
VSAM record-level data
sharing

by J. P. Strickland

VSAM (Virtual Storage Access Method) has been
extended to provide multisystem data sharing
through use of the Sl390@ coupling facility. This
paper describes the serialization techniques used
in the implementation of VSAM data sharing.

T his paper begins with a brief history and an over-
view of the VSAM (Virtual Storage Access

Method) data architecture. Then a description of the
new VSAM record-level sharing function is given. This
coupling-facility-based data sharing is an integral part
of the System/390* (S/390*) Parallel Sysplex*.

History of VSAM

Prior to VSAM, Operating System/360 (OSi360) pro-
vided a number of data access methods with a va-
riety of data formats and organizations. Examples
are: BSAM (Basic Sequential Access Method), QSAM
(Queued Sequential Access Method), BDAM (Basic
Direct Access Method), BISAM (Basic Indexed Se-
quential Access Method), and QISAM (Queued In-
dex Sequential Access Method). One objective of
VSAM was to provide a single data format and or-
ganization and access functions for data stored on
DASD (direct access storage device).

The first release of VSAM was shipped in 1973. It was
introduced with System/370*.

At the time VSAM was being defined, System/360*
DASD architecture introduced a function called RPS
(rotational position sensing). This function was a sig-
nificant advancement because it provided a basis for
concurrently executing multiple DASD I/O channel
programs on a single I/O channel. The idea is that,
while a device is busy positioning itself to access a

requested record, its control unit can disconnect from
the channel, allowing the channel to execute another
channel program. When the device is in position near
the record, it requests reconnection to the channel
and then sends or receives the record across the chan-
nel. Neither the BISAM or QISAM key search func-
tion could exploit the RPS function. But, the keyed
data format of vSAM with its compressed index is
able to exploit the RPS function.

CICS* (Customer Information Control System) is a
widely used transaction processing system. CICS pro-
vides a file access interface on top of VSAM. It is a
CICS file control function that includes transactional
recovery for VSAM files. This isolation and rollback
capability enables VSAM data to be shared among
CICS applications.

VSAM architecture

The data format of VSAM supports fixed-length and
variable-length records. The records are mapped into
fixed-length DASD read and write units called con-
trol intervals (CIS).

Control information resides at the end of each con-
trol interval. There are two sets of control informa-
tion. The last four bytes of the CI is the control in-
terval definition field (CIDF). Immediately to the left
of the CIDF is one or more record definition fields
(RDFs). An RDF describes one record, a set of con-

Wopyright 1997 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997 0018-8670/97/$5 00 Q 1997 IBM STRICKLAND 361

tiguous fixed-length records, or a segment of a
spanned record. A spanned record has a length
greater than the size of a control interval, and thus
it resides in a set of control intervals.

The control interval architecture includes a distrib-
uted free space capability. Records are stored within
a control interval starting at offset zero. The RDFs
specify the lengths of each record and are stored in
reverse order beginning immediately to the left of
the CIDF. Any unused space between the end of the
last record in the CI and the last RDF is free space.
The format of a VSAM data control interval is shown
in Figure 1.

The basic VSAM data addressing model is a linear
space model. The term RBA (relative byte address)
is used to designate the address of a data location
within a vSAM linear space. Although the byte ad-
dress technique is used, the VSAM data are stored
and accessed as records.

VSAM data set types. VSAM provides a number of
data set types or data organization schemes. They
are:

Key-sequenced data set (KSDS)
Entry-sequenced data set (ESDS)
Relative record data set (RRDS)

I

Variable-length relative record data set (VRRDS)
Linear data set (LDS)

VSAM key-sequenced data set architecture. The key-
sequenced data set (KSDS) is a widely used VSAM data
set type. Details of its data and index architecture
are described in this subsection. Details of the other
VSAM data set types will not be described in this pa-
per.

A KSDS consists of two linear spaces. The data rec-
ords are stored in one linear space, and the index
records are stored in a second linear space.

