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Supporting high transaction rates and high 
availability  for on-line transaction processing 
and emerging applications requires systems 
consisting  of multiple computing nodes. We 
outline various cluster architecture% and describe 
the factors that motivate the SI390 Parallel 
SysplexTM architecture and its  resulting 
advantages. We quantify the scalability  of the 
SI390 Parallel Sysplex and show that the 
transaction rate supported is close to linear as 
nodes are added to the system. The key facet of 
the SI390 Parallel Sysplex architecture is the 
coupling facility. The coupling facility provides  for 
very  efficient intertransaction concurrency 
control, buffer cache coherency control, and 
shared  buffer management, among other 
functions, that lead to  the excellent scalability 
achieved. It also  provides  for effective dynamic 
load balancing, high data buffer hit ratios, and 
load balancing after a failure. 

T he transaction processing rates that need to  be 
supported have been growing  beyond those that 

can be supported by a single computing node. With 
the exponential growth  in the traffic  on the  Internet 
and  the World Wide Web (Web), which includes al- 
lowing end users to browse and place orders on the 
Web, the transaction processing  load  is  likely to grow 
even larger. Thus, multinode cluster architectures 
are needed to support these environments. Further- 
more, these applications need to provide high  avail- 
ability,  which can be supported by cluster architec- 
tures. 

In this paper, we outline the various cluster archi- 
tectures  and their characteristics. We describe the 

factors that motivated the design of the IBM 
System/390* (S/390*) Parallel Sysplex*, and  outline 
its key advantages as compared to  other cluster ar- 
chitectures. We then quantify the scalability of the 
Parallel Sysplex design. We show that the transac- 
tion rate  that can be  supported is close to linear in 
the number of nodes in the Parallel Sysplex. We also 
show that, even for a Parallel Sysplex composed of 
heterogeneous nodes, excellent dynamic load bal- 
ancing among the nodes can be achieved. We fur- 
ther show that  the processing overhead incurred in 
a multinode Parallel Sysplex  is small and  that  the 
amount of 110 per transaction can  actually  be reduced 
in a multinode Parallel Sysplex as compared to a sin- 
gle node system. 

Figure 1 illustrates the basic Parallel Sysplex archi- 
tecture. Further details of the Parallel Sysplex de- 
sign can be found in Reference l. Each  node in the 
Parallel Sysplex can have a single CPU, or can con- 
sist of a symmetric multiprocessor (SMP). Each node 
runs a separate copy  of the operating system; the pro- 
cessors in an SMP node run a single operating sys- 
tem, OS/390* (previously  known as MVS) on the IBM 
s/390, and have a shared main memory. The nodes 
in the Parallel Sysplex  have shared disks,  which can 
be  accessed directly from each node. Large com- 
plexes of shared disks can be configured, using the 
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Figure 1 Parallel Sysplex system model 

Enterprise Systems Connection (ESCON*) switch.',' 
The key facet of the Parallel Sysplex architecture is 
the coupling facility, which  is shared by the nodes in 
the Parallel Sysplex, as illustrated in Figure 1. The 
coupling facility provides very  efficient intertransac- 
tion concurrency control, buffer cache coherency 
control, a global shared buffer, and  other services, 
which are described further in the section on the S/390 
Parallel Sysplex architecture. These services of the 
coupling facility are  the primary factors that lead to 
excellent scaling,  which  is quantified in the section 
on Parallel Sysplex performance. The  shared buffer 
provided in the coupling facility  also leads to high 
shared buffer hit ratios that can actually reduce the 
1/0 rate  per  node as the  number of nodes in the  Par- 
allel Sysplex increases, as quantified later. Dynamic 
load balancing is achieved by providing shared  job 
queues maintained in the coupling  facility,  as detailed 
and quantified later. 

The  other principal cluster architectures include the 
shared-disk architecture, 4-h the shared-nothing or 
partitioned architecture, 7,8 and  the virtual shared- 
disk model. These architectures are outlined in the 
next section and are  then qualitatively compared. 
Next, the Parallel Sysplex performance and scaling 
is quantified, followed by concluding remarks. 

Cluster architectures 

In this section we describe the principal cluster ar- 
chitectures for supporting scalable commercial ap- 
plications such  as on-line transaction processing 
(OLTP) and parallel database systems. These archi- 
tectures can also be used to  support various other 
emerging applications such as scalable Web" and 
video servers. 

There is a major division between cluster architec- 
tures because of dzerences in the ability of the nodes 
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Figure 2 Partitioned or shared-nothing  architecture 

to access the disks. In one camp we have a partition- 
ing scheme where each node has  access to only a sub- 
set of the disks. In the other camp lies the disk-shar- 
ing topology where each node has access to all  disks. 
The disk-sharing architecture additionally introduces 
a number of  key choices that  further define it. These 
choices include: 

1. An update concurrency control method 
2. A database buffer cache coherency control 
3.  A provision for shared memory among the nodes 

The principal composition of the choices that define 
each cluster architecture is presented here.  The  per- 
formance effects and trade-offs resulting from these 
choices are discussed  in the next section. 

Partitioned  or  shared-nothing  architecture. In this 
architecture, 7,8~11 illustrated in Figure 2, the disks and 
the database are partitioned among the nodes in the 
cluster. There  are two flavors of data partitioning: 
In the function-shipping model, if a transaction run- 
ning on a  node needs to access data located at a  re- 
mote node in a cluster, a remote function call is made 
to  the  node at which the  data reside;' the  remote 
node makes a local database call to retrieve the  data, 
and  the results are shipped back to the requesting 
node. In  the I/O shipping model," remote  data  are 
accessed by making a  remote 110 request to fetch the 
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required disk  block from the  remote node. I/O ship- 
ping  is similar to the virtual shared-disk model de- 
scribed later,  and  shares many of its characteristics. 

