
A locking facility
for parallel systems

by N. S. Bowen
D. A. Elko
J. F. lsenberg
G. W. Wang

Clustered and parallel architectures provide the
ability to construct systems of high capacity,
scalable features, and high availability. In order
to provide high throughput in a shared-disk
architecture, fundamental advances in
multisystem locking technologies are required.
This paper describes a locking architecture and
operating system support provided for the
locking services in a clustered environment.
Although initially targeted toward database
systems, the functions are general enough for
use in many other environments. The paper also
describes the products that have deployed this
technology.

S ynchronization is a fundamental function re-
quired in nearly any aspect of a computer sys-

tem. It has been studied in various research com-
munities including distributed database systems,
basic operating system principles, parallel process-
ing systems, and centralized database systems. In par-
allel processing the synchronization techniques must
be extremely efficient to allow frequent synchroni-
zation of parallel application programs (e.g., barrier
synchronization used in a parallel DO loop'). A sur-
vey of various techniques can be found in Reference
2. Concurrency control in database systems has also
been a well-studied problem in both centralized da-
tabases3 and decentralized sy~terns.~ Kohler reviews
many techniques for concurrency control such as
locking, time stamps, circulating permits, tickets, con-
flicts, and reservation^.^ Although many of these
techniques are quite different, the fundamental goals
of high-performance locking services are similar. This
paper describes a locking facility designed for the
S/390* Parallel Sysplex*; this facility is general pur-
pose in nature and has specific implementations that
support database concurrency control systems.

The objectives of this facility are high availability,
scalability, and high transaction throughput for work-
loads that are both update-intensive (high write-to-
read ratios) and read-intensive (low write-to-read ra-
tios). Although there are many emerging systems
with strong claims for availability, scale, and through-
put (see Reference 5 for a comprehensive and re-
cent survey and analysis), these systems do not gen-
erally support high write-to-read ratios unless the
workloads are first partitioned across systems. It is
claimed that a "shared-disk" function (that is, all
disks are accessible from all processors) combined
with a high-speed locking facility are essential func-
tions. Note that additional functions are also required
(e.g., high-speed cache-like functions and shared-
memory functions), 6,7 but this paper focuses on lock-
ing.

This paper is organized as follows. The next section
describes the system model and design objectives,
and is followed by a section on an overview of the
locking services. The last section justifies many of
the technical claims through performance modeling
and measurements.

System model and objectives

Parallel processing is increasingly being used in com-
mercial systems. The limitations of symmetric mul-

Wopyright 1997 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

202 BOWEN ET AL. 0018-8670/97/$5.00 0 1997 IEM IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

demands for processor capaccty greatly exceed this
capability and the advent of advanced coupling tech-
n o l ~ g y ~ - - ’ ~ and commodity technology (e.g., proces-
sors, interconnects, disks) is driving these systems
into acceptance in commercial markets. An overview
of these systems, in addition to covering several key
technical issues, can be found in Reference 5.

There are four key objectives to the Si390 Parallel Sys-
plex, specifically related to the use of parallel tech-
nology. These are:

1. High availability
2. Scalability
3. High transaction throughput
4. High write-to-read ratios in the workloads

Underlying the parallel architecture is a shared-disk
architecture. In Reference 5 , various topologies for
connecting disks to processors are discussed and it
is observed that many shared-nothing architecture
(i.e., disks partitioned among the processors) imple-
mentations are emerging. It is claimed that to achieve
a high write-to-read ratio, not only must a shared-
disk architecture be used, but in addition, advances
must be made in critical functions to support data
coherency among processors. These functions, em-
bodied in the Si390 coupling f a ~ i l i t y , ~ , ~ contain func-
tions for buffer sharing and invalidation, shared
queue structures, and locking. Not only does this sys-
tem support high write-to-read ratios but it can also
achieve higher levels of success with respect to avail-
ability, scale, and throughput. There are also ben-
efits in areas such as workload management, systems
management, and similar issues that are further dis-
cussed in Reference 6.

The primary workload is high-throughput transac-
tion-processing systems. In addition, the workloads
contain relatively low database contention. Low re-
sponse time is critical for high-throughput transac-
tion processing, and locking is a critical component.
This can be illustrated with a simple use of Little’s
Law14 that states the multiprogramming level is a
product of the arrival rate and the response time.
For example, assume an arrival rate of 100 transac-
tions per second with an average response time of
0.5 seconds. This would lead to a multiprogramming
level of 50 transactions; that is, on the average at any
instant there would be 50 transactions at some point
in their execution in the system. The lock conten-
tion seen by any given transaction is a function of

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

the lock contention. Now consider the transition
from a database running on one processor to one
being accessed across multiple processors. Obviously,
the response time to obtain a lock will increase. Us-
ing the above discussion, this effect would increase
the multiprogramming level, which could impact the
lock contention. This highlights the key performance
objective, which is to provide a high-speed locking
facility that has a minimal impact in transaction pro-
cessing performance in a parallel system and has the
additional property that more processors can be
added without further affecting the lock response
time (i.e., the algorithms are not a function of the
number of processors in the parallel server).

For historical perspective we also highlight the evo-
lution of the multisystem locking capabilities of clus-
tered S/390 processors. Shared disks, initially intro-
duced in 1969, provided multisystem serialization
controls by allowing one system to reserve the de-
vice (that is, lock out other systems from accessing
the disk) for a period of time. The global resource
serialization (GRS) component provided shared or
exclusive named locks across multiple systems. l5 This
was used by operating system components to seri-
alize file access across multiple systems. This gave
the capability to concurrently share files on a single
disk drive. The resource lock manager was intro-
duced to provide record-level locking and buffer
management for IMS* (Information Management
System) in a two-system configuration. l6 Finally, the
coupling facility introduced the locking model that
is the basis of this paper.6 Table 1 summarizes this
discussion.

W390 Parallel Sysplex and the locking
model

The system consists of multiple operating systems
with a shared-disk architecture. This is referred to
as the Si390 Parallel Sysplex. The base operating sys-
tem contains a rich set of services to support the clus-
tering of these systems. These include membership
services, high-speed signaling, and shared-disk sup-
port.6,” The system, as shown in Figure 1, consists
of up to 32 processing nodes (each of which can be
up to a 10-way SMP) connected to shared disks. Each
SMP runs a single copy of the Osi390* operating sys-
tem. For the remainder of this paper, we use the term
system to describe one of the nodes. The sysplex timer
serves as a synchronizing time reference source for
systems in the sysplex, so that local processor time

BOWEN ET AL. 203

Figure 1 Parallel Sysplex system model

stamps can be relied upon for consistency with re-
spect to time stamps obtained on other systems. The
coupling facility (CF) is a key Parallel Sysplex tech-
nology component providing multisystem data-shar-
ing functions. An overview of the various function-
alities is described in Reference 6. It is important to
point out that the CF is implemented using an Si390
processor with special links to the other systems.

