Cluster architectures
and S/390 Parallel
Sysplex scalability

Supporting high transaction rates and high
availability for on-line transaction processing

and emerging applications requires systems
consisting of multiple computing nodes. We
outline various cluster architecture% and describe
the factors that motivate the S/390" Parallel
Sysplex™ architecture and its resulting
advantages. We quantify the scalability of the
S$/390 Parallel Sysplex and show that the
transaction rate supported is close to linear as
nodes are added to the system. The key facet of
the S/390 Parallel Sysplex architecture is the
coupling facility. The coupling facility provides for
very efficient intertransaction concurrency
control, buffer cache coherency control, and
shared buffer management, among other
functions, that lead to the excellent scalability
achieved. It also provides for effective dynamic
load balancing, high data buffer hit ratios, and
load balancing after a failure.

he transaction processing rates that need to be

supported have been growing beyond those that
can be supported by a single computing node. With
the exponential growth in the traffic on the Internet
and the World Wide Web (Web), which includes al-
lowing end users to browse and place orders on the
Web, the transaction processing load is likely to grow
even larger. Thus, multinode cluster architectures
are needed to support these environments. Further-
more, these applications need to provide high avail-
ability, which can be supported by cluster architec-
tures.

In this paper, we outline the various cluster archi-
tectures and their characteristics. We describe the

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

0018-8670/97/$5.00 © 1997 IBM

by G. M.
D. M.
P. S

factors that motivated the design of the IBM
System/390* (s/390*) Parallel Sysplex*, and outline
its key advantages as compared to other cluster ar-
chitectures. We then quantify the scalability of the
Parallel Sysplex design. We show that the transac-
tion rate that can be supported is close to linear in
the number of nodes in the Parallel Sysplex. We also
show that, even for a Parallel Sysplex composed of
heterogeneous nodes, excellent dynamic load bal-
ancing among the nodes can be achieved. We fur-
ther show that the processing overhead incurred in
a multinode Parallel Sysplex is small and that the
amount of /O per transaction can actually be reduced
in a multinode Parallel Sysplex as compared to a sin-
gle node system.

Figure 1 illustrates the basic Parallel Sysplex archi-
tecture. Further details of the Parallel Sysplex de-
sign can be found in Reference 1. Each node in the
Parallel Sysplex can have a single CPU, or can con-
sist of a symmetric multiprocessor (SMP). Each node
runs a separate copy of the operating system; the pro-
cessors in an SMP node run a single operating sys-
tem, 0S/390* (previously known as MVS) on the IBM
$/390, and have a shared main memory. The nodes
in the Parallel Sysplex have shared disks, which can
be accessed directly from each node. Large com-
plexes of shared disks can be configured, using the

©Copyright 1997 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

KING, DIAS, AND YU 221

Figure 1 Parallel Sysplex system model

FACIITY

E5/0000 BIPOLAR SYSTEM ©
'PROCESSINGNODE1

ESCON = ENTERPRISE
jrk 232 :

SYSTEMS CONNECTION

Enterprise Systems Connection (ESCON*) switch.>?
The key facet of the Parallel Sysplex architecture is
the coupling facility, which is shared by the nodes in
the Parallel Sysplex, as illustrated in Figure 1. The
coupling facility provides very efficient intertransac-
tion concurrency control, buffer cache coherency
control, a global shared buffer, and other services,
which are described further in the section on the §/390
Parallel Sysplex architecture. These services of the
coupling facility are the primary factors that lead to
excellent scaling, which is quantified in the section
on Parallel Sysplex performance. The shared buffer
provided in the coupling facility also leads to high
shared buffer hit ratios that can actually reduce the
1/0 rate per node as the number of nodes in the Par-
allel Sysplex increases, as quantified later. Dynamic
load balancing is achieved by providing shared job
queues maintained in the coupling facility, as detailed
and quantified later.

222 KING, DIAS, AND YU

. SHARED DATA VIA LOCK

: AND CACHE TECHNOLOGY o
L S UP TO A 10-WAY
““UPTO A 10-WAY WORKLOAD DISTRIBUTION SYMMETRIC
SYMMETRIC AND MESSAGE PASSING MULTIPROCESSOR
MULTIPROCESSOR (SMP) ¢

VIA QUEUE TECHNOLOGY

COUPLING

ESCON DIRECTOR (SWITCH)

SHARED DATA

£/390 CMOS SYSTEM
 PROCESSING NODE 1

The other principal cluster architectures include the
shared-disk architecture,*¢ the shared-nothing or
partitioned architecture,”® and the virtual shared-
disk model.® These architectures are outlined in the
next section and are then qualitatively compared.
Next, the Parallel Sysplex performance and scaling
is quantified, followed by concluding remarks.

Cluster architectures

In this section we describe the principal cluster ar-
chitectures for supporting scalable commercial ap-
plications such as on-line transaction processing
(OLTP) and parallel database systems. These archi-
tectures can also be used to support various other
emerging applications such as scalable Web'’ and
video servers.

There is a major division between cluster architec-
tures because of differences in the ability of the nodes

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

Figure 2 Partitioned or shared-nothing architecture

' INTERCONNECTION NETWORKZ SWITCH. * " > = - .

+
OO

LOCAL LOCKS

o

LOGAL DATABASE BUFFER
EERIHBEEN

to access the disks. In one camp we have a partition-
ing scheme where each node has access to only a sub-
set of the disks. In the other camp lies the disk-shar-
ing topology where each node has access to all disks.
The disk-sharing architecture additionally introduces
anumber of key choices that further define it. These
choices include:

1. An update concurrency control method
2. A database buffer cache coherency control
3. Aprovision for shared memory among the nodes

The principal composition of the choices that define
each cluster architecture is presented here. The per-
formance effects and trade-offs resulting from these
choices are discussed in the next section.

Partitioned or shared-nothing architecture. In this
architecture, ! illustrated in Figure 2, the disks and
the database are partitioned among the nodes in the
cluster. There are two flavors of data partitioning:
In the function-shipping model, if a transaction run-
ning on a node needs to access data located at a re-
mote node in a cluster, a remote function call is made
to the node at which the data reside:® the remote
node makes a local database call to retrieve the data,
and the results are shipped back to the requesting
node. In the 1O shipping model," remote data are
accessed by making a remote 1/0 request to fetch the

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

required disk block from the remote node. I/O ship-
ping is similar to the virtual shared-disk model de-
scribed later, and shares many of its characteristics.

In the function-shipping model, the node that owns
the data partition obtains local locks on the data ac-
cessed on behalf of the remote transaction. Thus,
no global locking is needed. The database buffer
cache is also located at the node that owns the data,
and thus, there is no buffer coherency problem. A
single transaction may access and update data lo-
cated on several nodes. At transaction commit, a two-
phase commit is needed between all the nodes in the
cluster involved in updates on behalf of the trans-
action.

The function-shipping model is used in the Gamma
Database' and the DB2* (DATABASE 2*) Parallel
Edition (DB2PE),'*!* among other systems. The IBM
Scalable POWERparallel System** running DBZPE
has this architecture.

Shared-disk architecture. The shared-disk architec-
ture is illustrated in Figure 3.%'“! Essentially, all the
nodes in the clustered system have direct access to
(some or all) of the disks on which shared data are
placed. Each of the nodes in the cluster has a local
database buffer cache. In order to maintain consis-
tency of the database with transactions running on

KING, DIAS, AND YU 223

Figure 3 Shared-disk architecture

the different nodes in the cluster, a global (i.e., sys-
tem-wide) concurrency control protocol is needed.
Further, in order to maintain coherency among the
local database buffer caches at the nodes in the clus-
ter, global buffer coherency control must be enforced.

