VSAM record-level data
sharing

VSAM (Virtual Storage Access Method) has been
extended to provide multisystem data sharing
through use of the $/390° coupling facility. This
paper describes the serialization techniques used
in the implementation of VSAM data sharing.

his paper begins with a brief history and an over-

view of the vSAM (Virtual Storage Access
Method) data architecture. Then a description of the
new VSAM record-level sharing function is given. This
coupling-facility-based data sharing is an integral part
of the System/390* ($/390*) Parallel Sysplex™.

History of VSAM

Prior to vsaM, Operating System/360 (0$/360) pro-
vided a number of data access methods with a va-
riety of data formats and organizations. Examples
are: BSAM (Basic Sequential Access Method), QSAM
(Queued Sequential Access Method), BDAM (Basic
Direct Access Method), BISAM (Basic Indexed Se-
quential Access Method), and QISAM (Queued In-
dex Sequential Access Method). One objective of
VSAM was to provide a single data format and or-
ganization and access functions for data stored on
DASD (direct access storage device).

The first release of VSAM was shipped in 1973. It was
introduced with System/370*.

At the time VSAM was being defined, System/360*
DASD architecture introduced a function called RPS
(rotational position sensing). This function was a sig-
nificant advancement because it provided a basis for
concurrently executing multiple DASD /O channel
programs on a single /0 channel. The idea is that,
while a device is busy positioning itself to access a

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

0018-8670/97/$5.00 © 1997 IBM

by J. P. Strickland

requested record, its control unit can disconnect from
the channel, allowing the channel to execute another
channel program. When the device is in position near
the record, it requests reconnection to the channel
and then sends or receives the record across the chan-
nel. Neither the BISAM or QISAM key search func-
tion could exploit the RPS function. But, the keyed
data format of VSAM with its compressed index is
able to exploit the RPS function.

cIcs* (Customer Information Control System) is a
widely used transaction processing system. CICS pro-
vides a file access interface on top of VSAM. It is a
CICs file control function that includes transactional
recovery for vSAM files. This isolation and rollback
capability enables vSAM data to be shared among
CICS applications.

VSAM architecture

The data format of VSAM supports fixed-length and
variable-length records. The records are mapped into
fixed-length DASD read and write units called con-
trol intervals (Cls).

Control information resides at the end of each con-
trol interval. There are two sets of control informa-
tion. The last four bytes of the CI is the control in-
terval definition field (CIDF). Immediately to the left
of the CIDF is one or more record definition fields
(RDFs). An RDF describes one record, a set of con-

©Copyright 1997 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

STRICKLAND 361

Figure 1

Layout of a VSAM data control interval

| RECORI

FREE SPACE

tiguous fixed-length records, or a segment of a
spanned record. A spanned record has a length
greater than the size of a control interval, and thus
it resides in a set of control intervals.

The control interval architecture includes a distrib-
uted free space capability. Records are stored within
a control interval starting at offset zero. The RDFs
specify the lengths of each record and are stored in
reverse order beginning immediately to the left of
the CIDF. Any unused space between the end of the
last record in the CI and the last RDF is free space.
The format of a vVSAM data control interval is shown
in Figure 1.

The basic VSAM data addressing model is a linear
space model. The term RBA (relative byte address)
is used to designate the address of a data location
within a VSAM linear space. Although the byte ad-
dress technique is used, the VSAM data are stored
and accessed as records.

VSAM data set types. VSAM provides a number of
data set types or data organization schemes. They
are:

» Key-sequenced data set (KSDS)
» Entry-sequenced data set (ESDS)
* Relative record data set (RRDS)

362 sTRICKLAND

* Variable-length relative record data set (VRRDS)
 Linear data set (LDS)

VSAM key-sequenced data set architecture. The key-
sequenced data set (KSDS) is a widely used VSAM data
set type. Details of its data and index architecture
are described in this subsection. Details of the other
VSAM data set types will not be described in this pa-
per.

A KSDS consists of two linear spaces. The data rec-
ords are stored in one linear space, and the index
records are stored in a second linear space.