Each record of a KSDS contains a key field. The off-
set within the record to the beginning of the key field
and the key length are user-defined. VSAM does not
support variable-length keys within a single KSDS. For
a specific KsDS, the key length is fixed at avalue rang-
ing from 1 to 255 bytes. The key field is treated as
a binary value. The data records are stored within
a control interval in ascending key sequence. As rec-
ords are updated to change their length, new rec-
ords are inserted, records are erased, and any higher-
key-value records within the data control interval are
shifted to maintain key sequence.

In addition to control intervals, the VSAM KSDS ar-
chitecture defines control areas. A control area (CA)

362 STRICKLAND IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

Figure 2 KSDS index and data structure
~~~~ ~ _ _~  _ _ ~  ~ ~ 

L 

INDEX LINEAR 
SPACE 

I I I DATA LINEAR h! 

DATA  RECORD 
DATA RECORD 

DATA  RECORD 

FAEE SPACE 

'.. 4 SPACE 

is a  set of contiguous  control  intervals.  This area  de- 
fines a two-level space  hierarchy  within the linear 
space of the  data  component of the KSDS. For  each 
control  area of the  data  component, VSAM assigns 
a  control  interval of the index  component's  linear 
space.  This index control  interval is called a sequence 
set control interval. The  sequence set  control  inter- 
val contains one entry  for  each  data  control interval 
within the  corresponding  data  control  area. 

A data  control interval may contain  data records, or 
it may be empty. An empty data  control interval is 
called aji-ee space control interval. The index sequence 
set  control  interval of the  data  control  area  contains 
two sets of information. One set is a  key-ordered in- 
dex  containing  a  compressed key value and a data 
control  interval  pointer  for  each data  control  inter- 
val that  contains  data records. The  other set is a list 
of free  space  data  control intervals. The compressed 
key value in a  sequence  set  entry  represents  the high- 
est  data  record key that may be  stored in the cor- 
responding  data  control interval. 

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997 

In order  to  reduce index  search  time,  a multilevel 
index is maintained.  The index level immediately 
above the  sequence  set  contains  one index  entry  for 
each  sequence  set  control  interval.  The  entries  are 
maintained in ascending key sequence. An index en- 
try is not allowed to span  an index  control  interval. 
Space is allocated within the index at  the  granular- 
ity of an index control interval. An index tree is main- 
tained  where  the  top level of the index tree consists 
of a single index  control  interval. The entries in this 
level of the index  point down to index  control  in- 
tervals in the next lower lever of the index, continu- 
ing to  the lowest level of the index. 

Figure 2 shows the  relationship  between  the VSAM 
KSDS index  and data  linear spaces.  It  illustrates  a 
KSDS with a  three-level index. Only the first data con- 
trol  area is shown. The  data records are  stored within 
data  control intervals.  A  sequence  set  index  control 
interval exists for  each  data  control  area.  It shows 
the key order of the  data  control intervals within the 
data  control  area  and  the set of free  space  control 



intervals within this data control area (if  any). The 
index  above the sequence set forms a  tree  structure. 
The records within each data control interval are 
maintained in  key sequence. 

The vSAM  KSDS architecture provides distributed 
free space. Free space is maintained within each data 
control interval and  a set of empty data control in- 
tervals within each control area. As records are in- 
serted,  the position where they are  stored is deter- 

The  heart of the S/390 
Parallel  Sysplex is its 

data-sharing  technology 
based on the  coupling  facility. 

mined by the index and  the existing records within 
the  data set. When a record is inserted within a  data 
control interval, any  existing data records within that 
control interval with higher key  values are shifted to 
make room for  the new record. 

When an insert occurs without sufficient free space 
within the  data control interval, the  data control in- 
terval is split. The split consists of allocating a  free 
space control interval from the  free list  within the 
sequence set control interval of the control area, and 
distributing records across the two data control in- 
tervals and inserting the record. When there is not 
a free space data control interval within the data con- 
trol  area,  a control area split is performed. This split 
allocates a new control area from the  end of the  data 
set and distributes the  data across the two control 
areas, forming free space control intervals within 
each of the two control areas. When a control in- 