The global concurrency control could be either dis-
tributed or centralized.’® Distributed concurrency
control using a locking protocol is often used. One
of the earliest distributed concurrency control pro-
tocols was implemented for Information Manage-
ment System (IMS*) data sharing.* The protocol was
referred to as “pass the buck”; the lock space was
mapped to hash classes, and lock contention was de-
tected at the hash class level by passing the “buck,”
with information on locks at the hash class level,
among nodes. In case of contention at the hash class
level, contention resolution at a finer granularity was
done.

Distributed concurrency control was also used in the
Digital Equipment Corporation VAXcluster**.’ The
lock space was partitioned among director nodes.
Once a node obtained a lock on an object, it became
the master, and subsequent lock requests to the ob-
ject were referred by the director to the master node.
A similar distributed lock manager is used by the Or-
acle Parallel Server and is implemented in the 1BM
Highly Available Cluster Multiprocessor (HACMP).

224 KNG, DIAS, AND YU

In addition to concurrency control, the database
buffer caches located at each node in the cluster need
to be kept coherent. The simplest method for buffer
coherency is the so-called broadcast invalidation pro-
tocol, in which buffer blocks at all remote nodes are
invalidated when a block is updated at the node hold-
ing the corresponding update lock. Broadcast inval-
idation has a high overhead, particularly when the
number of nodes in the system is large. To reduce
the overhead for buffer coherency control, integrated
concurrency-coherency control schemes are available
and are described in Reference 19. Essentially, when
a globallock is obtained, information is also provided
by the integrated concurrency-coherency controller
on whether the local buffer copy of the correspond-
ing page at the requesting node is valid. Further is-
sues related to concurrency and coherency control
are discussed in the section on qualitative compar-
isons.

Virtual shared-disk model. The virtual shared-disk
(vsD) model’ is illustrated in Figure 4. Here, we have
a blending of the partitioned and shared data
schemes. As in the data partitioning model, the disks
are partitioned among the nodes in the system. There
is a set of logical storage nodes to which the disks
are connected and a set of logical processing nodes
on which database transactions run. (Logical stor-
age and processing nodes may reside on the same

1BM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

Figure 4 Virtual shared-disk architecture

LOCAL DATABASE BUFFER

I
GLOBAL CONCURRENCY CONTROL PROCESSING

VIRTUAL SHARED DISKS (VSDs)

OGICAL)

NODES

O] O
)

-— -

I
} SWITCH

DISK BUFFER

physical processor.) /O requests to disks connected
to the storage nodes are trapped in the disk driver
and shipped to the storage nodes. The required data
block(s) are retrieved by the storage nodes and re-
turned to the requesting node; the storage nodes
have all processing done at interrupt level, leading
to improved efficiency. By comparison, a typical net-
work file system processes requests by daemons at
the equivalent of the storage nodes. By doing all stor-
age node processing at interrupt level, VSD achieves
an order of magnitude better performance than typ-
ical network file systenrs. When there is affinity of
data access at the logical processing nodes, the log-
ical processing and storage nodes are typically com-
bined on a physical node. The storage nodes may
also have a memory buffer cache for recently ac-
cessed disk blocks directed to that storage node.

The vsD model is similar to the 1/0 shipping model
outlined earlier. The difference is that the vSD model

IBM SYSTEMS JOURNAL, VOL 38, NO 2, 1997

is completely transparent to the parallel database sys-
tem running on the processing nodes. Thus, to the
database, the vSD model is identical to the data-shar-
ing model. Furthermore, the concurrency and buffer
coherency models used are the same as that for the
shared-disk model. /0 shipping is typically done at the
buffer manager layer of the database, which also re-
sults in higher overhead for remote call processing.

The vsD model is used on the IBM Scalable
POWERparallel System ' running the Oracle Paral-
lel Server.

5/390 Parallel Sysplex architecture. We outline as-
pects of the Parallel Sysplex architecture to the ex-
tent required by subsequent sections of this paper;
further details can be found in Reference 1. The $/390
Parallel Sysplex architecture is illustrated in Figure
1. As can be seen, the shared-disk topology is used
as each node has access to all disks. Thus, the ex-

KING, DIAS, AND YU 225

cellent availability attributes of a shared-data archi-
tecture are present. Additionally, the nodes in the
system have access to one or more coupling facil-
ities. It is through the use of the functions provided
by the coupling facility that the $/390 Parallel Sysplex
is able to achieve excellent scalability beyond the ca-
pabilities of other data-sharing architectures.

The coupling facility consists of hardware and mi-
crocode to support the /390 Parallel Sysplex archi-
tecture extensions. Coupling facilities are attached
to $/390 processors using high-speed coupling links
that typically provide data transfer rates of up to
100 MB per second. Most commands issued to a cou-
pling facility complete in several hundred microsec-
onds or less. The coupling facility supports three gen-
eral types of functions, or behavioral models: lock,
cache, and list. Each of these models has an asso-
ciated “structure” that resides in the storage of the
coupling facility.

The coupling facility lock model provides the mech-
anism to address the global concurrency issue with
shared-data schemes. The lock structure contains
lock table entries that are mapped to data blocks or
records by the database manager software. Each lock
table entry contains shared or exclusive indicators
for each interested system. When a system wishes to
obtain a lock for a data item, generally one quick
trip to the coupling facility allows the lock to be
granted (based on the requested and current state
of the lock). Should the requested lock create an in-
compatible state, this lock “contention” is recog-
nized, and further processing by the interested lock
managers is required. Typically, over 99 percent of
the time the lock can be granted immediately.

The coupling facility cache model is used to address
the database buffer coherency issue, enabling each
node in a sysplex to locally cache frequently refer-
enced data items from globally shared databases. The
cache structure consists of two parts: directory en-
tries and optional data elements. A directory entry
exists for each unique data block held in the local
buffer pool of any system, or in a global pool. Each
directory entry contains an indicator as to which sys-
tems currently have copies of the data block. In the
protected storage of each system, a bit vector is de-
fined mapping a bit to each local data buffer. Upon
reading a data block from a shared database, the da-
tabase manager registers the data block (by name)
and its associated local bit-vector offset to the cou-
pling facility directory entry, and sets the local bit-
vector value to indicate a valid data block. Should

226 KING, DIAS, AND YU

the database manager on another system now up-
date this data block, the update is communicated to
the coupling facility. The coupling facility interro-
gates its directory and sends “invalidate signals” to
the systems currently holding copies of the data
block. An invalidate signal causes the local bit-vec-
tor bit corresponding to the data block to be set to
indicate an invalid state; note that the act of setting
the bit is handied by the coupling link hardware with
no interruption or impact to work running on the
system. Whenever a database manager wishes to use
a locally buffered data block, a simple bit test indi-
cates the validity. Should the test indicate an invalid
state, the database manager will refresh its local copy
of the data block. The data blocks themselves may
also be stored in the optional data element part of
the cache structure in the coupling facility. If this is
done, a local copy of a data block that is found to
be invalid may be refreshed from the updated copy
found in the coupling facility. Many shared-data ar-
chitectures degrade because of the overhead of
buffer invalidation. It can be seen that the coupling
facility cache model successfully and efficiently solves
this problem.