Each record of a KSDS contains a key field. The off-
set within the record to the beginning of the key field
and the key length are user-defined. vSAM does not
support variable-length keys within a single KSDS. For
a specific KSDS, the key length is fixed at a value rang-
ing from 1 to 255 bytes. The key field is treated as
a binary value. The data records are stored within
a control interval in ascending key sequence. As rec-
ords are updated to change their length, new rec-
ords are inserted, records are erased, and any higher-
key-value records within the data control interval are
shifted to maintain key sequence.

In addition to control intervals, the VSAM KSDS ar-
chitecture defines control areas. A control area (CA)

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

Figure 2 KSDS index and data structure

{,’KExPTRKEY,PTR awn

KEY,PTR

INDEX LINEAR
SPACE

DATA LINEAR
L SPACE

DATA RECORD
DATA RECORD

DATA RECORD

FREE SPACE

RDF u-! RDF| CIDF

. [FREESPACE

is a set of contiguous control intervals. This area de-
fines a two-level space hicrarchy within the linear
space of the data component of the KSDS. For each
control area of the data component, VSAM assigns
a control interval of the index component’s linear
space. This index control interval is called a sequence
set control interval. The sequence set control inter-
val contains one entry for each data control interval
within the corresponding data control area.

A data control interval may contain data records, or
it may be empty. An empty data control interval is
called a free space control interval. The index sequence
set control interval of the data control area contains
two sets of information. One set is a key-ordered in-
dex containing a compressed key value and a data
control interval pointer for each data control inter-
val that contains data records. The other set is a list
of free space data control intervals. The compressed
key value in a sequence set entry represents the high-
est data record key that may be stored in the cor-
responding data control interval.

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

In order to reduce index search time, a multilevel
index is maintained. The index level immediately
above the sequence set contains one index entry for
each sequence set control interval. The entries are
maintained in ascending key sequence. An index en-
try is not allowed to span an index control interval.
Space is allocated within the index at the granular-
ity of an index control interval. An index tree is main-
tained where the top level of the index tree consists
of a single index control interval. The entries in this
level of the index point down to index control in-
tervals in the next lower lever of the index, continu-
ing to the lowest level of the index.

Figure 2 shows the relationship between the vSAM
KSDS index and data linear spaces. It illustrates a
KSDS with a three-level index. Only the first data con-
trol area is shown. The data records are stored within
data control intervals. A sequence set index control
interval exists for each data control area. It shows
the key order of the data control intervals within the
data control area and the set of free space control

STRICKLAND 363

intervals within this data control area (if any). The
index above the sequence set forms a tree structure.
The records within each data control interval are
maintained in key sequence.

The vsAM KSDS architecture provides distributed
free space. Free space is maintained within each data
control interval and a set of empty data control in-
tervals within each control area. As records are in-
serted, the position where they are stored is deter-

The heart of the $/390
Parallel Sysplex is its
data-sharing technology
based on the coupling facility.

mined by the index and the existing records within
the data set. When a record is inserted within a data
control interval, any existing data records within that
control interval with higher key values are shifted to
make room for the new record.

When an insert occurs without sufficient free space
within the data control interval, the data control in-
terval is split. The split consists of allocating a free
space control interval from the free list within the
sequence set control interval of the control area, and
distributing records across the two data control in-
tervals and inserting the record. When there is not
a free space data control interval within the data con-
trol area, a control area split is performed. This split
allocates a new control area from the end of the data
set and distributes the data across the two control
areas, forming free space control intervals within
each of the two control areas. When a control in-
terval or control area split occurs, the index is up-
dated to reflect the split.

When a record is deleted from a data control inter-
val, any existing higher keyed records within the con-
trol interval are shifted, causing the free space be-
yond the highest keyed record to grow. When the
last data record is erased from a data control inter-
val, its sequence set entry is removed from the in-
dex, and the data control interval pointer is added
to the free data control interval list of the sequence
set.

364 sTRICKLAND

VSAM alternate indexes

In addition to the primary index of a KSDS, VSAM
supports alternate indexes. Alternate indexes may
be defined over KSDSs or ESDSs. The KSDS or ESDS
is called the base cluster. In order to have an alter-
nate index, each record in the base cluster must con-
tain an alternate key field. The key field is at a fixed
offset within each record and has a fixed length rang-
ing from 1 to 255 bytes. VSAM implements the al-
ternate index as an internal KSDS, where a record in
this KSDS consists of the alternate index key from a
record in the base cluster and the record identifier
of the base cluster record. For a KSDS base cluster,
the record identifier is the primary key of the record.
For an ESDS, it is the RBA of the record. Multiple
alternate indexes may be defined over a base clus-
ter.

