12 PRINS, BLOKDIJK, AND VAN OOSTEROM

Family traits
in business objects
and their applications

The business information system of the future
will take the form of a swarm of business objects
that are event-driven, concurrently executing,
and running in a heterogeneous distributed
environment. The inherent complexity of the
business-object development process requires a
difficult-to-find combination of skills in its
developers. This complexity needs to be reduced
to enable the participation of typical developers
and to yield more successful projects.
Fortunately, there are many common aspects
among business objects. This paper describes a
development approach that exploits these
commonalities, reducing complexity through
systematically defined, separate layers. The
approach was developed in a research effort
performed by the Application Development
Effectiveness practice of the IBM Consulting
Group in the Netherlands. It was subsidized by
the Dutch Ministry of Economic Affairs as an
information technology innovation project. A
“proof of concept” was obtained in a joint project
with Rabobank in the Netherlands. The result is a
component-based development process with
well-defined reuse points and rapid-application-
development (RAD) characteristics. With this
approach, robust business objects can be
developed and tested individually and
concurrently in large teams, then dynamically
assembled into business applications and work-
flows as desired.

In this paper we summarize the results of our re-
search on developing an efficient method for pro-
ducing business objects. First we describe the busi-
ness-object concept and the potential for software
reuse that it provides. Next we describe the produc-
tion method that we developed through our research.

0018-8670/97/$5.00 © 1997 IBM

by R. Prins
A. Blokdijk
N. E. van Oosterom

The method description is in two parts: analysis and
synthesis. The analysis section describes how the el-
ements of the business objects are determined. The
synthesis section describes how the elements result-
ing from analysis are assembled together into bus-
iness objects. We were able to achieve a high degree
of uniformity across different problem domains in
the synthesis of business objects. We now have a com-
plete method to design and code robust business ob-
jects at prototyping speed. It is a practical method
based on our research with customer projects. In our
final section we discuss some of the ways that these
customer projects influenced our research results.

What business objects have in common

The purpose of a business is to deliver products to
amarket in order to make a profit. In general, a bus-
iness has a number of processes, each of which can
be characterized as a pattern of business events. A
business also has a domain that can be character-
ized as a collection of business objects. Business ob-
jects are the “things” around which each business
process is organized. Examples of business objects
are products, customers, units in which the custom-
ers consume the products and in which the business
produces them (seen in customer orders), resources
that are contributed during the production process

©Copyright 1997 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

Figure 1

An object-oriented business information system mirrors reality. lts model includes the business objects that

it maintains and provides information about to the user, and it closely resembles the user’s conceptual

model of the business.

USER INTERFAGE

(materials, employees, machines), units in which
these resources are acquired (seen in purchase or-
ders), and suppliers of these resources.

A business needs to maintain current information
about the business objects in its domain. A business
information system must reflect the business objects
that it maintains and uses to provide information.
The points where information is requested or
changed are found in the business processes. The
business objects are not self-propelled. At every point
in their life cycle they are dependent on externally
supplied triggers. For this they need to be connected
to business processes. So the business information
system must be equally well adapted to both the bus-
iness objects and the business processes. The bus-
iness information system does not lead, it follows.
It models the static and the dynamic aspects of its
business world as closely as possible (Figure 1).

Modeling the business objects and the business pro-

cesses yields the functional requirements of an in-
formation system. In addition, there are many

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

PROGRAMS DATABASE

nonfunctional requirements. They specify the infra-
structure on which the information system must run.
Examples are the server platforms, client platforms,
network type, database mechanism, presentation
form, national languages supported, security provi-
sions, international standards, etc. In systems anal-
ysis the emphasis is on the functional requirements,
but in design and implementation most of the work
is on the nonfunctional requirements. Building a bus-
iness object is like creating an iceberg. As it floats
around in the company information system, all that
is visible is the 10 percent that implements the func-
tional requirements. Most of it is hidden from sight;
90 percent of the volume is needed to meet the non-
functional requirements.

For a given business information system, the non-
functional requirements are constant across other-
wise very different business objects, e.g., product, cus-
tomer, and account. This commonality allowed us
to develop a generic business object that met a large
number of our nonfunctional requirements. Later
we specialized the generic object, applying the func-

PRINS, BLOKDIJK, AND VAN OOSTEROM

13

Figure 2 Relating a business process to business objects. An external event arriving at a company triggers some part
of a business process. This part of the business process is decomposed into a number of employee roles.
Each employee role is decomposed into a sequence of business transactions to be performed in a workplace
dedicated to that business process. Each business transaction must be processed by the information system

and is decomposed into a series of n ges. Eachn ge invokes a specific service at one of the

business objects in the system.

e Y T ! -

/’ CUSTOMER

~,

N e s o 2 O

WORKFLOW
LAYER ===

ROLE A

] ot o

7 ROLEB M

g S O W W W O S W S T S D T N e W W B e

THE VARIOUS

EMPLOYEE ROLES

THAT ARE PART

OF A BUSINESS

PROCESS SERVING
=» THE CUSTOMER

APPLICATION

LAYER e oot e o st o o e e

o o, o o o o s s s o o o o

THE SEQUENCE
OF BUSINESS
TRANSACTIONS
PERFORMED IN
ONE EMPLOYEE’S

- - " -

TRANSACTION 1

[Vo 7o

b3
/' TRANSACTION 2 &

=P WORKPLACE

TRANSACTION 3 TRANSACTION 4

o 10 0 Y T T 0 M S

BUSINESS
OBJECT

e

CONTRACT ACCOUNT

tional requirements, into the specific business ob-
jects as needed. The specific business objects thus
have a large set of properties in common. They dis-
play many common family traits, since they all be-
long to the same business information system. Ex-
ploiting these common traits, by reusing the generic
object, has a very positive effect on both quality and
productivity.