The coupling facility list structure provides a general-
purpose queuing construct useful for a wide variety
of applications. A list structure consists of one or
more list headers and list elements. Elements may
be added or removed from lists using LIFO/FIFO (last-
in-first-out/first-in-first-out) or key-sequenced order-
ing. Programs can register an interest in lists and be
notified when a list makes a transition from empty to
nonempty. List structures are used for intersystem mes-
saging and workload distribution. For example, in-
stances of a workload manager across the Parallel Sys-
plex may periodically exchange performance status
information through the use of a list structure. This in-
formation is then used for dynamically routing trans-
actions away from overutilized systems to underutilized
systems.

Qualitative comparison

We examine factors that impact the scalability of the
cluster architectures, outlined in the previous sec-
tion, and discuss how they motivated the Parallel Sys-
plex design.

Several contending factors affect the comparative
performance of these approaches to clustering. They
include:

* Coupling or clustering efficiency
* Buffer hit ratio

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

Figure 5 Remote database call and two-phase commit for data partitioning

TWO-PHASE COMMIT (TWQ ROUNDS OF MESSAGES)

REMOTE DATABASE CALL

REMOTE DATABASE CALL

s Load balancing under normal operation
s High availability and load balancing after failure

Coupling efficiency. The coupling efficiency is defined
as the ratio of the throughput achieved by a multi-
node cluster to that of an ideal system with a through-
put that is linear in the number of nodes. The cou-
pling efficiency is determined by several factors,
including the CPU overhead due to cluster protocol
processing, any additional 1/0 operations, possible
locking delay due to contention, and additional la-
tency for some operations in the cluster.

For the data partitioning architecture, additional
costs are incurred for remote requests to access non-
local databases, as illustrated in Figure 5. The data
are partitioned among the nodes in the cluster and
can be accessed only by the node at which the data
reside. Consequently, if a transaction running at a
node needs to access data located at another node,
a remote database call is made, which entails com-
munications overhead and delay. In addition, the re-
questing node must perform a task switch since the
remote request processing has a delay greater than
twice the task switch time. Executing the database
call at the remote node requires allocating an agent,
or a so-called mirror transaction, to process the call,

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

REMOTE AGENT/MIRROR
' TRANSACTION

with concomitant overhead.? Finally, since multi-
ple nodes may process database requests for the same
transaction, all the nodes involved in processing up-
date requests on behalf of the transaction must be
part of a two-phase commit process. Two rounds of
messages are exchanged during the two-phase com-
mit operation. However, the number of nodes in the
two-phase commit is bounded by the number of up-
date requests in a transaction.

For the data-sharing approach, as illustrated in Fig-
ure 6, global concurrency control is needed, and ad-
ditional overhead is incurred to obtain and release
globallocks. This is in contrast to the data partition-
ing architecture where the database is partitioned
and hence all lock requests to the data are local to
the node owning the corresponding database. That
is to say that under data partitioning, the lock in-
formation can be maintained locally within local
memory of the node, whereas data sharing requires
global locks.

The global concurrency control can be implemented
either via distributed locking or by a lock assist, as
in the Parallel Sysplex coupling facility. The distrib-
uted approach generally relies on standard commu-
nication protocol to request and release lock re-
quests.** Figure 6 illustrates the flow for a typical

KING, DIAS, AND YU 227

Figure 6 Distributed global locking for disk sharing

&

DATABASE BUFFER

| PiReCTOR "
CNODE

"‘@RFAD

8LOCK -

. FLUSH
® Bureer

distributed concurrency control protocol as in Ref-
erence 5; if the node on which a transaction runs is
not the master for the required lock (see previous
section), obtaining the global lock typically involves
a message to the lock director and then to the cur-
rent lock master, which then grants the lock. This
operation entails a large processing overhead and
delay to obtain a lock.

The lock assist approach, as in the Parallel Sysplex cou-

pling facility, uses specialized hardware and protocols
or instructions to obtain global locks and can reduce
the locking overhead significantly.**'* This approach
is demonstrated by the high efficiency of the coupling
facility, as shown subsequently.

The locking protocol can be either eager (release
locks on transaction commit) or lazy (release locks
only on conflict).?** Lazy protocols are adequate if
there is a low degree of sharing, but they have a high
overhead and delay for moderate and high degrees
of sharing. Typical distributed locking methods use
lazy lock release. Consequently they perform rea-
sonably well at low degrees of sharing, as in bench-
marks like the Transaction Processing Performance
Council benchmark C (TPC-C**),” but have a large
overhead and delay for many real workloads. The
coupling facility uses eager locking in order to handle
varying degrees of sharing, since many applications

228 KING, DIAS, AND YU

when directly ported to a cluster have high degrees
of sharing,

The granularity of locking for global locks can be at
either the physical block level or record level. Block
level locking can result in false contention, especially
for hot spots.® The coupling facility supports record-
level locking to avoid false contention. Typical distrib-
uted locking protocols use block-level locking.

Another effect is that of database buffer cache co-
herency control, as outlined earlier. Since a data
block can be present in the database buffers of more
than one node, when an update occurs, all other buf-
fered copies become obsolete. Coherency control
needs to be provided to invalidate the obsolete gran-
ules in the local buffers and maintain the coherency
of the buffer contents. There are several alternative
approaches to coherency control. One scheme is re-
ferred to as broadcast invalidation,??’ illustrated in
part A of Figure 7. When one node updates a block,
all other nodes are informed that the block, if held
in the local buffer of the other nodes, is invalid. It
has several implications. First, an overhead is asso-
ciated with sending the buffer invalidation messages.
If this information is broadcast to every node, the
overhead grows linearly with the number of nodes.
Second, as a result of the update and buffer inval-
idation, another node that uses the updated granule

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

Figure 7 Buffer coherency protocols

—

©) HARDWARE RESET = |
OF LOCAL BIT VECTOR'

(B) GHECK ON AGCESS SCHEME IN SYSPLEX,

OF BLOCK A'

‘ heerswh‘\'mm‘x\éf
»@ame‘m e

will have a local buffer miss, which results in an in-
crease in /O activity for the shared-disk architecture
and a shared buffer access if shared global memory
is present.

An alternative approach, referred to as the check-
on-access scheme in References 5 and 19, avoids the
broadcast overhead by providing a mechanism to
track the validity of in-memory data granules and
having each node explicitly check the validity of a
data granule upon access. This approach can sub-
stantially reduce the message overhead for invali-
dation and is especially suitable for a large number
of nodes. Since there are no explicit invalidation mes-
sages, invalid granules continue to stay in the local

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

‘GHEGKVAUD!T‘Y
o GF LOCAL BIT VECTOR

. SHARED DISK. "

buffer and are not detected until reference time. It
reduces the buffer hit probability a little; however,
in Reference 26, a performance study shows this re-
duction of buffer hit probability to be small, espe-
cially when the data access pattern is skewed (i.e.,
nonuniform), as is often observed in transaction pro-
cessing environments. >

As described in the section on the /390 Parallel Sys-
plex architecture, the Parallel Sysplex coupling facil-
ity combines the check-on-access scheme with a gran-
ular and nondisruptive cross-invalidate mechanism to
efficiently provide database cache coherency. The Par-
allel Sysplex buffer coherency method is illustrated
in part B of Figure 7: A node registers reading a data

KING, DIAS, AND YU

229

block to the coupling facility (1); on update of a block,
the coupling facility is notified (2); the coupling fa-
cility selectively resets a local bit vector (in hardware)
only on nodes that have registered interest in the
block (3); when a block is reaccessed, the local bit
vector is checked for validity (4).