This paper focuses on the locking model. The com-
plete details of this model are beyond the scope of

a single paper; our objective is to provide an over-
view of the architecture. In order to simplify the pre-
sentation of the model, the architecture is described
from the perspective of three layers. We first describe
the basic underlying architecture and the functions
within the coupling facility. Next we describe the ad-
ditional services and functions that are added by the
operating system. Finally we describe the view from
the perspective of a user of the operating system ser-
vices. This is a unique aspect of the scheme-that
various database lock managers can tailor their use

204 BOWEN ET AL IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

to create a multisystem lock manager with unique
locking semantics.

Level 1: The locking architecture. This section de-
scribes the underlying locking architecture. This pri-
marily describes functions within the CF. Neverthe-
less, the functions described are actually part of both
the CF and the operating system.

Conceptual model. Viewed in isolation, this aspect
can be described as a centralized lock manager that
provides simple shared (SHR) and exclusive (ExC)
semantics. It does not provide queuing. A user can
operate against a named lock table. Multiple tables
are supported where each table contains N lockable
entries (0 . . . N - 1). Table 2 shows the semantics
of this model.

A key aspect of this system that sets it apart from
conventional approaches is that the requests to the
locking facility are done synchronously with respect
to the processors that execute the request. That is,
when a lock request is made, the requesting proces-
sor logically stalls until the request is completed. This
approach is taken because the performance charac-
teristics of the locking service make it technically fea-
sible. The issue of the performance impact on the
design is discussed in more detail in a later section
of this paper. This means that a context switch is not
needed, thus avoiding issues such as the overhead
of suspending the requestor and the complexity of
asynchronous locking protocols.

Physical model. Figure 2 shows the key structures
within a locking table. It containsN entries and each
entry has information to track the exclusive or shared
state. For each entry, the first byte is used to contain
the system identifier for exclusive or globally man-
aged locks (these terms are explained in detail short-
ly). The second field in the entry is a bit vector with
one bit for each possible system that may have in-
terest for this entry. These bits represent the inter-
est of a particular lock manager on a particular sys-
tem. The concept of individual lock managers is
clarified in the next two sections.

Figure 3 shows the overall structure of the multisys-
tem locking model. There are up to 32 nodes con-
nected to one or more coupling facilities. Each sys-
tem may have multiple links to the coupling facility
for both availability and performance reasons. The
performance of the link is critical to achievement of
the synchronous behavior and is explored in further
detail in a later section. There can be multiple cou-