This development strategy is not limited to the non-
functional requirements; it can be extended into the

14 PRINS, BLOKDIUK, AND VAN OOSTEROM

LAYER e vov oom pon v som s s i e s s i o i] o i’ o g i et s e o it

- -

THE BUSINESS
OBJECTS INVOLVED
IN THE EXECUTION
OF A BUSINESS
=P TRANSACTION

EMPLOYEE

tunctional requirements. To support the flow of work
in business processes, business objects are assembled
into applications and these applications are in turn
assembled into workflows. Just as for integrated cir-
cuits that are assembled into system boards and sys-
tem boards that are assembled into computer sys-
tems, interfacing standards are needed. Finally, the
method we used to model the functional require-
ments proved to be a source of genericity. Because
we expressed the systems analysis results in a con-
sistent way in our models, we found that the sub-

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

Figure 3 The business process is supported by use cases. For each external event that arrives, a separate use case
describes the part of the business process that is triggered by the event.

BUSINESS PROCESS ACTORS

USE CASES

APPLICATION
HANDLER

APPLY FOR

CREDIT

CREDIT
APPRAISER

OPEN
AGCOUNT

CUSTOMER

ACCOUNT
MANAGER

WITHDRAW
FROM
CREDIT

sequent design and implementation activities for dif-
ferent business objects had a common “meta”
structure. We could thus make additional uniform
design and implementation decisions early in the pro-
cess and add these to our generic business object.

Business-object analysis

In our analysis we concentrate on what the infor-
mation system must provide to assist the business
processes; i.e., we concentrate on modeling the func-
tional requirements. Our aim is to build an infor-
mation system that mirrors the object-based, con-
current, and event-driven nature of a business
organization exactly as it is in reality. We start by
identifying the external events that trigger the bus-
iness organization into action (Figure 2). The scope
of our analysis is the boundary of the business pro-
cess that needs the support of the information sys-

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

tem. We work on one business process at a time. A
business process is a set of related activities, related
because they all work toward a common goal. Ex-
amples of business processes in Dutch banks are
credit management, fund transfers, and securities
trading. We start the analysis process with the use-
case technique, as introduced by Jacobson.! For each
external event that arrives at a business, a separate
use case describes the part of the business process
that is triggered by the event. A single business pro-
cess may span multiple use cases (Figure 3).

Figure 2 shows the three different layers that we use
to document the event sequences that occur. We use
time-line diagrams for this purpose. In these dia-
grams the vertical lines represent the participating
entities and the horizontal arrows represent the
events that flow. Time flows from the top of the di-
agram to the bottom, so each event shown by a hor-
izontal arrow occurs after the one above it. We found

PRINS, BLOKDIJK, AND VAN OOSTEROM 15

Figure 4

The use case is decomposed into actor roles. The apply-for-credit use case spans several actors. The state

of the credit-management business process is maintained by the credit-agreement object. Triggers for the
various actor roles are defined in the form of events that are to be raised when particular states in the

business process are entered.

Private Customer Credit Agreement

Application Handler

Credit Appraiser Account Manager

I apply for credit
" initial R
applied for g
approved .
sold i

v

these time-line diagrams valuable not only in the bus-
iness object layer, but also in the application layer
and in the workflow layer (Figure 4).

Use-case definition. A use case is a sequence of trans-
actions that one or more actors perform in a dialog
with the information system.' A use case is triggered
by an external event and describes the entire sce-
nario for dealing with that event. The business ob-
jects in the information system represent the real-
world objects in the business organization. Changes
in the real-world objects must be communicated to
their counterparts in the information system. We call
such a unit of change in the real world a business
event and the corresponding impact on the business
objects in the information system a transaction. (Var-
ious methods model a similar unit of change but call
it by a different name: McMenamin and Palmer call
it an event partition,” Rumbaugh calls it an event
trace,” and Coleman calls it a system operation.*)

We list the business events in the chronological or-
der in which they typically occur in the business pro-
cess. We identify the external triggers that start a se-
quence of business events. For one external trigger,
e.g., acustomer applies for a credit account, the com-

16 PRINS, BLOKDIJK, AND VAN OOSTEROM

plete sequence of transactions with the information
system is represented as a single use case. If there
are several triggers, e.g., the various customer ac-
tions over time on a credit account, then a separate
use case is needed for each trigger. The business pro-
cess example shown in Figure 3 consists of multiple
use cases. Like a class, a business process has in-
stances. In our example of the credit management
business process, the business process instance is the
complete collection of business events that are re-
lated to a single credit agreement.

Business-process life cycle. It often happens that for
one instance of the business process two use cases
must be executed in a specific sequence. In that case,
a business-process state, which is set as a result of
the first and tested as a precondition for the second,
must be defined between the two use cases. If one
use case needs the involvement of multiple actors
and the actors must work in sequence, then business-
process states must also be defined between the con-
tributions of the individual actors. The use case is
segmented into parts, each involving a single role.
The external trigger for a multi-actor use case is de-
composed into individual triggers for the actor roles.
We call this sequence of triggers a workflow (see

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

Figure 5 The static object model. Here we show the business objects and the persistent associations between them.

Figure 4). The trigger for each actor role is defined
as the point in time that a business-process instance
enters a particular business-process state.

When we meet with the future users of the planned
information system, we identify not only the use cases
but also all business objects needed for these use cases.
On a transaction-by-transaction basis we identify and
list all the business objects involved. Usually one
of the business objects we identify has a life cycle
that corresponds with that of the business process
instance itself. In our example it is the credit-agree-
ment object. We assign to this object the responsi-
bility to maintain the state of the business-process
instance, in addition to its other responsibilities. It
becomes the pivotal object of the planned informa-
tion system for the business process and provides the
continuous thread throughout that business process.
It is a general requirement for any business to know
what state any instance of a business process is in,
so we never have to invent a special object; it always
exists (e.g., a customer order, an insurance claim, a
services contract).

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

supersedes
Credit
Agreement handles
applies for Q approves
supports
Private Credit Employee
Customer Account
— e ey L
O =0or1
@ =0to many

Static object model. The business objects that were
identified and the associations between them are
drawn as a static object model,? as shown in Figure
5. The static object model describes the objects and
the associations that persist over time. This static model
diagram may also show inheritance relationships.