In the function-shipping model, the  node  that owns 
the  data partition obtains local  locks on the  data ac- 
cessed on behalf of the  remote transaction. Thus, 
no global locking is needed. The  database buffer 
cache is  also located at  the  node  that owns the  data, 
and thus, there is no buffer coherency problem. A 
single transaction may  access and  update  data lo- 
cated on several nodes. At transaction commit, a two- 
phase commit  is needed between all the nodes in the 
cluster involved in updates  on behalf of the trans- 
action. 

The function-shipping model is used in the Gamma 
Database"  and  the DB2* (DATABASE 2") Parallel 
Edition (DB2PE), l3 ,I4 among other systems. The IBM 
Scalable PowERparallel System* running DBZPE 
has this architecture. 

Shared-disk  architecture. The shared-disk architec- 
ture is illustrated in Figure 3. 6,16~17 Essentially,  all the 
nodes in the clustered system  have direct access to 
(some or all) of the disks on which shared data  are 
placed. Each of the nodes in the cluster has a local 
database buffer cache. In order  to maintain consis- 
tency of the  database with transactions running on 
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the different nodes in the cluster, a global (i.e., sys- 
tem-wide) concurrency control protocol is needed. 
Further, in order  to maintain coherency among the 
local database buffer caches at the nodes in the clus- 
ter, global  buffer  coherency control must be enforced. 

The global concurrency control could be either dis- 
tributed or centralized. '* Distributed concurrency 
control using a locking protocol is often used. One 
of the earliest distributed concurrency control pro- 
tocols  was implemented for Information Manage- 
ment System (IMS") data   ha ring.^ The protocol was 
referred  to as "pass the buck;  the lock space was 
mapped to hash classes, and lock contention was de- 
tected at the hash class  level by passing the "buck," 
with information on locks at the hash class  level, 
among nodes. In case of contention  at the hash class 
level, contention resolution at  a finer granularity was 
done. 

Distributed concurrency control was  also used in the 
Digital Equipment Corporation vmcluster" * . 5  The 
lock space was partitioned among director nodes. 
Once  a node obtained a lock on an object, it became 
the master, and subsequent lock requests to  the ob- 
ject were referred by the director to the master node. 
A similar distributed lock manager is  used by the  Or- 
acle Parallel Server and is implemented in the IBM 
Highly Available Cluster Multiprocessor (HACMP). 

In addition to concurrency control, the  database 
buffer  caches located at each node in the cluster need 
to be kept coherent.  The simplest method for buffer 
coherency is the so-called broadcast invalidation pro- 
tocol, in  which  buffer  blocks at all remote nodes are 
invalidated  when a block is updated at  the node hold- 
ing the corresponding update lock. Broadcast inval- 
idation has a high overhead, particularly when the 
number of nodes in the system  is large. To reduce 
the overhead for buffer  coherency control, integrated 
concurrency-coherency control schemes are available 
and are described in Reference 19. Essentially,  when 
a global  lock is obtained, information is  also  provided 
by the integrated concurrency-coherency controller 
on whether the local  buffer  copy of the correspond- 
ing page at  the requesting node is  valid. Further is- 
sues related  to concurrency and coherency control 
are discussed  in the section on qualitative compar- 
isons. 

Virtual shared-disk model. The virtual shared-disk 
(VSD) model'  is illustrated in Figure 4. Here, we have 
a blending of the partitioned and shared data 
schemes. As in the  data partitioning model, the disks 
are partitioned among the nodes in the system. There 
is a set of logical storage nodes to which the disks 
are connected and  a set of logical processing nodes 
on which database transactions run. (Logical stor- 
age and processing nodes may reside on the same 



Figure 4 Virtual  shared-disk  architecture 
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physical processor.) I/O requests to disks connected 
to  the storage nodes are  trapped in the disk driver 
and shipped to  the storage nodes. The required data 
block(s) are retrieved by the storage nodes and  re- 
turned  to  the requesting node;  the storage nodes 
have  all  processing done  at  interrupt level, leading 
to improved  efficiency. By comparison, a typical net- 
work  file  system processes requests by daemons at 
the equivalent of the storage nodes. By doing  all stor- 
age node processing at  interrupt level, VSD achieves 
an  order of magnitude better performance than typ- 
ical network file  systems. When there is  affinity of 
data access at the logical processing nodes, the log- 
ical processing and storage nodes are typically com- 
bined on  a physical node. The storage nodes may 
also have a memory  buffer cache for recently ac- 
cessed  disk  blocks directed to  that storage node. 

The VSD model is similar to  the 110 shipping model 
outlined earlier. The difference is that the VSD model 
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is  completely transparent to the parallel database sys- 
tem running on the processing nodes. Thus, to  the 
database, the VSD model is identical to the data-shar- 
ing  model. Furthermore, the concurrency  and  buffer 
coherency  models  used are the same  as that for the 
shared-disk  model. 110 shipping is  typically done at the 
buffer  manager  layer of the database, which  also  re- 
sults  in  higher  overhead  for remote call  processing. 

The VSD model is used on  the IBM Scalable 
POWERparallel  System15 running the Oracle Paral- 
lel Server. 

S/390 Parallel Sysplex  architecture. We outline as- 
pects of the Parallel Sysplex architecture  to  the ex- 
tent required by subsequent sections of this paper; 
further details can be found in Reference 1. The Si390 
Parallel Sysplex architecture is illustrated in Figure 
1. As can be seen,  the shared-disk topology  is used 
as each node has access to all  disks. Thus, the ex- 
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cellent availability attributes of a  shared-data archi- 
tecture  are  present. Additionally, the nodes in the 
system have access to one  or more coupling facil- 
ities. It is through the use of the functions provided 
by the coupling facility that  the Si390 Parallel Sysplex 
is able to achieve excellent  scalability  beyond the ca- 
pabilities of other data-sharing architectures. 