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

Figure 2 Structure of a locking table

~~~~~ ~ 

Table 2 Lockina  semantics  from  the  Level 1 
perspective 

Current Request  Outcome 
State 

Free SWR Granted in share  mode 
Free EXG Granted in exclusive  mode 
SHR  SHR Granted 
SHR EXC Granted  with  warning  about 

EXC SNR Rejected  but  told  who is the owner 
EXC EX€ Rejected  but  told  who is the owner 

share  holders 

pling  facilities,  again for both performance and avail- 
ability reasons. And finally,  within each coupling fa- 
cility there can be one  or more named lock tables. 

Level 2: The operating  system. This  section describes 
the operating system support  for  the model. The  fo- 
cus  is a simplified description of the locking capa- 
bilities. The actual capabilities  go far beyond the sim- 
ple shared and exclusive model described here.  The 
complete set of services  in the  product is defined in 
Reference 10 and an overview  is provided in the next 
section on system-level components. 

Conceptual model, The model presented in Level 1 
would  have limited use  in  any real system. This sec- 
tion  discusses the enhancements in the operating sys- 
tem to provide a richer set of locking  semantics  while 
exploiting the basic  services provided in the Level 
1 model. 

The operating system  provides the capability to name 
a lock request. The name consists of a character 

BOWEN ET AL. 205 



Figure 3 General locking model 

string, to be referred to as the lock name, and an 
integer, to be referred to as the hash class value. In 
addition, queuing of conflicts and additional seman- 
tics to  support multiple lock states (this aspect will 
be  discussed  in the Level 3 description) are also pro- 
vided. The conceptual model has aspects of both a 
distributed lock manager and a centralized lock man- 
ager. The set of operating system  services that  sup- 
port this model is referred to as the system  lock man- 
ager (SLM). The  operating system  views the locking 
architecture as a high-speed lock-contention detec- 
tor. By exploiting the locking hardware, the  oper- 
ating system  is  actually able to operate in two dis- 
tinct modes. When there is no contention, the Level 
2 model is that of a high-performing centralized lock 
manager.  When  contention  exists, the Level 2 model 
is a distributed  lock  manager that uses  signaling pro- 
tocols to resolve  contention  and  perform  notifications. 

Physical model. The implementation of these services 
is  very  complex and a complete description is  beyond 
the scope of this paper.  Instead, several sample lock 
requests are used to illustrate the key functions pro- 
vided. The actual programming interfaces contain 
much more than described here. Figure 4 shows the 
overall model with respect to this  level.  Lock queues 
have been added at each system and there is a sig- 
naling protocol used to resolve  lock  conflicts. First 

206 BOWEN ET AL. 

we want to highlight where lock state information 
is stored. The coupling  facility contains the  state of 
each lock table entry, while each processor contains 
additional state information. 

The notation used  in these scenarios  is  first  described. 
Figure 5 shows three systems connected to a cou- 
pling  facility. The examples used  all refer  to lock ta- 
ble entries i and k. The lock table entries  are used 
through a concept called hash classes, which are  de- 
scribed in subsequent sections. The relative point is 
that lock names are mapped to hash classes and all 
lock managers that  are using a common lock table 
must  also  use a common hashing algorithm. 

Within the lock table entry the exclusive  field (the 
column “EXC”) will refer to the system that currently 
has exclusive control of that lock entry. The  share 
string is a bit  mask that positionally refers to a sys- 
tem that has shared interest in the lock entry (if set 
to “1”). For example, a share string of “ O l l ”  means 
that systems 2 and 3 have shared  interest. Within 
each system four distinct areas of state and queue 
information are shown. These  are used to clarify the 
examples and do not necessarily indicate how  it  was 
implemented. The first area, local lockstate, is where 
each system “remembers” its own  view of the  state 
of each lock entry. This is either no knowledge (0), 

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997 



Figure 4 Operating  system model 

shared knowledge (S), exclusive  knowledge (E), or 
that some other system  is an exclusive holder (Gx). 

The second area, local queues, shows the software 
queues that  are maintained when a lock is granted 
without the involvement of other systems. This shows 
the lock name and the hash class  value  (e.g., “A,i”), 
and the current requestor, state, and ownership  (e.g., 
“P, (Own, E X ) ”  means that Process P I  owns the 
lock  in  exclusive mode). The third and fourth  areas 
show the same type  of information as in the local 
queues but with a different  perspective. Requests are 
moved into  the third area when another system be- 
comes the global manager (i.e., a single  system pro- 
vides overall management of the hash class). That 
is, this area shows the view  of this system of a global 
queue. Requests  are moved to  the  fourth  area when 
this system becomes the global manager of the 
queues. Therefore,  the locks  in this area represent 
the complete global state. 

The first example (see Figure 6) shows a simple re- 
quest from Process P I  for a lock namedA in hash 
class  i. Upon receiving  this request the local  lock state 
is checked for hash class i, and since  it has no knowl- 
edge of the  state it makes a lock request for hash 
class i in  exclusive state (shown  with action 1 in Fig- 
ure 6). The coupling  facility  receives  this request and 

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997 

since there  are no prior requests for this hash class, 
it sets the exclusive entry with that of System 1 and 
returns  a positive response. System 1 then grants the 
request and sets the  appropriate information in the 
local queues. It also sets an indicator in the local  lock 
state and records the full lock name in the local queue 
area. Process P ,  is able to obtain a global lock with- 
out interacting with  any other systems. 

Figure 7 shows the resulting state after Process P2 
on System 2 obtains a lock named C in hash class 
k. This also results in a single trip to the coupling 
facility where the  share entry is  now  positionally set 
for System 2. The request is then recorded in the 
local queues and granted. 

The next example (Figure 8) shows the case where 
a process makes a request that is compatible at  the 
hash class  level. The key point in this example is that 
the global lock  is obtained without even having to 
visit the coupling facility. Figure 8 shows an exam- 
ple of Process P ,  on System 1 making a request for 
a lock named B in hash class  i. This time when the 
local  lock state is checked the system determines that 
it already has exclusive interest in the hash class so 
it does not need  to make a coupling facility  access. 
It can simply check the local queues and determine 

BOWEN ET AL. 207 



Figure 5 Notation 

that  the  request is for a  different lock than  what is 
currently  held. The request  can  then  be  granted. 

Figure 9 illustrates how requests  “bump  into”  one 
another  at  the hash class level from  multiple systems 
but  are still compatible. The key point in this exam- 
ple is that  the global lock is obtained  without having 
to exchange lock names even when there is some col- 
lision at  the coupling facility. Figure 9 shows an ex- 
ample of Process P ,  on System 3 making  a  request 
for  a lock named D in hash class k. The local lock 
state indicates that  the system has no interest in the 
hash class so a  request is made  to  the coupling  fa- 
cility. This  time the coupling facility sees that Sys- 
tem 1 also  has  a  shared  interest in the  request  but 
since  the current  request is compatible  (shared)  it 
sets the  share  entry  for System 3 and  returns a pos- 
itive response. System 3 is never made  aware of the 
other  “sharers”  and  the  request can  then  be  granted. 

The previous  example  (Figure 9) illustrated the case 
of a  hashing  scheme  mapping  multiple lock names 
to  the  same hash class. A variation on  that example 
is now shown-when two different lock names  map 
to  the  same hash class but they are incompatible at 
the hash class level. Figure 10 shows an example of 
Process P5 on System 1 making  a  request  for  a lock 
named E in  hash class k. The local lock state indi- 
cates  that  the system has no interest in the hash class 
so a  request is made  to  the coupling facility. This 