Dynamic associations, which exist only for the du-
ration of a single transaction, are not drawn in the
static object model. For example, an employee might
execute transactions on business objects where there
is no need to associate the employee permanently
with the objects. Business objects already defined for
the user interface, or auxiliary objects like printers
and card readers, may be involved. For these cases
a separate model is drawn to show the object pop-
ulation present on the workstation and from which
dynamic associations may be obtained when execut-
ing transactions, as described later.

For each transaction in which a business object is
involved, an action (implemented as a method) is

PRINS, BLOKDIK, AND VAN OOSTEROM 17

Figure 6 The role decomposed into transactions. The credit appraiser role is triggered at the moment that the credit
agreement enters the “applied for” state. An actor playing that role will look at the credit agreement and the

associated private-customer and credit-account data before approving the credit agreement.

Credit Agreement

n\‘s\m‘% s

Private Customer

Credit Account

v

Credit Agreement Credit Appraiser
I applied for N
7| select .
select -
select
approve N

defined that will create the local impact on that bus-
iness object. For each object action the attributes are
listed that are necessary to specify the result. The
actions and the attributes are added to the static ob-
ject model.

Our resulting system will consist only of objects, and
all the operations on the system must be addressed
to specific objects. So for each transaction that is
listed in a use case, we decide the primary object,
to which the transaction will be issued by the actor
and through which the other objects in the informa-
tion system will become involved. For example, a
money withdrawal is issued to the credit-account ob-
ject and not to the customer or till objects. We cre-
ate a time-line diagram for each actor role in a use
case by showing the role together with the business
objects involved, drawing an arrow for each trans-
action starting from the role and leading to the ob-
ject with the responsibility for the transaction. The
trigger for the actor role is now decomposed as a
series of transaction triggers to be sent to the bus-
iness objects in the information system. This results
in diagrams like the one shown in Figure 6.

Transactions. Just as we used a time-line diagram
to show the decomposition of a use case into the ac-
tor roles, and later to show the decomposition of an

18 PRINS, BLOKDIJK, AND VAN OOSTEROM

b 4

actor role into the transactions, we use a time-line
diagram here to show the decomposition of a trans-
action into the messages to be sent to the individual
objects. This “object-interaction diagram” specifies
what is required to process the entire transaction.
It decomposes the transaction trigger into a set of
separate messages that will in turn each trigger a dis-
crete action on some business object.

Up to this point in our paper, we have treated a bus-
iness object as a single entity. In our method a bus-
iness object has several parts: a “model” patrt, rep-
resenting its counterpart in the real world, a “view”
part, providing the interface between the model ob-
ject and the actor, and a “control” part. One bus-
iness object will be held responsible for the complete
transaction; it will accept the transaction from the
actor through its view part and it will delegate the
generation of the resultant message pattern to its
control part. An extra vertical line is drawn for this
primary business object in addition to the one that
represents its model part; the second line is for its
view/control combination. Additional vertical lines
are drawn for the model parts of all the other in-
volved business objects (Figure 7).

An arrow in the object-interaction diagram repre-
sents a message between two business objects. The

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

Figure 7

The transaction is decomposed into messages. Each message will trigger one action against one business

object. The primary object that receives the transaction from the actor has control responsibility over ali
business objects in the complete transaction, in addition to its responsibility for acting on its own data. The
credit agreement is shown twice here, once for its transient view and control parts {V/C}) on the actor’s
workstation, and once for its persistent model (M) part on the server.

Credit Appraiser (V/C) Credit Agreement

approve

approve N

(M) Credit Agreement

verify creditworthiness

(M) Private Customer (M) mployee

v

verify authority

associate approves

Lg

associate approves

static associations specified in the static model and
the dynamic associations specified in the worksta-
tion population are the available communication
links between the business objects. With each hor-
izontal arrow we list both the communication link
(the association) and the message to be sent across
it (the action to be invoked). During execution a
transaction will be accepted by the control part of
a business object only if all association instances that
are mentioned in the object interaction diagram are
available; otherwise a dynamic-binding exception will
be reported to the actor.

The static model also specifies the multiplicity of each
association and includes a minimum and a maximum
number of instances for the association. As we spec-
ify transactions, we determine the number of times
that they are executed during the life cycle of a sin-
gle business-process instance. For each association,
we look for corresponding multiplicities in transac-
tions to determine which will create and which will
delete an instance of the association. Actions to build
and delete the association instances are then added
to the transactions. In general we use bidirectional
associations where one association always connects
only two objects. Both halves of a bidirectional as-

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

sociation are built during the same transaction, so
both business objects must be visited.

Life-cycle model. After analyzing the transactions,
we have a list of actions for each business object. We
organize these actions in the sequence in which they
typically occur during the life cycle of the business
object. Usually we find that not all actions will be
available at all times; the object changes its behav-
ior over time. We assign a separate state name for
each unique combination of actions supported by the
business object during its life cycle. As mentioned
earlier, we always assign the responsibility for main-
taining the business-process state to one of the bus-
iness objects: in our example, the credit agreement
object. So for that object we have the states that are
needed to sequence the use cases and the states that
are needed to sequence the actor roles within the
use cases.

For each behavior state, it must be decided which
action, under what condition, causes the object to
transfer to the state, and from what other state it
comes. The life-cycle model of the business object
is depicted in the form of a state transition diagram,
as shown in Figure 8. (We also use the term “finite
state machine model” to refer to this life-cycle model

PRINS, BLOKDIJK, AND VAN OOSTEROM 19

Figure 8 The object actions result in behavior states. This example of a state transition diagram shows the initial

states of a credit-agreement life cycle.

sell | BID MADI

SOLD NEW

start accourit SOLD

I
>

EREHER

y

of the business object.) It represents each possible
behavior state as a rounded box containing the state
name. Each possible state transition is represented
by an arrow that is accompanied by the name of the
action that causes the transition.