The coupling facility consists of hardware and mi- 
crocode to  support  the S/390 Parallel Sysplex archi- 
tecture extensions. Coupling facilities are  attached 
to Si390 processors using high-speed coupling links 
that typically provide data transfer rates of up to 
100 MB per second. Most commands issued to  a cou- 
pling  facility complete in several hundred microsec- 
onds or less. The coupling  facility supports three gen- 
eral types of functions, or behavioral models:  lock, 
cache, and list. Each of these models has an asso- 
ciated “structure”  that resides in the storage of the 
coupling facility. 

The coupling facility  lock model provides the mech- 
anism to address the global concurrency issue  with 
shared-data schemes. The lock structure contains 
lock table entries that  are mapped to  data blocks or 
records by the database manager software. Each lock 
table entry contains shared or exclusive indicators 
for each interested system. When a system  wishes to 
obtain  a lock for a  data item, generally one quick 
trip to  the coupling facility  allows the lock to be 
granted (based on the  requested and current  state 
of the lock). Should the requested lock create  an in- 
compatible state, this lock “contention” is  recog- 
nized, and  further processing by the interested lock 
managers is required. Typically,  over 99 percent of 
the time the lock can be granted immediately. 

The coupling facility cache model is used to address 
the  database buffer coherency issue, enabling each 
node in a sysplex to locally cache frequently refer- 
enced data items from  globally shared databases. The 
cache structure consists of  two parts: directory en- 
tries and optional data elements. A directory entry 
exists for each unique data block  held  in the local 
buffer pool of any  system, or in a global pool. Each 
directory entry contains an indicator as to which  sys- 
tems currently have copies of the  data block. In the 
protected storage of each system, a bit vector is de- 
fined mapping a bit to each local data buffer. Upon 
reading a  data block from a shared database, the  da- 
tabase manager registers the  data block  (by name) 
and its associated local bit-vector offset to  the cou- 
pling facility directory entry, and sets the local bit- 
vector value to indicate a valid data block. Should 
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the database manager on  another system  now up- 
date this data block, the  update is communicated to 
the coupling facility. The coupling facility interro- 
gates its directory and sends “invalidate signals” to 
the systems currently holding copies of the  data 
block. An invalidate signal causes the local bit-vec- 
tor bit corresponding to  the  data block to be set to 
indicate an invalid state;  note  that  the act of setting 
the bit is handled by the coupling link hardware with 
no interruption  or impact to work running on the 
system. Whenever a  database manager wishes to use 
a locally buffered data block, a simple bit test indi- 
cates the validity. Should the test indicate an invalid 
state, the database manager will refresh its  local  copy 
of the  data block. The  data blocks themselves may 
also be stored in the  optional  data element part of 
the cache structure in the coupling facility. If this  is 
done,  a local copy  of a  data block that is found to 
be invalid may be refreshed from the  updated copy 
found in the coupling facility.  Many shared-data ar- 
chitectures degrade because of the overhead of 
buffer invalidation. It can be seen that  the coupling 
facility  cache  model  successfully and efficiently  solves 
this problem. 

The coupling  facility  list structure provides a general- 
purpose queuing construct useful for a wide variety 
of applications. A list structure consists of one  or 
more list headers and list elements. Elements may 
be added or removed from lists  using LIFOFIFO (last- 
in-first-out/first-in-first-out) or key-sequenced order- 
ing. Programs can register an interest in  lists and be 
notified  when a list  makes a transition  from  empty to 
nonempty.  List  structures are used  for  intersystem  mes- 
saging  and  workload  distribution. For example,  in- 
stances of a workload  manager  across the Parallel Sys- 
plex  may  periodically  exchange  performance status 
information  through the use  of a list structure. This  in- 
formation  is then used for dynamically  routing trans- 
actions away from overutilized  systems to underutilized 
systems. 

Qualitative  comparison 

We  examine factors that impact the scalability of the 
cluster architectures, outlined in the previous sec- 
tion, and discuss  how  they  motivated the Parallel Sys- 
plex  design. 

Several contending factors affect the comparative 
performance of these approaches to clustering.  They 
include: 

Coupling or clustering efficiency 
Buffer hit ratio 
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Figure 5 Remote  database  call  and  two-phase  commit for data  partitioning 
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Load balancing under normal operation 
High availability and load balancing after failure 

Coupling  efficiency. The coupling efficiency  is defined 
as the ratio of the throughput achieved by a multi- 
node cluster to  that of an ideal system  with a through- 
put  that is linear in the number of nodes. The cou- 
pling  efficiency is determined by several factors, 
including the CPU overhead due  to cluster protocol 
processing, any additional I/O operations, possible 
locking delay due to contention,  and additional la- 
tency for some operations in the cluster. 

For  the  data partitioning architecture, additional 
costs are incurred for remote requests to access non- 
local databases, as illustrated in Figure 5. The  data 
are partitioned among the nodes in the cluster and 
can be  accessed  only by the  node  at which the  data 
reside. Consequently, if a transaction running at  a 
node needs to access data located at another  node, 
a  remote database call  is made, which entails com- 
munications overhead and delay. In addition, the  re- 
questing node must perform a task switch  since the 
remote request processing has a delay greater than 
twice the task switch time. Executing the  database 
call at the  remote node requires allocating an agent, 
or a so-called mirror transaction, to process the call, 

with concomitant overhead.’’  Finally,  since multi- 
ple nodes may process database requests for the same 
transaction, all the nodes involved  in processing up- 
date requests on behalf of the transaction must be 
part of a two-phase commit process. Two rounds of 
messages are exchanged during the two-phase com- 
mit operation. However, the number of nodes in the 
two-phase commit is bounded by the number of up- 
date requests in a transaction. 

For  the data-sharing approach, as illustrated in Fig- 
ure 6, global concurrency control is needed, and ad- 
ditional overhead is incurred to  obtain and release 
global  locks. This is  in contrast to  the  data partition- 
ing architecture where the  database is partitioned 
and hence all  lock requests to  the  data  are local to 
the  node owning the corresponding database.  That 
is to say that under data partitioning, the lock in- 
formation can be maintained locally  within local 
memory of the  node, whereas data sharing requires 
global  locks. 

