-
aphor becomes accessible to traditionally skilled
programmers, thus boosting their productivity. How-
ever, the productivity increase is in part attributable
to the granularity and availability of parts. Because
most object technology environments emphasize
construction from parts, probably more parts will be
available for the Smalltalk or C+ + developer than
for the COBOL or FORTRAN developer. Another
drawback is that this approach typically can support
event-to-action19 connections, but it cannot handle
some forms of the attribute-to-attn’bute’” connections
without changes to the existing language environ-
ment. As a result, this second category of visual links,
which provides data synchronization, is generally
omitted. For these reasons, other approaches must
be explored.

Another approach, advocated by many in the con-
struction from parts community, uses wrappers.
Wrapping allows surrogate parts for the legacy or
nonnative code (i.e., something other than the object-
oriented language upon which the IDE is based) to
be utilized within the IDE. In some cases, this wrap-
ping process can be partly automated-if the IDE has
facilities that support the language and constructs
of the legacy code fragment. Tools providing this sup-
port parse the legacy code and create a public in-
terface for the surrogate part, providing access to
the data and services embedded in the legacy code.
For example, the wrapper for a C-language dynamic
link library (DLL) will contain actions for each of the
public entry points. This technique is quite useful
for facilitating black-box reuse.” All of the object
technology capabilities of the IDE are still available-
all forms of linking are supported and true object-
oriented parts can be used-thus future object-ori-
ented enhancements should be possible for an
application developed in this way. The drawback to
this approach is most apparent for white-box reuse’‘
or when the solution requires that new nonnative
code be written. Because the wrapped parts are de-
veloped in another language and IDE, the develop-

34 LINDSEY AND HOFFMAN IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

ment process can become disjoint. Not only is the
specification of the various portions of the solution
split between environments, but so is the debugging.
In other words, the logic and data portions of these
nonnative parts are not treated as first-class parts
(FCPS).” This reduces the productivity gains that
would ordinarily be achieved within construction
from parts environments.

While the above techniques have merit, we propose
two companion strategies that may more effectively
bridge the technology and skills gap between tradi-
tional and object technologies. To expand the use-
fulness of traditional artifacts within the construc-

Two strategies may more
effectively bridge the skills

gap between traditional
and object technologies.

tion from parts framework, logic and data constructs
in a traditional language can be promoted to be first-
class parts. Likewise, to enhance the power of tra-
ditional languages, part and object scripting can be
added.

Traditional artifacts as first-class parts. This ap-
proach is effectively the reverse of attaching construc-
tion from parts frameworks to traditional languages,
at least in terms of perspective, and has many char-
acteristics in common with the wrapping technique.
Rather than attaching construction from parts ca-
pability to existing traditional development environ-
ments, the existing language constructs (and their
associated development facilities) can be made ac-
cessible and manipulable from within the construc-
tion from parts framework. In other words, the logic
and data constructs in a traditional language can be
turned into first-class parts. As an FCP, each of these
logic and data parts must define a public interface
to its actions, attributes, and events.

In addition, edit, debug, and build capability for these
logic and data parts must be provided within the con-
text of the construction from parts framework. This
ensures that all aspects of creating a GUI clientherver
transitional application, using both visual program-

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

ming and traditional techniques, are integrated as
seamlessly as possible.

To illustrate the technique of promoting traditional
artifacts to be first-class parts, we will describe the
architecture within VisualAge Generator, which in-
cludes the same construction from parts framework
as VisualAge for Smalltalk.

Addingpartspalette entries. The first step toward mak-
ing an entity a first-class part is to make it accessible
from within the construction from parts framework.
To do this, in VisualAge Generator we added two
new categories to the palette of available parts: data
member parts and logic member parts. Within the
data-member-parts category, there are two parts:
record memberpart and table memberpart, shown in
Figure 1. Similarly, within the logic-member-parts
category, there are four parts that represent the 4GL
logic-entity types.

The data and logic parts are automatically accessi-
ble within the construction from parts framework by
virtue of being present in the 4GL library (see Figure
2). The public interface of the part is automatically
derived from its library definition. The data and logic
parts can be selected by name, dropped on the free-
form surface, and connected to other visual and non-
visual parts. Part editors can be invoked directly from
the visual programming tool. A detailed example of
how traditional data and logic parts are used in the
construction from parts framework follows.

The example used throughout this section is the
shopping list application system shown in Figure 1.
It is a simple system consisting of a GUI and a server
application called SHOPPER. The GuI, in the box la-
beled “Shopping List,” contains fields with descrip-
tive labels. The central objects in this application are
the entry field labeled “New item,” the list within
the group box labeled “Items to Buy,” the nonvisual
part labeled “List of Items,” the server application
labeled “SHOPPER,” and its only parameter labeled
“LIST.” LIST has two fields (not shown): CUSTOMER
and GROCERY-ITEMS. The nonvisual part List of
Items is a Smalltalk object instantiated from the Or-
deredCollection class. It serves as the “model” ob-
jectZ3 for the items in the viewable list.

