202 BOWEN ET AL.

A locking facility
for parallel systems

Clustered and parallel architectures provide the
ability to construct systems of high capacity,
scalable features, and high availability. In order
to provide high throughput in a shared-disk
architecture, fundamental advances in
multisystem locking technologies are required.
This paper describes a locking architecture and
operating system support provided for the
locking services in a clustered environment.
Although initially targeted toward database
systems, the functions are general enough for
use in many other environments. The paper also
describes the products that have deployed this
technology.

ynchronization is a fundamental function re-

quired in nearly any aspect of a computer sys-
temn. It has been studied in various research com-
munities including distributed database systems,
basic operating system principles, parallel process-
ing systems, and centralized database systems. In par-
allel processing the synchronization techniques must
be extremely efficient to allow frequent synchroni-
zation of parallel application programs (e.g., barrier
synchronization used in a parallel DO loop'). A sur-
vey of various techniques can be found in Reference
2. Concurrency control in database systems has also
been a well-studied problem in both centralized da-
tabases® and decentralized systems.* Kohler reviews
many techniques for concurrency control such as
locking, time stamps, circulating permits, tickets, con-
flicts, and reservations.* Although many of these
techniques are quite different, the fundamental goals
of high-performance locking services are similar. This
paper describes a locking facility designed for the
$/390* Parallel Sysplex*; this facility is general pur-
pose in nature and has specific implementations that
support database concurrency control systems.
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The objectives of this facility are high availability,
scalability, and high transaction throughput for work-
loads that are both update-intensive (high write-to-
read ratios) and read-intensive (low write-to-read ra-
tios). Although there are many emerging systems
with strong claims for availability, scale, and through-
put (see Reference 5 for a comprehensive and re-
cent survey and analysis), these systems do not gen-
erally support high write-to-read ratios unless the
workloads are first partitioned across systems. It is
claimed that a “shared-disk” function (that is, all
disks are accessible from all processors) combined
with a high-speed locking facility are essential func-
tions. Note that additional functions are also required
(e.g., high-speed cache-like functions and shared-
memory functions),*” but this paper focuses on lock-
ing.’

This paper is organized as follows. The next section
describes the system model and design objectives,
and is followed by a section on an overview of the
locking services. The last section justifies many of
the technical claims through performance modeling
and measurements.

System model and objectives

Parallel processing is increasingly being used in com-
mercial systems. The limitations of symmetric mul-
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tiprocessors (SMPs) have long been noted, ® with prac-
tical limits on the order of ten processors. However,
demands for processor capacity greatly exceed this
capability and the advent of advanced coupling tech-
nology’~" and commodity technology (e.g., proces-
sors, interconnects, disks) is driving these systems
into acceptance in commercial markets. An overview
of these systems, in addition to covering several key
technical issues, can be found in Reference 5.

There are four key objectives to the $/390 Parallel Sys-
plex, specifically related to the use of parallel tech-
nology. These are:

1. High availability

2. Scalability

3. High transaction throughput

4. High write-to-read ratios in the workloads

Underlying the parallel architecture is a shared-disk
architecture. In Reference 5, various topologies for
connecting disks to processors are discussed and it
is observed that many shared-nothing architecture
(i.e., disks partitioned among the processors) imple-
mentations are emerging. It is claimed that to achieve
a high write-to-read ratio, not only must a shared-
disk architecture be used, but in addition, advances
must be made in critical functions to support data
coherency among processors. These functions, em-
bodied in the $/390 coupling facility,*” contain func-
tions for buffer sharing and invalidation, shared
queue structures, and locking. Not only does this sys-
tem support high write-to-read ratios but it can also
achieve higher levels of success with respect to avail-
ability, scale, and throughput. There are also ben-
efits in areas such as workload management, systems
management, and similar issues that are further dis-
cussed in Reference 6.

The primary workload is high-throughput transac-
tion-processing systems. In addition, the workloads
contain relatively low database contention. Low re-
sponse time is critical for high-throughput transac-
tion processing, and locking is a critical component.
This can be illustrated with a simple use of Little’s
Law!* that states the multiprogramming level is a
product of the arrival rate and the response time.
For example, assume an arrival rate of 100 transac-
tions per second with an average response time of
(.5 seconds. This would lead to a multiprogramming
level of 50 transactions; that is, on the average at any
instant there would be 50 transactions at some point
in their execution in the system. The lock conten-
tion seen by any given transaction is a function of
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the current locks held by other transactions. Thus,
the multiprogramming level has a major impact on
the lock contention. Now consider the transition
from a database running on one processor to one
being accessed across multiple processors. Obviously,
the response time to obtain a lock will increase. Us-
ing the above discussion, this effect would increase
the multiprogramming level, which could impact the
lock contention. This highlights the key performance
objective, which is to provide a high-speed locking
facility that has a minimal impact in transaction pro-
cessing performance in a parallel system and has the
additional property that more processors can be
added without further affecting the lock response
time (i.e., the algorithms are not a function of the
number of processors in the parallel server).

For historical perspective we also highlight the evo-
lution of the multisystem locking capabilities of clus-
tered $/390 processors. Shared disks, initially intro-
duced in 1969, provided multisystem serialization
controls by allowing one system to reserve the de-
vice (that is, lock out other systems from accessing
the disk) for a period of time. The global resource
serialization (GRS) component provided shared or
exclusive named locks across multiple systems. ' This
was used by operating system components to seri-
alize file access across multiple systems. This gave
the capability to concurrently share files on a single
disk drive. The resource lock manager was intro-
duced to provide record-level locking and buffer
management for IMS* (Information Management
System) in a two-system configuration. '® Finally, the
coupling facility introduced the locking model that
is the basis of this paper.® Table 1 summarizes this
discussion.