Next we examine the list of actions supported by a
business object and the list of behavior states that
may occur during the object’s life cycle. A matrix is
created with the actions listed vertically and the be-
havior states listed horizontally. There is a row for
each action, and all behavior states for which that
action is supported are marked (Figure 9). It is of-
ten easier to determine the behavior states together
with the user by creating this matrix first. In that case
we create the state transition diagram later.

In our earlier description we left open the possibil-
ity for multiple use cases and multiple actors in the
business process. If there are multiple actor roles and
a separation of responsibilities between them is re-

20 PRINS, BLOKDIJK, AND VAN OOSTEROM

APPLIED FCR

|

approve

APPROVE

&

£

sell

approve
start

—pp REFUSED

F 9

sell

.

)

set-up terms

quired, then the behavior states can be used to de-
fine that separation. For this we use the states of the
business object responsible for maintaining the state
of the business process—in our example, the credit
agreement object. For this business object, the be-
havior states are extended with a states vs actors
(roles) mapping in a matrix (Figure 10). Workflow
logic can process the state transition events and, us-
ing this table, it can generate the triggers that ac-
tivate the corresponding actor roles at the correct
points in time.

Action modeling. Each action of a business object
must be specified formally as a contract. Based on
the transaction to which the object contributes the
action, the precondition and the result of the trans-
action on the object is determined and the content
of the action is modeled. (See Figure 11.) Five cat-
egories are explored:

1. The behavior-state precondition (finite-state

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

Figure 9 Mapping of business-process states to available transactions. The availability of the various actions
depends on the behavior state of an object. The unavailability of an action implies that any transaction in
which that action takes part will not execute. So a required sequence can be enforced by maintaining the
business-process state under a well-chosen object and involving this object in all transactions of that
business process.

—
S
o

g 2 8 g &

m o} g @ z
ul 2 3 B g q
< = o o a E = =
'17) = [a = ok o Qo
ACTION = <« < a4 9 @
start X - - ~ X - -
approve - X - - - - -
bid - - X - - - -
sell - - - X - - -
start account - - - - - X -
set up terms - - - - - - X

Figure 10 The roles responsible in the various states. Including business-process states enables us to enforce
a separation of tasks and responsibilities within a business organization, and also to automate the
propagation of a unit of work from one role to another.

ROLE APPLICATION CREDIT ACCOUNT
HANDLER APPRAISER MANAGER
STATE
INITIAL X - -
APPLIED FOR - X -
APPROVED X - -
BID MADE X - -
REFUSED X - -
SOLD NEW - - X
SOLD - - X
SET UP - - X

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997 PRINS, BLOKDIJK, AND VAN OOSTEROM 21

Figure 11 Each action needs a formal specification. In
this simplified example there is one
statement in each of the five categories. In
general, each category may contain a single
statement or multiple statements, or it may

even be empty for some specific action.

Object: Credit Agreement
Action: Bid

Finite-state predicate: State equals “approved”
Business-data predicate: BidExpiryDate. < (ApprovalDate+90)
BidMadeDate = TodaysDate

State ="bid made”

Data transformation:
State transformation.

Event generation:

produce formal bid letter

predicate) is formulated with help of the matrix
shown in Figure 9.

2. The data-state precondition (business-data pred-
icate) is formulated (e.g., enforcing a withdrawal
maximum or an expiration date).

3. The data-state transformation is formulated (e.g.,
updating a balance).

4. The behavior-state transformation is formulated
and cross-checked with the state transition dia-
gram.

5. A condition to be monitored may be formulated,
in connection with an event to be raised if that
condition occurs (e.g., a critical stock level is
crossed when filling an order). Raising an event
implies a new transaction, which must be mod-
eled with an object interaction diagram of its own.

Each of these five categories may result in none, one,
or many entries. Together they comprise the con-
tractual specification of an action. If all the precon-
ditions are met, then the object will be obliged to
perform the action, otherwise it must remain un-
changed.

As we model each action, we verify that all the at-
tributes necessary to process the action are listed in
the static object model. We decide which attributes
are necessary for more than one action and so must
persist between actions. We choose an initial value
for each attribute. If an attribute value can be en-
tered through the user interface, then we define a

22 PRINS, BLOKDIJK, AND VAN QOSTEROM

validation constraint to prevent contamination of the
business data.

Iterate until stable. This straightforward, step-by-
step description should not fool you. Reality is messy!
We obtain the analysis products in raw form, with
the future users, in a facilitated brainstorming ses-
sion. We use Metaplan** for this front-office pro-
cess (a good alternative would be joint application
design [JAD] sessions). We complete this with a par-
allel back-office process in which we produce pre-
cise forms of these same analysis products, adding
consistency and exactness to the requirements. Any
omissions filled or assumptions made by the back-
office process are fed back into the front-office pro-
cess, iterating between the two until the analysis is
complete. The result is a rapid application develop-
ment process (RAD). Each analysis product defines
a relationship between just two dimensions of the
target system. These products are simple enough to
serve as the vehicle of communication between an-
alysts and users, but at the same time they are exact
enough to provide us with the information system
specifications.

In the back office, when we draw a state transition
diagram we may find an arrow (a transition) with-
out an action. The action is added to the static model,
the object interaction diagram of the transaction that
contains the new action is updated, and the change
to the business object resulting from the action is
modeled. When modeling a transaction we may find
an arrow (a message from one object to another)
without an existing association. The association is
added to the static model, as is the creation and de-
letion of the association through other transactions.
When modeling an action we may find new at-
tributes. This list of possible discoveries, followed
by corrections, goes on and on. While applying our
consistency rules, we are working on all of the anal-
ysis products concurrently. As a rule, the number of
newly discovered inconsistencies converges rapidly
to zero, and the analysis products are then stable
enough to serve as the basis for the next phase: busi-
ness-object synthesis.

Business-object synthesis

1f the analysis is done properly, its products become
specifications with enough detail to construct the
business objects. None of the individual diagrams
gives the total picture; they must be combined. Fig-
ure 12 provides an overview of the analysis prod-

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

Figure 12 The layered development model. The individual rows represent the development layers needed for business
objects. The total schema illustrates the top-down analysis and the bottom-up synthesis process.