Each shopping item is added to the list by entering
it into the “New item” field and then clicking on the
“Add to List” button. This occurs because the clicked
event defined for the “Add to List” button is con-
nected to the add: action defined for the “List of

LINDSEY F rND HOFFMAN 35

Figure 1 Data Member Parts category with the Record Member Part icon selected
~~ ~~ ~ ~~ -~ ~~ ~~ .~

Items” part. The parameter is filled by connecting
the object attribute defined for the “New item” field
to the link itself. List of Items remains synchronized
with the items in the Items to Buy box because its
self attribute is connected to the items attribute of
Items to Buy. Similarly, GROCERY-ITEMS also re-
mains synchronized because it too is connected to
the self attribute of List of Items. To fill the param-
eter to the server application, the LIST attribute of
SHOPPER is connected to the data attribute of LIST.
Finally, to cause the server application to run, the
clicked event of the “Save” button is connected to
the execute event of SHOPPER.

The remaining connections are not relevant to this
paper and are not described.

Defining the public inte$ace. The next step in creat-
ing a first-class part is to define the public interjiace
for each of the new parts. To build this public or part
interface, the following must be defined:

The actions that the part can provide to other con-
nected parts and scripts. These actions are the ser-
vices that this part can perform.
The attributes or data that the part contains. These
include the ways in which the data can be accessed.
The events or messages that the part will signal and
send to other connected parts. These events can
be used to trigger actions on other parts.

While the public interface for typical object-oriented
parts can be extensive, for traditional parts it is of-
ten quite simple. An example of a logic-oriented con-
struct, the part interface for a VisualAge Generator
application member part, is shown in Figure 3. We
next explain three of the elements of this interface
for the SHOPPER application member part.

One of the most important actions is execute. When
triggered, this action will cause the 4GL logic in the
associated application member to execute or run, just
as if it were invoked from the command line or from
another piece of logic.

36 LINDSEY AND HOFFMAN IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

Figure 2 Traditional artifacts as first-class parts. Logic and data entities in the 4GL library are accessible as first-class
parts within the construction from parts environment. ~ _ _ ___- ~~ ~~ ~ ~

r

!

i
4

TABLES
LOGIC MEMBER PARTS

0-

SUBROUTINES

1 7 USER INTERFACE PARTS -~ a TRADITIONAL DATA AND LOGIC PARTS
SELECTED FROM 4GL LIBRARY

One of the attributes is LIST. This record is the only parameters. The attribute sev, which represents the
parameter passed to the application. To run the ap- application member part itself, is the only attribute
plication, the value of this attribute must be provided that is present in all cases.
from some record member part defined on the free-
form surface. Note that an application member part An important event is has executed. This event is sig-
may have zero or more attributes that represent its naled when the execution of the associated appli-

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997 LINDSEY AND HOFFMAN 37

Figure 4 Example of visually linked logic. The selected visual link will trigger when the Save push button is clicked.
When this occurs, it will cause the SHOPPER application member part to run.

cation member is complete. It allows other actions
or attributes to be manipulated at the completion of
the 4GL logic, such as after a server application has
retrieved a customer record.

With the set of actions, attributes, and events listed
in Figure 3, the server application SHOPPER can be
fully utilized within the construction from parts envi-
ronment. Thus, rather than burying the call to SHOP-
PER within some procedural client code as follows
(in pseudocode):

switch (UI event):
Add-to-List clicked:

Delete clicked:

Replace clicked:

Cancel clicked:

Save clicked:

add item from entry field to list

delete selected item from list

replace selected item with item in entry field

close window

CALL SHOPPER (LIST)

the invocation of SHOPPER is tied visually to the Save
push button as illustrated in Figure 4 and described
earlier. The unidirectional arrow from the Save push
button to the SHOPPER application member part
makes the relationship very clear.

Traditional parts include data-oriented parts as well
as logic parts. As described earlier, LIST is the record
member part in our example. Figure 5 shows its full
public interface.

The primary purpose of data-oriented parts is to hold
information. Therefore, there are no actions of par-
ticular interest that a record member part provides.
On the other hand, there are many attributes avail-
able, corresponding to the fields defined within the
associated record member. For example, because the
LIST record member has a field named CUSTOMER,
the associated record member part has two at-
tributes: CUSTOMER and CUSTOMER data. The for-
mer is the actual Smalltalk object associated with the
CUSTOMER field. It is used when both the field’s

38 LINDSEY AND HOFFMAN IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

CUSTOMER data CUSTOMER data
data
GROCERY-ITEMS
GROCERY-ITEMS data
self GROCERY-ITEMS data

meta-data, such as the type and length of the field,
and its value are required. The latter is used when
only the value is needed.