terval or control area split occurs, the index  is up- 
dated  to reflect the split. 

When a record is deleted from a  data control inter- 
val,  any  existing higher keyed records within the con- 
trol interval are shifted, causing the  free space be- 
yond the highest keyed record to grow. When the 
last data record is erased from a  data control inter- 
val, its sequence set entry is removed from the in- 
dex, and the  data control interval pointer is added 
to  the  free  data control interval list of the sequence 
set. 

364 STRICKLAND 

VSAM alternate indexes 

In addition to  the primary index of a KSDS,  VSAM 
supports alternate indexes. Alternate indexes may 
be defined over KSDSs or ESDSs. The KSDS or ESDS 
is  called the base cluster. In  order  to have an  alter- 
nate index, each record in the base cluster must con- 
tain an alternate key  field. The key  field  is at  a fixed 
offset  within each record and has a fixed length rang- 
ing from 1 to 255 bytes. VSAM implements the al- 
ternate index as an internal KSDS, where a record in 
this KSDS consists of the  alternate index key from a 
record in the base cluster and the record identifier 
of the base cluster record. For  a KSDS base cluster, 
the record identifier is the primary  key of the record. 
For  an ESDS, it is the RBA of the record. Multiple 
alternate indexes may be defined over a base clus- 
ter. 

VSAM supports concurrent access to  the base clus- 
ter records via the base cluster and the  alternate in- 
dexes. vSAM provides an option to immediately up- 
grade the  alternate indexes when changes are made 
to  the base cluster records. 

VSAM record-level sharing 

A large amount of data exists as VSAM files  accessed 
by CICS applications. This large volume of data  and 
large application base generated  the motivation for 
VSAM record-level sharing (RLS). The objective is to 
provide the full value of the Parallel Sysplex to these 
applications. 

The  heart of the S/390 Parallel Sysplex  is  its data-shar- 
ing  technology based on the coupling facility. The 
transaction execution model assumes parallel (con- 
current) execution of multiple transactions. The 
transaction isolation provided by the transactional 
recovery functions of the model assumes  and enables 
data sharing. Three  data managers that execute on 
OS/390* (formerly called MvS, or Multiple Virtual 
Storage), and  provide transactional recovery for their 
data are: Information Management System Database 
(IMS-DB), DATABASE 2" (DB2*), and CICS VSAM. 
IMS-DB and DB2 have been extended to provide Par- 
allel  Sysplex data sharing by exploitation of the cou- 
pling  facility. In the case of CICS VSAM, Parallel Sys- 
plex data sharing  is  provided through changes to both 
CICS and VSAM. 

RLS itself does not provide transactional recovery. 
When  used through CICS, applications  have the trans- 
actional recovery functions for the VSAM files pro- 

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997 



Figure 3 RLS multisystem  server 
I 

- __ ~ "~ 
1 1  _ _ _ _  ' I I  , I , 

r -  "- I 

L 

ClCS 
AOR 

1, ' i  

vided by CICS and  the Parallel Sysplex data-sharing 
function provided by RLS. CICS provides logging and 
recovery. RLS provides  locking  and  sysplex-wide par- 
allel shared-data access. 

VSAM RLS server. Previously, VSAM requests were 
executed within the caller's address space. The first 
step in the implementation of RLS was to build a con- 
tinually running server address space. RLS requests 
submitted from any address space on the OS/390 im- 
age are handled by this server using a  shared buffer 
pool resident within a  data space. The RLS server 
provides the cross-memory access from the caller's 
address space to  the server's address space. Figure 
3 shows the OW390 VSAM RLS environment. Multiple 
CICS AORS (application-owning  regions)  executing on 
each OS/390 image submit RLS requests to  the RLS 
server instance resident on their OSi390 image. The 
multiple RLS instances  use  coupling  facility structures 
to maintain integrity and consistency of the shared 
data. 

In order  to meet the availability requirements of a 
shared server, functional recovery  was placed in  all 
elements of RLS processing. Cancellation or failure 
of any thread  under which an RLS request is execut- 
ing results in the functional recovery performing 
cleanup to avoid interference with the execution of 
other RLS requests under  other  threads, tasks, and 
address spaces. 

One instance of the RLS server is resident in each 
OW390 within the sysplex. The multiple instances of 
the RLS server are aware of the existence of one  an- 
other through the use of a sharing control data  set, 
OSi390 cross-system coupling facility (XCF) messag- 
ing, and access to coupling facility  lock and cache 
structures. 

Before describing RLS serialization, let us briefly re- 
view  non-RLS serialization. The term non-RLS means 
the application is not using RLS access mode. Instead, 