In the shared-disk architecture, when a data block
needed by a transaction is cached in the database
buffer of another node, the data are typically ob-
tained by writing the block to disk from the cache
and reading the data from disk at the requesting
node, as illustrated in Figure 6. This caching leads
to large overhead, delay, and increased disk band-
width, especially for hot shared data, leading to so-
called “ping-ponging.” In the coupling facility, hot
shared data are cached in a shared global buffer
cache.®® As aresult, the efficiency is high, even with
high degrees of sharing, and the ping-ponging pen-
alty is low, as quantified subsequently.

Buffer hit probability. Next, we consider the issue
of efficient buffer usage. In a shared-disk environ-
ment, the buffer management is decentralized, and
each buffer manager makes independent decisions
on which granules to buffer. In essence, there is no
cooperation or division of work among the local
buffer managers. If the transactions are routed to
the nodes in a round-robin fashion without exploit-
ing the transaction affinity in various database par-
titions, each local buffer manager will observe sim-
ilar data reference patterns and try to buffer similar
data blocks. This action could lead to significant rep-
lication of data blocks among the nodes, as illustrated
in part A of Figure 8.

This situation is in contrast to the data partitioning
architecture, where the database is partitioned
among the nodes, and each node caches data blocks
from its own partition. (Note that the buffering un-
der data partitioning is similar to that under a single
node system where multiple buffer pools and differ-
ent partitions use different buffer pools.*) Even with-
out the invalidation effect, the local buffer hit ratio
is expected to be lower under the shared-disk ap-
proach for the same total buffer size, since the
shared-disk approach uses the local buffer to cache
the entire database instead of caching just one par-
tition of the database (as is done under the data par-
titioning architecture). However, there is a trade-off
in that a remote database call is required to access
data in a remote buffer for data partitioning, rather
than local buffer access using the shared-disk ap-
proach, asillustrated in part B of Figure 8. The buffer

230 KING, DIAS, AND YU

hit ratio degradation of the local buffer under the
shared-disk architecture can be alleviated somewhat
by using affinity-based routing, as explained in the
next subsection. Further, with the data partitioning
architecture, the memory is distributed among the
nodes in the cluster. A single large memory has a
higher buffer hit ratio than partitioned memories of
the same total size.

The shared database buffer cache provided in the cou-

pling facility has advantages over either the shared-disk
or data partitioning architectures. Data that are shared
among the nodes can be placed in the shared buffer,
leading to a higher buffer hit ratio than a partitioned
buffer and avoiding replication in multiple local da-
tabase buffers, as illustrated in part C of Figure 8.
In Reference 32, a performance study on a global
shared buffer in a data-sharing environment is con-
ducted to understand the trade-offs of local and
global shared buffers. It is found that proper usage
of a global shared buffer can substantially improve
the overall buffer hit probability and transaction re-
sponse time addressing the replication and invali-
dation issues in the local buffers under data sharing.
Comparison of the buffer hit probabilities under the
different architectures can be found in Reference 33.
Quantification of the improvement in the buffer hit
probability that accrues to the shared buffer in the
coupling facility is given in the section on Parallel
Sysplex performance.

Load balancing. In a transaction processing environ-
ment, there are generally multiple transaction classes
and relations (or physical databases in a hierarchi-
cal database).® Each transaction class may exhibit
affinity to certain relations, or partitions of relations.
For instance, in the Transaction Processing Perfor-
mance Council benchmark B (TPC-B**),* transac-
tions have affinity with the associated (bank) branch
with which the account is associated. Similarly, in the
TPC-C benchmark,? transactions have affinity with
the associated warehouse. Affinity clustering® is
the process of partitioning the transactions and re-
lations into affinity clusters (ACs) according to their
database references. The entity consisting of the re-
lations associated with each AC is referred to as a DB
(database) cluster. Transactions associated with an
AC are routed to the same node. Additionally, un-
der data partitioning, each DB cluster is assigned to
the node where its associated transactions are ex-
ecuted. Under data-sharing environments, the da-
tabase partitioning is logical (rather than physical)
as pages of each DB cluster are buffered (referenced)
from its associated node. This reduces the CPU over-

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

Figure 8 Buffer issues

DATABASE BUFFER

b

OCAL DATABASE BUFFER

heads under data partitioning, caused by reduced re-
mote database accesses and two-phase commits, and
improves the local buffer hit probability and ping-
ponging for the shared-disk architecture. It is not al-

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

ways easy and sometimes impossible to partition a
database to form affinity clusters and at the same time
balance the transaction load at all nodes. In Refer-
ence 33, the effect of affinity clustering on the per-

KING, DIAS, AND YU 231

formance of the different coupling architectures is
studied, and the Parallel Sysplex-like architecture is
found to be most robust to workload partitionabil-

ity.

To illustrate the partitionability of real workloads
and the degree of affinity (i.e., fraction of local da-
tabase accesses) that can be achieved, we examine
some workloads from DB2 and IMS database envi-
ronments. In Reference 36, a relational database
workload is analyzed for a production DB2 system
that runs an accounting-type application in a petro-
leum company. There are 323 relations or tables and
305 application plans or transaction classes. How-
ever, in the two-hour measured interval, more than
90 percent of the transactions executed come from
seven plans, concentrating the database references
on a few relations. Thus, partitioning the load evenly
beyond a moderate number of ACs is difficult.

In References 6 and 8, two transaction workloads
from production IBM IMS environments are studied.
The first system is an on-line planning database sys-
tem with 103 physical databases and 143 transaction
classes. The second system is a parts inventory da-
tabase system with 158 physical databases and 176
transaction classes. Traces of database (DL/1, or Data
Language 1) calls were obtained from the two sys-
tems and analyzed. These calls are referred to as
workload 1 and workload 2, respectively. Let N be
the number of partitions into which the workload is
split. In workload 1, a large fraction of the transac-
tions show a strong affinity to one physical database
and must be assigned to the same AC. These trans-
actions constitute more than 20 percent of the trans-
action load. For N > 5, the partitioning into ACs
becomes skewed since one AC with more than 20 per-
cent of the load will be larger than the other ACs.
That is to say, the workload is not evenly partition-
able for N > 5. For a smaller number of nodes, the
transactions can be split into N ACs, where the load
imbalance among the nodes is within 5 percent. Fur-
thermore, the affinity attainable, i.e., for each AC the
fraction of database references that can be made to
stay within the affiliated DB cluster, tends to go down
as the number of nodes increases. For N = 2, the
transactions can be partitioned such that the affinity
of each AcC is around 0.95, whereas for N = 3 and
4, the affinities deteriorate to 0.82 and 0.74, respec-
tively. In workload 2, partitioning skew is again ob-
served, where 32 percent of the transaction load falls
onto one AC. That is to say, for N > 3, the parti-
tioning will be skewed, as the load on one of the ACs
becomes larger than the other ACs. For smaller val-

232 KING, DIAS, AND YU

ues of N, the transaction load can be split into N
ACs, where the load imbalance among the nodes is
within 5 percent. Again we observe the deteriora-
tion of affinity as the number of nodes increases. For
N = 2, the transactions can be partitioned to achieve
an affinity of 0.75, whereas for N = 3, the affinity
deteriorates a bit to 0.68.