Changes to the value of a data-oriented part cause
events to be signaled, which can then cause other
actions to occur (due to connections). Within LIST,
the CUSTOMER event will signal whenever the value
associated with the CUSTOMER field is altered. Sim-
ilarly, the CUSTOMER data event will signal whenever
the data associated with the CUSTOMER field or any
of its subfields are altered.24

I With the set of attributes and events listed in Figure
5 , programmers with traditional skills can use what
they already know about their data within the con-
struction from parts framework. For example, to
keep the List-of-Items collection synchronized with
the GROCERY-ITEMS array within LIST, the developer
needs only one connection, as explained earlier and
illustrated in Figure 6. This eliminates the need to
write any application code for data movement or data
synchronization between these two entities. Surely
this single visual link is more expressive than some
number of lines of code, probably distributed
throughout the application.

Although easily done in VisualAge Generator, it
might be nontrivial for some traditional languages
to provide support for the data events. The seman-
tics of the attribute-based events, such as CUSTOMER
data, are that the event will be signaled when the
attribute changes. This change can occur either vi-
sually (e.g., via an attribute-to-attribute connection)
or via logic (e.g., MOVE “Sally” to LIST.CUSTOMER).

Because the attribute-to-attribute connection is han-
dled within the construction from parts framework,
it can easily be intercepted, thus allowing the target
attribute’s associated event to signal. However, if the
data are updated via traditional logic, this is outside
the construction from parts framework. Some mech-
anism must then be established to capture data
changes and then cause the appropriate signaling to
occur within the parts world. Within VisualAge Gen-
erator, this was readily achieved because the 4GL con-
structs are implemented in a Smalltalk object model
on the client, thus allowing the model to be aug-
mented to notify the construction from parts frame-
work when data changes occur. Within a language
such as COBOL, which currently has no facility for
detecting data changes within logic, enhancements
would be needed. While the implementation must
perform adequately, the ability to signal data changes
could utilize a mechanism similar to that used for
monitoring watchpoints (monitoring data states
while the program runs).

Providing browsers and debuggers. The next step in
making traditional artifacts into first-class parts is to
ensure that manipulation of the code is integrated
seamlessly within the construction from parts frame-
work. Thus, the new parts must be editable directly
from the free-form surface. In addition to the pub-
lic interface, an editor must be registered with each
new part. Within the VisualAge for Smalltalk con-
struction from parts framework, this registration re-
quires that an alternate implementation for the “edit
has been requested” message be provided. To edit
traditional parts, the definition facilities and editors
native to the language of the part are exploited.

IBM SYSTEMS JOURNAL, VOL 36, NO 1. 1997 LINDSEY AND HOFFMAN 39

Figure 6 Example of visually linked data. The selected visual link will cause GROCERY-ITEMS (within LIST) to remain
synchronized with the contents of the list box within the Items to Buy group box.

~~ ~~ ~~ ~~ _ _ _ _ _ _ ~ ~ ~ ~ ~~

After an application is defined, it rarely runs suc-
cessfully on the first attempt. In order to debug this
hybrid form of application efficiently, the construc-
tion from parts framework must be augmented ei-
ther to display the traditional logic within its debug-
ger or to invoke the debugger from the traditional
language whenever control passes to a traditional
logic part. This ensures that program errors asso-
ciated with the interaction between the object-ori-
ented world and the procedural world can be iso-
lated quickly. In comparison, black box or separated
testing suffers with respect to iteration speed and pro-
ductivity.

In VisualAge Generator, the logic and data parts are
edited using specialized definition facilities, with se-
lection based upon the type of the member. For ex-
ample, when an application member part is selected
for editing, the graphical Application Definition fa-
cility is opened. Similarly, when the debugging ac-
tivity crosses into the 4GL code, the Interactive Test
facility within VisualAge Generator is activated. In
the future, this support could be enhanced by choos-

ing either the Smalltalk debugger or the Interactive
Test Facility as the preferred interface, and then dis-
playing both the Smalltalk and the 4GLlogic and data
within a single facility.

Integrating the build process. While for some imple-
mentations the features just described might be suf-
ficient to claim first-class part status for traditional
artifacts, more can be done. Once an application is
defined, an executable module must be built. This
involves several steps-code generation, transfer of
code to the target platform, compilation, and link-
ing. It is desirable for this process to be handled by
the development environment, leaving to the user
only the initiation of the process. Further, the de-
veloper of transitional applications should not be re-
quired to initiate multiple builds just because both
object-oriented and traditional technologies are ex-
ploited.

Seamless build processing can be supported in at
least two ways. One way is to make the traditional
parts themselves responsible for initiating a tradi-

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

tional build when they are asked to do so from within
the construction from parts environment. Another
way is to have a configuration management facility
that understands both object-oriented and traditional
constructs. It can then be responsible for building
all portions of the applications.

The second option implies that the application com-
ponents are managed by, or at least known by, a sin-
gle facility. Because there are activities other than
build that require the developer to interact with the
underlying library, this is the final aspect of integrat-
ing the traditional and object world. When all com-
ponents of an application can be archived, queried,
etc., within a single tool, the productivity of the de-
veloper will increase.