$/390 Parallel Sysplex and the locking
model

The system consists of multiple operating systems
with a shared-disk architecture. This is referred to
as the $/390 Parallel Sysplex. The base operating sys-
tem contains a rich set of services to support the clus-
tering of these systems. These include membership
services, high-speed signaling, and shared-disk sup-
port.®"” The system, as shown in Figure 1, consists
of up to 32 processing nodes (each of which can be
up to a 10-way SMP) connected to shared disks. Each
SMP runs a single copy of the 05/390* operating sys-
tem. For the remainder of this paper, we use the term
system to describe one of the nodes. The sysplex timer
serves as a synchronizing time reference source for
systems in the sysplex, so that local processor time
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Figure 1  Parallel Sysplex system model
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Table 1 History of serialization techniques for the $/390, where M = number of systems in the cluster

Near. . el Type * Relative Granularity

; s Bl Performance -

1969 : Device reserve O operation Disk drive

1980 GRS M = IO operations Files, general purpose
1981 . e IRIM 2 = 1/© operations Ditabase records
1992 Coupling facility Context switch General purpose
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stamps can be relied upon for consistency with re-
spect to time stamps obtained on other systems. The
coupling facility (CF) is a key Parallel Sysplex tech-
nology component providing multisystem data-shar-
ing functions. An overview of the various function-
alities is described in Reference 6. It is important to
point out that the CF is implemented using an $/390
processor with special links to the other systems.

This paper focuses on the locking model. The com-
plete details of this model are beyond the scope of

a single paper; our objective is to provide an over-
view of the architecture. In order to simplify the pre-
sentation of the model, the architecture is described
from the perspective of three layers. We first describe
the basic underlying architecture and the functions
within the coupling facility. Next we describe the ad-
ditional services and functions that are added by the
operating system. Finally we describe the view from
the perspective of a user of the operating system ser-
vices. This is a unique aspect of the scheme—that
various database lock managers can tailor their use
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to create a multisystem lock manager with unique
locking semantics.

Level 1: The locking architecture. This section de-
scribes the underlying locking architecture. This pri-
marily describes functions within the CF. Neverthe-
less, the functions described are actually part of both
the CF and the operating system.

Conceptual model. Viewed in isolation, this aspect
can be described as a centralized lock manager that
provides simple shared (SHR) and exclusive (EXC)
semantics. It does not provide queuing. A user can
operate against a named lock table. Multiple tables
are supported where each table contains NV lockable
entries (0...N — 1). Table 2 shows the semantics
of this model.

A key aspect of this system that sets it apart from
conventional approaches is that the requests to the
locking facility are done synchronously with respect
to the processors that execute the request. That is,
when a lock request is made, the requesting proces-
sor logically stalls until the request is completed. This
approach is taken because the performance charac-
teristics of the locking service make it technically fea-
sible. The issue of the performance impact on the
design is discussed in more detail in a later section
of this paper. This means that a context switch is not
needed, thus avoiding issues such as the overhead
of suspending the requestor and the complexity of
asynchronous locking protocols.

Physical model. Figure 2 shows the key structures
within a locking table. It contains N entries and each
entry has information to track the exclusive or shared
state. For each entry, the first byte is used to contain
the system identifier for exclusive or globally man-
aged locks (these terms are explained in detail short-
ly). The second field in the entry is a bit vector with
one bit for each possible system that may have in-
terest for this entry. These bits represent the inter-
est of a particular lock manager on a particular sys-
tem. The concept of individual lock managers is
clarified in the next two sections.

Figure 3 shows the overall structure of the multisys-
tem locking model. There are up to 32 nodes con-
nected to one or more coupling facilities. Each sys-
tem may have multiple links to the coupling facility
for both availability and performance reasons. The
performance of the link is critical to achievement of
the synchronous behavior and is explored in further
detalil in a later section. There can be multiple cou-
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Figure 2 Structure of a locking table
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Table 2 Locking semantics from the Level 1

perspective
Current Request Outcome
State
Free SHR Granted in share mode
Free EXC Granted in exclusive mode
SHR SHR Granted
SHR EXC Granted with warning about
) share holders
EXC SHR Rejected but told who is the owner
EXC EXC Rejected but told who is the owner

pling facilities, again for both performance and avail-
ability reasons. And finally, within each coupling fa-
cility there can be one or more named lock tables.

Level 2: The operating system. This section describes
the operating system support for the model. The fo-
cus is a simplified description of the locking capa-
bilities. The actual capabilities go far beyond the sim-
ple shared and exclusive model described here. The
complete set of services in the product is defined in
Reference 10 and an overview is provided in the next
section on system-level components.

Conceptual model. The model presented in Level 1
would have limited use in any real system. This sec-
tion discusses the enhancements in the operating sys-
tem to provide a richer set of locking semantics while
exploiting the basic services provided in the Level
1 model.