VSAM supports concurrent access to the base clus-
ter records via the base cluster and the alternate in-
dexes. vSAM provides an option to immediately up-
grade the alternate indexes when changes are made
to the base cluster records.

VSAM record-level sharing

A large amount of data exists as VSAM files accessed
by CICS applications. This large volume of data and
large application base generated the motivation for
vsaM record-level sharing (RLS). The objective is to
provide the full value of the Parallel Sysplex to these
applications.

The heart of the $/390 Parallel Sysplex is its data-shar-
ing technology based on the coupling facility. The
transaction execution model assumes parallel (con-
current) execution of multiple transactions. The
transaction isolation provided by the transactional
recovery functions of the model assumes and enables
data sharing. Three data managers that execute on
0s/390* (formerly called Mvs, or Multiple Virtual
Storage), and provide transactional recovery for their
data are: Information Management System Database
(IMS-DB), DATABASE 2* (DB2*), and CICS VSAM.
IMS-DB and DB2 have been extended to provide Par-
allel Sysplex data sharing by exploitation of the cou-
pling facility. In the case of CICS VSAM, Parallel Sys-
plex data sharing is provided through changes to both
CICS and VSAM.

RLS itself does not provide transactional recovery.

When used through CICS, applications have the trans-
actional recovery functions for the VSAM files pro-

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

Figure 3 RLS multisystem server

05/300 i
cics CIcs . clcs” VSAM
AOR AGR AOR RLS
e 05/300
. CiCS CICS CICS VSAM
AOR AOR AOR RLS
|LOCK STRUCTURE
‘CACHE STRUCTURES
COUPLING FACILITY

vided by cICS and the Parallel Sysplex data-sharing
function provided by RLS. CICS provides logging and
recovery. RLS provides locking and sysplex-wide par-
allel shared-data access.

VSAM RLS server. Previously, VSAM requests were
executed within the caller’s address space. The first
step in the implementation of RLS was to build a con-
tinually running server address space. RLS requests
submitted from any address space on the 05/390 im-
age are handled by this server using a shared buffer
pool resident within a data space. The RLS server
provides the cross-memory access from the caller’s
address space to the server’s address space. Figure
3 shows the 05/390 VSAM RLS environment. Multiple
CICS AORs (application-owning regions) executing on
each 0$/390 image submit RLS requests to the RLS
server instance resident on their 0$/390 image. The
multiple RLS instances use coupling facility structures
to maintain integrity and consistency of the shared
data.

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

In order to meet the availability requirements of a
shared server, functional recovery was placed in all
elements of RLS processing. Cancellation or failure
of any thread under which an RLS request is execut-
ing results in the functional recovery performing
cleanup to avoid interference with the execution of
other RLS requests under other threads, tasks, and
address spaces.

One instance of the RLS server is resident in each
0$/390 within the sysplex. The multiple instances of
the RLS server are aware of the existence of one an-
other through the use of a sharing control data set,
05/390 cross-system coupling facility (XCF) messag-
ing, and access to coupling facility lock and cache
structures.

Before describing RLS serialization, let us briefly re-
view non-RLS serialization. The term non-RLS means
the application is not using RLS access mode. Instead,
it is using either NSR (nonshared resources) or LSR
(local shared resources) access mode. These are the

{; STRICKLAND 365
|

access modes that existed prior to RLS, and they con-
tinue to exist. There are now three choices: NSR, LSR,
and RLS. Access mode is not an attribute of a VSAM
file. It is an option specified at OPEN time.

Non-RLS serialization. Non-RLS VSAM provides se-

rialization at the control interval level. The function
is provided by the buffer manager. The buffer man-

Occasionally it is
necessary for VSAM
to split a data control
interval of a KSDS.

ager permits only one valid copy of a control inter-
val to reside within the buffer pool. By obtaining ex-
clusive use of a buffer, the owner has exclusive use
of the control interval resident within the buffer. Of
course, the scope of this serialization is the single
buffer pool.

The owner of serialization on a buffer is a request
parameter list (RPL) that an application set up to
specify record access parameters for the VSAM re-
quest. The RPL represents a specific record access
by an application. Some record accesses require ex-
clusive serialization on the data buffer. If a second
RPL requests exclusive serialization on a buffer that
is held exclusively by another RPL, the request of the
second RPL is rejected by VSAM.