In summary, the benefits of making traditional com-
ponents into first-class parts are that these compo-
nents are directly usable within the construction from
parts framework, allowing developers with tradi-
tional skills to quickly exploit the visual linking met-
aphor without having to invest the time to learn a
new object-oriented language. Additionally, when
modifying these traditional components, or when
creating new ones, the facilities that the developer
is familiarwith-the editors and the debuggers-are
immediately available. Finally, when packaging the
entire application for distribution, having a single fa-
cility responsible for the process further integrates
the two technologies and boosts productivity. The
result is that programmers can remain productive
while they learn object technology at their own pace.

Part and object scripting from within traditional lan-
guages. The previous section described how tradi-
tional language constructs can be manipulated within
the object world. While this is quite important, it is
only one side of the bridge between object and tra-
ditional programming. When operating within the
traditional world, it is equally desirable to have ac-
cess to the parts on the object side. This section de-
scribes an approach to providing this support.

While visual programming is quite powerful, many
operations are more easily implemented and more
easily understood by others when coded directly. Fur-
thermore, situations that involve conditions and
loops rarely can be done visually, requiring that code
be written. For these reasons, all visual programming
IDES provide some form of scripting or implemen-
tation language to supplement the visual tools. Un-
fortunately for many developers with traditional
skills, the language is often an object-oriented one,

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

developers, traditional languages can be enhanced
to provide access to and manipulation of the visual
and nonvisual parts. This does not mean that these
traditional languages must become fully object ori-
ented; rather, they only need to be able to access,
or get addressability to, parts in the visual program-
ming name space, and then to be able to send mes-
sages to them. In other words, part and object script-
ing needs to be supported.

Again we will use VisualAge Generator to demon-
strate this technique. There is a name space for the
visual portion of each GUI application and another
one for the 4GL logic associated with it (see Figure
7). Because the 4GL does not currently know about
parts, constructs are being added to support part and
object scripting. This will be accomplished with ad-
ditions similar to the following:

Addressability. ObjectHandle is added as a new type
of variable. Then, two built-in fimctions are added
to return an object handle for a named entity.
EZEPart(name) is added to return a handle to the
part (in the construction from parts name space)
identified by the name parameter. This part can be
a visual or a nonvisual part. EZEObject(name) is
added to return a handle to the named Smalltalk ob-
ject. This object can be any global variable within the
IBM Smalltalk system, including classes. An exam-
ple from Figure 8 is:

save-pb = EZEPart (“Save”);

This line of code assigns the object handle of the
Save push button to the variable save-pb.

Messaging. The built-in function EZESend(re-
ceiver, selector, a%, . . .) is added to allow manip-
ulation of parts and other named entities. This in-
cludes the ability to get and set part attributes. An
example from Figure 8 is:

EZESend (save-pb, save-message);

In the example, save-message is set to either “en-
able” or “disable.” This function call will cause the
desired enablement state to be set.

Signaling. EZEPartSignal@art, eventName), a built-
in function, is added to allow events within the con-
struction from parts framework to be signaled. An
example usage might be to indicate that a given
process has finished executing:

LINDSEY AND HOFFMAN 41

Figure 7 Bridging between separate name spaces. The parts, objects, and 4GL name spaces can be bridged as

their underlying implementations, such as the 4GL process SAVE-CUSTOMER. In the 4GL-to-parts case,
shown. In the parts-to-4GL case, visual connections, such as "A," cause part wrappers to invoke services on