The global concurrency control can be implemented 
either via distributed locking or by a lock  assist, as 
in the Parallel Sysplex coupling facility. The distrib- 
uted approach generally relies on  standard commu- 
nication protocol to request and release lock re- 
quests.4-5 Figure 6 illustrates the flow for a typical 
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Figure 6 Distributed  global  locking  for  disk  sharing 

distributed concurrency control protocol as in Ref- 
erence 5; if the node on which a transaction runs is 
not the master for  the  required lock (see previous 
section), obtaining the global lock  typically  involves 
a message to  the lock director and then to  the cur- 
rent lock master, which then grants the lock. This 
operation entails a large processing overhead and 
delay to obtain a lock. 

The  lock  assist  approach, as in  the  Parallel Sysplex cou- 
pling  facility, uses specialized  hardware andprotocols 
or instructions to obtain  global  locks  and  can  reduce 
the  locking  overhead  signzjicantly. 6,2'x22 This approach 
is demonstrated by the high  efficiency  of the coupling 
facility,  as  shown subsequently. 

The locking protocol can be either  eager  (release 
locks on transaction commit) or lazy (release locks 
only on ~ o n f l i c t ) . ~ ~ , ~ ~  Lazy protocols are  adequate if 
there is a low degree of sharing, but they have a high 
overhead and delay for  moderate and high degrees 
of sharing. Typical distributed locking methods use 
lazy  lock release. Consequently they perform rea- 
sonably well at low degrees of sharing, as in bench- 
marks like the Transaction Processing Performance 
Council benchmark C (TPC-C**),25 but have a large 
overhead and delay for many real workloads. The 
coupling  facility  uses  eager  locking in order to  handle 
varying  degrees of sharing, since  many applications 
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when  directly ported to a cluster have  high degrees 
of sharing. 

The granularity of locking for global  locks  can be at 
either  the physical  block  level or record level.  Block 
level  locking  can result in  false contention, especially 
for hot spots. The  coupling  facility  supports  record- 
level  locking  to  avoid  false  contention. Typical distrib- 
uted locking protocols use  block-level  locking. 

Another effect  is that of database buffer cache co- 
herency control, as outlined earlier. Since a  data 
block  can be present in the  database buffers of more 
than  one node, when an update occurs,  all other buf- 
fered copies become obsolete. Coherency control 
needs to be provided to invalidate the obsolete gran- 
ules in the local buffers and maintain the coherency 
of the  buffer contents. There  are several alternative 
approaches to coherency control. One scheme is re- 
ferred  to as broadcast i n ~ a l i d a t i o n , ~ ~ , ~ ~  illustrated in 
part A of Figure 7. When one  node  updates  a block, 
all other nodes are informed that  the block, if held 
in the local  buffer of the  other nodes, is  invalid. It 
has several implications. First, an overhead is asso- 
ciated with sending the buffer  invalidation  messages. 
If this information is broadcast to every node, the 
overhead grows linearly with the  number of nodes. 
Second, as a result of the  update  and buffer  inval- 
idation, another  node  that uses the  updated granule 

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997 



~ 

Figure 7 Buffer  coherency  protocols 

will  have a local  buffer  miss,  which results in an in- 
crease in I/O activity for the shared-disk architecture 
and  a shared buffer  access if shared global memory 
is present. 

An alternative approach, referred to as the check- 
on-access scheme in References 5 and 19, avoids the 
broadcast overhead by providing a mechanism to 
track the validity of in-memory data granules and 
having each node explicitly  check the validity of a 
data granule upon access. This approach can sub- 
stantially reduce the message overhead for invali- 
dation and is  especially suitable for a large number 
of nodes.  Since there are no explicit  invalidation  mes- 
sages,  invalid granules continue to stay  in the local 

buffer and are not detected until reference time. It 
reduces the buffer hit probability a little; however, 
in Reference 26, a performance study shows this re- 
duction of buffer hit probability to  be small, espe- 
cially when the  data access pattern is  skewed (i.e., 
nonuniform), as  is often observed  in transaction pro- 
cessing environments. 

As described in the section on the Si390 Parallel Sys- 
plex architecture, the Parallel Sysplex coupling facil- 
ity combines  the check-on-access scheme with  a gran- 
ularand nondisruptive cross-invalidate mechanism  to 
eficientlyprovide database  cache  coherency. The  Par- 
allel  Sysplex  buffer coherency method is illustrated 
in part B of Figure 7: A node registers reading a  data 
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block to the coupling  facility (1); on update of a block, 
the coupling facility  is notified (2); the coupling fa- 
cility  selectively resets a local  bit vector (in hardware) 
only on nodes that have registered interest in the 
block (3); when a block  is reaccessed, the local  bit 
vector is checked for validity (4). 

In  the shared-disk architecture, when a  data block 
needed by a transaction is cached in the  database 
buffer of another node, the  data  are typically ob- 
tained by writing the block to disk from the cache 
and reading the  data from disk at the requesting 
node, as illustrated in Figure 6. This caching leads 
to large overhead, delay, and increased disk band- 
width, especially for hot  shared  data, leading to so- 
called “ping-ponging.” In the coupling  facility, hot 
shared data are cached in a shared global buffer 
cache. 29,30 As a result, the efficiency  is  high, even with 
high degrees of sharing, and  the ping-ponging pen- 
alty is low, as quantified subsequently. 

Buffer hit probability. Next, we consider the issue 
of  efficient  buffer  usage. In  a shared-disk environ- 
ment,  the buffer management is decentralized, and 
each buffer manager makes independent decisions 
on which granules to buffer. In essence, there is no 
cooperation or division  of  work among the local 
buffer managers. If the transactions are  routed  to 
the nodes in a round-robin fashion without exploit- 
ing the transaction affinity  in various database  par- 
titions, each local  buffer manager will observe sim- 
ilar data  reference  patterns  and try to buffer similar 
data blocks. This action could lead to significant rep- 
lication of data blocks  among the nodes,  as illustrated 
in part A of Figure 8. 