Occasionally it is necessary for vSAM to split a data
control interval of a KSDS. The split is required when
data must be added to the CI and there is not suf-
ficient free space within the CI for the new data. The
split process moves some records from the old CI to
a new CIL Even less frequently, a data control area
must be split, which moves control intervals of data
from the old control area to a new control area.

The control interval and control area split rely on
the control interval level serialization of the buffer
manager. The RPL that is adding the data already
holds exclusive control of the CI. This control inhib-
its any other request (RPL) from modifying the CI
while the split is in progress. Any such request fails
with an error status being returned to the caller.

366 sTRICKLAND

A control area split is triggered by a control interval
split when a free CI is not available within the cur-
rent control area. When non-RLS begins a control
area split, the buffer manager attempts to obtain ex-
clusive serialization of all control intervals within the
control area. If any of the control intervals are ex-
clusively controlled by another RPL, the request that
needs the control area split is rejected. Once a con-
trol area split obtains exclusive control of all control
intervals in the control area, no other RPLs can ob-
tain exclusive control of any of these control inter-
vals until the control area split completes.

In addition to serialization of the data control in-
tervals, VSAM must serialize changes to the index con-
trol intervals of a KSDS. Non-RLS uses an exclusive
latch to perform this serialization. This latch ensures
that only one RPL at a time is modifying the index
of a KSDS.

The split of a data control interval presents an ad-
ditional problem. During the split process, there is
a place where the records that were moved to the
new data control interval also remain in the old data
control interval and the index is updated to point to
both control intervals. At this place, the key value
in the index entry that points to the old data control
interval does not agree with the highest key in that
data control interval. If the job or task that is doing
the split is cancelled or the 08390 image fails at this
time, there is an inconsistency between the data and
the index of the kSDS. The KSDS architecture uses
the CIDFBUSY flag to address this problem.

The data control interval processing sets the flag
CIDFBUSY = ON in the old data control interval to
indicate a split is in progress. This flag is set on be-
fore records are moved and the index is updated and
remains on until the record movement and index up-
date is complete. It is reset by the write command
that eliminates the moved records from the old data
control interval.

Now, the final part of the story. When a VSAM re-
quest accesses a data control interval and sces
CIDFBUSY = ON, the request obtains the exclusive
latch that serializes control interval splits. This causes
the request to wait for completion of any split that
may be in progress. After obtaining the latch, the
request tests to see whether its buffer is still valid.
If the buffer is not valid, it is released and the re-
quest is reprocessed to access the requested record.
Finding the buffer still valid after obtaining the latch,
VSAM compares the key of each record within the

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

data control interval with the key value in the index
entry that points to the data control interval. When
the key of a data record is greater than the key value
in the index entry, the data record is removed from
the data control interval. This cleanup process elim-
inates the data records that were moved to the new
data control interval by the interrupted incomplete
split.

RLS serialization

RLS uses the following serialization mechanisms:

1. Locking—Locking of individual records within
VSAM data sets is a central element of the overall
design. RLS also uses other higher-level locks for
serializing operations such as control interval and
control area split.

2. Buffer coherency—RLS uses an optimistic serial-
ization protocol to achieve buffer coherency. The
primitives used in this protocol are provided by
the buffer validity test, buffer invalidate, and cou-
pling facility conditional write functions of the
Parallel Sysplex coupling technology.

3. DASD write serialization—RLS uses the castout
lock functions of the coupling facility to achieve
this serialization.

4. Control interval/area split serialization and
CIDFBUSY flag—RLS uses an exclusive lock to se-
rialize CI and CA processing for a KSDS. RLS uses
the CIDFBUSY flag private serialization mecha-
nism of the VSAM KSDS architecture to serialize
requests to access data CIs while they are being
split or moved by a control area split.

Recoverable files and nonrecoverable files. RLS pro-
vides data-sharing support for both recoverable and
nonrecoverable files. The term recoverable file
means that transactional recovery is provided for
changes to the file. When a transaction requests roll-
back or the transaction abnormally terminates, all
changes made by the transaction to recoverable files
are backed out. The backout function for VSAM re-
coverable files is provided by CICS. Changes to non-
recoverable files are not backed out. When a change
is made to a nonrecoverable file, the change is vis-
ible to other CICS and non-CICS applications as soon
as VSAM writes the modified CI and releases the
record lock.