the special functions EZEPart and EZEObject provide accessibility to entities in the object domain.
~~~~ ~ -~ ~~~~~ ~~~ ~~~ ~~~~~ -~ ~~~~~~~ 

PARTS NAME SPACE 
_ _ _ _ " _ _ ~ _ _  

! 
- 

<GI. NAME  SPACE 

' i ! 

Ordered  Customer Transcript 
Collection  Address EXPLICIT  VISUAL LINKS 

____t 

.. - - * - - - - lMPUClT  NAME  SPACE UMKS 

I 

EZEPartSignal (EZEPart("Va1idate-ID"), "has 
executed"); 

Other parts can then register interest in  when the 
function Validate-ID has executed. 

By adding these three capabilities, the VisualAge 
Generator language will be extended to support full 
access and manipulation of the parts, classes, and 
objects within both the construction from parts 
framework and  the underlying ~ B M  Smalltalk  system. 
Adding this support is straightforward in  VisualAge 
Generator because Smalltalk is the underlying lan- 
guage in both name spaces; however, this technique 
can  apply  equally  well to  other languages, such as 
COBOL. 

Enhancing a traditional language to provide these 
capabilities does not turn the traditional language 
into an object-oriented language, but it opens  the 
language to some of the power and flexibility  avail- 

able  within object-oriented languages.  As enterprises 
increase their object technology  skills, the parts and 
classes created can be exploited immediately by all 
developers. In  this  way,  businesses  can decide to de- 
velop object technology  skills at their own pace with- 
out forfeiting the benefits in the near term. This tech- 
nique offers  each  developer  two options for scripting: 
the native object-oriented one and a traditional one. 
Usage can then be determined by the skills  and  com- 
fort level of each developer. In some enterprises, de- 
velopers will make the transition rapidly to native 
object technology; in others the change will occur 
more slowly. In either case, the benefits of object 
technology and visual programming can be realized 
immediately. 

Rapidly  developing  transitional  applications 

The previous section described two techniques for 
bridging  between the procedural and object-oriented 
worlds.  While  this programming-level support can 

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997 



greatly ease the creation of transitional applications, 
additional technologies can be exploited to allow 
such applications to be built even more quickly and 
thus further ease the transition to object technology. 

Rapid application development (RAD) is a term used 
to describe methodologies and. tools that claim to 
deliver  higher application creation and maintenance 
productivity than typical 3GLs and their associated 

This enhanced productivity may be  attrib- 
utable to  a higher level of specification (e.g., 4GLs, 
CASE [computer-assisted  software  engineering]  tools, 
and templates), greater portability across platforms 
(e.g., interpreters, code generators, portable class  li- 
braries and frameworks), tighter integration of tools 
(e.g., IDES),  or  a combination of these. While the 
techniques  employed to raise  productivity  vary, a cen- 
tral theme can be found: each approach attempts to 
reduce both the conceptual and the manual work re- 
quired of the application developer. 

Within the domain of object  technology,  many of the 
same techniques are being utilized. For example, vi- 
sual programming attempts to raise the level of spec- 
ification by replacing user interface code with  visual 
links.  Class libraries, such as those in  VisualAge for 
Smalltalk, provide portability of code across many 
different platforms. However, most of the RAD op- 
tions that  support object technology  have little sup- 
port for integrating the traditional portions of tran- 
sitional applications. 

In the section that follows,  we introduce data-ori- 
ented, template-based generation as an example of 
rapid application development within the context of 
transitional applications. Since the technique is rea- 
sonably  well  known from its use  within the proce- 
dural world, we focus on its applicability to transi- 
tional applications. In particular, we discuss how 
template technology can significantly “jump start” 
the creation of  all aspects of transitional applications, 
including the object-oriented GUI, visual  links,  cli- 
ent logic, and server database access  logic. 

Rapid application development using template tech- 
nology. One of the rapid application development 
methods especially  useful for the transition to ob- 
ject technology  is data-driven template technology. 
Templates have been used for several years in the 
procedural domain for the  automated construction 
of user interface, client and server logic, and data 
access code that performs standard operations on 
database information. Extending this to include the 
creation of user interface, logic,  and data access parts 

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997 

Figure 8 Part manipulation  within  VisualAge  Generator. 
This  example  shows  how parts within the 
construction  from parts framework can be 
manipulated  easily  within  4GL  logic by  using 
a  small set of  built-in  functions. In this  sample 
code fragment,  the part named “Save”  is 
either  enabled  or  disabled,  depending  upon 
the result  from the function  Validate-LIST. 
This code could be used  with the example  in 
Figure 6 to enable  Save  only at the time that 
one  or  more  groceries are added to the list. 

” 

save-pb = EZEPatt(“Save”); 

if (validate-LfST( ) = 0); 

else: 

end; 

UESend(save-pb, save-message); 

save-message = “enable”; 

save-message = “disable”; 

within the construction from parts framework can 
help mask the object vs procedural boundaries. Thus, 
this technique can help make visual programming 
and object technology even more approachable by 
enterprise developers. 

Business applications are good candidates for RAD 
template development, since the logic of many bus- 
iness  applications  involves  entering,  storing,  retrieving, 
and modifying records stored as  rows in relational 
database tables. A table row can  be represented 