it  is  using either NSR (nonshared resources) or LSR 
(local shared resources) access mode. These are  the 

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997 



access modes that existed prior to RLS, and they  con- 
tinue to exist. There  are now three choices: NSR, LSR, 
and RLS. Access mode is not an  attribute of a VSAM 
file. It is an option specified at OPEN time. 

Non-RLS serialization. Non-RLS VSAM provides se- 
rialization at  the control interval level. The function 
is provided by the buffer manager. The buffer man- 

Occasionally  it is 
necessary for VSAM 

to  split  a  data  control 
interval of a KSDS. 

ager permits only one valid  copy of a  control  inter- 
val to reside within the buffer pool. By obtaining ex- 
clusive  use of a buffer, the owner has exclusive  use 
of the control interval resident within the buffer. Of 
course, the scope of this serialization is the single 
buffer pool. 

The owner of serialization on a buffer  is a request 
parameter list (RPL) that  an application set up to 
specify record access parameters  for  the VSAM re- 
quest. The RPL represents  a specific record access 
by an application. Some record accesses require ex- 
clusive serialization on the  data buffer. If a second 
RPL requests exclusive serialization on a buffer that 
is  held  exclusively by another RPL, the request of the 
second RPL is rejected by VSAM. 

Occasionally it is  necessary for VSAM to split a  data 
control interval of a KSDS. The split  is required when 
data must be added to the CI and  there is not suf- 
ficient free space within the CI for the new data.  The 
split process moves some records from the old CI to 
a new CI. Even less frequently, a  data control area 
must be split, which  moves control intervals of data 
from the old control  area  to  a new control  area. 

The control interval and control area split  rely on 
the control interval level serialization of the buffer 
manager. The RPL that is adding the  data already 
holds exclusive control of the CI. This control inhib- 
its any other request (RPL) from modifying the CI 
while the split is in progress. Any  such request fails 
with an error  status being returned to  the caller. 

366 STRICKLAND 

A control area split is triggered by a control interval 
split when a  free CI is not available  within the cur- 
rent control area. When non-RLS begins a control 
area split, the buffer manager attempts  to obtain ex- 
clusive serialization of all control intervals within the 
control area. If  any  of the control intervals are ex- 
clusively controlled by another RPL, the request that 
needs the control area split  is rejected. Once a con- 
trol area split obtains exclusive control of  all control 
intervals in the control area, no other RPLs can ob- 
tain exclusive control of any of these control inter- 
vals until the control area split completes. 

In addition to serialization of the  data control in- 
tervals, VSAM must  serialize  changes to the index  con- 
trol intervals of a KSDS.  Non-RLS uses an exclusive 
latch to perform this serialization. This latch ensures 
that only one RPL at a time is  modifying the index 
Of a KSDS. 

The split of a  data control interval presents an ad- 
ditional problem. During the split process, there is 
a place where the records that were moved to  the 
new data control interval also remain in the old data 
control interval and the index  is updated to point to 
both control intervals. At this place, the key value 
in the index entry that points to  the old data control 
interval does not agree with the highest key  in that 
data control interval. If the job or task that is doing 
the split is cancelled or  the OSi390 image fails at this 
time, there is an inconsistency between the  data and 
the index of the KSDS. The KSDS architecture uses 
the CIDFBUSY flag to address this problem. 

The  data control interval processing sets the flag 
CIDFBUSY = ON in the old data control interval to 
indicate a split is  in progress. This flag is set on be- 
fore records are moved and the index is updated and 
remains on until the record movement and index up- 
date is complete. It is reset by the write command 
that eliminates the moved records from the old data 
control interval. 

Now, the final part of the story. When a VSAM re- 
quest accesses a  data control interval and sees 
CIDFBUSY = ON, the  request obtains the exclusive 
latch that serializes control interval  splits.  This  causes 
the request to wait for completion of  any  split that 
may be in progress. After obtaining the latch, the 
request tests to see whether its  buffer  is  still  valid. 
If the buffer  is not valid,  it  is released and the  re- 
quest is reprocessed to access the requested record. 
Finding the buffer  still  valid after obtaining the latch, 
VSAM compares the key  of each record within the 

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997 