External Workflow Actor Actor Actor Actor Actor Actor Actor
Trigger X Y Z X Y z
State
P role x - State 1 X - - =
e
role x' y State 2 - X - %
g) role z State 3 X - - 3
1 i State 4 - - X o
8 E3
T The use case expressed in actor roles . Actor roles by business-process states mapping
@ (see Figure 4) (see Figure 10)
&
Z
@ Workflow Actor State 1 2 3 4 n
2 X ObjA ObjB ObjC \I
Transactiol
role x X g "
R o b Transaction i X - - X -
ro b Transaction j - X - - - <
td Transaction k - - X - -2
4 Transaction t - - - - X
The role expressed in transactions Transactions by business-process states mapping
{see Figure 6) {see Figure 9) client
Actor v ™M ™M M v
X ObjA ObjA ObjB ObjC }_, t
t_fx_i_, acta
act b
act ¢ 8
assoc . 4
Ldl
Z assoc r inverse 3
g > 3
(o] The transaction expressed in actions to be invoked Business objects by associations mapping o
[=] via associations (see Figure 7) (see Figure 5) message
0
2 ‘
z v >
g C =})
m
£
o
w]
[
(¥) m
The action expressed in program instructions C—i_——j
v (see Figure 11) Behavior states by actions mapping (see Figure 8) server

ucts and maps them to a layered development pro-
cess.® We now describe how they are linked
together.

Our development strategy is based on business ob-
jects that are assemblies of four separate parts. Each

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

of these parts manages a specific subset of the bus-
iness object properties. The model part of a busi-
ness object persists at a server. The view part, a proxy
of the model, is visible and accessible to a user on
a client workstation. Synchronization between a
model part on a server and its view part on a client

PRINS, BLOKDIJK, AND VAN OOSTEROM 23

Figure 13 Domain and business process coverage. An employee sees a subset of the attributes and the actions. The
subset depends on the separation of tasks and responsibilities required by the business organization and

the role assigned to the employee.

.
Ll
"
1 4

SaLNEMLLY
A
l
| sunerLy
l

SNOUDOV
SNOLLOY

v Jr

Sﬂﬂﬂlﬂ/

=
Ll

y

BUSINESS
DOMAIN

BUSINESS
PROCESS

is maintained by a mediator between them, the con-
trol part. A business object that also maintains the
business process state has an additional part that con-
stantly monitors that state and actively coordinates
the separation of actor roles and the necessary hand-
offs between them, the workflow part.

Model. We build our information system from the
bottom up, starting at the server layer. This layer
holds the model parts. The business-object actions
are modeled as shown in Figure 11. For each bus-
iness object, we collect all actions and order them
in life-cycle sequence, as documented with a diagram
as shown in Figure 8. These two specifications are
sufficient to synthesize the model part of the bus-
iness object. The model part interacts with services
that provide persistence.

Control. We next build the transaction layer, which
specifies all collaboration patterns between business
objects and holds their control parts. It accepts trans-
action triggers from the client layer above and de-
composes them into message triggers for the server

24 PRINS, BLOKDIJK, AND VAN OOSTEROM

EMPLOYEE
ROLE

layer below, as specified by the object interaction di-
agram as shown in Figure 7. The control part em-
bodies the transaction services.

In each object interaction diagram are a number of
model objects, each represented by its own vertical
line. The control part of the business object needs
the address of each involved maodel part in order to
perform the required dynamic binding. These ad-
dresses are maintained in associations. We find as-
sociations in the static object model, as shown in Fig-
ure 5. From it we obtain all the associations that this
business object maintains. We collect all the trans-
actions that are triggered from this business object
and combine them with its associations. From these
two specifications we synthesize the control part of
the business object.

View. We next build the client layer, where appli-
cations run that exploit the services of business ob-
jects. This layer holds the view parts. A user may di-
rectly manipulate business objects through their view
parts, as displayed on a workstation. Countless ap-

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

plications are enabled by a display filled with bus-
iness object views. Each different navigation pattern
is equivalent to a separate dynamic application avail-
able to the user.

The view part contains the user-interface specifica-
tion of the business object. To synthesize the view
part, we reuse the actions and attributes specified
for the model part. The view part restricts its behav-
ior toward an individual actor by presenting only the
subset of attributes and actions for which that actor
is authorized (Figures 13 and 14) in cooperation with
security services. All attributes are presented in a
read-only window. For each action type, the view part
provides a “dialog box” where attribute values may
be entered. Even actions for which the actor is au-
thorized may be rendered unavailable because of the
current behavior state of the displayed object in-
stance (Figure 9). The view part interacts with the
presentation services of the underlying operating sys-
tem.

An alternative form of the view part is available that
uses SOMobjects™ (SOM). It provides the same at-
tribute and action interfaces through the Common
Object Request Broker Architecture™* (CORBA™*)
-compliant Interface Definition Language (IDL) in-
terface to a client application. This form bypasses
the presentation services, but uses all other frame-
work facilities. So the same security services, trans-
action services, persistence services, workflow, etc.,
will be mobilized by the framework on the inside,
but remain transparent in the SOM interface. In this
alternative form we have successfully imported our
business objects into a VisualAge Smalltalk appli-
cation. This approach is especially promising in
places where safeguards for business data integrity
are managed centrally while applications can be con-
structed as close as possible to the user department.

The procedure for developing the view part for one
business object has just been described. In the role
description shown in Figure 6 there were several bus-
iness objects, each represented by its own view part.
The procedure is followed for each business object.
If an application must be built on top of the busi-
ness objects, the role description becomes the ap-
plication specification.

The business object’s support for a particular bus-
iness event can now be defined as the summation of
the corresponding dialog of its view part, the cor-
responding transaction of its control part, and the

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

Figure 14 The business object enforces security. It
knows all actor roles and the actions and
attributes that are available to those roles.
The view part inspects the role of the
workstation user and dynamically modifies

its behavior accordingly.