within the construction from parts framework as a 
part where each column represents a unique at- 
tribute. Select, insert, update, and delete  are  stan- 
dard actions for  a table-related part.  The logic as- 
sociated with these methods differs  only  in the 
specifics of the table and column definitions. 

Implementing templates for standard business ap- 
plications within the construction from parts envi- 
ronment requires identifying, and then abstracting, 
the common aspects of the user interface, logic  (e.g., 
field validation), and data access, creating skeleton 
or template parts. This abstraction process must en- 
sure that  the  template is independent of particular 
table and column definitions. The  template  then  en- 
ables the  generator, given a particular table and col- 
umn definition, to automatically produce a default 
GUI with connections to nonvisual  logic and  data ac- 

LINDSEY AND HOFFMAN 43 



Figure 9 Template-driven  development 

r 

Data 
Dictionary 

DEVELOPER INPUTS a PREDEFINED  LOGIC  AND UI PATTERNS a GENERATED APPLlCATlON 

cess parts (see Figure 9). Thus, the essential  but mun- 
dane aspects of a graphical, client/server, data ac- 
cess  application  can  be  built  simply by providing  table 
and  column definitions. This frees the enterprise de- 
veloper to focus time and energy on user-interface 
customization, unique business  logic specification, 
and system tuning. 

Figure 10 shows an example of an embeddable GUI 
part (“Class Details”) embedded in a class mainte- 
nance GUI application. This part was built automat- 
ically  using RAD template technology’ that provides 
input to VisualAge Generator. The input to the RAD 
generator was a database table representing the 
classes  being taught in a health club. The public in- 
terface for the class includes the actions executese- 
lect, executelnsert, executeupdate, and executeDelete. 
Entry fields in the window are used for the display 
and update of attributes for the currently selected 
class. 

The relatively  simple public interface for the Class 
Details part hides a fairly  complex GUI part defini- 

tion (see Figure 11). The definition includes many 
connections to first-class parts  that represent tradi- 
tional artifacts. Among other things, these parts in- 
clude remote  procedure calls to a server application 
that accesses the database. 

As illustrated in the two examples, data-driven tem- 
plate technology can create  a significant, essential 
portion of a typical  business application with  very 
little effort and, equally important, with  very little 
object  technology  skill. The enterprise developer cre- 
ates the embeddable GUI part,  the traditional parts, 
and the associated server applications by providing 
the relational database table  definition, then requests 
generation of a row maintenance part for the table. 

The automatic creation of database access parts, de- 
fault GUIS,  and  separate client and server logic eases 
the transition to an object technology environment 
in several ways. The RAD templates or application 
models can embody the knowledge of experienced 
developers. By reusing this knowledge, template- 
based generation can automatically provide many 

44 LINDSEY  AND  HOFFMAN IBM SYSTEMS JOURNAL,  VOL 36, NO 1, 1997 



Figure 10 Use of a template-generated GUI.  While the embedded GUI part Class Details is rather complex,  its  use 
within  the  Class Maintenance application  is very  simple. 

-~ ~ ~ ~ _ _ ~ _ ~ ~ ~ _ _ _ _ ~ _ _ _ _ _ _ _ ~ _ _ _ _ _ _ _ _ _ ~ ~ ~ ~ ~ -  

r 

features of a well-engineered transitional applica- 
tion, such as: 

Simple object interfaces to complex transaction 
processing 
Separation of client and server so that  data flow 
across the network is  minimized 
Database access  with  availability (no locking dur- 
ing user think time) and integrity (prevention of 
simultaneous updates) 
Data validation, formatting, and referential integ- 
rity  checking built into  the user interface 
Consistent exception handling 

Additionally, parts built using RAD template tech- 
nology  can  improve  maintainability. For example,  all 
template-generated applications use a common ar- 
chitecture, faithfully adhere  to  enterprise standards 
(which  can be built into  the templates rather than 

being left up  to developers), and present the same 
“look and feel,” both to  the end user and to the  de- 
veloper. 

In summary, as more and more enterprise develop- 
ers with traditional skills  move to object technology, 
rapid application development techniques, such  as 
template-based code generation, should be consid- 
ered. These RAD techniques have proven to be valu- 
able to many of these same developers for proce- 
dural software. This familiarity may further 
accelerate the  rate at which these developers create 
the transitional applications that bridge  between, and 
yet  still  exploit, the traditional and object paradigms. 

Conclusion 

Object technology  is a powerful software advance 
that can be effectively  used today by enterprise de- 

IBM SYSTEMS JOURNAL, VOL 36, NO l ,  1997 LINDSEY AND HOFFMAN 45 



Figure 11 Embedded GUI part generated using  templates.  This  rather  complex  embeddable GUI part was created 
automatically  (aside  from  some  repositioning of fields) by a data-driven template generator. 

velopers to build transitional applications. This can 
be accomplished by using tools that bridge between 
the object  technology and the traditional worlds, and 
that hide much of the associated complexity. Utiliz- 
ing these tools and techniques, transitional applica- 
tions can be built that provide the strengths of vi- 
sual  programming  and  object  technology,  yet remain 
approachable by most enterprise developers. In par- 
ticular, by introducing traditional parts  into  the con- 
struction from parts framework, and by adding part 
and object scripting to traditional languages, the ex- 
ploitation of object technology by developers with 
traditional skills becomes easier. Rapid application 
development techniques, including data-driven tem- 