The operating system provides the capability to name
a lock request. The name consists of a character
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Figure 3 General locking model
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string, to be referred to as the lock name, and an
integer, to be referred to as the hash class value. In
addition, queuing of conflicts and additional seman-
tics to support multiple lock states (this aspect will
be discussed in the Level 3 description) are also pro-
vided. The conceptual model has aspects of both a
distributed lock manager and a centralized lock man-
ager. The set of operating system services that sup-
port this model is referred to as the system lock man-
ager (SLM). The operating system views the locking
architecture as a high-speed lock-contention detec-
tor. By exploiting the locking hardware, the oper-
ating system is actually able to operate in two dis-
tinct modes. When there is no contention, the Level
2 model is that of a high-performing centralized lock
manager. When contention exists, the Level 2 model
is a distributed lock manager that uses signaling pro-
tocols to resolve contention and perform notifications.

Physical model. The implementation of these services
1svery complex and a complete description is beyond
the scope of this paper. Instead, several sample lock
requests are used to illustrate the key functions pro-
vided. The actual programming interfaces contain
much more than described here. Figure 4 shows the
overall model with respect to this level. Lock queues
have been added at each system and there is a sig-
naling protocol used to resolve lock conflicts. First
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we want to highlight where lock state information
is stored. The coupling facility contains the state of
each lock table entry, while each processor contains
additional state information.

The notation used in these scenarios is first described.
Figure 5 shows three systems connected to a cou-
pling facility. The examples used all refer to lock ta-
ble entries i and k. The lock table entries are used
through a concept called fash classes, which are de-
scribed in subsequent sections. The relative point is
that lock names are mapped to hash classes and all
lock managers that are using a common lock table
must also use a common hashing algorithm.

Within the lock table entry the exclusive field (the
column “EXC”) will refer to the system that currently
has exclusive control of that lock entry. The share
string is a bit mask that positionally refers to a sys-
tem that has shared interest in the lock entry (if set
to “1”). For example, a share string of “011” means
that systems 2 and 3 have shared interest. Within
each system four distinct areas of state and queue
information are shown. These are used to clarify the
examples and do not necessarily indicate how it was
implemented. The first area, local lock state, is where
each system “remembers” its own view of the state
of each lock entry. This is either no knowledge (0),
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Figure4 Operating system model
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shared knowledge (S), exclusive knowledge (E), or
that some other system is an exclusive holder (Gx).

The second area, local queues, shows the software
queues that are maintained when a lock is granted
without the involvement of other systems. This shows
the lock name and the hash class value (e.g., “A,i”),
and the current requestor, state, and ownership (e.g.,
“P, (Own, EXC)” means that Process P, owns the
lock in exclusive mode). The third and fourth areas
show the same type of information as in the local
queues but with a different perspective. Requests are
moved into the third area when another system be-
comes the global manager (i.e., a single system pro-
vides overall management of the hash class). That
is, this area shows the view of this system of a global
queue. Requests are moved to the fourth area when
this system becomes the global manager of the
queues. Therefore, the locks in this area represent
the complete global state.

The first example (see Figure 6) shows a simple re-
quest from Process P, for a lock named A4 in hash
classi. Upon receiving this request the local lock state
is checked for hash class i, and since it has no knowl-
edge of the state it makes a lock request for hash
class i in exclusive state (shown with action 1 in Fig-
ure 6). The coupling facility receives this request and
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since there are no prior requests for this hash class,
it sets the exclusive entry with that of System 1 and
returns a positive response. System 1 then grants the
request and sets the appropriate information in the
local queues. It also sets an indicator in the local lock
state and records the full lock name in the local queue
area. Process P, is able to obtain a global lock with-
out interacting with any other systems.

Figure 7 shows the resulting state after Process P,
on System 2 obtains a lock named C in hash class
k. This also results in a single trip to the coupling
facility where the share entry is now positionally set
for System 2. The request is then recorded in the
local queues and granted.

The next example (Figure 8) shows the case where
a process makes a request that is compatible at the
hash class level. The key point in this example is that
the global lock is obtained without even having to
visit the coupling facility. Figure 8 shows an exam-
ple of Process P, on System 1 making a request for
a lock named B in hash class i. This time when the
local lock state is checked the system determines that
it already has exclusive interest in the hash class so
it does not need to make a coupling facility access.
It can simply check the local queues and determine
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Figure 5 Notation

that the request is for a different lock than what is
currently held. The request can then be granted.