data control interval with the key value in the index 
entry that points to  the  data control interval. When 
the key  of a  data record is greater  than  the key  value 
in the index entry, the  data record is removed from 
the  data control interval. This cleanup process elim- 
inates the  data records that were moved to  the new 
data control interval by the  interrupted incomplete 
split. 

RLS serialization 

RLS uses the following serialization mechanisms: 

1. Locking-Locking  of individual records within 
vSAM data sets is a central element of the overall 
design. RLS also  uses other higher-level  locks for 
serializing operations such  as control interval and 
control area split. 

2. Buffer  coherency-RLS uses an optimistic serial- 
ization protocol to achieve  buffer coherency. The 
primitives used in this protocol are provided by 
the buffer  validity test, buffer invalidate, and cou- 
pling  facility conditional write functions of the 
Parallel Sysplex coupling technology. 

3. DASD write serialization-RLS  uses the castout 
lock functions of the coupling facility to achieve 
this serialization. 

4. Control interval/area split serialization and 
CIDFBUSY flag-RLs uses an exclusive  lock to se- 
rialize CI and CA processing for a KSDS. RLS uses 
the CIDFBUSY flag private serialization mecha- 
nism of the VSAM KSDS architecture to serialize 
requests to access data CIS while they are being 
split or moved by a control area split. 

Recoverable files and nonrecoverable files. RLS pro- 
vides data-sharing support for both recoverable and 
nonrecoverable files. The term recoverable file 
means that transactional recovery  is provided for 
changes to the file. When a transaction requests roll- 
back or the transaction abnormally terminates, all 
changes made by the transaction to recoverable files 
are backed out. The backout function for VSAM re- 
coverable files  is provided by CICS. Changes to non- 
recoverable files are not backed out. When a change 
is made to  a nonrecoverable file, the change is  vis- 
ible to other CICS and non-cIcs applications as soon 
as vSAM writes the modified CI and releases the 
record lock. 

RLS does not permit a non-CICS application to OPEN 
for output  a recoverable file  in RLS access mode. A 
non-cICs application may OPEN for input a recov- 

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997 

erable file and may OPEN for input or output  a non- 
recoverable file. 

RLS provides the data-sharing serialization mecha- 
nisms for both recoverable and nonrecoverable files. 

Locking. The granularity of locking by RLS is a record 
within a VSAM data  set. This minimizes  lock conten- 
tion across the multiple CICS transactions and other 
applications that  are using RLS. 

RLS uses two lock states. The shared state locks a 
record for read, and the exclusive state locks a record 
for write. A coupling facility  lock structure is  used 
to provide multisystem  sysplex scope for the locks. 
Deadlock detection and resolution is provided for 
the locks. A time-out function is also provided 
whereby a VSAM request can declare a maximum 
amount of time that it  is  willing to wait for a lock. 

RLS provides three read integrity options: 

1. NRI (no read integrity)-This option accesses the 
record without obtaining a  shared lock on the 
record. For  a recoverable file, the  reader may see 
an uncommitted change made by a CICS transac- 
tion. This form of read is sometimes referred to 
as a “dirty read.” NRI does not incur the overhead 
of locking. 

2. CR (consistent read)-This option obtains a share 
lock on the record. The CR request must  wait if 
an exclusive  lock currently exists for the record. 
A copy of the record is returned to the caller, and 
the  share lock  is released. Obtaining the  share 
lock ensures that  the record is not being updated 
or erased by another data-sharing transaction or 
application. 

3. CRE (consistent read explicit)-This option is a 
form of repeatable  read  that is only provided for 
CICS applications. Like CR, CRE obtains a  share 
lock at  the time of the  read.  The  share lock re- 
mains  held until the CICS program completes. The 
record is inhibited from being updated or erased 
by other application instances until the instance 
that issued the CRE request completes. Although 
CRE inhibits update  or  erase of the accessed 
record, it does not inhibit the insertion of  new rec- 
ords that satisfy the search criteria used to locate 
the accessed record. 

Consistent read and repeatable  read  are new VSAM 
capabilities provided by RU. 

Lock hold  duration for exclusive  record  locks. RLS ob- 
tains an exclusive  lock on a record when the record 

STRICKLAND 367 



is being inserted,  updated, or erased. When the 
change is made by a CICS transaction and  the file be- 
ing changed is recoverable, the exclusive  lock  must 
be held until CICS declares the lock  is no longer 
needed. Normally, release occurs when the transac- 