RLS does not permit a non-CICS application to OPEN
for output a recoverable file in RLS access mode. A
non-CICS application may OPEN for input a recov-

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

erable file and may OPEN for input or output a non-
recoverable file.

RLS provides the data-sharing serialization mecha-
nisms for both recoverable and nonrecoverable files.

Locking. The granularity of locking by RLS is a record
within a VSAM data set. This minimizes lock conten-
tion across the multiple CICS transactions and other
applications that are using RLS.

RLS uses two lock states. The shared state locks a
record for read, and the exclusive state locks a record
for write. A coupling facility lock structure is used
to provide multisystem sysplex scope for the locks.
Deadlock detection and resolution is provided for
the locks. A time-out function is also provided
whereby a VSAM request can declare a maximum
amount of time that it is willing to wait for a lock.

RLS provides three read integrity options:

1. NRI (no read integrity)—This option accesses the
record without obtaining a shared lock on the
record. For a recoverable file, the reader may see
an uncommitted change made by a CICS transac-
tion. This form of read is sometimes referred to
as a “dirty read.” NRI does not incur the overhead
of locking.

2. CR (consistent read)—This option obtains a share
lock on the record. The CR request must wait if
an exclusive lock currently exists for the record.
A copy of the record is returned to the caller, and
the share lock is released. Obtaining the share
lock ensures that the record is not being updated
or erased by another data-sharing transaction or
application.

3. CRE (consistent read explicit}—This option is a
form of repeatable read that is only provided for
CICS applications. Like CR, CRE obtains a share
lock at the time of the read. The share lock re-
mains held until the CICS program completes. The
record is inhibited from being updated or erased
by other application instances until the instance
that issued the CRE request completes. Although
CRE inhibits update or erase of the accessed
record, it does not inhibit the insertion of new rec-
ords that satisfy the search criteria used to locate
the accessed record.

Consistent read and repeatable read are new VSAM
capabilities provided by RLS.

Lock hold duration for exclusive record locks. RLS ob-
tains an exclusive lock on a record when the record

STRICKLAND 367

is being inserted, updated, or erased. When the
change is made by a CICS transaction and the file be-
ing changed is recoverable, the exclusive lock must
be held until cCICS declares the lock is no longer
needed. Normally, release occurs when the transac-
tion reaches sync point. When CICS fails, or the RLS
server fails, or 08/390 fails, the locks must remain held
until the failed components are restarted and CICS
has completed its transactional recovery processing
for its transactions.

The requirement that RLS keep locks to protect un-
committed changes meant that vSAM needed to un-
derstand the recoverable attribute of a file. RLS in-
troduces new VSAM data set attributes that declare
a data set to be either recoverable or nonrecover-
able. If recoverable, CICS provides transactional re-
covery for the data set. If nonrecoverable, transac-
tional recovery is not provided.

For a nonrecoverable data set, RLS releases an ex-
clusive record lock when the buffer containing the
corresponding modified CI has been written. Since
there is no transactional recovery, the change will
not be backed out, and thus there is no need to con-
tinue to hold the lock. As mentioned earlier, RLS
keeps exclusive record locks for recoverable data sets
until CICS explicitly declares that they can be released.

Buffer coherency. RLS uses the buffer registration and
invalidation functions of the coupling facility cache
as the means to maintain buffer coherency across the
local buffer pools of the individual RLS instances.

RLS uses the conditional write function of the cou-
pling facility cache to implement an optimistic se-
rialization protocol for changing data control inter-
vals. The overall process is referred to as “record
merge redo.” We now describe the process.

The RLS locking granularity of records permits mul-
tiple concurrently executing transactions or appli-
cations to change different records that reside within
the same data control interval. RLS assigns a sepa-
rate buffer containing a copy of the data control in-
terval to each of the sharers. The coupling facility
local cache invalidate and conditional write functions
are used to detect concurrent write activity at the
control interval level. If the first write is successful,
it invalidates the buffers assigned to the other shar-
ers. This causes their subsequent attempts to write
to their buffers to fail. When RLS detects this fail-
ure, it internally reaccesses the data set and reap-
plies the change. This process merges the change with

368 sTRICKLAND

the carlier changes and is the record merge redo. A
record merge redo example is shown in Figure 4.
|

DASD write serialization. RLS utilizes th coupling
facility cache as a read/write cache. Thijlise means
that data control intervals and index cofitrol inter-
vals are placed in coupling facility caches by VSAM.
The coupling facility cache serves as a new level in
the storage hierarchy for these data.