Figure 9 illustrates how requests “bump into” one
another at the hash class level from multiple systems
but are still compatible. The key point in this exam-
ple is that the global lock is obtained without having
to exchange lock names even when there is some col-
lision at the coupling facility. Figure 9 shows an ex-
ample of Process P, on System 3 making a request
for a lock named D in hash class k. The local lock
state indicates that the system has no interest in the
hash class so a request is made to the coupling fa-
cility. This time the coupling facility sees that Sys-
tem 1 also has a shared interest in the request but
since the current request is compatible (shared) it
sets the share entry for System 3 and returns a pos-
itive response. System 3 is never made aware of the
other “sharers” and the request can then be granted.
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The previous example (Figure 9) illustrated the case
of a hashing scheme mapping multiple lock names
to the same hash class. A variation on that example
is now shown—when two different lock names map
to the same hash class but they are incompatible at
the hash class level. Figure 10 shows an example of
Process Ps on System 1 making a request for a lock
named E in hash class k. The local lock state indi-
cates that the system has no interest in the hash class
so a request is made to the coupling facility. This
time the coupling facility realizes that several sys-
tems have a shared interest in the hash class. The
coupling facility sets the exclusive entry and returns
the shared string to System 1. System 1 has now ac-
cepted responsibility to sort out the giobal state of
this hash class. System 1 then begins a process called
escalation in which a global queue for the hash class
must be built. It first parses the shared string to de-
termine that Systems 2 and 3 have interest in the hash
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Figure 6 Initial request
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class and signals those systems to return their lock
information. There are two important points here.
First, these signals are done in parallel over a high-
speed signaling facility. Second, only the systems that
have a current interest in the hash class are signaled.
This is an important aspect of the scalability of the
design—if there were 32 systems in this example con-
figuration only two systems would be interrupted for
lock information. Once System 1 receives the local
information from the other systems, it builds a global
picture and realizes that there is no contention for
any lock name, just for a hash class. This situation
is called false contention and the process P; can be
granted the lock. The example also shows a move-
ment of the queue information on Systems 2 and 3
to the local portion of global queues. This is to il-
lustrate that the process now has a responsibility to
communicate with the global manager on future state
transitions (e.g., unlocks). Also note that the local
lock state was changed from S to G, indicating Sys-
tem 1 is the global manager for this hash class.
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Our final example (Figure 11) looks at real conten-
tion. Figure 11 shows an example of System 2 mak-
ing a request for Process P, for a lock named A in
hash class i. The local lock state indicates that the
system has no interest in the hash class so a request
is made to the coupling facility. This time the cou-
pling facility realizes that System 1 has exclusive in-
terest in the hash class. The coupling facility returns
an indicator that System 1 is the exclusive owner of
the hash class. When System 1 receives the message
from System 2 it then builds a set of global queues.
Since it was the exclusive owner it does not have to
signal other systems. Once the queues are built it
determines there is real contention. There are elab-
orate facilities for handling contention that are de-
scribed in the next section.

Level 3: System level components. This section com-
pletes the description of the locking services by high-
lighting how a system level component (e.g., a da-
tabase manager) could use these services. The goal
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Figure 7 Initial shared request
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of this section is to illustrate the flexibility of the
model and not provide a comprehensive description
of all capabilities. The model has been used by sev-
eral database managers (e.g., IMS, DB2*, and Virtual
Storage Access Method, or vSAM) and details of their
experiences can be found in related papers.

Although the Level 2 model is a general-purpose lock
manager, many database lock managers have much
richer locking semantics such as multistate support
(e.g., more than just the two basic lock states; shared
and exclusive). Other functions such as lock promo-
tion or demotion (i.e., changing the state of a cur-
rently held lock) are critical for the overall perfor-
mance in a clustered environment. Using the
semantics of the Level 2 model, the Level 3 model
can be tailored to support virtually any lock model.
For example, the lock states supported by many da-
tabase systems are far more complex than the sim-
ple shared or exclusive state. Using the following fea-
tures this can be accomplished.
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This section describes some of the key capabilities
that can be constructed using the Level 1 and Level
2 models previously described. Since the paper de-
scribes a general set of functions that could be con-
structed by any lock manager, we use the term fai-
lored lock manager (TLM) to represent its name. A
TLM can be specific to any environment such as a
database manager or a shared file system. The key
point is that the TLM must be able to optimize its
performance based on its unique environment. The
functions in the lower levels provide these building
blocks. These points are illustrated by presenting a
partial list that highlights some of the unique capa-
bilities of this model.

Lock names and hash classes. In general, database
managers (DBMs) lock on names that are meaning-
ful in their particular data structure. For example,
the IMS system uses a lock with 19 bytes (or 152 bits)
that is representative of the data in the 1MS hierar-
chical data structure. The DBM can thus optimize the
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Figure 8 Compatible requests—local
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locking structure around the data structure. Obvi-
ously the number of Jocks held at any given point in
time is an extremely small fraction of the 2'°? locks
that are possible. In order to provide for efficient con-
tention detection between systems, a hashing algo-
rithm is employed to map the lock names into a hash
class table. As long as the tables are of a size that
is many times larger than the number of locks held,
any false contention on a hash class is kept small.
An initialization process is used by the DBM and the
TLM to allocate resources in the system lock man-
ager (SLM) and the coupling facility to provide for
the appropriate contention detection. At initializa-
tion time, the first TLM that is started calculates an
appropriate size for the coupling facility hash tables
(out of the total storage made available for lock ta-
bles and record tables by the customer policy) and
requests the SLM to allocate structures for the hash
tables using a predefined name of a sharing group.
Subsequent TLMs that are started share the same data
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join in the use of the facilities allocated by the first
TLM by using the same sharing group name.

The TLM can also specify a 64-byte “user-data” pa-
rameter with the lock requests. One use of this in-
formation is to contain the lock states when the TLM
lock protocol supports states other than just share
and exclusive.

Contention detection. A lock can be held with one of
several ownership privileges. Ownership can be
granted when the privileges of the holders (if any)
are compatible with the privileges needed by a new
requestor. For example, a lock may be requested with
either share or exclusive privilege. Contention is de-
tected when a share privilege is requested and a lock
holder has exclusive privilege, or when an exclusive
privilege is requested and there are existing hold-
ers.
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Figure 9 Compatible requests—remote
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Contention and notify exits. The SLM communicates
to the TLMs via a mechanism called exits in 08/390. '
Two of these exits, the contention and notify, are the
means by which the TLMs resolve contention for
shared resources. In these exits, the 64-bytes of user
data can be inspected or modified. One key value
is that complex lock protocols can be implemented
using this structure.

Waiter queuing. When the lock manager cannot grant
a lock because of contention, the SLM preserves a
record of the request on a list of waiters. The rules
for processing waiter queues vary among each pair
of DBMs and TLMs. The queuing is done within the
SLM; however, the rules for lock compatibility are
done by the TLM using the exits mentioned previ-
ously.