tion reaches sync point. When CICS fails, or  the RLS 
server  fails, or OS/390 fails, the locks  must remain held 
until the failed components are  restarted  and CICS 
has completed its transactional recovery processing 
for its transactions. 

The requirement that RLS keep locks to protect un- 
committed changes meant that VSAM needed to un- 
derstand  the recoverable attribute of a file. RLS in- 
troduces new VSAM data set attributes  that declare 
a  data set to be either recoverable or nonrecover- 
able. If recoverable, CICS provides transactional re- 
covery for the  data set. If nonrecoverable, transac- 
tional recovery  is not provided. 

For  a nonrecoverable data set, RLS releases an ex- 
clusive record lock when the buffer containing the 
corresponding modified CI has been written. Since 
there is no transactional recovery, the change will 
not be backed out, and thus there is no need to con- 
tinue to hold the lock. As mentioned earlier, RLS 
keeps exclusive record locks for recoverable data sets 
until CICS explicitly declares that they  can be released. 

Buffer  coherency. RLS uses the buffer registration and 
invalidation functions of the coupling facility cache 
as the means to maintain buffer coherency across the 
local buffer pools of the individual RLS instances. 

RLS uses the conditional write function of the cou- 
pling facility cache to implement an optimistic se- 
rialization protocol for changing data control inter- 
vals. The overall process is referred to as “record 
merge redo.” We now describe the process. 

The RLS locking granularity of records permits mul- 
tiple concurrently executing transactions or appli- 
cations to change different records that reside within 
the same data control interval. RLS assigns a sepa- 
rate buffer containing a copy  of the  data control in- 
terval to each of the sharers. The coupling facility 
local  cache  invalidate and conditional write functions 
are used to detect concurrent write activity at  the 
control interval level. If the first write is  successful, 
it invalidates the buffers  assigned to  the  other shar- 
ers. This causes their subsequent attempts to write 
to their buffers to fail. When RLS detects this fail- 
ure, it internally reaccesses the  data set and reap- 
plies the change.  This  process  merges the change  with 

368 STRICKLAND 

the earlier changes and is the record merge redo. A 
record merge redo example is shown  in Figure 4. 

DASD write serialization. RLS utilizes 
facility cache as a read/write cache. Th 
that  data control intervals and index 
vals are placed in coupling facility caches by VSAM. 
The coupling facility cache serves as a new  level in 
the  storage hierarchy for these data. 

To avoid loss of data in the event of coupling facility 
failures, RLS uses store-through protocols when  writ- 
ing data  to  a coupling facility cache. This means that 
when RLS writes modified data to  a coupling facility 
cache, it immediately writes the same data  to DASD. 
RLS inhibits access to  the modified data until they 
have been successfully written to DASD. 

First, serialization is required to ensure  that from 
the time a modified control interval is written to  a 
coupling  facility  cache until the change  has been writ- 
ten to DASD a second writer does not get  in and make 
a second change that would be lost (overlaid) by the 
first writer’s DASD write. The coupling facility pro- 
vides a special “castout lock” function at  the cache 
entry level. RLS requests the castout lock to  be  set 
on the cache entry before writing the control inter- 
val to DASD.  If the castout lock  is already set on the 
entry, the request fails. Otherwise, the cache write 
atomically writes the  data to the coupling facility 
cache and sets a castout lock on the cache entry that 
contains the  data. Until RLS issues a coupling facil- 
ity request to unlock the castout lock, an attempt by 
another process (concurrent writer) to write to  the 
castout locked entry fails. 

In  the event that an instance of RLS fails  while  hav- 
ing castout locks set on entries in coupling facility 
caches, the abnormal disconnect from the caches re- 
sults in the coupling facility deleting the cache en- 
tries that  are castout locked by the failed instance. 
This deletion ensures that  data  that may  have been 
written to  the coupling facility cache but not written 
to DASD are  not used. No loss of any data results. 
Since the castout lock  was not released, RLS does 
not complete the write. 

In addition to blocking  new writes of the  data until 
both the coupling facility  write and  the DASD write 
are complete, RLS blocks reads of the new version 
of the  control interval. The  read blocking is  accom- 
plished  as  follows. The coupling  facility returns  the 
setting of the castout lock as feedback on a read of 
the corresponding entry from the cache. When RLS 

IBM SYSTEMS  JOURNAL, VOL $6, NO 2, 1997 1 ’  