ATTRIBUTES ACTIONS
FrTTTT T T TiTTd

ST0H "HOLOY

|

;

corresponding action of its model part. The business
object must support all business processes in which
it is involved; thus it may contain more actions and
attributes than are required for a single business pro-
cess. The business object in its broadest form we call
a “business domain object.” The view part of a bus-
iness object has complete business domain coverage;
since it runs on the client workstation it also knows
the employee role that it supports. A “filter defini-
tion” dynamically specializes a business object for
each specific actor role. Its view part uses the filter
to adapt the behavior of the business object to the
business-process context in which its services are
used. In this way, one business-object type emulates
the whole family of closely related object types that
would otherwise be necessary.

Workflow. The highest layer of our development
process is the workflow layer. If there is a separa-
tion of tasks and responsibilities within a single bus-
iness process, then a workflow construct becomes
necessary to trigger the various actors at the right
moments in the business-process life cycle. In a bus-
iness process, we always choose one business object
that serves as the continuous thread. For a business
process selling products, it could be the customer or-
der. For a business process providing services, it
could be a contract. For any business process, we
choose the business object that embodies the work-

PRINS, BLOKDIJK, AND VAN OOSTEROM 25§

Figure 15 Final assembly of the business object—the CYCLADE building block

USER VIEW

"NOLLOYSNYHL

ACTOR

WORKFLOW

OBJECT DATA

MESSAGE CONTROL

MESSAGE

MODEL UPDATE

flow. In our example, the workflow is attributed to
the credit-agreement object. The workflow part of
this business object is notified whenever the behav-
ior state of the credit agreement changes, and it dis-
tributes work over the various business-process roles
according to the states-vs-actor-roles matrix (Figure
10).

As already mentioned, the view part adapts itself to
the actor role that it supports. We found a similar
dynamic to be necessary for the workflow part. Com-
panies with multiple sites may have a large popu-
lation with a deep specialization of actors at one lo-
cation and a small population of generalists at
another location. The same credit-management bus-
iness process may, for example, demand a different
workflow at a small-town branch than at a big-city
branch of the same bank. So we have a workflow def-
inition that can differ for each company location and
still be part of the same business object. A huge num-
ber of variations is needed within the same business-
object type to accommodate its presence in differ-
ent business processes, in different workflows, and

26 PRINS, BLOKDIJK, AND VAN OOSTEROM

in different actor roles. This variety results in a large
family of closely resembling, but slightly different
members. The desired variety is created by dynamic
interpretation of customization parameters. The
specification of these parameters does not require
development expertise and, given a proper tool, may
be performed by administrators.

After we synthesize the four specific parts of the bus-
iness object—model, view, control, and workflow—
they arc assembled into the complete business ob-
ject as shown in Figure 15. The picture is deliberately
drawn as a framework. It is also drawn as a jigsaw
puzzle. We create the business object in various
pieces and then assemble it together. The view part
maps the actor to the available transactions, the con-
trol part accepts a transaction and maps it to the mes-
sages for the involved model parts, the model part
maps the incoming message to the resulting state,
and the workflow part maps the resulting state to
the effecting view. This uniform pattern is incorpo-
rated into the generic business-object form that we
constantly reuse. So an employee may feed a bus-

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

Figure 16 The workstation configuration. This is a simplified example of a teller workstation. The workstation is
connected to a telephone and is associated with a till. When an employee logs in, the workstation
becomes associated with that employee, and a population of additional business objects is rolled in. For
each particular role of the employee, a specific assembly of business-object proxies is started. The
resulting composition of business objects will also be the source of dynamic associations when
transactions are started by the workstation user.

Phone Node Till
I{ m
Profile Employee Mailbox
Application Role Form
Private Credit Credit
Customer Agreement Account
<> = CONTAINS

iness event to the information system by invoking a
transaction from a business-object view. As soon as
the employee releases the transaction, the business
object will take a spin along its various components
and it will come back to the actor with a fresh view
representing the updated state of the object. This
uniform pattern turns each of our business objects
into a CYCLical Application Development Entity, so
we labeled it the CYCLADE building block.

The business object has become an independent de-
velopment entity through addition of a unit-test
mode. Ifit is triggered by its view part while running
in unit-test mode, then the control part will not act

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

as a mediator for the other involved business objects;
instead it will activate only its own model compo-
nent counterpart. We can thus build and test the en-
tire business object as a stand-alone entity and in-
tegrate it later with the other business objects. This
is the key to component-based development from
functional requirements. We could not have done
this without our particular choice of responsibilities
for the control part of the business object. It sets us
somewhat apart from other approaches. Keeping the
attributes of a business object and all the operations
on them in one model part is universally accepted
as an object-oriented principle. Keeping the presen-
tation of a business object’s attributes and all the di-

PRINS, BLOKDIJK, AND VAN OOSTEROM 27

alogs for accepting operations on them in one view
part is equally accepted as an object-oriented prin-
ciple. Keeping the associations of a business object,
and all the messages across them, in one place is com-
parable in reasoning. We think this is also an object-
oriented principle, and we introduced it as such.’

After the individual business objects are assembled
from their component parts, there is one remaining
step. The business objects now must be assembled
together in the combinations needed to support the
various business-process roles. We prefer to make
a separate assembly of business objects for each role.
Sometimes we hide the loosely presented business
objects behind an integrated application that inter-
faces to the same underlying transactions but exer-
cises them in fixed patterns. A compound-document
interface like OpenDoc* may be used, in a similar
way, to hide the individual business objects behind
a single form and to overlay them with a fixed ap-
plication script. An employee may have multiple
roles and each of them must become enabled as soon
as the employee has logged on to the information
system (Figure 16).

Project experiences

Earlier object-oriented-development projects in
manufacturing and in banking environments led us
to the insight that a framework approach to busi-
ness objects would be a powerful way to develop in-
formation systems. During our research period we
gathered additional insights from projects that our
customers were developing.