These case studies indicate that it is difficult with real
workloads to form affinity clusters with low fractions
of remote database calls, and simultaneously achieve
a balanced load among the nodes in the system.
Therefore, it is important to achieve high coupling
efficiency when any transaction may run on any node
in the cluster. We show later that the $/390 Parallel
Sysplex achieves excellent scalability under these con-
ditions.

Dynamic load balancing. We now examine the im-
pact of dynamic load changes on these architectures.
Let us assume that at steady state the workload is
perfectly partitionable and balanced, and consider
the case of a sudden load surge in one of the trans-
action classes. For example, the most active stocks
in the stock market may change from period to pe-
riod, depending upon which companies become take-
over targets. The corresponding database partition
would have a sudden surge in load. For data shar-
ing, a front-end router can be employed to spread
the load surge across all nodes, as illustrated in Fig-
ure 9. Certainly, by doing this, the buffer hit prob-
ability at each node decreases. The reduction comes
from two factors. First, in each of the nodes except
the surge node (i.e., the node affiliated with the trans-
action class with the load surge), the data blocks in
the buffers come from two partitions: the original
partition logically assigned to the node and the par-
tition corresponding to the surge transaction class.
The second factor is the cross-invalidation effect on
the data blocks from the partition affiliated with the
surge load. This factor potentially may affect the
surge node more than the other nodes as the buffer
in the surge node contains only the data blocks from
the partition accessed by the surge transaction class
and, hence, is more susceptible to invalidation.*

Thus, the stronger the affinity among transactions
in terms of the data accessed, the more severe is the
impact of ping-ponging of the shared data among
nodes. Consider, for example, if the TPC-B bench-
mark* transactions to the same branch are routed
to different nodes due to a load surge, then the
branch and teller blocks will ping-pong between
nodes. For disk sharing, the ping-ponging and dis-

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

Figure 9 Data sharing—surge in transaction foad

KRR,

| LOAD SURGE
1S DISTRIBUTED
AMONG ALL NODES

x‘mﬁw@m IR | SERERTE B | | moamenmy RN
: | IEITIELL | if UIITELTL

i L A]
M SRR IR WMH PR

APPLICATION'
[FEET] DB MANAGER

tributed concurrency control overhead limits the load load. The efficiency of the coupling facility for heavily
that can be moved away from nodes with a heavy shared data, and for locking, allows for excellent dy-

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997 ’ KING, DIAS, AND YU 233

Figure 10 Data partitioning—surge in transaction load

—

STATIC

PO R

- RRRRGR,

LOAD SURGE CAN-
- RESUITIN - . -
| LOAD IMBALANGE

Wrvsivsiss

SO

AR

¥

DO APPLIGATION

[TE57T DB MANAGER
- EEEESE DATA
MESSAGE

namic load balancing by moving load away from hot ated with each transaction can be divided into two
nodes with relatively small overhead. parts. One is application processing and the other

is database call processing (labeled as DB manager
For data partitioning, load sharing is difficult, as il- load in the figure). The database call processing must
lustrated in Figure 10. The processing load associ- be done at the node owning the database partition

234 KING, DIAS, AND YU IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

that the call is referencing or updating, whereas the
application processing can be done at any node se-
lected by the front-end router. This phenomenon un-
der data partitioning is referred to as the database
call server bottleneck.” If we try to spread the trans-
action application processing of the surge transac-
tion class to other nodes, the database calls still have
to be sent back to the surge node; thus, as illustrated
in Figure 10, the surge node gets a disproportionate
load. Furthermore, there is additional communica-
tions overhead for shipping the database calls and
two-phase commit overhead for updates. This added
overhead reduces (or nullifies) the effectiveness of
load sharing. In Reference 37, a performance com-
parison of different cluster architectures for handling
system dynamics showed that the data partitioning
architecture is least able to cope with load variation
and requires a large amount of contingent capacity
to be put aside as compared with the data-sharing
architecture. The data-sharing architecture can also
improve load balancing at the disk level.*

High availability and load balancing after failure.
We now examine the fault tolerance to single node
failures. We consider the case where one of the CPUs
has failed, while the disks are still accessible. For data
partitioning, we assume that the straightforward
paired backup strategy is used where each active
node is paired with another active node to form a
backup pair using twin tail disks,* as shown in Fig-
ure 11. (There are certainly other backup scenarios.
Using a single spare node to back up any failed node
is another possibility. However, this would require
direct connection to all disks, which is more of a data-
sharing flavor, and is thus not considered here. Also,
database replication and disk-mirroring strategies
that require more disk space and overhead are not
considered here.) When a CPU fails, the disks of the
failed node are switched over to its backup node.
Now the backup node needs to serve database calls
to two partitions: its own partition and the partition
of the failed node. The dual serving role has impli-
cations for both the buffer hit probability and CPU
load. The buffer hit probability decreases as the
buffer now has granules from two partitions. As the
database call processing of the two partitions can-
not be off-loaded to other nodes, it results in a server
bottleneck, as illustrated in Figure 11.

For the data-sharing architectures, the transaction
class originally destined for the failed node will be
spread across all the other nodes, as shown in Fig-
ure 11. However, if there is affinity among the data
accessed by transactions directed to the failed node

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

(as in the TPC-B example above), distributing the load
across the remaining nodes can lead to ping-pong-
ing (as discussed before) resulting in some reduc-
tion in buffer hit probability. The coupling facility pro-
vides efficient operation even when the load of the failed
node is redistributed because of its ability to efficiently
support workloads where transactions are randomly
routed among nodes in the cluster. In Reference 37,
the contingency capacity requirement to sustain a
single node failure under different architectures is
studied. It was found that the data partitioning ar-
chitecture requires substantially more contingent ca-
pacity as compared to the data-sharing architecture.

Summary. In summary, the key advantages of the
Parallel Sysplex use of the coupling facility are:

¢ Low coupling overhead due to efficient integrated
concurrency and coherency control and access to
the shared buffer in the coupling facility

s Excellent dynamic load balancing due to the abil-
ity to route load to any node in the cluster with
low coupling penalty

¢ High availability due to the ability to rebalance the
load among the remaining nodes, with excellent
load balancing after a failure

s High buffer hit ratio due to shared buffer, poten-
tially with a higher buffer hit ratio with a larger
number of nodes

These advantages of the Parallel Sysplex design are
quantified next.

$/390 Parallel Sysplex performance and
scaling

A set of laboratory benchmarks* was conducted to
exhibit the excellent performance and scalability
characteristics of the $/390 Parallel Sysplex. Addition-
ally, data were collected from several in-production
Paraliel Sysplexes running mission-critical applica-
tions. From the results of these measurements, we
quantify the aspects discussed in the previous sec-
tion that illustrate the key advantages of the Paral-
lel Sysplex.

Laboratory benchmark environment. The measured
hardware configurations consisted of two, eight, and
sixteen $/390 9672 cMOS (complimentary metal-ox-
ide semiconductor) systems coupled by one (for the
2- and 8-system tests) or two (for the 16-system test)
$/390 9674 cMOS coupling facilities. Two differ-
ent software configurations were measured. The
CICS-TM/IMS-DB configuration included the Customer

KING, DIAS, AND YU 235

Figure 11 Fault tolerance

. LOAD OF FAILING
["NODE SPREAD
~ *. AMONG SURVIVING

DATA SHARING
. o NODES

NODE
FAILURE

L ¥

 DATA PARTITIONING - .