time  the coupling facility realizes that several sys- 
tems  have  a  shared  interest in the hash class. The 
coupling facility sets  the exclusive entry  and  returns 
the  shared string to System 1. System 1 has now ac- 
cepted responsibility to sort  out  the global state of 
this  hash class. System 1 then begins  a  process  called 
escalation in which a  global queue  for  the hash class 
must be built. It first parses  the  shared string to  de- 
termine  that Systems 2 and 3 have interest in the  hash 

208 BOWEN ET AL IBM SYSTEMS JOURNAL,  VOL 36, NO 2, 1997 



Figure 6 Initial request 

class  and  signals those systems to  return their lock 
information. There  are two important points here. 
First, these signals are  done in parallel over a high- 
speed signaling  facility. Second, only the systems that 
have a  current interest in the hash  class are signaled. 
This is an  important aspect of the scalability of the 
design-if there were 32 systems  in  this  example  con- 
figuration only two systems  would be interrupted for 
lock information. Once System 1 receives the local 
information from the  other systems,  it  builds a global 
picture and realizes that  there is no contention for 
any  lock name, just for a hash class. This situation 
is called false contention and the process Ps  can be 
granted the lock. The example also shows a move- 
ment of the  queue information on Systems 2 and 3 
to  the local portion of global queues. This is to il- 
lustrate that  the process now has a responsibility to 
communicate  with the global  manager on future state 
transitions (e.g., unlocks). Also note  that  the local 
lock state was changed from S to G indicating Sys- 
tem 1 is the global manager for this hash class. 

Our final  example (Figure 11) looks at real conten- 
tion. Figure 11 shows an example of System 2 mak- 
ing a request for Process P h  for  a lock named A in 
hash class  i. The local  lock state indicates that  the 
system has no interest in the hash class so a request 
is made to  the coupling facility. This time the cou- 
pling  facility realizes that System 1 has exclusive in- 
terest in the hash class. The coupling facility returns 
an indicator that System 1 is the exclusive  owner of 
the hash class. When System 1 receives the message 
from System 2 it then builds a set of global queues. 
Since  it  was the exclusive  owner it does not have to 
signal other systems. Once the queues are built it 
determines there is real contention. There  are elab- 
orate facilities for handling contention that  are  de- 
scribed in the next section. 

Level 3: System level components. This section com- 
pletes the description of the locking  services by high- 
lighting how a system  level component (e.g., a da- 
tabase manager) could use these services. The goal 

BOWEN ET AL. 209 IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997 



Figure 7 Initial shared request 

of this section is to illustrate the flexibility of the 
model and not provide a comprehensive description 
of all capabilities. The model has been used by sev- 
eral  database managers (e.g., IMS, DB2*, and Virtual 
Storage Access Method, or VSAM) and details of their 
experiences can be found in related papers. 

Although the Level 2 model  is a general-purpose lock 
manager, many database lock managers have  much 
richer locking semantics such as multistate support 
(e.g., more than just the two basic  lock states; shared 
and exclusive). Other functions such as lock promo- 
tion or demotion (i.e., changing the  state of a cur- 
rently held lock) are critical for  the overall perfor- 
mance in a clustered environment. Using the 
semantics of the Level 2 model, the Level 3 model 
can be tailored to support virtually  any  lock model. 
For example, the lock states supported by many da- 
tabase systems are  far  more complex than  the sim- 
ple shared or exclusive state. Using the following fea- 
tures this  can be accomplished. 

This section describes some of the key capabilities 
that can be constructed using the Level 1 and Level 
2 models previously described. Since the paper de- 
scribes a general set of functions that could be  con- 
structed by any  lock manager, we use the term tai- 
lored lock manager (TLM) to  represent its name. A 
TLM can be specific to any environment such as a 
database manager or  a  shared file  system. The key 
point is that  the TLM must be able to optimize its 
performance based on its unique environment. The 
functions in the lower  levels provide these building 
blocks. These points are illustrated by presenting a 
partial list that highlights some of the unique capa- 
bilities of this model. 

Lock names  and hush classes. In general, database 
managers (DBMS) lock on names that  are meaning- 
ful in their particular data structure. For example, 
the IMS system  uses a lock  with 19 bytes (or 152 bits) 
that is representative of the data in the IMS hierar- 
chical data structure. The DBM can thus optimize the 

210 BOWEN ET AL. IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997 



Figure 8 Compatible  requests-local 
~~ ~ 

locking structure  around the data structure. Obvi- 
ously the number of locks held at any  given point in 
time is an extremely small fraction of the 215’ locks 
that are possible.  In order to provide for efficient con- 
tention detection between systems, a hashing algo- 
rithm is employed to map the lock names into  a hash 
class table. As long as the tables are of a size that 
is many times larger than  the number of locks held, 
any false contention on a hash class  is kept small. 
An initialization process is used by the DBM and the 
TLM to allocate resources in the system  lock man- 
ager (SLM) and  the coupling facility to provide for 
the  appropriate contention detection. At initializa- 
tion time, the first TLM that is started calculates an 
appropriate size for the coupling facility  hash tables 
(out of the total storage made available for lock ta- 
bles and record tables by the customer policy) and 
requests the SLM to allocate structures for the hash 
tables using a predefined name of a sharing group. 
Subsequent TLMS that are started share the same data 

join in the use of the facilities allocated by the first 
TLM by using the same sharing group name. 

The TLM can  also  specify a 64-byte “user-data’’ pa- 
rameter with the lock requests. One use  of  this in- 
formation is to contain the lock states when the TLM 
lock protocol supports  states  other  than  just  share 
and exclusive. 

Contention detection. A lock  can be held with one of 
several ownership privileges. Ownership can be 
granted when the privileges of the holders (if any) 
are compatible with the privileges needed by a new 
requestor. For example, a lock  may be requested with 
either share  or exclusive  privilege. Contention is de- 
tected when a share privilege  is requested and a lock 
holder has  exclusive  privilege, or when an exclusive 
privilege  is requested and  there are existing hold- 
ers. 

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997 



~~ 

Figure 9 Compatible  requests-remote 
~ ~~ 

Contention and not i .  exits. The SLM communicates 
to  the TLMs via a mechanism called exits in 0S/390.'s 
Two of these exits, the contention and notify, are  the 
means by which the TLMs resolve contention for 
shared resources. In these exits, the 64-bytes of user 
data can be inspected or modified. One key value 
is that complex  lock protocols can be implemented 
using this structure. 

Waiter  queuing. When the lock manager cannot grant 
a lock because of contention,  the SLM preserves a 
record of the request on a list of waiters. The rules 
for processing waiter queues vary among each pair 
of DBMS and TLMs. The queuing is done within the 
SLM; however, the rules for lock compatibility are 
done by the TLM using the exits mentioned previ- 
ously. 

Availability  and  recovery  recording. In  order  to  meet 
the demanding continuous availability requirements 

of  many  of today's large commercial transaction sys- 
tems, it  is important  to allow processing to continue 
with full integrity of the  database while handling re- 
covery from a hardware or software failure. Since 
the coupling  facility  is  electronically and logically  iso- 
lated from  the systems that  are running the 
DBM/TLM/SLM software, it provides the necessary 
availability for recovery from a system or software 
failure. The coupling facility structure provides both 
a locking function and a recovery recording function. 
Modify  lock  names (exclusive  locks that  are used to 
update  database records) are  recorded in the list el- 
ements in the coupling facility  recovery tables. A list 
is  assigned to each instance of the system  lock man- 
ager participating in the global managed locking pro- 