plate-based  code generation, can  be  exploited to raise 
productivity and mask  complexity, thus further en- 
hancing the integration of the two technologies. 

While we have presented several strategies for al- 
lowing the power of object  technology to be  exploited 
by a wider audience, many more techniques exist and 
should be considered. Furthermore, if object tech- 
nology continues to grow  in popularity, strategies of 
this sort will become even more crucial in order  to 
tap the skills, experience,  and  resources of the world‘s 
vast number of traditionally skilled programmers. 

Acknowledgments 

The  authors would  like to thank Jeri Petersen, Yen- 
Ping Shan, and  Michael  Wheatley for their very thor- 
ough  reviews and critiques of earlier drafts. We  also 
appreciate the contributions of Peter Brennan and 
Peter J. Sperling of Bridgewater  Consultants.  Finally, 
we especially  acknowledge  all of the developers, past 
and present, in the VisualAge family organizations 
within IBM and those within Bridgewater Consult- 
ants who  have incorporated many of these ideas into 
real products. 

*Trademark or registered trademark of International Business 
Machines Corporation. 

**Trademark or registered trademark of Bridgewater Consult- 
ants, Inc. or Sun Microsystems, Inc. 

Cited  references  and  notes 

1. P. Wegner, “Concepts and Paradigms of Object-Oriented Pro- 
gramming,” OOPS Messenger 1, No. 1,7-87 (August 1990). 
Wegner provides a  thorough discussion of the many aspects 
of object-oriented programming. 

2. D. A. Taylor, Object-Oriented  Techno1ogv:A  Manager’s Guide, 
Addison-Wesley Publishing Company, Reading, MA (1992). 

3. VisuaDlge for Srnalltalk:  User’s  Reference, SC34-4519-00, IBM 
Corporation (1 994); available through IBM branch offices. 

46 LINDSEY AND HOFFMAN IBM SYSTEMS  JOURNAL, VOL 36, NO 1, 1997 



COBOL, and VisualAge for Basic. 
5. As used here, the term scripting refers to  the ability to access 

and manipulate visual and nonvisual parts. Further,  our use 
of the term includes the ability to access and manipulate  ob- 
jects and classes in the underlying object-oriented language 
that  supports  the construction from parts framework. 

6.  M. Goetz,  “Forum: A 4GL  Future?” Software Magazine 16, 
No. 3  (March 1996). 

7. The  term transitional is used here as it is  in the context of 
home styles in the United  States,  where  traditional, transi- 
tional, and  contemporary  represent three distinct building 
styles. Rather than  representing  a  temporary  state,  a tran- 
sitional style includes elements from both  traditional (e.g., 
materials) and contemporary (e.g., open living spaces) styles. 
In a similar manner,  transitional applications combine char- 
acteristics of both  traditional (e.g., language constructs) and 
object-oriented (e.g., parts, messages) technologies. 

8. VisualAge Generator Version 2.2 (known in previous releases 
as  VisualGen) is an integrated  development  environment 
(IDE)  that incorporates the traditionalpart and  thepart and 
object scripting capabilities described in this paper. VisualAge 
Generator supports the development,  test, and generation 
of client/server applications for a wide variety of run-time en- 
vironments. 
GUI client user interfaces are defined via visual program- 
ming using the VisualAge for Smalltalk construction from 
parts framework. Client logic and server programs are  de- 
fined using a  procedural  4GL. The  4GL includes simple, pre- 
defined verbs for file and database access and user interface 
presentation,  and it supports  datastore-independent data  en- 
tities and  general-purpose logic constructs. The  4GL logic 
and data entities are wrapped by the visual builder, automat- 
ically creating the traditionalparts within the construction from 
parts framework described in the paper. 
The visual programming, 4GL definition, and source language 
test and debugger operate as  a single, integrated develop- 
ment environment. The developer can move back and  forth 
between the tools during iterative application development. 
A notification framework ensures  that all tools remain syn- 
chronized. 
The 4GL has statements for conditional logic and for assign- 
ingvalues and mathematical expressions tovariables, calling 
or transferring to other programs, and finding and retrieving 
values from tables of information. Verbs for accessing per- 
sistent data allow the developer to insert, update,  delete,  and 
retrieve records from a variety of datastores  (relational and 
hierarchical databases; and indexed, relative, and serial files). 
For  further  information,  refer to Introducing VisualAge Cen- 
erator Version 2.2, GH23-0225-00, IBM Corporation (1996); 
available through IBM branch offices. 

9. The BWrWizard template-driven generator was used to cre- 
ate the row maintenance part and  the  related traditional parts 
and server programs used in our example of exploiting rapid 
application development templates for automatic  generation 
of transitional applications. 
Templates are reusable sequences of source code. Early ex- 
amples of template technology include assembler and high- 
level language macros. C+ + member functions and class tem- 
plates are  another example. 
BW/Wizard templates model entire applications. Traditional 
parts are modeled in VisualAge Generator External  Source 
Format statements; GUI parts are modeled in IBM Small- 
talk statements in fileout format. The template  control  lan- 

IBM SYSTEMS  JOURNAL,  VOL 36, NO 1, 1997 

code  sequence to  be  repeated multiple times, once  for each 
column in the relational  database  table.  A data element dic- 
tionary provides information for columns that is not captured 
from the  database  table definition. The additional informa- 
tion includes user interface labels, descriptions, and format- 
tingand validation requirements, which are incorporated into 
the  generated  parts. 
Template definition is a complex task requiring the atten- 
tion of skilled programmers who can handle multiple levels 
of abstraction. Fortunately, this complexity does not confront 
the developers who use the templates for building applica- 