This situation is  in contrast to  the  data partitioning 
architecture, where the  database is partitioned 
among the nodes, and each node caches data blocks 
from its own partition. (Note  that  the buffering un- 
der  data partitioning is  similar to  that  under  a single 
node system where multiple buffer pools and differ- 
ent partitions use  different buffer pools. 31) Even  with- 
out  the invalidation effect, the local  buffer hit ratio 
is expected to  be lower under  the shared-disk ap- 
proach for the same total buffer  size, since the 
shared-disk approach uses the local buffer to cache 
the  entire  database instead of caching just  one  par- 
tition of the database (as is done  under  the  data  par- 
titioning architecture). However, there is a trade-off 
in that  a  remote  database call  is required to access 
data in a  remote buffer for data partitioning, rather 
than local  buffer  access using the shared-disk ap- 
proach, as illustrated in part B of Figure 8. The buffer 

hit ratio degradation of the local  buffer under  the 
shared-disk architecture can be alleviated somewhat 
by using  affinity-based routing, as explained in the 
next subsection. Further, with the  data partitioning 
architecture, the memory is distributed among the 
nodes in the cluster. A single large memory has a 
higher buffer hit ratio than  partitioned memories of 
the same total size. 

The shared database buffer cache provided in the cou- 
pling facility has advantages over either the shared-disk 
ordatapartitioningarchitectures. Data  that  are shared 
among the nodes can be placed in the shared buffer, 
leading to  a higher buffer hit ratio than a partitioned 
buffer and avoiding replication in multiple local da- 
tabase buffers,  as illustrated in part C of Figure 8. 
In  Reference 32, a performance study on a global 
shared buffer in a data-sharing environment is con- 
ducted to understand the trade-offs of local and 
global shared buffers. It is found that  proper usage 
of a global shared buffer can substantially improve 
the overall buffer hit probability and transaction re- 
sponse time addressing the replication and invali- 
dation issues in the local  buffers under  data sharing. 
Comparison of the buffer hit probabilities under  the 
different architectures can be found in Reference 33. 
Quantification of the improvement in the buffer hit 
probability that accrues to  the  shared buffer  in the 
coupling facility  is  given  in the section on Parallel 
Sysplex performance. 

Load balancing. In a transaction processing environ- 
ment, there  are generally  multiple transaction classes 
and relations (or physical databases in a hierarchi- 
cal database).* Each transaction class  may  exhibit 
affinity to certain relations, or partitions of relations. 
For instance, in the Transaction Processing Perfor- 
mance Council benchmark B (TPC-B**),34 transac- 
tions have  affinitywith the associated (bank) branch 
with  which the account is associated. Similarly,  in the 
TPC-C benchmark, 25 transactions have  affinity  with 
the associated warehouse. AfFinity c l ~ s t e r i n g ~ ~ . ~ ~  is 
the process of partitioning the transactions and re- 
lations into affinity clusters (ACS) according to their 
database references. The entity consisting of the  re- 
lations associated with each AC is referred  to as a DB 
(database) cluster. Transactions associated with an 
AC are  routed  to  the same node. Additionally, un- 
der  data partitioning, each DB cluster is  assigned to 
the node where its associated transactions are ex- 
ecuted. Under data-sharing environments, the  da- 
tabase partitioning is  logical (rather than physical) 
as pages of each DB cluster are buffered (referenced) 
from its associated node. This reduces the CPU over- 
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Figure 8 Buffer issues 

t 

heads under data partitioning, caused by reduced re- ways  easy and sometimes impossible to partition a 
mote database accesses and two-phase  commits, and database to form affinity  clusters and at the same time 
improves the local  buffer hit probability and ping- balance the transaction load at all nodes. In  Refer- 
ponging for the shared-disk architecture. It is not al- ence 33, the effect of affinity clustering on  the per- 
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formance of the different coupling architectures is 
studied, and the Parallel Sysplex-like architecture is 
found to  be most robust to workload partitionabil- 
ity. 

To illustrate the partitionability of real workloads 
and the degree of affinity (i.e., fraction of local da- 
tabase accesses) that can be achieved, we examine 
some workloads from DB2 and IMS database envi- 
ronments. In Reference 36, a relational database 
workload is analyzed for  a production DB2 system 
that runs an accounting-type application in a  petro- 
leum company. There  are 323 relations or tables and 
305 application plans or transaction classes.  How- 
ever, in the two-hour measured interval, more  than 
90 percent of the transactions executed come from 
seven plans, concentrating the database references 
on  a few relations. Thus, partitioning the load evenly 
beyond a  moderate number of ACs is  difficult. 