Availability and recovery recording. In order to meet
the demanding continuous availability requirements
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of many of today’s large commercial transaction sys-
tems, it is important to allow processing to continue
with full integrity of the database while handling re-
covery from a hardware or software failure. Since
the coupling facility is electronically and logically iso-
lated from the systems that are running the
DBM/TLM/SLM software, it provides the necessary
availability for recovery from a system or software
failure. The coupling facility structure provides both
alocking function and a recovery recording function.
Modify lock names (exclusive locks that are used to
update database records) are recorded in the list el-
ements in the coupling facility recovery tables. A list
is assigned to each instance of the system lock man-
ager participating in the global managed locking pro-
tocols. The coupling facility uses the user identifi-
cation (UID) that specifies the particular system lock
manager to access the appropriate list. Atomic op-
erations that manipulate lock table entries and
record data elements are provided in the coupling
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Figure 10  False contention
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facility architecture. These operations support com-
mands for creating, reading, replacing, and deleting
elements. By providing atomic operations, the ar-
chitecture ensures that the lock structure and the re-
covery structure are always consistent. Note that in
the event of a failure of the coupling facility, no data
are lost since all the information in the coupling fa-
cility is replicated in the set of TLM/SLMs. Since the
architecture supports multiple coupling facilities, a
new structure can be allocated in another facility and
the TLM/SLMs recreate the coupling facility contents.

Contention resolution. Let us now examine the pro-
cess used by the TLM/SLM for the resolution of con-
tention. Although the key points are highlighted
here, the reader is referred to Reference 9 for a com-
plete description. In order to determine the exis-
tence of contention, the coupling facility and the SLM
use the lock compatibility matrix shown in Table 2.
Any time the requested state is compatible with the
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existing state, the request is granted and the lock is
locally managed by the holder(s). When the re-
quested state is incompatible with the existing state,
then the lock becomes globally managed by a cho-
sen TLM/SLM combination, and this request along
with future requests are processed by the global man-
ager (TLM/SLM). The chosen SLM does not manage
the contention, but rather maintains a queue of hold-
ers and requestors for the TLM to use to manage the
contention. When contention is detected, the cho-
sen SLM passes the request queue to the TLM by us-
ing the contention exit mentioned earlier. The user
data information plays an integral role in enabling
user-defined lock protocols. At this point the TLM
must manage the contention by the use of one of
the following actions:

1. Grant a pending request, possibly with a differ-
ent state than that requested. This will cause the
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Figure 11 Contention
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requestor to resume, or will control its comple-
tion exit if appropriate.

2. Deny a pending request. This will also cause the
requestor to resume, or its completion exit to be
taken. However, in this case the requestor is also
told of the rejection and given any data provided
by the denying TLM. The user data can be mod-
ified when the request is denied. Since this is pre-
sented to the requestor of the denied request, the
user data can be used to communicate the rea-
son for denial.

3. Regrant a held request with a different state than
it was originally granted (e.g., demotion of a lock
that is held exclusive to shared). In this case the
holder’s completion exit is initiated, informing the
holder of the change in state. In addition, the user
data can be modified on a regrant.

4. Inform a current resource owner that contention
exists for a resource it owns. This is done by pass-
ing the notice (through the SLM) to the holding
TLM by use of its notify (notification) exit.
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5. Leave arequest pending. The request will be left
in the request queue maintained by the SLM. The
TLM may grant the request on a subsequent in-
vocation of the contention exit (e.g., when the un-
lock of the current owner is presented to the con-
tention exit).

This implementation of TLM/SLM exits and com-
mands provides a powerful method for implementing
lock negotiation protocols in the TLM while allowing
the system (SLM) to maintain an awareness of the con-
tention, and the state of the holder/requestor queue.
In turn, this allows the TLM to implement a process
whereby users (DBMs) initially obtain high-level locks,
and then negotiate them downward to finer levels
of granularity as contention occurs. This process of
negotiating and notifying continues iteratively until
the TLM determines that no more notifies are re-
quired and the state of the holder/requestor queue
is correct. The global management of the lock con-
tinues with the selected TLM/SLM until contention
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no longer exists. Note that due to the flow of requests,
including unlock requests, it is possible that the global
manager TLM does not have any interest in the lock
it is managing.

Locking performance

The performance of the locking function is a critical
component of a parallel transaction processing sys-
tem with shared data. Much effort went into ensur-
ing that the overhead of locking was as small as pos-
sible. There were many components of this effort.
Several of the most critical are described in this sec-
tion. It should be noted that this is not a reflection
of a completed body of work, but represents work
in progress. As most complex designs evolve, the per-
formance bottlenecks become better known and
their solutions often affect the original design accord-
ingly. Locking in a Parallel Sysplex is no exception.

Synchronous versus asynchronous locking, Accesses
to the coupling facility for obtaining locks require

a communication outside of the processor. In that-

way it is similar to an /O operation. However, the
overhead of an /O operation is well known to be det-
rimental to both system throughput and transaction
response time. Much effort has been expended on
nonparallel transaction systems to reduce the num-
ber of 1/Os by extensive use of main storage and ex-
panded storage to hold /0 buffers. Such data buff-
ering allows records to be accessed without the need
to drive an 1/O operation and suspend the transac-
tion. This reduces the path length of the transaction
and significantly improves the transaction response
time.