NODE
FAILURE

Information Control System (CICS*) transaction the DB2 database manager. The workloads reflected
manager (TM), the CICSPlex* Systems Manager, and mixes of on-line transaction processing (OLTP) trans-
the IMS database manager. The IMS-TM/DB2 config- actions covering diverse business functions includ-
uration included the 1MS transaction manager and ing warehousing, reservations, and banking applica-

236 KING, DIAS, AND YU {BM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

Table 1 Normalized capacity for 2-, 8-, and 16-node
Parallel Sysplex from benchmark data

NT = not tested

tions. All databases were fully shared and accessible
to all systems. There were no transaction or data af-
finities; thus, any transaction could run on any sys-
tem.

Simulated user sessions were evenly distributed
among the $/390 systems. Each session randomly se-
lected a script of transactions to submit, and random-
duration think times were inserted between the trans-
actions. For the CICS-TM measurements, the CICS
transaction manager (under guidance from the
CICSPlex Systems Manager) would decide either to
process transactions locally or to route the transac-
tions to other systems within the Parallel Sysplex for
best workload balancing. For the IMS-TM measure-
ments, transactions were processed on the system
to which the session was connected.

Scalability and coupling efficiency. Table 1 shows the
normalized capacity (based on the transactions pro-
cessed per second in the two-system Parallel Sysplex)
for each measured point.

With use of the CICS-TM/IMS-DB measurements, a
comparison of the normalized capacity to the
“ideal” capacity at the 8- and 16-system points may
be made to highlight the scalability of the Parallel
Sysplex. Growing a Parallel Sysplex from two sys-
tems to eight systems increases the potential capac-
ity by a factor of four. In reality, a factor of 3.89 ca-
pacity growth was measured, meaning that with the

addition of six systems, the Parallel Sysplex realizes
97.25 percent (3.89/4) of the ideal! In scalability
terms, adding the six systems results in a loss of only
2.75 percent or approximately 0.5 percent per sys-
tem added. Likewise, growing the Parallel Sysplex
from two systems to 16 systems yields a 7.4-fold in-
crease in capacity, or 92.5 percent of ideal. This also
averages to approximately 0.5 percent cost for each
of the 14 systems added. The IMS-TM/DB2 8-system
measurement shows similar excellent scalability re-
sults.

Most of the cost of moving from a single-system non-
data-sharing configuration to a multisystem, fully da-
ta-sharing configuration occurs in the transition to
a two-system Parallel Sysplex. It is during this tran-
sition that the cost to access records in shared
databases is increased by the activity to the lock,
cache, and list structures on the coupling facility to
manage update serialization and local buffer coher-
ency. Additionally, coupling facility activity on be-
half of workload balancing is activated. Once this cost
is paid, there is very little increase in overhead to
connect additional systems as shown by the scalabil-
ity measurements.

In order to observe this transition cost in produc-
tion environments, data have been gathered from
several Parallel Sysplexes that are running mission-
critical applications. Table 2 summarizes data from
four production Parallel Sysplexes. The number of
08/390 images is the number of nodes in the Parallel
Sysplex. “CF access per CPU second” gives the rate
of activity to the coupling facility, normalized by the
total processing time across the Parallel Sysplex. This
value provides a relative measure of the access in-
tensity to the shared databases of each Parallel Sys-
plex. The final column gives the approximate per-
centage of the capacity of the Parallel Sysplex that
is being consumed for activity related to coupling the
systems. Note the high correlation between the cou-
pling overhead and the access rate to the coupling

Table 2 Cost of coupling using the sysplex architecture from customer production data

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

KING, DIAS, AND YU 237

Table 3 Normalized database 1/O per transaction from
benchmark data

Table 4 Dynamic load balancing for 8-node
homogeneous Parallel Sysplex from
benchmark data

Table 5 Dynamic load balancing for 9-node
heterogeneous Parallel Sysplex from
benchmark data

facility. The data indicate that the cost of coupling
systems using the Parallel Sysplex architecture is ap-
proximately 10 percent.

1/O per transaction. In the section on qualitative
comparisons, we outlined the advantage of having
a shared database buffer cache among nodes in the
cluster. This advantage is quantitatively illustrated
in Table 3. The table shows the database 1/0s per
transaction, normalized with respect to that for a sin-
gle system. Data are presented for the database man-

238 KING, DIAS, AND YU

agers of both IMS-DB and DB2. The data for IMS-DB
show that the /O activity per transaction, which is
proportional to the inverse of the buffer hit ratio,
increases gradually with the number of systems in
the Parallel Sysplex. For a 16-system Parallel Sys-
plex, the 1/O activity per transaction increases by
about 13 percent. The reason for the increase in ac-
tivity, which implies a decrease in the buffer hit ra-
tio, is that 1MS-DB did not store the updated data
blocks in the coupling facility cache structure. Thus,
invalidated local copies were refreshed from disk.

The data for DB2 in Table 3 show that the normal-
ized number of 1/0s per transaction actually falls with
the increase in the number of systems in the Parallel
Sysplex. The reason is that DB2 places updated data
blocks in its coupling facility cache structure. Con-
sequently, the total system buffers are used more ef-
ficiently, leading to lower numbers of I/Os per trans-
action, or a higher buffer hit ratio. Placing updated
data in the coupling facility also allows deferred up-
dates to disk, while releasing the locks at transac-
tion commit time. This action prevents coupling deg-
radation due to increased update /O activity and lock
contention. Another advantage is that highly shared
data that are frequently updated are found in the
coupling facility; this condition alleviates the deg-
radation caused by ping-ponging of updated pages
between systems in the Parallel Sysplex. By contrast,
the (pure) shared-disk architecture has a high over-
head because of ping-ponging.

Dynamic load balancing. Table 4 shows the load bal-
ancing achieved in a laboratory benchmark of a Par-
allel Sysplex composed of eight homogeneous sys-
tems (CEC, the central electronics complex). The
table shows the CPU utilization of each system, rel-
ative to the average CPU utilization across the Par-
allel Sysplex. Also shown is the transaction rate, again
relative to the average transaction rate per system.
As can be observed, the workload was balanced very
evenly across the systems.

Now, what happens when a “faster” system joins the
Parallel Sysplex? Table 5 shows the results when a
ninth system is added to the Parallel Sysplex. How-
ever, this system has a potential capacity that is 60
percent larger than each of the original eight sys-
tems. We find the workload is redistributed, achiev-
ing a fairly even balance of the CPU utilizations across
the now heterogencous Parallel Sysplex. The faster
system automatically begins to process a share of the
workload consistent with its capacity.

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

Conclusion

With the rapid advance in microprocessor speed and
reduction of cost per MIPS (millions of instructions
per second), coupling multiple microprocessors to
support high transaction rates and high availability
for OLTP and emerging applications becomes increas-
ingly attractive. In this paper, we considered vari-
ous cluster architectures, including shared-disk, par-
titioned (shared-nothing), virtual shared-disk, and
Parallel Sysplex architectures, and examined the
trade-offs between these architectures. The factors
that motivated the System/390 Parallel Sysplex ar-
chitecture and its key advantages were then described
and quantified. Specifically we showed that:

s The Parallel Sysplex architecture results in close
to linear growth in the transaction rate with the
number of nodes in the Parallel Sysplex. For in-
stance, in a benchmark environment, when grow-
ing the system from two to eight nodes, the Par-
allel Sysplex realized more than 97 percent of the
ideal. Even considering the overhead in going from
a single node to a multinode cluster environment,
the cost of coupling for customer production sys-
tems has been observed to be around 10 percent.
This high efficiency is due to the coupling facility,
which provides very efficient intertransaction con-
currency control, buffer cache coherency control,
shared buffer management, and shared job queues.

s The shared buffer cache in the Paralle] Sysplex cou-
pling facility results in efficient sharing, and can
actually reduce the /O activity per transaction with
a larger number of nodes.