In References 6  and 8, two transaction workloads 
from production IBM IMS environments are studied. 
The first  system  is an on-line planning database sys- 
tem with 103 physical databases and 143 transaction 
classes. The second system  is a  parts inventory da- 
tabase system  with  158  physical databases and 176 
transaction classes. Traces of database (DLII, or  Data 
Language 1) calls were obtained  from  the two  sys- 
tems and analyzed. These calls are  referred to as 
workload 1 and workload 2, respectively. Let N be 
the number of partitions into which the workload is 
split. In workload 1, a large fraction of the transac- 
tions show a strong affinity to  one physical database 
and must be assigned to  the same AC. These trans- 
actions constitute more than 20 percent of the trans- 
action load. For N > 5, the partitioning into ACS 
becomes skewed  since one AC with more than 20 per- 
cent of the load will be larger than  the  other ACS. 
That is to say, the workload is not evenly partition- 
able for N > 5.  For  a smaller number of nodes, the 
transactions can be split into N ACS, where the load 
imbalance among the nodes is  within 5 percent. Fur- 
thermore,  the affinity attainable, i.e., for each AC the 
fraction of database references that can be made to 
stay  within the affiliated DB cluster, tends  to go  down 
as the number of nodes increases. For N = 2, the 
transactions can be partitioned such that  the affinity 
of each AC is around 0.95, whereas for N = 3 and 
4, the affinities deteriorate  to 0.82 and 0.74, respec- 
tively. In workload 2, partitioning skew  is again ob- 
served, where 32 percent of the transaction load falls 
onto  one AC. That is to say, for N > 3,  the parti- 
tioning will be skewed, as the load on one of the ACS 
becomes larger than the  other ACS. For smaller val- 
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ues of N ,  the transaction load can be split into N 
ACs, where the load imbalance among the nodes is 
within 5 percent. Again we observe the  deteriora- 
tion of  affinity as the number of nodes increases. For 
N = 2, the transactions can  be partitioned to achieve 
an affinity of 0.75, whereas for N = 3,  the affinity 
deteriorates  a bit to 0.68. 

These case studies indicate that it  is  difficult  with real 
workloads to form affinity clusters with low fractions 
of remote database calls, and simultaneously  achieve 
a balanced load among the nodes in the system. 
Therefore, it  is important  to achieve  high coupling 
efficiency when any transaction may run on any node 
in the cluster. We  show later  that  the S/390 Parallel 
Sysplex  achieves  excellent  scalability under these con- 
ditions. 

Dynamic  load  balancing. We now examine the im- 
pact of dynamic load changes on these architectures. 
Let us assume that  at steady state  the workload  is 
perfectly partitionable and balanced, and consider 
the case of a sudden load surge in one of the trans- 
action classes. For example, the most  active stocks 
in the stock market may change from period to  pe- 
riod, depending upon which  companies  become take- 
over targets. The corresponding database partition 
would  have a sudden surge in load. For data shar- 
ing, a  front-end  router can be employed to  spread 
the load surge across all nodes, as illustrated in Fig- 
ure 9. Certainly, by doing this, the buffer hit prob- 
ability at each node decreases. The reduction comes 
from two factors. First, in each of the nodes except 
the surge node (i.e., the node affiliated  with the trans- 
action class  with the load surge), the  data blocks  in 
the buffers come from two partitions: the original 
partition logically  assigned to the  node and the  par- 
tition corresponding to  the surge transaction class. 
The second factor is the cross-invalidation effect on 
the  data blocks from the partition affiliated  with the 
surge load. This factor potentially may  affect the 
surge node more than  the  other nodes as the buffer 
in the surge node contains only the  data blocks from 
the partition accessed by the surge transaction class 
and, hence, is more susceptible to in~alidation.~~ 

Thus, the stronger the affinity among transactions 
in terms of the  data accessed, the  more severe is the 
impact of ping-ponging of the shared data among 
nodes. Consider, for example, if the TPC-B bench- 
mark34 transactions to  the same branch are routed 
to different nodes due  to a load surge, then  the 
branch and teller blocks will ping-pong between 
nodes. For disk sharing, the ping-ponging and dis- 
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Figure 9 Data sharing-surge in  transaction load 

tributed concurrency control overhead limits the load load. The  eficiency of the  coupling facility for heavily 
that can be moved  away from nodes with a heavy shared data,  and  for locking,  allows for excellent  dy- 
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Figure 10 Data partitioningsurge in  transaction  load 

namic load balancing by moving load awayffom  hot ated with each transaction can be divided into two 
nodes with relatively small overhead. parts. One is application processing and  the  other 

is database call processing (labeled as DB manager 
For  data partitioning, load sharing is  difficult, as il-  load  in the figure). The database call  processing  must 
lustrated in Figure 10. The processing load associ- be done  at  the node owning the  database partition 



that the call  is referencing or updating, whereas the 
application processing can be done  at any node se- 
lected by the front-end router. This phenomenon un- 
der  data partitioning is referred  to as the database 
call  sewer  bottleneck. 37 If we try to  spread  the trans- 
action application processing of the surge transac- 
tion class to  other nodes, the  database calls still have 
to be sent back to the surge node; thus, as illustrated 
in Figure 10, the surge node gets a disproportionate 
load. Furthermore,  there is additional communica- 
tions overhead for shipping the  database calls and 
two-phase  commit overhead for updates. This added 
overhead reduces (or nullifies) the effectiveness of 
load sharing. In Reference 37, a performance com- 
parison of different cluster architectures for handling 
system  dynamics  showed that  the  data partitioning 
architecture is least able to cope with load variation 
and requires a large amount of contingent capacity 
to be put aside as compared with the data-sharing 
architecture. The data-sharing architecture can also 
improve load balancing at the disk  level.38 

High  availability  and load balancing after failure. 
We  now examine the fault tolerance to single node 
failures. We consider the case where one of the CPUS 
has  failed,  while the disks are still  accessible. For data 
partitioning, we assume that  the straightforward 
paired backup strategy is used where each active 
node is paired with another active node  to form a 
backup pair using twin  tail  disks, 39 as shown in Fig- 
ure 11. (There  are certainly other backup scenarios. 
Using a single spare node  to back up any failed node 
is another possibility. However, this  would require 
direct connection to all  disks,  which  is more of a data- 
sharing flavor, and is thus not considered here. Also, 
database replication and disk-mirroring strategies 
that require more disk space and overhead are  not 
considered here.) When a CPU fails, the disks of the 
failed node  are switched  over to its backup node. 
Now the backup node needs to serve database calls 
to two partitions: its  own partition and the partition 
of the failed node. The dual serving role has impli- 
cations for both the buffer hit probability and CPU 
load. The buffer hit probability decreases as the 
buffer now has granules from two partitions. As the 
database call  processing of the two partitions can- 
not be off-loaded to  other nodes, it results in a server 
bottleneck, as illustrated in Figure 11. 