tocols. The coupling facility uses the user identifi- 
cation (UID) that specifies the particular system  lock 
manager to access the  appropriate list. Atomic op- 
erations  that manipulate lock table entries and 
record data elements are provided in the coupling 

212 BOWEN ET AL. IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997 



I 
Figure 10 False  contention 

facility architecture. These operations support com- 
mands for creating, reading, replacing, and deleting 
elements. By providing atomic operations, the ar- 
chitecture ensures that  the lock structure and the re- 
covery structure  are always consistent. Note  that in 
the event of a failure of the coupling facility, no data 
are lost since all the information in the coupling fa- 
cility is replicated in the set of TLM/SLMS. Since the 
architecture supports multiple coupling facilities, a 
new structure can  be allocated in another facility and 
the TLM/SLMS recreate  the coupling  facility contents. 

Contention resolution. Let us  now examine the  pro- 
cess  used by the TLM/SLM for the resolution of con- 
tention. Although the key points are highlighted 
here, the reader is referred to Reference 9 for a com- 
plete description. In order to determine  the exis- 
tence of contention, the coupling  facility and the SLM 
use the lock compatibility matrix  shown  in Table 2. 
Any time the requested state is compatible with the 

existing state,  the request is granted and  the lock  is 
locally managed by the holder(s). When the  re- 
quested state is incompatible with the existing state, 
then the lock becomes globally managed by a cho- 
sen TLM/SLM combination, and this request along 
with future requests are processed by the global man- 
ager (TLM/SLM). The chosen SLM does not manage 
the contention, but rather maintains a queue of hold- 
ers and requestors for the TLM to use to manage the 
contention. When contention is detected,  the cho- 
sen SLM passes the request queue to the TLM by us- 
ing the contention exit mentioned earlier. The user 
data information plays an integral role in enabling 
user-defined lock protocols. At this point the TLM 
must manage the contention by the use of one of 
the following actions: 

1. Grant  a pending request, possibly  with a differ- 
ent  state  than  that requested. This will cause the 

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997 



Figure 11 Contention 

requestor to resume, or will control its comple- 
tion exit if appropriate. 

2. Deny a pending request. This will also cause the 
requestor to resume, or its completion exit to be 
taken. However, in this case the  requestor is  also 
told of the rejection and given  any data provided 
by the denying TLM. The user data can be mod- 
ified when the request is denied. Since  this  is pre- 
sented to the requestor of the denied request, the 
user data can be used to communicate the  rea- 
son for denial. 

3. Regrant a held request with a different state  than 
it  was  originally granted (e.g., demotion of a lock 
that is held exclusive to  shared). In this case the 
holder’s completion exit is initiated, informing the 
holder of the change in state. In addition, the user 
data can be modified on a regrant. 

4. Inform a  current resource owner that contention 
exists for a resource it  owns. This is done by pass- 
ing the notice (through the  SLM) to the holding 
TLM by use of its notify (notification) exit. 

5. Leave a request pending. The request will be left 
in the request queue maintained by the SLM. The 
TLM rnay grant the request on a subsequent in- 
vocation of the contention exit  (e.g.,  when the un- 
lock of the  current owner is presented  to  the con- 
tention exit). 

This implementation of TLM/SLM exits and com- 
mands  provides a powerful  method  for  implementing 
lock  negotiation  protocols  in the TLM while  allowing 
the system (SLM) to maintain  an  awareness of the con- 
tention, and the state of the  holdedrequestor queue. 
In turn, this  allows the TLM to implement a process 
whereby  users (DBMS) initially obtain high-level  locks, 
and then negotiate them downward to finer levels 
of granularity as contention occurs. This process of 
negotiating and notifying continues iteratively until 
the TLM determines that no more notifies are  re- 
quired and the  state of the  holdedrequestor  queue 
is correct. The global management of the lock con- 
tinues with the selected TLM/SLM until contention 

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997 



no longer  exists. Note that due to the flow  of requests, 
including  unlock  requests,  it is possible that  the global 
manager TLM does not have  any interest in the lock 
it  is managing. 

Locking  performance 

The performance of the locking function is a critical 
component of a parallel transaction processing sys- 
tem with shared data. Much effort went into  ensur- 
ing that  the overhead of locking  was as small as pos- 
sible. There were many components of this effort. 
Several of the most critical are described in this sec- 
tion. It should be noted that this is not  a reflection 
of a completed body of work, but  represents work 
in  progress. As most  complex  designs  evolve, the per- 
formance bottlenecks become better known and 
their solutions often affect the original  design accord- 
ingly.  Locking  in a Parallel Sysplex  is no exception. 

Synchronous  versus  asynchronous  locking. Accesses 
to  the coupling facility for obtaining locks require 
a communication oulside of the processor. In  that 
way  it  is similar to an 1/0 operation. However, the 
overhead of an I/O operation is  well  known to be det- 
rimental to  both system throughput and transaction 
response time. Much  effort has been expended on 
nonparallel transaction systems to reduce the num- 
ber of I/OS by extensive use of main storage and ex- 
panded storage  to hold I/O buffers. Such data buff- 
ering allows records to be accessed without the need 
to drive an I/O operation  and suspend the transac- 
tion. This reduces the  path length of the transaction 
and significantly improves the transaction response 
time. 

It is a design  goal in the Parallel Sysplex to minimize 
the additional unavoidable system overhead intro- 
duced by locking without elongating the transaction 
response time. This is accomplished by (1) building 
protocols on  the coupling facility  links that optimize 
the communications for low latency rather than high 
bandwidth, and (2) defining the architectural inter- 
face to allow for locking commands to be delivered 
to  the coupling  facility and responses received  within 
a single CPU instruction. The processor spins in an 
idle loop in the microcode from the time the com- 
mand is sent on  the coupling facility  link to  the time 
when the response is returned  and stored in  main 
storage. This is referred to assynchronous command 
execution. The alternative design  is to perform a con- 
text  switch,  i.e., the process thread is suspended from 
execution and a new process thread is dispatched. 

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997 

This is referred  to as asynchronous command exe- 
cution. 

It is important  to validate that this choice is optimal 
for both design  goals:  minimizing  system overhead 
and minimizing transaction response time. Access 
times to  the coupling facility are measured in the 
range of 50 to 500 microseconds, depending on  the 
operation and the speed of the processor, which  is 
significantly better  than  the several milliseconds that 
an I/O operation requires. So from the point of  view 
of transaction response time, the synchronous de- 
sign  is  clearly superior. 

However, what is  less clear is whether the design 
maximizes  system throughput. Since the alternative 
asynchronous design  is to suspend the  thread  and 
perform a task switch,  success of the synchronous 
design  is determined by comparisons against the 
overhead of this approach. If the  round-trip access 
time to  the coupling facility takes less CPU time than 
the cost of performing a task  switch, then it  is deemed 
to be the correct choice. 

The cost of a task switch has two components. The 
first  is the  path length that is required  to suspend 
the work unit thread,  to dispatch a new thread,  to 
field and process the resulting interrupt on the back 
end of the  operation,  and finally, to redispatch the 
original work unit thread.  A value of 2000 instruc- 
tions is used for this path length. The second com- 
ponent is the reduced performance of the processor 
caches that results from the context switch and  the 
subsequent purging of the working set for the  thread 
from the hardware caches.  Much  work has been done 
to estimate this overhead for various processors, and 
a value of 4000-5000 instructions is used for this ef- 