~~~~~~~ ~~~ ~ ~ ~ ~ ~ 

Figure 4 RLS record merge redo-example of RLS handling of the case where two sharers concurrently modify two
~~

different records that reside within the same data control interval

L

BUFFER ASSIGNED TO SHARER 1 BUFFER ASSIGNED TO SHARER 2

RECORD X VERSION 1

RECORD Y VERSION 1

SHARER I MODIFIES RECORD x

RECORD X VERSION 1

RECORD Y VERSION 1

SHARER 2 MODIFIES RECORD Y

RECORD X VERSION 2

RECORD Y VERSION 1

RECORD X VERSION 1

RECORD Y VERSION 2

RECORD Y VERSION 1

I
L

EACCESS DATA SET TO LOCATE

UP SHARER 1's
RECORD X.

CONTROL INTERVAL CONTAINING

RECORD Y VERSION 1

RECORO Y VERSION 2

sees the entry is castout locked, it does not use the
data. Instead, it sets a timer and waits for the time
interval to expire. In this way the write operation has
time to complete and the castout lock has time to
be reset. The coupling facility read is reissued.

Control interval/area split serialization and
CIDFBUSY flag. Since control interval/area splits are
rare, RLS uses a data set level lock for serialization.
Only one split at a time is permitted for a specific
KSDS, and any interference between multiple splits
is avoided.

A design challenge in the development of RLS was
how to serialize record access across control
interval/area splits. The basic problems are:

One or more records that need to be moved by
the split may be locked for change by other trans-
actions or applications.

While the split is in progress, concurrent access to
a record that is being moved by the split must not
receive a false record-not-found status.
A new record that is added to the control
interval/area that is being split while the split is in
progress must be placed properly within the data
set. The result must be the same as if the split was
completed before the new record was inserted.

The first RLS design decision in addressing these
problems was to not use control interval level lock-
ing in either the record access processing or the split
processing. This decision avoided control interval
level contention and possible deadlock across con-
current record accesses and split processing.

The lock name for a record in a KSDS is derived from
the key value of the record. Using a key-based name
instead of a record position (relative byte address)
name for the lock allowed split processing to move

STRICKLAND 369 IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

a record without affecting a lock that might be held
on the record. The split processing does not obtain
any record locks. It simply moves records. A record
that is being moved by the split process may be locked
by another process that is accessing the record. The
record lock may be held across the split or may be
obtained while the split is in progress.