For the data-sharing architectures, the transaction 
class  originally destined for the failed node will be 
spread across all the  other nodes, as shown  in  Fig- 
ure 11. However, if there is  affinity among the  data 
accessed by transactions directed to  the failed node 
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(as in the TPC-B example  above), distributing the load 
across the remaining nodes can lead to ping-pong- 
ing (as discussed before) resulting in some reduc- 
tion  in  buffer hit probability. The  coupling  facilitypro- 
vides eficient operation  even  when  the  load of the  failed 
node is redistributed because of its  ability to efficiently 
support workloads where transactions are randomly 
routed among nodes in the cluster. In  Reference 37, 
the contingency capacity requirement  to sustain a 
single node failure under different architectures is 
studied. It was found that  the  data partitioning ar- 
chitecture requires substantially more contingent ca- 
pacity  as compared to  the data-sharing architecture. 

Summary. In summary, the key advantages of the 
Parallel Sysplex use of the coupling facility are: 

Low coupling overhead due to efficient integrated 
concurrency and coherency control and access to 
the  shared buffer in the coupling facility 
Excellent dynamic load balancing due  to  the abil- 
ity to  route load to any node in the cluster with 
low coupling penalty 
High  availability due  to the ability to rebalance the 
load among the remaining nodes, with excellent 
load balancing after  a  failure 
High buffer hit ratio due to shared buffer, poten- 
tially  with a higher buffer  hit ratio with a larger 
number of nodes 

These advantages of the Parallel Sysplex  design are 
quantified next. 

S/390 Parallel Sysplex performance  and 
scaling 

A set of laboratory benchmarks40  was conducted to 
exhibit the excellent performance and scalability 
characteristics of the W390 Parallel Sysplex. Addition- 
ally, data were collected from several in-production 
Parallel Sysplexes running mission-critical applica- 
tions. From the results of these measurements, we 
quantify the aspects discussed in the previous sec- 
tion that illustrate the key advantages of the  Paral- 
lel  Sysplex. 

Laboratory  benchmark  environment. The measured 
hardware configurations consisted of two, eight, and 
sixteen Si390 9672 CMOS (complimentary metal-ox- 
ide semiconductor) systems coupled by one (for the 
2- and 8-system tests) or two (for the 16-system test) 
Si390 9674 CMOS coupling facilities.  Two  differ- 
ent software configurations were measured. The 
CICS-TM/IMS-DB configuration  included the Customer 
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Figure 11 Fault tolerance 

Information Control System (CICS*) transaction the D B ~  database manager. The workloads reflected 

manager (m), the CICSPlex*  Systems Manager, and 
mixes of on-line transaction processing (OLTP) trans- 

the IMS database manager. The IMS-TMIDB2 config- actions covering  diverse  business functions includ- 

uration included the IMS transaction manager and 
ing warehousing, reservations, and banking applica- 
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Table  1  Normalized  capacity  for 2-, 8-, and lbnode 
Parallel Sysplex  from  benchmark data 

NT = not tested 

tions. All databases were fully shared  and accessible 
to all  systems. There were no transaction or data af- 
finities; thus, any transaction could run  on any  sys- 
tem. 

Simulated user sessions were evenly distributed 
among the S/390 systems. Each session randomly se- 
lected a script of transactions to submit, and random- 
duration think  times were inserted between the trans- 
actions. For  the CICS-TM measurements, the CICS 
transaction manager (under guidance from the 
CICSPlex  Systems Manager) would decide either  to 
process transactions locally or  to  route  the transac- 
tions to other systems  within the Parallel Sysplex for 
best workload balancing. For  the IMS-TM measure- 
ments, transactions were processed on  the system 
to which the session  was connected. 

Scalability  and  coupling  efficiency. Table 1 shows the 
normalized capacity (based on  the transactions pro- 
cessed per second in the two-system Parallel Sysplex) 
for each measured point. 

With use of the CICS-TM/IMS-DB measurements, a 
comparison of the normalized capacity to  the 
“ideal” capacity at  the 8- and 16-system points may 
be made to highlight the scalability of the Parallel 
Sysplex. Growing a Parallel Sysplex from two  sys- 
tems to eight systems increases the  potential capac- 
ity by a factor of four. In reality, a factor of  3.89 ca- 
pacity  growth  was measured, meaning that with the 

addition of six systems, the Parallel Sysplex realizes 
97.25 percent (3.89/4) of the ideal! In scalability 
terms, adding the six systems results in a loss of only 
2.75 percent  or approximately 0.5 percent  per sys- 
tem added. Likewise,  growing the Parallel Sysplex 
from two systems to 16 systems  yields a 7.4-fold  in- 
crease in capacity, or 92.5 percent of ideal. This also 
averages to approximately 0.5 percent cost for each 
of the 14 systems added. The IMS-TMDB2 8-system 
measurement shows similar excellent scalability re- 
sults. 

Most of the cost of  moving from a single-system non- 
data-sharing configuration to a multisystem,  fully da- 
ta-sharing configuration occurs in the transition to 
a two-system Parallel Sysplex. It is during this tran- 
sition that  the cost to access records in shared 
databases is increased by the activity to  the lock, 
cache, and list structures on the coupling facility to 
manage update serialization and local buffer coher- 
ency. Additionally, coupling facility  activity on be- 
half of workload  balancing is activated. Once this  cost 
is paid, there is very little increase in overhead to 
connect additional systems  as  shown by the scalabil- 
ity measurements. 