It is a design goal in the Parallel Sysplex to minimize
the additional unavoidable system overhead intro-
duced by locking without elongating the transaction
response time. This is accomplished by (1) building
protocols on the coupling facility links that optimize
the communications for low latency rather than high
bandwidth, and (2) defining the architectural inter-
face to allow for locking commands to be delivered
to the coupling facility and responses received within
a single CPU instruction. The processor spins in an
idle loop in the microcode from the time the com-
mand is sent on the coupling facility link to the time
when the response is returned and stored in main
storage. This is referred to as synchronous command
execution. The alternative design is to perform a con-
text switch, i.e., the process thread is suspended from
execution and a new process thread is dispatched.
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This is referred to as asynchronous command exe-
cution.

It is important to validate that this choice is optimal
for both design goals: minimizing system overhead
and minimizing transaction response time. Access
times to the coupling facility are measured in the
range of 50 to 500 microseconds, depending on the
operation and the speed of the processor, which is
significantly better than the several milliseconds that
an I/O operation requires. So from the point of view
of transaction response time, the synchronous de-
sign is clearly superior.

However, what is less clear is whether the design
maximizes system throughput. Since the alternative
asynchronous design is to suspend the thread and
perform a task switch, success of the synchronous
design is determined by comparisons against the
overhead of this approach. If the round-trip access
time to the coupling facility takes less CPU time than
the cost of performing a task switch, then it is deemed
to be the correct choice.

The cost of a task switch has two components. The
first is the path length that is required to suspend
the work unit thread, to dispatch a new thread, to
field and process the resulting interrupt on the back
end of the operation, and finally, to redispatch the
original work unit thread. A value of 2000 instruc-
tions is used for this path length. The second com-
ponent is the reduced performance of the processor
caches that results from the context switch and the
subsequent purging of the working set for the thread
from the hardware caches. Much work has been done
to estimate this overhead for various processors, and
a value of 4000-5000 instructions is used for this ef-
fect. So the total overhead of a task switch is esti-
mated at roughly 6000-7000 instructions.

Since the overhead of the synchronous access to the
coupling facility is easiest to measure in units of time,
it is useful to convert the asynchronous penalty ac-
cordingly. The processor speed is clearly a relevant
factor since it is more costly to allow a faster pro-
cessor to wait than a slower processor. The proces-
sors under consideration have a MIPS (million instruc-
tions per second) rate that ranges from 20 to 50 MiPS.
Using these numbers, one obtains a break-even point
for the synchronous operation in the range of
6000/50 = 120 microseconds to 7000/50 = 140 mi-
croseconds for the faster 50 MIPS processor and in
the range of 300 to 350 microseconds on the slower
20 MIPS processor.
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The synchronous time for a coupling facility access
has several components that can affect the overall
time. These are referred to as elongators. One crit-
ical factor was already described, namely the link pro-
tocol. To minimize this impact, special links were de-
veloped that were point-to-point links and had
minimal handshaking. In fact, the entire link oper-
ation consists of a single transfer of the command
block to the coupling facility and a single transfer of
the response block back to the originating proces-
SOr.

A second key elongator is distance. Most of the neg-
ative effects of distance are eliminated by the link
protocol that eliminates end-to-end handshaking,
However, distance still remains a factor and elon-
gates an operation by about 12 microseconds per ki-
lometer. Since most distances were originally ex-
pected to be within a machine room or, at worst, up
to the limits of fiber-optic channels (about 3 kilom-
eters), it was not viewed that distance would be a
serious concern. However, it is an intrinsic problem
and no amount of additional design will remove it.

A third elongator is the path length needed in the
software lock managers that is required to initiate
the operation and process its completion. This is
needed in both the synchronous and asynchronous
designs, but it is still critically important to minimize
these path lengths. Several different efforts have been
devoted to minimizing these paths and that work is
ongoing.

A fourth elongator is the complexity of the process-
ing that is performed by the coupling facility. In this
regard, the final design is somewhat of a trade-off.
It had been an original goal to define the locking ar-
chitecture so that a hardware implementation would
be possible. But the benefits of the additional func-
tional capability provided by a microcoded imple-
mentation moved us away from that goal. However,
significant effort was spent in making the command
definitions simple and streamlined. One key aspect
was the decision to put queuing and waiter notifi-
cation in the SLM component and minimize the func-
tion provided by the coupling facility to simple con-
tention detection and minimal logging for recovery.

The measurements show that a synchronous lock-
ing operation on a 50 MIPS processor connected to
an equivalent speed coupling facility completes in
about 80 microseconds; this is well below the 120-
140 microsecond break-even point. Similarly, a syn-
chronous locking operation on a 20 MIPS processor

connected to a 20 MIPS coupling facility completes
in about 150 to 200 microseconds, again below the
break-even point. Where the design is not optimal
iswhen a 50 MIPS processor is connected to a 20 MIPS
coupling facility. Then the transfer time is still in the
150-200 microsecond range since the components

System overhead for locking
is minimized without
elongating the transaction
time.

of time are mostly determined by delays outside of
the processor. However, this is no longer better than
the overhead of a task switch. For this reason and
for similar considerations when data transfers are
included, an asynchronous interrupt has been de-
signed (not in the current product). Its use would be
managed by a heuristic routine that monitors the syn-
chronous delay and switches modes accordingly. This
will be especially useful in addressing the concerns
of distance in a sysplex where several factors, such
as increased fiber-optic capabilities and the move
toward remote site recovery, are changing some of
our original views on distance limitations.