fect. So the  total overhead of a task switch  is esti- 
mated at roughly  6000-7000 instructions. 

Since the overhead of the synchronous access to  the 
coupling  facility  is easiest to measure in units of time, 
it  is useful to convert the asynchronous penalty ac- 
cordingly. The processor speed is clearly a relevant 
factor since it is more costly to allow a  faster pro- 
cessor to wait than  a slower processor. The proces- 
sors under consideration have a MIPS (million  instruc- 
tions per second) rate  that ranges from 20 to 50 MIPS. 
Using these numbers, one obtains a break-even point 
for the synchronous operation in the range of 
6000/50 = 120 microseconds to 7000/50 = 140 mi- 
croseconds for the  faster 50 MIPS processor and in 
the range of  300 to 350 microseconds on  the slower 
20 MIPS processor. 



The synchronous time for a coupling facility  access 
has several components that can affect the overall 
time. These are referred to as elongutors. One crit- 
ical factor was  already  described,  namely the link pro- 
tocol. To minimize  this impact, special  links were de- 
veloped that were point-to-point links and had 
minimal handshaking. In fact, the  entire link oper- 
ation consists of a single transfer of the command 
block to  the coupling facility and a single transfer of 
the response block back to  the originating proces- 
sor. 

A second key elongator is distance. Most of the neg- 
ative effects of distance are eliminated by the link 
protocol that eliminates end-to-end handshaking. 
However, distance still remains a factor and elon- 
gates an  operation by about 12 microseconds per ki- 
lometer. Since most distances were originally  ex- 
pected to  be within a machine room or,  at worst, up 
to  the limits of fiber-optic channels (about 3 kilom- 
eters), it was not viewed that distance would be a 
serious concern. However, it  is an intrinsic problem 
and no amount of additional design will remove it. 

A third elongator is the  path length needed in the 
software lock managers that is required to initiate 
the  operation  and process its completion. This is 
needed in both the synchronous and asynchronous 
designs, but it is  still  critically important  to minimize 
these path lengths.  Several  different  efforts  have been 
devoted to minimizing these paths  and  that work  is 
ongoing. 

A fourth elongator is the complexity of the process- 
ing that is performed by the coupling facility. In this 
regard, the final design is somewhat of a trade-off. 
It had been an original goal to define the locking ar- 
chitecture so that a hardware implementation would 
be possible. But the benefits of the additional func- 
tional capability provided by a microcoded imple- 
mentation moved us away from that goal. However, 
significant  effort  was spent in  making the command 
definitions simple and streamlined. One key aspect 
was the decision to put queuing and waiter notifi- 
cation in the SLM component and minimize the func- 
tion provided by the coupling facility to simple con- 
tention  detection  and minimal logging for recovery. 

The measurements show that a synchronous lock- 
ing operation  on a 50 MIPS processor connected to 
an equivalent speed coupling facility completes in 
about 80 microseconds; this  is  well  below the 120- 
140 microsecond break-even point. Similarly, a syn- 
chronous locking operation  on a 20 MIPS processor 

216 BOWEN ET AL. 

connected to a 20 MIPS coupling facility completes 
in about 150 to 200 microseconds, again below the 
break-even point. Where  the design is not optimal 
is  when a 50 MIPS processor is connected to a 20 MIPS 
coupling facility. Then  the transfer time is  still in the 
150-200 microsecond range since the components 

System overhead for locking 
is  minimized without 

elongating the  transaction 
time. 

of time are mostly determined by delays outside of 
the processor. However, this  is no longer better than 
the overhead of a task switch. For this reason and 
for similar considerations when data transfers are 
included, an asynchronous interrupt has been de- 
signed (not in the  current product). Its use  would be 
managed by a heuristic routine that monitors the syn- 
chronous delay  and  switches modes accordingly. This 
will be especially useful in addressing the concerns 
of distance in a sysplex where several factors, such 
as increased fiber-optic capabilities and  the move 
toward remote site recovery, are changing some of 
our original views on distance limitations. 

Lock contention. Contention occurs when a lock re- 
quest for a resource appears  to be incompatible with 
its current lock state. This is a statement  that is rel- 
ative to  the given  level of locking (as defined in the 
section on locking models), where each level  may 
have a different view  of contention  and may act on 
it  in a different manner. At  the architectural level, 
contention is detected on hash classes of locks. Con- 
tention, when detected, is reported  to  the SLM via 
information stored in the response block. The SLM 
attempts  to resolve the contention by communicat- 
ing  with its other instances that  share information 
on the hash class and comparing the actual lock name 
with the set of lock names for the  current owners 
and  waiters. It may turn out that the lock name that 
is requested does not match any  of these other names. 
In  this  case, contention does not exist at this  level  and 
the lock  can  be  safely  granted.  This  situation is referred 
to as fahe contention, i.e., contention detected at the 
architectural  level that turns out not to exist  at the SLM 
level,  which  resolves the contention. 

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997 



It may turn out that the SLM finds one or more match- 
ing names in the list of names registered for the hash 
class. This is referred to as real contention, although 
that is  actually a misnomer. The SLM reports  the  real 
contention to  the contention exit of the TLM. The 
TLM makes the final determination of the conten- 
tion. If the TLM can decide the contention is real, 
then  the requestor is queued. Alternatively, the TLM 
can grant some requests that  appear (such as from 
a share/exclusive model) in contention. It may turn 
out  that  the lock name is  covering too large an  area 
of granularity in the  database,  and finer granularity 
locks are  required. This results in renegotiating all 
the relevant locks to a lower granularity, where ac- 
tual contention may not exist. This hierarchical ap- 
proach to locking  is used to avoid getting locks on 
areas of the  database  that are relatively inactive, or 
tend  to  be accessed  mostly by a single  system. This 
design  can  significantly reduce the overall locking 
rate and is a key method for gaining performance 
by adjusting the locking rate to match the level of 
contention in the system. 

When the granularity of locking  is at its  finest  level, 
real and actual contention coincide.  Workload traces 
indicate that this level of contention is  extremely 
small in most transaction systems, and it  is generally 
believed to  be  the case that significantly  less than 
0.5 percent of all  lock requests experience actual con- 
tention. 

False contention is another matter. False contention 
is a function of the size of the lock table (as a  pro- 
portion of the number of active  locks in the system), 
and the hashing algorithm. The size of the lock ta- 
ble  can be reconfigured  dynamically to make  it larger, 
so there is some amount of tuning that can be done 
by the system programmer to minimize the occur- 
rence of false contention. The hashing algorithm is 
more difficult to manipulate and much  work  has gone 
into developing uniform hashing functions. The gen- 
eral rule of thumb is that  the  total contention in the 
system should be no more than 1.0 percent. If the 
locking  design  is good, real contention can be man- 
aged to extremely small  levels. And if the hashing 
function is  relatively uniform, then false contention 
can be managed by controlling the size of the lock 
table. This is the strategy that is employed. 

Consider the example cited in the section on  system 
model and objectives, where a transaction rate of 100 
transactions per second and response time of .5 sec- 
ond yields a multiprogramming level of 50. Assum- 
ing 20 locks held per active transaction, one can pre- 

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997 

dict  1000 current locks held at any time. If the false 
contention is to be maintained at  under 0.5 percent, 
then  the lock table should have this percentage of 
nonzero entries  at any  given time. In other words, 
the table should be 99.5 percent empty on the av- 
erage. Thus, the number of hash classes defined 
should be 200 times the number of locks held. So 