Designing the RLS split processing so that it does not
obtain record locks avoided any record locking con-
flicts across record accessing and the split. This en-
abled concurrent access to records during split pro-
cessing.

The remaining problems are how to avoid false
record-not-found conditions when attempting to ac-
cess records that are being moved by a split, and how
to properly insert new records that fall within the
range of the split while the split is in progress.

U S use of CIDFBUSY Like non-RLS VSAM, RLS uses
CIDFBUSY to indicate that a data control interval split
is in progress. The control interval split latch used
by non-RLS is replaced by RLS with a control inter-
val split lock. This exclusive lock serializes RLS con-
trol interval splits for a KSDS. Just as with non-RLS,
an RLS split may not complete due to a cancellation
or a failure. RLS contains logic similar to nOn-RLS to
eliminate duplicate records left in the old data con-
trol interval by an interrupted incomplete split.

Since RLS does not perform control interval level
locking, it has the problem of serializing access to
data control intervals that are being moved by a con-
trol area split. RLS uses the CIDFBUSY flag as the so-
lution to this requirement. The control area split pro-
cessing sets CIDFBUSY = ON in each data control
interval that is to be moved to the new control area.
The processing holds the control interval split lock
prior to setting these flags. A concurrent read or write
request that accesses one of these control intervals
sees CIDFBUSY = ON and requests the control inter-
val split lock. This causes the request to wait until
the control interval split lock is available. Concur-
rent access to the data control intervals that are be-
ing split or moved by a split is serialized, and the two
problems listed above are solved.

Broadcast of data set space allocation or
usage

Each instance of the RLS server maintains informa-
tion in virtual storage about control blocks data set
extent and current end-of-used-space (high-used

370 STRICKLAND

space). When one instance of the server modifies this
information, the change must be broadcast to other
instances of the server that have a copy of the in-
formation. RLS uses XES locks as the method of per-
forming the broadcast. Each RLS instance holds a
special lock on each linear space of each data set
that it has in use. When the space allocated or used
information for a liner space changes, locking pro-
tocols send the changed information to each RLS in-
stance that holds a lock on the linear space.

Conclusion

RLS uses the System/390 coupling technology to pro-
vide record-level data sharing. Although RLS pro-
vides locking and buffer coherency to achieve data
integrity for the shared data, it does not provide the
application level or transaction level isolation and
change backout functions of transactional recovery.
The transactional recovery functions are provided
by CICS, which has been extended to support RLS.
Together, CICS and VSAM RLS provide the benefits
of the Systemi390 Parallel Sysplex to CICS VSAM ap-
plications.

*Trademark or registered trademark of International Business
Machines Corporation.

General references

DFSMSIMVS Version 1 Release 3 DFSMSdfi Storage Administra-
tion Reference, SC26-4920, IBM Corporation; available through
IBM branch offices.
DFSMSIMVS Version 1 Release 3 General Information, GC26-4900,
IBM Corporation; available through IBM branch offices.
DFSMSIMVS Version I Release 3 Macro Instructions for Data Sets,
SC26-4913, IBM Corporation; available through IBM branch of-
fices.
DFSMSIMVS Version 1 Release3 UsingData Sets, SC26-4922, IBM
Corporation; available through IBM branch offices.

Accepted for publication January IO, 1997.

Jimmy P. Strickland IBM Storage Systems Division, 5600
Cottle Road, San Jose, California 95193-0001 (electronic mail:
jimmy-strickland@vnet.ibm.com). Mr. Strickland is an IBM Sen-
ior Technical Staff Member. He is an architect for storage sys-
tems software products and was a member of the technical team
that defined the architecture of the SI390 Parallel Sysplex.

Reprint Order No. G321-5648.

IBM SYSTEMS JOURNAL, VOL 36, NO 2, 1997