» The Parallel Sysplex exhibits excellent load balanc-
ing even for heterogeneous systems. Furthermore,
superior dynamic load balancing is supported be-
cause of the ability to route load to any node in
the Parallel Sysplex with low coupling penalty.

» Another key advantage of the Parallel Sysplex de-
sign is that, after a failure of a node, the load can
be rebalanced among the remaining nodes. It con-
trasts to the partitioned architecture, where load
balancing can be constrained by static database
partitioning.

Although these advantages of the Parallel Sysplex
are considerable for many environments, for some
environments and workloads the other cluster archi-
tectures do offer appropriate solutions.

Acknowledgment

Wewould like to thank the referees for their comments
that helped us to significantly improve the paper.

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Digital Equipment Cor-
poration or the Transaction Processing Performance Council.

Cited references

1. J. M. Nick, B. B. Moore, J.-Y. Chung, and N. S. Bowen, “S/390
Cluster Technology: Parallel Sysplex,” IBM Systems Journal
36, No. 2, 172-201 (1997, this issue).

2. 8. A.Calta,J. A. deVeer, E. Loizides, and R. N, Strangwayes,
“Enterprise Systems Connection (ESCON) Architecture—
System Overview,” IBM Journal of Research and Development
36, No. 4, 535-551 (July 1992).

3. J. C. Elliot and M. W. Sachs, “The IBM Enterprise Systems
Connection (ESCON) Architecture,” IBM Journal of Research
and Development 36, No. 4, 577-591 (July 1992).

4. J.P. Strickland, P. P. Uhrowczik, and V. L. Watts, “IMS/VS:
An Evolving System,” IBM Systems Journal 21, 490-510
(1982),

5. N. Kronenberg, H. Levy, and W. D. Strecker, “VAXcluster:
A Closely-Coupled Distributed System,” ACM Transactions
on Computer Systems 4, 130-146 (May 1986).

6. P.S. Yu, D. M. Dias, J. T. Robinson, B. R. Iyer, and D. W.
Cornell, “On Coupling Multi-Systems Through Data Shar-
ing,” Proceedings of the IEEE 75, No. 5, 573-587 (May 1987).

7. M. Stonebraker, “The Case of Shared Nothing,” IEEE Da-
tabase Engineering 9, No. 1, 610-621 (1986).

8. D. W. Cornell, D. M. Dias, and P. S. Yu, “On Multisystem
Coupling Through Function Request Shipping,” IEEE Trans-
actions on Software Engineering SE-12, No. 10,1006-1017 (Oc-
tober 1986).

9. C.R. Attanasio, M. Butrico, C. A. Polyzois, S. E. Smith, and
J. L. Peterson, Design and Implementation of a Recoverable
Virtual Shared Disk, Research Report RC 19843, IBM T. J.
Watson Research Center, Yorktown Heights, NY, 10598
(1994).

10. D. M. Dias, W. Kish, R. Mukherjee, and R. Tewari, “A Scal-
able and Highly Available Web Server,” Proceedings of
COMPCON 96: Technologies for the Information SuperHigh-
way, IEEE Computer Society Press, Los Alamitos, CA (Feb-
ruary 1996).

11. D.W. Cornell, D. M. Dias, P. S. Yu, and A. Thomasian, “Per-
formance Comparison of IO Shipping and Database Call
Shipping: Schemes in Multisystem Partitioned Databases,”
Performance Evaluation 10, No. 1, 15-33 (October 1989).

12. D. J. Dewitt et al., “The Gamma Database Machine Proj-
ect,” IEEE Transactions on Knowledge and Data Engineering
2, No. 1, 4462 (March 1990).

13. C. K. Baru, G. Fecteau, A. Goyal, H. Hsiao, A. Jhingran,
S. Padmanabhan, G. P. Copeland, and W. G. Wilson, “DB2
Parallel Edition,” /IBM Systemns Journal 34, No. 2, 292-322
(1995).

14. C.K. Baru, G. Fecteau, A. Goyal, A. H. Hsiao, A. Jhingran,
S. Padmanabhan, and W. G. Wilson, “An Overview of DB2
Parallel Edition,” SIGMOD Record 24, No. 2, 460—462 (June
1995).

15. T. Agerwala, J. L. Martin, J. H. Mirza, D. C. Sadler, D. M.
Dias, and M. Snir, “SP2 System Architecture,” IBM Systems
Journal 34, No. 2, 152-184 (1995).

16. E. Rahm, “Design of Optimistic Methods for Concurrency
Control in Database Sharing Systems,” Proceedings of the 7th
International Conference on Distributed Computing Systems,
Berlin (September 1987).

KING, DIAS, AND YU 239

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35

240 KING, DIAS, AND YU

A. Bhide and M. Stonebraker, “A Performance Comparison
of Two Architectures for Fast Transaction Processing,” Pro-
ceedings of the 4th International Conference on Data Engineer-
ing, Los Angeles, CA (February 1988), pp. 536-545.

P. S. Yu, D. M. Dias, and S. S. Lavenberg, “On the Analyt-
ical Modeling of Database Concurrency Control,” Journal of
the ACM 40, No. 4, 831-872 (September 1993).

D. M. Dias, B. R. Iyer, J. T. Robinson, and P. S. Yu, “In-
tegrated Concurrency Coherency Controls for Data Sharing,”
IEEE Transactions on Software Engineering SE-15, No. 14,
437-448 (April 1989).

Customer Information Control System/Virtual ~Storage
(CICS/VS): General Information Manual, GC33-0155, IBM
Corporation; available through IBM branch offices.

J. T. Robinson, “A Fast General Purpose Hardware Synchro-
nization Mechanism,” SIGMOD Record (1985), pp. 122-130.
N. S. Bowen, D. A. Elko, J. F. Isenberg, and G. W. Wang,
“A Locking Facility for Parallel Systems,” IBM Systems Jour-
nal 36, No. 2, 202-220 (1997, this issue).

A.Dan and P. S. Yu, “Performance Analysis of Coherency
Control Policies Through Lock Retention,” Proceedings of
the ACM SIGMOD International Conference on Management
of Data, San Diego, CA (June 1992), pp. 114-123.

C. Mohan and 1. Narang, “Efficient Locking and Caching of
Data in the Multi-System Shared Disks Transaction Environ-
ment,” Proceedings of the International Conference on Extend-
ing Database Technology, Vienna (March 1992).

S. T. Leutenegger and D. M. Dias, “A Modeling Study of the
TPCC Benchmark,” SIGMOD Record 22, No. 2,22-31 (June
1993).

A. Dan and P. S. Yu, “Performance Analysis of Buffer Co-
herency Policies in a Multi-System Data Sharing Environ-
ment,” IEEE Transactions on Parallel and Distributed Systems
4, No. 3, 289-305 (March 1993).

A. Dan, D. M. Dias, and P. S. Yu, “The Effect of Skewed
Data Access on Buffer Hits and Data Contention in a Data
Sharing Environment,” Proceedings of the 16th International
Conference on Very Large Databases, Brisbane, Australia (Au-
gust 1990), pp. 419-431.