the lock table should be defined with 200 000 entries. 

Unlock operations. Special considerations are given 
to  the handling of unlock operations. In particular, 
two architecture extensions were developed to im- 
prove on unlock performance. One is a special in- 
terface that allows the  operation  to proceed asyn- 
chronously without the  need for an  interrupt,  and 
the second is a command that allows a list of lock 
table entries  to  be  sent  to  the coupling facility  in a 
single operation. 

Asynchronous  unlocks. This section describes a ca- 
pability that is not in the  current  product  but is rel- 
evant to  an overall understanding of the system de- 
sign. An unlock operation  to  the coupling facility  is 
a command that resets an exclusive  field or  a  share 
bit in a lock table entry to zero. This creates  a win- 
dow in the  state of the lock table entry where the 
system performing the reset views the lock as free, 
but another system may be viewing the lock table 
entry just prior to its being reset. Thus an escalation 
signal may be received by the original owning sys- 
tem after the lock  is released. This window  is un- 
avoidable and is handled by the SLM chase proto- 
col. l9 

A consequence of the chase protocol is that it  is no 
longer a  requirement to perform the unlock oper- 
ation synchronously. The window  exists whether the 
operation is performed synchronously or asynchro- 
nously to  the CPU. If the unlock operation should 
fail without updating the lock table entry, then  the 
mismatch in state is detected by the next requesting 
system and recovered by the chase protocol. 

The locking architecture exploits this by providing 
for the specification of an asynchronous option that 
causes the CPU to release control and  return  to  the 
program as soon as the command has been trans- 
mitted on the link and before the response is re- 
turned.  At  the conclusion of the command, the  re- 
sponse block  is stored in the main storage by the 
channel, but  no  interrupt is generated. At this point, 
the architectural interface is returned to the idle state 
and new operations can be initiated. So, even though 
the response is stored, it  is not acted upon by the 



operating system. This is referred to as the no-re- 
sponse protocol. This allows the overhead of the 
operation  to be reduced to  the minimum start-up 
penalty on  the issuing CPU and is on  the  order of 
200-300 processor cycles (or about 20-30  microsec- 
onds). 

This protocol is  used  selectively by the operating sys- 
tem and is generally limited to isolated unlock op- 
erations (nonlist form) that  do not have  any asso- 
ciated record table updates. 

Batched unlocks. Most transaction systems obtain 
locks during the execution of a transaction as they 
are  needed and released collectively when the trans- 
action is committed.20 So while  locking operations 
occur as  individual events, unlocks tend to occur in 
a batch. It is thus reasonable to consider allowing 
the unlocks to be batched in a single operation  to 
the coupling facility, and this function is provided in 
the architecture. This allows the overhead required 
to initiate the operation and the transmission time 
on the link to be apportioned across the set of lock 
names in the list of unlock operations. 

It turns  out, however, that  the multilevel  design ap- 
proach to locking makes this a very  complex func- 
tion, and it was added very late in the development 
cycle. The problem is that  the list  must be handled 
at each level, and  the  state of the locks, as viewed 
by each lock-manager  level,  is  different. The simplest 
level  is the TLM level,  which  simply  builds a list of 
lock  names  with the associated hash-classvalues that 
are held in either  the  shared  or exclusive state.  The 
SLM, however, must parse this into two lists: one list 
of those hash classes that have undergone escala- 
tion and are managed, not in the coupling facility, 
but by some instance of an SLM, and  a second list 
that this SLM views  as managed by the coupling fa- 
cility. 

The first  list  is  actually processed individually by the 
SLM, and  no performance gain is realized. The as- 
sumption of  low contention generally makes this a 
short list, but the complexity of handling it  must,  nev- 
ertheless, be incorporated in the design. 

The second list is bundled in a command and sent 
to  the coupling facility. This is where the perfor- 
mance benefit is realized. Batch sizes  vary, but it  is 
not unusual for  a transaction to obtain 10-20  locks 
and release these all at commit time. So, significant 
savings can be achieved with this scheme. 

218 BOWEN ET AL. 

Considerations for multiple lock managers. A key 
attribute of transaction processing systems that has 
already been articulated is that most locks are gen- 
erally obtained and released within a transaction. So, 
the lock hold times are reasonably short (less than 
a second or so). As the example above shows, the 
number of concurrent locks held in the system can 
be estimated as the product of the average number 
of locks per transaction and the multiprogramming 
level. Both of these can be measured by standard 
system performance monitors and, from these, the 
lock table size  can be effectively calculated in the 
manner shown  above. Subsequent monitoring of the 
false contention rate allows the size to be adjusted 
and tuned  to fit the workload. 

In  order  for this process to be  successful, the class 
of  locks mapped to  the lock table must be limited 
to  the set of transaction locks associated with a  par- 
ticular TLM. Otherwise there is too much unpredict- 
ability in the mix of locks. Unfortunately, there  are 
several multisystem  locking components in Si390 sys- 
tems. Aside from the various transaction managers, 
IMS, DB2, and CICS* (Customer Information Control 
System), there  are system-locking components such 
as  global resource serialization (GRS). In  the case of 
GRS, the locks are  often obtained and held for very 
long durations.21 Since the TLM components have 
control of the hashing algorithms, special locks,  such 
as the allocation locks  with  very long hold times, can 
be separated  into unique hash classes. These hash 
classes  would be, essentially, permanently managed 
by the SLM. 

However, in order to remain effective, this separa- 
tion must be maintained all the way to  the coupling 
facility. This is accomplished in the architecture by 
providing named lock tables and allocation functions 
that allow for  the  creation of multiple lock tables on 
a single  coupling  facilitywith  unique attributes. These 
unique attributes include: the presence or absence 
of share bits, the number of share bits, the existence 
of a  record table, and of course, the size of the lock 
table and record table. But most importantly, the ex- 
istence of multiple named tables allows for  the sep- 
aration of locks into distinct name spaces so that 
unique management, such as that described here for 
minimizing false contention, can be provided by the 
TLMs. 

Conditional lock requests. Low contention rates are 
a basic  design premise. Real contention in transac- 
tion processing systems  is  known to be quite small 
(under 0.5 percent of lock requests), and false con- 

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997 



tention can be managed to similar  levels by increas- 
ing the size of the lock table. However, contention 
at some measurable level does exist  in the system. 
When it occurs, the overhead can be quite high;  sig- 
naling is required from the requesting system to  the 
system managing the entry. Also, if this is the first 
indication of contention, the managing system 
changes the  state of the entry to global management. 
This escalation process can be quite lengthy and re- 
quires considerable path length and signaling be- 
tween  systems. There is a corresponding penalty 
when contention is removed and the entry is de- 
escalated from global management. 

Conditional lock requests were included in the 
TLM/SLM interface to address this  problem. If the lock 
is requested conditionally and the request to the cou- 
pling  facility indicates that  the lock entry is not avail- 
able, the SLM returns control to the TLM and takes 
no further action on the request. In particular, no 
attempt is made to signal the managing system and 
the possible  global escalation is avoided. Subse- 
quently, following a  short delay, the TLM can resub- 
mit the lock request. Assuming the lock hold time 
is short and assuming the probability of  new conten- 
tion occurring is no greater  than normal contention, 
the second request may succeed at the coupling fa- 
cility. If this is the case, then  the global management 
overhead in the SLM is avoided. The TLM can  always 