tions and who refine the  generated  outputs with the language 
editor or visual programming tool appropriate for the gen- 
erated output. They have no need to understand the tem- 
plate language or its use. 
For  further information on  BWWizard, contact Bridgewa- 
ter  Consultants, Inc., 14168 Poway Road, #201,  Poway, CA 
92064. 

10. B. Meyer, Object-Oriented  Software Construction, Prentice Hall 
International Ltd., Hertfordshire, UK (1988). 

11. 0.-J. Dahl, B. Myrhaug, and K. Nygaard, (Simula 67) Com- 
mon Base Language, Publication N. S-22, Norsk Regnesen- 
tral (Norwegian Computing  Center), Oslo, Norway, Octo- 
ber 1970, revised February 1984. 

12. Smalltalk-72 Instruction Manual, A.  Goldberg  and  A. Kay, 
Editors, Technical Report SSL-76-6, Xerox Palo Alto Re- 
search Center, Palo  Alto, CA (March 1976). 

13. D. A. Taylor, Business Engineering with Object Technology, 
John Wiley & Sons, Inc., New York (1995). 

14. Visual Object-Oriented Programming: Concepts and Environ- 
ments, M. M. Burnett,  A. Goldberg, and T. G. Lewis, Ed- 
itors, Manning Publications Co., Greenwich, CT (1995). 

15. A. Kessler, “Fire Your Software Programmers-Again,” 
Forbes ASAP (August 29, 1994). 

16. J. R. Hines, “Program Notes: Visual Programming,” IEEE 
Spectrum 32, No. 11 (November 1995). 

17. While one is allowed to write logic in a language other than 
the provided object-oriented language, the process is far more 
involved than if the native object-oriented language is used. 
Debugging across the language boundaries can be particu- 
larly unpleasant. 

18. C.  Jones, “Gaps in the Object-Oriented Paradigm,” IEEE 
Computer 28, No. 3, 70-71 (March 1995). 

19. Event-to-action connections  cause an action to be performed 
when an event occurs. For example, connecting the #clicked 
event of the push button to  the  #openwidget action of the 
target window causes a window to  open when a push button 
is clicked. 

20. Attribute-to-attribute connections cause the  attributes of two 
parts to always remain synchronized. For example, connect- 
ing the #object attribute of the entry field to the  #name  at- 
tribute of the customer object causes an entry field to always 
be the  same  as the customer object’s name. 

21. “Black box reuse” refers to code reuse that requires no knowl- 
edge of internal code-the entity can be successfully reused 
with knowledge of only the interface to the  code. With “white 
box reuse,” knowledge of the internals is necessary to reuse 
the  code effectively. 

22. We introduce  the term$rst-classpart to represent the parts 
that  are accessed and manipulated without burdensome  re- 
strictions within the construction from parts framework. By 
definition, we assume that all native parts (written in the as- 
sociated language) are first-class parts. Parts created in other 

LINDSEY  AND  HOFFMAN 47 



languages or with other tools can become first-class parts by 
supplementing the  part with all the access and manipulation 
services that the construction from parts framework provides 
for native parts. 

23. A good design practice is to  separate a  “model” object from 
its “view.” The model object is an integral part of the appli- 
cation and maintains  some part of its current  state. The view 
reflects that  state to the user of the application. This  sepa- 
ration allows the user interface to  be changed without change 
to the underlying application. 

24. The design decision for VisualAge Generator was to have 
two attributes  and events per  data entity. Another tool might 
have one attribute  and  event per data entity. There  are two 
primary issues to consider. First, will the tool user need to 
access the entity as an object? If so, the  meta-data should be 
available as well as  the entity’s value. In VisualAge Gener- 
ator,  the object (meta-data and value) are used extensively 
within the construction from parts framework, while the value 
is used when connecting to the  traditional side. Second, if 
the language supports  substructured data fields, will the tool 
user want to limit signaling up and down the  substructure 
chain? A decision to limit this signaling led to our design 
choice in VisualAge Generator. 

25. Information about RAD is available on  the World Wide Web. 
We recommend the background information at  http: 
//www.dsdm.orglbackgrnd.html and  “The Underlying Prin- 
ciples: Version 2” at http://www.dsdm.orglmethod.html. 

Accepted for publication Jub 8, 1996. 

A. Hayden  Lindsey IBM Sofnyare Solutions Division, P.O. Box 
12195,  Research  Triangle  Park, North Carolina  27709  (electronic 
mail: hlindsey@raleigh.ibm.com). Mr. Lindsey joined IBM in  1985 
after receiving a B.S. degree in mathematical sciences from the 
University of North  Carolina at Chapel Hill. He has been apply- 
ing object technology and Smalltalk since 1988, primarily in the 
areas of application generation, single system image debugging, 
and performance. Mr. Lindsey is currently a senior technical staff 
member and an  architect  for  the VisualAge Generator product 
set. 

Paul R. Hoffman IBM Software Solutions Division, P.O. Box 
12195,  Research  Triangle  Park, North Carolina  27709  (electronic 
mail:pho$man@vnet.ibm.com). Mr. Hoffman joined IBM in  1969 
after receiving a B.A. degree in mathematics sciences from the 
University of Michigan. He is currently a  senior  programmer  and 
an architect for the VisualAge Generator product  set in the  area 
of rapid application development. His initial IBM experience was 
in operating system design and  development in shared-memory 
multiprocessor locking and  resource utilization, security, and  re- 
mote job entry. Application experience in delivery of computer- 
assisted instruction in eight different operating  environments  led 
to his current position in VisualAge Generator, which generates 
applications for a wide variety of operating environments. Prior 
to his current activities, Mr. Hoffman was a designer for Visu- 
alAge Generator in the areas of database access, COBOL gen- 
eration, and client/server communications. 

Reprint  Order No. G321-5633. 