To avoid loss of data in the event of coupling facility
failures, RLS uses store-through protocols when writ-
ing data to a coupling facility cache. This means that
when RLS writes modified data to a coupling facility
cache, it immediately writes the same data to DASD.
RLS inhibits access to the modified data until they
have been successfully written to DASD.

First, serialization is required to ensure that from
the time a modified control interval is written to a
coupling facility cache until the change has been writ-
ten to DASD a second writer does not getin and make
a second change that would be lost (overlaid) by the
first writer’s DASD write. The coupling facility pro-
vides a special “castout lock” function at the cache
entry level. RLS requests the castout lock to be set
on the cache entry before writing the control inter-
val to DASD. If the castout lock is already set on the
entry, the request fails. Otherwise, the cache write
atomically writes the data to the coupling facility
cache and sets a castout lock on the cache entry that
contains the data. Until RLS issues a coupling facil-
ity request to unlock the castout lock, an attempt by
another process (concurrent writer) to write to the
castout locked entry fails.

In the event that an instance of RLS fails while hav-
ing castout locks set on entries in coupling facility
caches, the abnormal disconnect from the caches re-
sults in the coupling facility deleting the cache en-
tries that are castout locked by the failed instance.
This deletion ensures that data that may have been
written to the coupling facility cache but not written
to DASD are not used. No loss of any data results.
Since the castout lock was not released, RLS does
not complete the write.

In addition to blocking new writes of the data until
both the coupling facility write and the DASD write
are complete, RLS blocks reads of the new version
of the control interval. The read blocking is accom-
plished as follows. The coupling facility returns the
setting of the castout lock as feedback on a read of
the corresponding entry from the cache. When RLS

IBM SYSTEMS JOURNAL, VOL ?56, NO 2, 1997

I

Figure 4 RLS record merge redo—example of RLS handling of the case where two sharers concurrently modify two

different records that reside within the same data control interval

—

BUFFER ASSIGNED TO SHARER 1

RECORD X VERSION 1

RECORDY VERSION 1

SHARER 1 MODIFIES RECORD X

RECORD X VERSION 2

RECORDY VERSION 1

INVALIDATES SHARER 2's BUFFER

A 4
RECORD X VERSION 2

RECORD Y VERSION 1

sees the entry is castout locked, it does not use the
data. Instead, it sets a timer and waits for the time
interval to expire. In this way the write operation has
time to complete and the castout lock has time to
be reset. The coupling facility read is reissued.

Control interval/area split serialization and
CIDFBUSY flag. Since control interval/area splits are
rare, RLS uses a data set level lock for serialization.
Only one split at a time is permitted for a specific
KSDS, and any interference between multiple splits
is avoided.

A design challenge in the development of RLS was
how to serialize record access across control
interval/area splits. The basic problems are:

* One or more records that need to be moved by

the split may be locked for change by other trans-
actions or applications.

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

BUFFER ASSIGNED TO SHARER 2

RECORD X VERSION 1

RECORD Y VERSION 1

SHARER 2 MODIFIES RECORD Y

RECORD X VERSION 1

RECORDY VERSION 2

REAGCESS DATA SET TO LOCATE

DATA CONTROL INTERVAL CONTAINING
RECORD Y. PICKS UP SHARER 1's
NEW VERSION OF RECORD X.

RECORD X VERSION 2

RECORDY VERSION 1

EA CHANGE TO RECORD Y
AND WRITE BUFFER, THIS
TIME THE WRITE IS SUCCESSFUL.

RECORD X VERSION 2

RECORD Y VERSION 2

* While the split is in progress, concurrent access to
a record that is being moved by the split must not
receive a false record-not-found status.

¢ A new record that is added to the control
interval/area that is being split while the split is in
progress must be placed properly within the data
set. The result must be the same as if the split was
completed before the new record was inserted.