abandon this optimistic protocol after several retries 
and submit the request unconditionally. Use of the 
conditional protocol by TLMS has resulted in signif- 
icant reductions in  system overhead. 

Conclusion 

This paper begins  with the premise that shared-disk 
architectures are  better  than shared-nothing archi- 
tectures for clustered systems.  Specific benefits in- 
clude workload balancing and effective utilization of 
the processors, availability, and scalability. It is also 
argued that in order  to support update-intensive 
workloads that  are often found in database environ- 
ments, the shared-disk architecture must be aug- 
mented with special functions to improve the effec- 
tiveness of the sharing of information across the 
cluster. One such function, locking,  was the focus of 
this paper. This paper described a high-speed lock- 
ing function for use  in a parallel operating system 
environment and provided a detailed description of 
the architecture and many critical design trade-offs. 
These  facilities are embodied in the smo Parallel Sys- 
plex. The facilities are  oriented toward transaction 
processing systems that  are update-intensive and re- 

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997 

quire low response times. The system has many 
unique features, such as the ability to obtain cluster- 
wide  locks  using synchronous protocols, the ability 
to construct a lock manager that  supports  a user-de- 
fined  lock protocol (i.e., richer than  a traditional 
share/exclusive protocol), special features for avail- 
ability, and rigid performance objectives. 

Acknowledgments 

The  authors would like to acknowledge the large 
number of people, across many IBM divisions,  who 
worked on the Si390 Parallel Sysplex effort. 

*Trademark or registered  trademark of International Business 
Machines Corporation. 

Cited references  and  notes 

1. C. J. Beckman and C. D. Polychronopoulos, “Fast  Barrier 
Synchronization Hardware,” Proceedings of Supercomputing 
’90 (November 1990), pp. 180-189. 

2.  A. Dinning, “A Survey of Synchronization Methods for Par- 
allel Computers,” Computer 22, 66-77 (July 1989). 

3. R. Obermarck,  “IMSWS  Program Isolation,” Technical Re- 
port RJ2879, IBM Thomas J. Watson Research Center, York- 
town Heights, NY 10598 (1980). 

4. W. H. Kohler, “A Survey of Techniques  for Synchronization 
and Recovery in Decentralized  Computer Systems,” Com- 
puting Survey 13, 149-183 (June 1981). 

5. G. F. Pfister, In Search of Clusters, Prentice Hall, Englewood 
Cliffs, NJ (1995). 

6. J. Nick, J.-Y. Chung, and N. Bowen, “Overview of IBM 
Systemi390 Parallel Sysplex-A Commercial Parallel Process- 
ing System,” Proceedings of the loth InternationalParallel Pro- 
cessing Symposium (April 1996), pp. 488-495. 

7. J. M. Nick, B.  B. Moore, J.-Y. Chung, and N. S. Bowen,  “Si390 
Cluster Technology: Parallel Sysplex,” IBM Systems  Journal 
36, No. 2,  172-201  (1997, this issue). 

8. M. Dubois and  F. A.  Briggs, “Effects of Cache Coherency in 
Multiprocessors,” IEEE Transactions on Computers C-31, 
1083-1099 (November 1982). 

9. S. Calta, J. deVeer, E. Loizides, and R. Strangwayes, “En- 
terprise Systems Connection  (ESCON) Architecture-Sys- 
tem Overview,” IBM Journal of Research  and Development 

10. MVSIESA Programming:  Sysplex  Services Guide, GC28-1495, 
IBM Corporation (1994); available through IBM branch of- 
fices. 

11. C. B. Stunkel, D.  G. Shea, B. Abali, M. G. Atkins, C. A. 
Bender, D. G. Grice, P. Hochschild, D. J. Joseph, B. J. 
Nathanson, R. A. Swetz, R. F. Stucke, M. Tsao, and P. R. 
Varker, “The SP2 High-Performance Switch,” IBM Systems 
Journal 34, No. 2,  185-204 (1995). 

12. W. Baker, R. Horst, D. Sonnier, and W. Watson, “A Flexible 
Servernet-Based Fault Tolerant  Architecture,” Proceedings 
of the  25th Symposium on Fault-Tolerant Computing (June 
1995), pp. 2-11. 

13. T. Agenvala, J. L. Martin, J. H. Mirza, D. C. Sadler, D. M. 
Dias, and M. Snir, “SP2 System Architecture,” IBM Systems 
Journal 34, No. 2,  152-184 (1995). 

14. L. Kleinrock, Queueing  Systems Volume I: Theory, John Wiley 
& Sons, New York (1975). 

36, NO. 4,  535-552 (1992). 

BOWEN ET AL. 219 



15. J. Ranade, MVS: Performance Management, McGraw Hill, 
Inc.,  New York (1990). 

16. J. P. Strickland, P. P. Uhrowczik, andV. L. Watts, “IMSIVS: 
An Evolving System,” IBM Systems Journal 21, No. 4, 490- 
510 (1982). 

17. M. Swanson and C. Vignola, “MVSIESA Coupled Systems 
Considerations,” IBM Journal of Research and Development 

18. OSl390MVS Installation Exits, GC28-1753, IBM Corporation 
(March 1996); available through IBM branch offices. 

19. The SLM chase protocol includes the following sequence of 
events: First, a  response to  the escalation signal is sent with 
a message stating the lock is not managed hy this system. Then 
the requesting system makes another access to  the coupling 
facility where it will observe the now reset state of the lock 
table entry. If the state continues to  appear  to be held, the 
escalation signal is resent and  the process is repeated.  After 
a threshold of retries is exceeded, the lock table entry is placed 
in a recovery state and  the lock managers  perform  a  coor- 
dinated recovery for the entry. The chase scenario is a fall- 
out of any multisystem locking scheme  where  management 
of the locks is not bound  to a particular system. 

20. IMS is an example of a  transaction system that releases most 
locks at transaction commit time. 

21. As an example, GRS provides allocation locks for long-run- 
ning batch jobs, which may execute for  minutes or hours. 

36, NO. 4, 667-682 (1992). 

Accepted for publication January 8, 1997. 

Nicholas S. Bowen IBM Research Division, Thomas J. Watson 
Research Center, P.O. Box 704, Yorktown Heights, New  York 10598 
(electronic mail: bowenn@wazson.ibm.com). Dr. Bowen received 
the B.S. degree in computer science from the University of Ver- 
mont,  the M.S. degree in computer  engineering  from Syracuse 
University, and  the Ph.D. in electrical and computer engineering 
from the University of Massachusetts at Amherst. He joined IBM 
at East Fishkill, New York, in 1983 and moved to the Research 
Center in  1986, where he is currently the  Department Group Man- 
ager of Servers. He is a  senior  member of IEEE and a  member 
of ACM. His research  interests are operating systems, computer 
architecture, and fault-tolerant computing. 

David A. Elko IBM SI390 Division, 11400 Burnet Road,  Austin, 
Texas 78758 (electronicmail: david-elko@vnet.ibm.com). Dr. Elko 
is currently with the SI390 architecture  group in Austin, Texas. 
He joined IBM Poughkeepsie in  1980, worked in the MVS  and 
SI390 architecture groups, and moved to IBM Austin in  1995, join- 
ing the server group staff. Dr. Elko received a B.S. degree  from 
Indiana University of Pennsylvania, and  the MS. and Ph.D. de- 
grees in mathematics from the University of Notre Dame. His 
research interests are computer  architecture,  number theory, and 
topology. 

John F. Isenberg, Jr. Isenberg & Hall, Inc., 29 Thornwood 
Drive, Poughkeepsie, New  York 12603 (electronic mail: 
jacki@us3.global.ibmmail.com). Before he retired from IBM, Mr. 
Isenberg was involved in the design of the System1390 Parallel 
Sysplex. As part of this design work, he was a coinventor on seven 
key system patents, was a member of the Parallel Sysplex hard- 
ware and software design councils, and led the design efforts to 
achieve continuous availability in the Parallel Sysplex structure. 
He received a B.S. in electrical engineering  from  Carnegie Mel- 
lon University and  an  MS. in electrical engineering from Syr- 
acuse University. 

220 BOWEN ET AL. 

George W. Wang IBM  China Research Laboratory, 41F No. 26, 
6th Street, Shangdi Haidian District, Beijing 10085, P.R. China. Dr. 
Wang is currently  the  director of the IBM China  Research  Lah- 
oratory. He joined IBM’s Research Division as  a research staff 
member in 1978 at  the  Thomas J. Watson  Research Center in 
Yorktown Heights, New York. Dr. Wang’s research activity has 
concentrated on operating systems, database  management, par- 
allel processing, and distributed systems. He has held several IBM 
Research  management positions and was named  to his current 
position in December 1994. Dr. Wang has  been recognized for 
his research accomplishments and  has  earned IBMs Outstand- 
ing Technical Achievement, Outstanding  Contribution, and  Out- 
standing Innovation Awards, and  an IBM Corporate Award. Dr. 
Wang earned his Ph.D.  degree in experimental physics from  Co- 
lumbia University in  New York City in 1977 and  a  master of sci- 
ence  degree in computer science from the  same university in  1978. 

Reprint  Order No. G321-5641. 

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997 