A. Dan, P. S. Yu, and J-Y. Chung, “Characterization of Da-
tabase Access Pattern for Analytic Prediction of Buffer Hit
Probability,” VLDB Journal 4, No. 1, 127-154 (1995).
M.-S. Chen, P. S. Yu, and T.-H. Yang, “On Coupling Mul-
tiple Systems with a Global Bufier,” IEEE Transactions on
Knowledge and Data Engineering 8, No. 2, 339-344 (April
1996).

E. Rahm, “Use of Global Extended Memory for Distributed
Transaction Processing,” Proceedings of the 4th International
Workshop on High Performance Transaction Processing, Asi-
lomar, CA (September 1991).

J. Z. Teng and R. A. Gumaer, “Managing IBM Database 2
Buffers to Maximize Performance,” IBM Systems Journal 23,
No. 2, 211-218 (1984).

A.Dan, P. S. Yu, and D. M. Dias, “Performance Modelling
and Comparisons of Global Shared Buffer Management Pol-
icies in a Cluster Environment,” IEEE Transactions on Com-
puters 43, No. 11, 1281-1297 (November 1994).

P.S. Yuand A, Dan, “Performance Analysis of Affinity Clus-
tering on Transaction Processing Coupling Architecture,”
IEEE Transactions on Knowledge and Data Engineering 6,
No. 5, 764-786 (October 1994).

Benchmark Handbook, 1. Gray, Editor, Morgan Kaufmann
Publishers, San Mateo, CA (1991).

. P.S. Yu, D. M. Dias, D. W. Cornell, and B. R. Iyer, “Anal-

ysis of Affinity Based Routing in Multi-System Data Shar-
ing,” Performance Evaluation 7, No. 2, 87-109 (June 1987).

36. P. S. Yu, H.-U. Heiss, S. Lee, and M.-S. Chen, “On Work-
load Characterization of Relational Database Environments,”
IEEE Transactions on Software Engineering 18, No. 4, 347-
355 (April 1992).

37. P.S. Yu and A. Dan, “Performance Evaluation of Transac-
tion Processing Coupling Architectures for Handling System
Dynamics,” IEEE Transactions on Parallel and Distributed Sys-
tems 5, No. 2, 139-153 (February 1994).

38. K. L. Wu, P. S. Yu, J. Y. Chung, and J. Z. Teng, “A Per-
formance Study of Workfile Disk Management for Concur-
rent Mergesorts in a Multiprocessor Database System,” Pro-
ceedings of the 21st International Conference on Very Large Data
Bases, Zurich (September 1995), pp. 100-109.

39. J. A. Katzman, “A Fault-Tolerant Computing System,” Pro-
ceedings of the 11th International Conference on System Sci-
ence (1978), pp. 85-102.

40. System/390 MVS Parallel Sysplex Performance, SG24-4356-01,
IBM Corporation (March 1996); available through IBM
branch offices.

General references

H. Boral et al., “Prototyping BUBBA, A Highly Parallel Data-
base System,” IEEE Transactions on Knowledge and Data Engi-
neering 2, No. 1, 4-24 (March 1990).

A.J. Borr, “Transaction Monitoring in Encompass: Reliable Dis-
tributed Transaction Processing,” Proceedings of the 7th Interna-
tional Conference on Very Large Databases (1981), pp. 155-165.

DBC/1012 Database Computer System Manual Release 2.0, Doc-
ument No. C10-0001-02, Teradata Corp. (later acquired by NCR)
(November 1985).

C.Mohan and 1. Narang, “Recovery and Coherency Control Pro-
tocols for Fast Intersystem Page Transfer and Fine Granularity
Locking in a Shared Disks Transaction Environment,” Proceed-
ings of the 17th International Conference on Very Large Data Bases,
Barcelona, Spain (September 1991), pp. 193-207.

C. Mohan, I. Narang, and S. Silen, “Solutions to Hot Spot Prob-
lems in a Shared Disks Transaction Environment,” Proceedings
of the 4th Intemational Workshop on High Performance Transac-
tion Systems, Asilomar, CA (September 1991).

Sysplex Overview: Introducing Data Sharing and Parallelism in a
Sysplex, Technical Report, GC28-1208-00, IBM Corporation
(April 1994); available through IBM branch offices.

Accepted for publication January 15, 1997.

Gary M. King /BM $/390 Division, 522 South Road, Poughkeep-
sie, New York 12601 (electronic mail: garyking@vnet.ibm.com). Mr.
King is a Senior Technical Staff Member of the 5/390 division,
consulting on all aspects of system performance. He joined IBM
in 1974 and has been involved in the design and evaluation of the
system resource managers, most notably in the area of storage
management. For the past seven years his efforts have focused
on clustered system performance, particularly the $/390 Parallel
Sysplex and its exploiters. He has received six Outstanding Tech-
nical Achievement and Outstanding Innovation Awards in a va-
riety of areas, including storage management, data compression,
and performance analysis. Mr. King received a B.S. in mathe-
matics from the University at Albany, State University of New
York, in 1972 and an M.S. in computer science from the Penn-
sylvania State University in 1974.

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

Daniel M. Dias IBM Research Division, Thomas J. Watson Re-
search Center, P.O. Box 704, Yorktown Heights, New York 10598
(electronic mail: dias@watson.ibm.com). Dr. Dias received the
B. Tech. degree from the Indian Institute of Technology and the
M.S. and Ph.D. degrees from Rice University, all in electrical en-
gineering. He currently manages the Paralle] Commercial Sys-
tems group at the Research Center, which performs exploratory
systems architecture, design, and analysis, with a focus on reduc-
ing these ideas to working prototypes and products. His current
research includes scalable and highly available information serv-
ers including Web, video, and other servers for network-centric
computing, Java™ collaboratory, Internet commerce, paraliel
transaction and query processing, highly available clustered sys-
tems, and performance analysis. Dr. Dias has published more than
100 papers. He has won two best paper awards, IBM Outstand-
ing Innovation and Technical Achievement Awards, five Inven-
tion Achievement Awards, and Research Division Awards. He
holds 13 U.S. patents, with seven additional patents pending.

Philip S. Yu IBM Research Division, Thomas J. Watson Research
Center, P.O. Box 704, Yorktown Heights, New York 10598 (elec-
tronic mail: psyu@watson.ibm.com). Dr. Yu has been with IBM
Research since 1978. Currently he is manager of the Software
Tools and Techniques group. One focus of the project is to de-
velop algorithms and tools for Internet applications, such as a
Web usage mining tool. His current research interests include
database systems, data mining, multimedia systems, parallel and
distributed processing, disk arrays, computer architecture, per-
formance modeling, and workload analysis. Dr. Yu received the
B.S. degree in E.E. from National Taiwan University in 1972, the
M.S. and Ph.D. degrees in E.E. from Stanford University, in 1976
and 1978, respectively, and the M.B.A. degree from New York
University in 1982. He has published more than 200 papers, and
he holds or has applied for 36 U.S. patents. He is a Fellow of the
ACM and the IEEE and was an editor of IEEE Transactions on
Knowledge and Data Engineering. Dr. Yu has received a number
of honors including Best Paper Award, two IBM Outstanding In-
novation Awards, an Outstanding Technical Achievement Award,
a Research Division Award, and 17 Invention Achievement
Awards.

Reprint Order No. G321-5642.

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

KING, DiAS, AND YU 241