Lock contention. Contention occurs when a lock re-
quest for a resource appears to be incompatible with
its current lock state. This is a statement that is rel-
ative to the given level of locking (as defined in the
section on locking models), where each level may
have a different view of contention and may act on
it in a different manner. At the architectural level,
contention is detected on hash classes of locks. Con-
tention, when detected, is reported to the SLM via
information stored in the response block. The SLM
attempts to resolve the contention by communicat-
ing with its other instances that share information
on the hash class and comparing the actual lock name
with the set of lock names for the current owners
and waiters. It may turn out that the lock name that
is requested does not match any of these other names.
In this case, contention does not exist at this level and
the lock can be safely granted. This situation is referred
to as false contention, i.e., contention detected at the
architectural level that turns out not to exist at the SLM
level, which resolves the contention.
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1t may turn out that the SLM finds one or more match-
ing names in the list of names registered for the hash
class. This is referred to as real contention, although
that is actually a misnomer. The SLM reports the real
contention to the contention exit of the TLM. The
TLM makes the final determination of the conten-
tion. If the TLM can decide the contention is real,
then the requestor is queued. Alternatively, the TLM
can grant some requests that appear (such as from
a share/exclusive model) in contention. It may turn
out that the lock name is covering too large an area
of granularity in the database, and finer granularity
locks are required. This results in renegotiating all
the relevant locks to a lower granularity, where ac-
tual contention may not exist. This hierarchical ap-
proach to locking is used to avoid getting locks on
areas of the database that are relatively inactive, or
tend to be accessed mostly by a single system. This
design can significantly reduce the overall locking
rate and is a key method for gaining performance
by adjusting the locking rate to match the level of
contention in the system.

When the granularity of locking is at its finest level,
real and actual contention coincide. Workload traces
indicate that this level of contention is extremely
small in most transaction systems, and it is generally
believed to be the case that significantly less than
(.5 percent of all lock requests experience actual con-
tention.

False contention is another matter. False contention
is a function of the size of the lock table (as a pro-
portion of the number of active locks in the system),
and the hashing algorithm. The size of the lock ta-
ble can be reconfigured dynamically to make it larger,
so there is some amount of tuning that can be done
by the system programmer to minimize the occur-
rence of false contention. The hashing algorithm is
more difficult to manipulate and much work has gone
into developing uniform hashing functions. The gen-
eral rule of thumb is that the total contention in the
system should be no more than 1.0 percent. If the
locking design is good, real contention can be man-
aged to extremely small levels. And if the hashing
function is relatively uniform, then false contention
can be managed by controlling the size of the lock
table. This is the strategy that is employed.

Consider the example cited in the section on system
model and objectives, where a transaction rate of 100
transactions per second and response time of .5 sec-
ond yields a multiprogramming level of 50. Assum-
ing 20 locks held per active transaction, one can pre-
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dict 1000 current locks held at any time. If the false
contention is to be maintained at under 0.5 percent,
then the lock table should have this percentage of
nonzero entries at any given time. In other words,
the table should be 99.5 percent empty on the av-
erage. Thus, the number of hash classes defined
should be 200 times the number of locks held. So
the lock table should be defined with 200 000 entries.

Unlock operations. Special considerations are given
to the handling of unlock operations. In particular,
two architecture extensions were developed to im-
prove on unlock performance. One is a special in-
terface that allows the operation to proceed asyn-
chronously without the need for an interrupt, and
the second is a command that allows a list of lock
table entries to be sent to the coupling facility in a
single operation.

Asynchronous unlocks. This section describes a ca-
pability that is not in the current product but is rel-
evant to an overall understanding of the system de-
sign. An unlock operation to the coupling facility is
a command that resets an exclusive field or a share
bit in a lock table entry to zero. This creates a win-
dow in the state of the lock table entry where the
system performing the reset views the lock as free,
but another system may be viewing the lock table
entry just prior to its being reset. Thus an escalation
signal may be received by the original owning sys-
tem after the lock is released. This window is un-
avoi(giable and is handled by the SLM chase proto-
col.!

A consequence of the chase protocol is that it is no
longer a requirement to perform the unlock oper-
ation synchronously. The window exists whether the
operation is performed synchronously or asynchro-
nously to the CPU. If the unlock operation should
fail without updating the lock table entry, then the
mismatch in state is detected by the next requesting
system and recovered by the chase protocol.

The locking architecture exploits this by providing
for the specification of an asynchronous option that
causes the CPU to release control and return to the
program as soon as the command has been trans-
mitted on the link and before the response is re-
turned. At the conclusion of the command, the re-
sponse block is stored in the main storage by the
channel, but no interrupt is generated. At this point,
the architectural interface is returned to the idle state
and new operations can be initiated. So, even though
the response is stored, it is not acted upon by the
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operating system. This is referred to as the no-re-
sponse protocol. This allows the overhead of the
operation to be reduced to the minimum start-up
penalty on the issuing CPU and is on the order of
200-300 processor cycles (or about 20-30 microsec-
onds).

This protocol is used selectively by the operating sys-
tem and is generally limited to isolated unlock op-
erations (nonlist form) that do not have any asso-
ciated record table updates.

Batched unlocks. Most transaction systems obtain
locks during the execution of a transaction as they
are needed and released collectively when the trans-
action is committed.? So while locking operations
occur as individual events, unlocks tend to occur in
a batch. It is thus reasonable to consider allowing
the unlocks to be batched in a single operation to
the coupling facility, and this function is provided in
the architecture. This allows the overhead required
to initiate the operation and the transmission time
on the link to be apportioned across the set of lock
names in the list of unlock operations.