In  order  to observe this transition cost in produc- 
tion environments, data have been  gathered from 
several Parallel Sysplexes that  are running mission- 
critical applications. Table 2 summarizes data from 
four production Parallel Sysplexes. The number of 
OW390 images is the number of nodes in the Parallel 
Sysplex. “CF access per CPU second” gives the  rate 
of activity to the coupling facility, normalized by the 
total processing time across the Parallel Sysplex. This 
value provides a relative measure of the access in- 
tensity to  the  shared databases of each Parallel Sys- 
plex. The final column gives the approximate per- 
centage of the capacity of the Parallel Sysplex that 
is  being consumed for activity related to coupling the 
systems. Note  the high correlation between the cou- 
pling overhead and the access rate  to  the coupling 

Table 2 Cost of couDlina  usinn the sysplex architecture  from  customer  production  data 
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Table 3 Normalized  database I/O per  transaction  from agers Of both IMSDB and DB2* The data for 
benchmark  data show that  the I/O activity per transaction, which  is 

Table 4 Dynamic  load  balancing  for  6-node 
homogeneous  Parallel  Sysplex  from 
benchmark  data 

Table 5 Dynamic  load  balancing  for  9-node 
heterogeneous  Parallel  Sysplex  from 
benchmark  data 

facility. The  data indicate that  the cost of coupling 
systems  using the Parallel Sysplex architecture is ap- 
proximately 10 percent. 

I/O per transaction. In the section on qualitative 
comparisons, we outlined the advantage of  having 
a  shared  database buffer cache among nodes in the 
cluster. This advantage is quantitatively illustrated 
in Table 3. The table shows the  database I/OS per 
transaction, normalized with respect to that for a sin- 
gle  system. Data  are presented for the database man- 

proportional  to  the inverse of the buffer hit ratio, 
increases gradually with the number of systems in 
the Parallel Sysplex. For  a 16-system Parallel Sys- 
plex, the 110 activity per transaction increases by 
about 13 percent.  The reason for the increase in ac- 
tivity,  which implies a decrease in the buffer hit ra- 
tio, is that IMS-DB did not  store  the  updated  data 
blocks  in the coupling facility cache structure. Thus, 
invalidated local copies were refreshed from disk. 

The  data for DB2 in Table 3 show that  the normal- 
ized number of I D S  per transaction actually  falls  with 
the increase in the number of systems  in the Parallel 
Sysplex. The reason is that DB2 places updated  data 
blocks in its coupling facility cache structure. Con- 
sequently, the total system  buffers are used more ef- 
ficiently, leading to lower numbers of I/OS per trans- 
action, or a higher buffer hit ratio. Placing updated 
data in the coupling facility  also  allows deferred up- 
dates to disk,  while releasing the locks at transac- 
tion commit time. This action prevents coupling  deg- 
radation due  to increased update I/O activity and lock 
contention. Another advantage is that highly shared 
data  that  are frequently updated  are found in the 
coupling facility; this condition alleviates the deg- 
radation caused by ping-ponging of updated pages 
between systems  in the Parallel Sysplex. By contrast, 
the  (pure) shared-disk architecture has a high over- 
head because of ping-ponging. 

Dynamic  load  balancing. Table 4 shows the load bal- 
ancing achieved in a laboratory benchmark of a  Par- 
allel Sysplex composed of eight homogeneous sys- 
tems (cEC, the  central electronics complex). The 
table shows the CPU utilization of each system, rel- 
ative to  the average CPU utilization across the  Par- 
allel  Sysplex. Also shown  is the transaction rate, again 
relative to  the average transaction rate per system. 
As can be observed, the workload was balanced very 
evenly across the systems. 

Now,  what happens when a  “faster” system joins the 
Parallel Sysplex? Table 5 shows the results when a 
ninth system  is added  to  the Parallel Sysplex. How- 
ever, this system has a  potential capacity that is 60 
percent larger than each of the original eight sys- 
tems.  We  find the workload is redistributed, achiev- 
ing a fairly  even  balance of the CPU utilizations across 
the now heterogeneous Parallel Sysplex. The faster 
system automatically begins to process a  share of the 
workload consistent with its capacity. 
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Conclusion 

With the rapid advance  in microprocessor speed and 
reduction of cost per MIPS (millions of instructions 
per second), coupling multiple microprocessors to 
support high transaction rates and high  availability 
for OLTP and  emerging  applications  becomes  increas- 
ingly attractive. In this paper, we considered vari- 
ous cluster architectures, including shared-disk, par- 
titioned (shared-nothing), virtual shared-disk, and 
Parallel Sysplex architectures, and examined the 
trade-offs between these architectures. The factors 
that motivated the System/390 Parallel Sysplex ar- 
chitecture and  its  key  advantages  were then described 
and quantified. Specifically  we  showed that: 

The Parallel Sysplex architecture results in close 
to linear growth  in the transaction rate with the 
number of nodes in the Parallel Sysplex. For in- 
stance, in a benchmark environment, when grow- 
ing the system from two to eight nodes, the  Par- 
allel  Sysplex realized more  than 97 percent of the 
ideal. Even  considering the overhead in  going from 
a single node  to a multinode cluster environment, 
the cost of coupling for customer production sys- 
tems has been observed to be  around 10 percent. 
This high  efficiency  is due  to  the coupling facility, 
which provides very  efficient intertransaction con- 
currency control, buffer cache coherency control, 
shared buffer management, and shared job queues. 
The shared buffer  cache  in the Parallel  Sysplex  cou- 
pling  facility results in  efficient sharing, and can 
actually reduce the I/O activity per transaction with 
a larger number of nodes. 
The Parallel Sysplex  exhibits  excellent  load  balanc- 
ing even for heterogeneous systems. Furthermore, 
superior dynamic load balancing is supported be- 
cause of the ability to  route load to any node in 
the Parallel Sysplex  with low coupling penalty. 
Another key advantage of the Parallel Sysplex de- 
sign  is that, after a failure of a node,  the load can 
be rebalanced among the remaining nodes. It con- 
trasts to the partitioned architecture, where load 
balancing can be constrained by static database 
partitioning. 

Although these advantages of the Parallel Sysplex 
are considerable for many environments, for some 
environments and workloads the  other cluster archi- 
tectures do offer appropriate solutions. 
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