The first RLS design decision in addressing these
problems was to not use control interval level lock-
ing in either the record access processing or the split
processing. This decision avoided control interval
level contention and possible deadlock across con-
current record accesses and split processing.

The lock name for a record in a KSDS is derived from
the key value of the record. Using a key-based name
instead of a record position (relative byte address)
name for the lock allowed split processing to move

STRICKLAND 369

a record without affecting a lock that might be held
on the record. The split processing does not obtain
any record locks. It simply moves records. A record
that is being moved by the split process may be locked
by another process that is accessing the record. The
record lock may be held across the split or may be
obtained while the split is in progress.

Designing the RLS split processing so that it does not
obtain record locks avoided any record locking con-
flicts across record accessing and the split. This en-
abled concurrent access to records during split pro-
cessing.

The remaining problems are how to avoid false
record-not-found conditions when attempting to ac-
cess records that are being moved by a split, and how
to properly insert new records that fali within the
range of the split while the split is in progress.

RLS use of CIDFBUSY. Like non-RLS VSAM, RLS uses
CIDFBUSY to indicate that a data control interval split
is in progress. The control interval split latch used
by non-RLS is replaced by RLS with a control inter-
val split lock. This exclusive lock serializes RLS con-
trol interval splits for a KSDS. Just as with non-RLS,
an RLS split may not complete due to a cancellation
or a failure. RLS contains logic similar to non-RLS to
eliminate duplicate records left in the old data con-
trol interval by an interrupted incomplete split.

Since RLS does not perform control interval level
locking, it has the problem of serializing access to
data control intervals that are being moved by a con-
trol area split. RLS uses the CIDFBUSY flag as the so-
lution to this requirement. The control area split pro-
cessing sets CIDFBUSY = ON in each data control
interval that is to be moved to the new control area.
The processing holds the control interval split lock
prior to setting these flags. A concurrent read or write
request that accesses one of these control intervals
sees CIDFBUSY = ON and requests the control inter-
val split lock. This causes the request to wait until
the control interval split lock is available. Concur-
rent access to the data control intervals that are be-
ing split or moved by a split is serialized, and the two
problems listed above are solved.

Broadcast of data set space allocation or
usage

Each instance of the RLS server maintains informa-
tion in virtual storage about control blocks data set
extent and current end-of-used-space (high-used

370 STRICKLAND

space). When one instance of the server modifies this
information, the change must be broadcast to other
instances of the server that have a copy of the in-
formation. RLS uses XES locks as the method of per-
forming the broadcast. Each RLS instance holds a
special lock on each linear space of each data set
that it has in use. When the space allocated or used
information for a liner space changes, locking pro-
tocols send the changed information to each RLS in-
stance that holds a lock on the linear space.

Conclusion

RLS uses the System/390 coupling technology to pro-
vide record-level data sharing. Although RLS pro-
vides locking and buffer coherency to achieve data
integrity for the shared data, it does not provide the
application level or transaction level isolation and
change backout functions of transactional recovery.
The transactional recovery functions are provided
by CICS, which has been extended to support RLS.
Together, CICS and VSAM RLS provide the benefits
of the System/390 Parallel Sysplex to CICS VSAM ap-
plications.

*Trademark or registered trademark of International Business
Machines Corporation.

General references

DFSMS/MVS Version 1 Release 3 DFSMSdfp Storage Administra-
tion Reference, SC26-4920, IBM Corporation; available through
IBM branch offices.

DFSMS/MVS Version 1 Release 3 General Information, GC26-4900,
IBM Corporation; available through IBM branch offices.
DFSMS/MV'S Version 1 Release 3 Macro Instructions for Data Sets,
SC26-4913, 1BM Corporation; available through IBM branch of-
fices.

DFSMS/MV'S Version 1 Release 3 Using Data Sets, SC26-4922, IBM
Corporation; available through IBM branch offices.

Accepted for publication January 10, 1997.

Jimmy P. Strickland IBM Storage Systems Division, 5600
Cottle Road, San Jose, California 95193-0001 (electronic mail:
jimmy_strickland @vnet.ibm.com). Mr. Strickland is an IBM Sen-
ior Technical Staff Member. He is an architect for storage sys-
tems software products and was a member of the technical team
that defined the architecture of the S/390 Parallel Sysplex.

Reprint Order No. G321-5648.

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