It turns out, however, that the multilevel design ap-
proach to locking makes this a very complex func-
tion, and it was added very late in the development
cycle. The problem is that the list must be handled
at each level, and the state of the locks, as viewed
by each lock-manager level, is different. The simplest
level is the TLM level, which simply builds a list of
lock names with the associated hash-class values that
are held in either the shared or exclusive state. The
SLM, however, must parse this into two lists: one list
of those hash classes that have undergone escala-
tion and are managed, not in the coupling facility,
but by some instance of an SLM, and a second list
that this SLM views as managed by the coupling fa-
cility.

The first list is actually processed individually by the
SLM, and no performance gain is realized. The as-
sumption of low contention generally makes this a
short list, but the complexity of handling it must, nev-
ertheless, be incorporated in the design.

The second list is bundled in a command and sent
to the coupling facility. This is where the perfor-
mance benefit is realized. Batch sizes vary, but it is
not unusual for a transaction to obtain 10-20 locks
and release these all at commit time. So, significant
savings can be achieved with this scheme.
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Considerations for multiple lock managers. A key
attribute of transaction processing systems that has
already been articulated is that most locks are gen-
erally obtained and released within a transaction. So,
the lock hold times are reasonably short (less than
a second or so). As the example above shows, the
number of concurrent locks held in the system can
be estimated as the product of the average number
of locks per transaction and the multiprogramming
level. Both of these can be measured by standard
system performance monitors and, from these, the
lock table size can be effectively calculated in the
manner shown above. Subsequent monitoring of the
false contention rate allows the size to be adjusted
and tuned to fit the workload.

In order for this process to be successful, the class
of locks mapped to the lock table must be limited
to the set of transaction locks associated with a par-
ticular TLM. Otherwise there is too much unpredict-
ability in the mix of locks. Unfortunately, there are
several multisystem locking components in $/390 sys-
tems. Aside from the various transaction managers,
IMS, DB2, and Cics* (Customer Information Control
System), there are system-locking components such
as global resource serialization (GRS). In the case of
GRS, the locks are often obtained and held for very
long durations.” Since the TLM components have
control of the hashing algorithms, special locks, such
as the allocation locks with very long hold times, can
be separated into unique hash classes. These hash
classes would be, essentially, permanently managed
by the SLM.

However, in order to remain effective, this separa-
tion must be maintained all the way to the coupling
facility. This is accomplished in the architecture by
providing named lock tables and allocation functions
that allow for the creation of multiple lock tables on
asingle coupling facility with unique attributes. These
unique attributes include: the presence or absence
of share bits, the number of share bits, the existence
of a record table, and of course, the size of the lock
table and record table. But most importantly, the ex-
istence of multiple named tables allows for the sep-
aration of locks into distinct name spaces so that
unique management, such as that described here for
minimizing false contention, can be provided by the
TLMs.

Conditional lock requests. Low contention rates are
a basic design premise. Real contention in transac-
tion processing systems is known to be quite small
(under 0.5 percent of lock requests), and false con-
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tention can be managed to similar levels by increas-
ing the size of the lock table. However, contention
at some measurable level does exist in the system.
When it occurs, the overhead can be quite high; sig-
naling is required from the requesting system to the
system managing the entry. Also, if this is the first
indication of contention, the managing system
changes the state of the entry to global management.
This escalation process can be quite lengthy and re-
quires considerable path length and signaling be-
tween systems. There is a corresponding penalty
when contention is removed and the entry is de-
escalated from global management.

Conditional lock requests were included in the
TLM/SLM interface to address this problem. If the lock
is requested conditionally and the request to the cou-
pling facility indicates that the lock entry is not avail-
able, the SLM returns control to the TLM and takes
no further action on the request. In particular, no
attempt is made to signal the managing system and
the possible global escalation is avoided. Subse-
quently, following a short delay, the TLM can resub-
mit the lock request. Assuming the lock hold time
is short and assuming the probability of new conten-
tion occurring is no greater than normal contention,
the second request may succeed at the coupling fa-
cility. If this is the case, then the global management
overhead in the SLM is avoided. The TLM can always
abandon this optimistic protocol after several retries
and submit the request unconditionally. Use of the
conditional protocol by TLMs has resulted in signif-
icant reductions in system overhead.

Conclusion

This paper begins with the premise that shared-disk
architectures are better than shared-nothing archi-
tectures for clustered systems. Specific benefits in-
clude workload balancing and effective utilization of
the processors, availability, and scalability. It is also
argued that in order to support update-intensive
workloads that are often found in database environ-
ments, the shared-disk architecture must be aug-
mented with special functions to improve the effec-
tiveness of the sharing of information across the
cluster. One such function, locking, was the focus of
this paper. This paper described a high-speed lock-
ing function for use in a parallel operating system
environment and provided a detailed description of
the architecture and many critical design trade-offs.
These facilities are embodied in the /390 Parallel Sys-
plex. The facilities are oriented toward transaction
processing systems that are update-intensive and re-
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quire low response times. The system has many
unique features, such as the ability to obtain cluster-
wide locks using synchronous protocols, the ability
to construct a lock manager that supports a user-de-
fined lock protocol (i.e., richer than a traditional
share/exclusive protocol), special features for avail-
ability, and rigid performance objectives.
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