The first lesson we learned was to abstract the com-
munication responsibility away from the other re-
sponsibilities of the business object. Several of our
Dutch banks have proprietary communication pro-
tocols that they use across nonstandard network in-
frastructures. From an external supplier, they expect
solutions that will not only run in their homegrown
environment but in addition will avoid obsolescence
by supporting market standards like CORBA. So in
a future system, a business object may need to col-
laborate with other business objects inside the same
local domain, through a Smalltalk reference or a
C+ + pointer, or inside a remote domain, through
a CORBA, an OSF/DCE** (Open Software Founda-
tion’s Distributed Computing Environment), or even
a proprietary reference. We decided to let a busi-
ness object work with an abstract reference to other
business objects and embodied that reference in the
association. A message layer was now sitting on top

28 PRINS, BLOKDIJK, AND VAN OOSTEROM

of the business objects that decoupled them from
each other and was responsible for organizing the
collaboration of the right combinations of objects in
specific domains.

The second lesson we learned was to abstract the
application context away from the other responsi-
bilities of the business object. The Dutch insurance
company considered to be the leading-edge applier
of object technology in the Netherlands was having
problems extending the use of business objects be-
yond their first application contexts. If nothing is
planned above the domain level of the business ob-
jects, then every business rule has to be allocated to
that single business-object model. Business rules rep-
resenting business-process properties then creep into
the business-object domain representations. Reuse
of these business domain objects in other business
processes then necessitates changes, which must be
analyzed with respect to their impact on the earlier
applications. More often than not, such domain ob-
jects cannot be reused, because they are too depen-
dent on their original context! So we added a third
layer to hold the application-specific rules.

The third lesson we learned was to abstract the dif-
ferent user roles away from the domain responsibil-
ities of the business object. Businesses generally or-
ganize a separation of tasks and responsibilities into
their business processes. So there are also security
and workflow considerations to be taken care of.
With the present focus on business-process re-en-
gineering, the empowerment of employees changes
over time. But even at a single moment in time there
is considerable variation. One of the banks we
worked with was organized as a federation. Each
member bank shared the same products but had its
own business-process responsibility. So we added a
fourth layer to hold the rules for the specific work
distribution.

At first sight, layers look complicated. On closer in-
spection they are often justified as powerful com-
plexity-reducing mechanisms. Complex products like
computers, cars, homes, etc., are produced in lay-
ers. Consider computers: producing integrated cir-
cuits comes first, assembling these onto printed cir-
cuit boards is next, and finally the printed circuit
boards are assembled into computers. Identifying
several successive layers of assembly enables the pro-
duction process to be organized as a chain, with value
added with each link. In this chain the products flow
in one direction and the money that symbolizes their

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

Figure 17 The layered development approach

g ________

i

L

Q WORKFLOW

a.

o

on

1Y}

Z

@ APPLICATION

m

D SRR

% TRANSACTION

(5]

72}

4]

Z

2 BUSINESS OBJECT
]

£

2 OBJECT FRAMEWORK
3

i

g

z COMPONENT SERVICES J

demand flows in the opposite direction. Components
produced in earlier stages are often reused later for
new products not even anticipated when the com-
ponent was first designed. When the demand stops,
at any point in the process, the money stream runs
dry and all downstream production processes go out
of business.

Application development is a complex production
process, and we found layering to be equally ben-
eficial here. Once we visualized the development lay-
ers as shown in Figure 17, we realized that we had
defined a component-based development strategy.
In other disciplines, component-based production
processes converge in ever-bigger assemblies until
some external demand is met. So it was important
for us to ensure that there was a top-down stream
of derived demand for the products of the bottom-up
assembly process. This was achieved via the stepwise
decomposition of each external demand until the
level of computer-program instructions was reached.
As described in the analysis section, we decomposed
each external demand into an assembly of actor roles,
cach actor role into an assembly of transactions, each

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

transaction into an assembly of messages invoking
business-object actions, and each business-object ac-
tion into an assembly of individual program instruc-
tions. These decompositions specify the dynamic
properties for the various layers. The other analysis
products model the static properties of the various
layers.

End users without any prior exposure to application
development were quite able to talk to us in the terms
of the analysis model. It seems to be very close to
the way they themselves mentally model the busi-
ness process. The analysis model also proved to be
an excellent vehicle for communicating with the de-
velopers. We had already developed an object frame-
work to accompany our analysis framework. Devel-
opment of each business object, using the object
framework, proved to be atomic; each object was de-
veloped and tested independently. The object frame-
work successfully integrated the separate objects by
interpreting the static object model, the object-in-
teraction diagrams, and the various state diagrams.
Only the model, or server layer, had to be pro-
grammed; all higher layers were directly derived from

PRINS, BLOKDIJK, AND VAN OOSTEROM

29

the standard analysis diagrams. With the analysis and
synthesis steps we have not only covered all business
requirements, we have also achieved an implemen-
tation form that can be easily verified against the re-
quirements.

The framework approach was chosen to help imple-
ment the business requirements rapidly by execut-
ing the majority of the analysis models directly. The
techniques as described in the object analysis and
synthesis sections were selected first, and the object
framework was developed next to exploit the out-
come of these analysis techniques. So the techniques
are valid in their own right and can be applied with-
out having access to an object framework. In our ob-
ject framework the view part, the control part, and
the workflow part of the business object are fully ge-
neric. They interpret the analysis products as given
in the upper three layers of Figure 12. The model
partis abstract and must be subclassed for each busi-
ness-object type. With our approach, even very dif-
ferent business objects have more than 90 percent
of their code in common. They are closely related
and share many family traits.

This object framework adds another layer of its own.
In fact, the full object infrastructure adds two lay-
ers, separating the implementation of the nonfunc-
tional requirements from the business requirements.
Implementing the platform-specific properties in a
separate layer of component services not only en-
hances productivity, it also provides heterogeneity
and portability. Rewriting the component services
layer for another platform allows everything above
it to be migrated without change. We have found
that layering provides us with predesigned reuse. We
started with an 08/2* (Operating System/2*) imple-
mentation, and with little effort have added Microsoft
Windows** to the client environments and ATX* (Ad-
vanced Interactive Executive*) to the server envi-
ronments and can run our business objects and ap-
plications in any combination of these environments
(Figure 17).

A frustrating property of software development is
that when you have learned to produce a solution
ina given environment, the environment changes and
your solution becomes outdated. Now that we have
an object framework for distributed business objects
written in C+ +, the emphasis for distributed objects
systems seems to have suddenly shifted to Java**,
Recently we performed an assessment of the effort

30 PRINS, BLOKDIJK, AND VAN OOSTEROM

needed to migrate the object framework to a Java
platform. We concluded that our development pro-
cess is needed just as much in that environment, and
that migration of the software is feasible. We can
easily see the benefit, a single version of the object
framework would then suffice for many hardware
platforms. The conceptual integrity of the combined
process and framework becomes even more impor-
tant in a Java environment. Ensuring the secure ac-
cess and transaction integrity, combined with a flex-
ible user interface and an integrated workflow,
striking the right balance between centralized secur-
ity and decentralized development will become a
matter of survival in that powerful new environment.

We have only recently concluded our research. To
obtain a “proof of concept” we have developed two
pilot projects with customers in the banking field (the
approach is valid for businesses in general and is not
limited to banks, but the first volunteers happened
to be banks). Our conclusions are quite positive. A
systematic approach accelerates reuse. Complexity
is reduced: the consistency of the combined set of
analysis models and the many design decisions en-
compassed by the software framework make it much
easier to focus on the business requirements. Mod-
eling becomes far more important than coding; it is
both a better communications vehicle and a more
productive approach to development.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Metaplan GmbH, the
Object Management Group, the Open Software Foundation, Mi-
crosoft Corporation, or Sun Microsystems, Inc.

Cited references

1. I. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard,
Object-Oriented Software Engineering, A Use Case Driven Ap-
proach, Addison-Wesley Publishing Co., New York (1992).

2. S. M. McMenamin and J. F. Palmer, Essential Systems Anal-
ysis, Prentice Hall, Englewood Cliffs, NJ (1984).

3. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and
W. Lorensen, Object-Oriented Modeling and Design, Prentice
Hall, Englewood Cliffs, NJ (1991).

4. D. Coleman, P. Arnold, S. Bodoff, C. Dollin, H. Gilchrist,
F. Hayes, and P. Jeremaes, Object-Oriented Development: The
Fusion Method, Prentice Hall, Englewood Cliffs, NJ (1994).

5. A. Blokdijk and P. Blokdijk, Planning and Design of Informa-
tion Systems, Academic Press, London (1987).

6. R.Prins, Developing Business Objects: A Framework Driven Ap-
proach, McGraw-Hill International Ltd., Maidenhead, Berk-
shire, UK (1996).

7. R.Prins, “Beyond Transactions: A World of Interworking Bus-
iness Objects,” First Class 5,No 2, 16-20, special issue on Bus-
iness Object Management (1995).

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

Accepted for publication August 15, 1996.

Robert Prins IBM Consulting Group, Europalaan 440, 3526 KS
Utrecht, The Netherlands (electronic mail: rob_prins@nl.ibm.com,).
Mr. Prins is a consultant with the Application Development Ef-
fectiveness Consulting Practice in Utrecht. He joined IBM in Am-
sterdam in 1969 as an application programmer. In 1974 he be-
came an instructor, teaching structured programming and design.
In 1978 he moved to industrial automation, and in 1984 he be-
came the architect of a new plant floor concept that was one of
the earliest large-scale applications of object-oriented techniques.
When the IBM facility in Amsterdam was closed in 1987, he be-
came an industrial consultant. He has worked for the Applica-
tion Development Effectiveness Practice since 1989 as a special-
ist in object technology. In addition to consulting with Dutch and
Belgian companies, he teaches at IBM’s Object Technology Uni-
versity in La Hulpe, Belgium.

André Blokdijk IBM Consulting Group, Europalaan 440, 3526
KS Utrecht, The Netherlands (electronic mail: andre_blokdijk@nl.
ibm.com). Mr. Blokdijk is the practice leader of the Application
Development Effectiveness Consulting Practice in Utrecht. He
joined IBM in Amsterdam in 1967 as an analyst/programmer. In
1971 he moved to IBM Education, where he developed and taught
courses on structured development techniques and project man-
agement in conjunction with consulting engagements for large
customers. In 1983 he became a faculty member of the IBM Eu-
ropean Systems Research Institute (ESRI) in La Hulpe, Belgium.
His research was on creating a framework for comparing devel-
opment methods and on rapid application development tech-
niques. He developed ESRI courses for consulting on informa-
tion strategy planning and on application and data planning. This
resulted in many lecture and consulting engagements in Europe,
the Middle East, and Latin America. In 1989 he became a di-
rector of Cyclade Consultants, then a joint venture with CAP Vol-
mac, now fully owned by IBM and part of the IBM Consulting
Group. Since 1988 he has been chairman of the examination coun-
cil on methods and tools for information system development,
EXIN, which is the Dutch national examination institute for in-
formation sciences. He is a member of the NGI (Nederlands Ge-
nootschap voor Informatica), the ACM (Association for Com-
puting Machinery), and the Computer Society of the IEEE
(Institute of Electronics and Electrical Engineers).

Norbert E. van Oosterom /BM Consulting Group, Europalaan
440, 3526 KS Utrecht, The Netherlands (electronic mail:
oosterom@nl.ibm.com). Mr. Van Qosterom is an associate con-
sultant with the Application Development Effectiveness Consult-
ing Practice in Utrecht. He received his M.S. degree in computer
science from the University of Nijmegen in 1990. Before joining
the IBM Consulting Group in 1995 he worked on new technol-
ogy transfer, including object technology, between universities and
businesses in the Netherlands. He divides his time between teach-
ing at IBM’s Object Technology University and consulting for
large customers.

Reprint Order No. G321-5632.

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

PRINS, BLOKDIJK, AND VAN OOSTEROM 31

