
A method for on-line
reorganization of a
database

by G. H. Sockut
T. A. Beavin
C.-C. Chang

Any database management system may need
some type of reorganization. However,
reorganization typically requires taking a
database off line, which can be unacceptable for
a very large or highly available (24-hour)
database. A solution is to reorganize on line
(concurrently with users’ reading and writing of
data in the database). This paper describes a
method for performing one type of reorganization
on line. The type of reorganization distributes
free space evenly, removes overflow, and
clusters data. The method for on-line
reorganization copies data while arranging the
data in the new copy in reorganized form. The
method then applies the database log to bring
the new copy up to date (to reflect users’ writing
of the old copy). The method maintains a table
that maps between old and new record
identifiers, to match log entries with data records
in the new copy.

w e define reolganization of a database as chang-
ing some aspect of the logical or physical ar-

rangement of the database. In Reference 1, general
issues in reorganization and types of reorganization
are discussed, but in this paper we discuss one type
of reorganization, along with the problem in reor-
ganizing off line.

The type of reorganization that this paper describes
involves restoration of clustering. Clustering is the
practice of storing records near one another if they
meet certain criteria. One popular criterion is con-
secutive values in a column of the records. Cluster-
ing should reduce disk input and output for records
that users often access together. We use the word

user to refer to a person who develops or executes
application programs that use the database. When
users write data into the database, this writing can
decrease the amount of clustering and thus degrade
performance. Reorganization can restore clustering
and performance.

During most types of reorganization in a typical da-
tabase, the area being reorganized is ofline or only
partially available; users cannot write (and perhaps
cannot even read) data in that area. However, a
highly available database (a database that is to be
fully available 24-hours-per-day, 7-days-per-week)
should not go off-line for significant periods, of
course. Applications that require high availability in-
clude those for reservations, finance (especially
global finance), process control, hospitals, police, and
armed forces. Even for less essential applications,
many database administrators (people who supervise
the use of a database) prefer 24-hour availability. The
maximum tolerable period of unavailability is spe-
cific to the application. We asked customers of da-
tabase management systems (DBMS), not all of
whom have highly available databases, to state the
maximum tolerable period, and their answers ranged
from 0 to 5 hours.

Wopyright 1997 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royaltyprovided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 36, NO 3, 1997 0018-8670/97/$5.00 D 1997 IBM SOCKUT, BEAVIN, AND CHANG 411

Even without such a preference for 24-hour avail-
ability, reorganizing a very large database might re-
quire much longer than the maximum tolerable pe-
riod of unavailability. Giving examples of very large
databases, Reference 2 mentions a database with sev-
eral terabytes of data and the desire for one with

In this paper we
describe a method

for on-line reorganization
of a database.

petabytes. The author of Reference 3 considers off-
line reorganization such an important problem for
very large databases that he defines a very large da-
tabase as one “whose reorganization by reloading
takes a longer time than the users can afford to have
the database unavailable.”

These considerations call for the ability to reorga-
nize the database on line (concurrently with usage
or incrementally within users’ transactions), so that
users can read and write the database during most
or all phases of reorganization. In the context of pa-
pers that do not concentrate on on-line reorganiza-
tion, many people have stated the need for the abil-
ity to reorganize on line.2,4”2 As the amount of
information and dependence on computers both
grow, the number of very large or highly available
databases will grow, and with them the importance
of on-line reorganization.

This paper describes the design of a method for on-
line reorganization (specifically, for restoration of
clustering). We oriented the paper primarily toward
DBMS researchers and designers, and to a lesser ex-
tent toward database administrators. We include
some details of design and some decisions that an
implementor must make, but we do not concentrate
on any actual implementation. The REORG utility in
Version 5 Release 1 of IBM’s DATABASE 2” (DB2*)
for OS/390* (see References 13,14) includes on-line
reorganization that is very similar to what this paper
describes.

Our method for on-line reorganization involves copy-
ing data from the area that users access into a new
copy of that area, in reorganized form. After the
copying, the database log is applied to the new copy,
to reflect users’ writing of the old copy. The appli-
cation uses a table that maps between old and new
record identifiers. The interaction between mainte-
nance of this mapping table and processing of the
log is the novelty of our work. We give an overview
of our method and the underlying database struc-
tures. We then cover more details of our method.
Finally, an appendix describes some alternatives.

Reorganization methods

To motivate and explain the type of reorganization
that we perform and our method for performing it,
we begin by sketching relevant aspects of database
storage structures. These structures can degrade and
thus require reorganization. We then introduce our
method for reorganizing on line. This method in-
volves a problem in identification of records, and we
discuss our solution to the problem. Finally, we com-
pare our method with previous work.

Storage structures, structural degradation, and re-
organization. In this section we describe the stor-
age structures for which we designed our method,
the degradation (e.g., reduction in the amount of clus-
tering) that can occur for these structures, the need
for reorganization (to remove the degradation), and
the control of off-line (or on-line) reorganization.
We designed the method for a set of storage struc-
tures for relational databases, specifically the style
of structures used in IBM’s DB2 and System R l5 DBMSs.
Several other relational DBMSs use comparable struc-
tures.

Storage structures for data. We begin our discussion
of storage structures by describing the structures for
data.

A row of a table in a database is a logical unit within
the table. For example, if Jones is an employee, a
table of employees includes a row for Jones. A row
contains columns of data, e.g., for name, job title,
and salary. A column can have a fixed length (which
does not change) or a variable length. A variable
length changes for each row according to the length
of the data that users place in that column in that
row.

Ordinarily, the DBMS implements a row by one data
record, which is a lower-level (more physical) unit in

IBM SYSTEMS JOURNAL, VOL 36, NO 3, 1997


~~~ 

Figure 1 Example  of file  pages  in  a  table  space 

FILE MGE 22: 
REGULAR 
DATA RECORD 

OVERFLOW 
DATA RE CORD ID MAP 

storage. We  explain  shortly that sometimes the DBMS 
implements a row by two data records. Users see 
rows but do not directly see  data records. 

When users write rows (and thus the DBMS writes 
records to implement the writing of rows), the DBMS 
tracks the writing by appending corresponding en- 
tries to  a collection of entries called the log. Later, 
it  is  possible to recover the  data after an accidental 
loss by reloading from a backup copy of data and 
then applying (performing on the data) the log en- 
tries that  the DBMS appended after creation of the 
backup copy. The log record  sequence  number (LRSN) 
of a log entry is a number that  represents  the po- 
sition of that entry in the log. 

A table  space is a region of storage that stores the 
data records for one or more tables. For simplicity, 
we discuss  only one table per table space. The DBMS 
divides a table space into units calledfilepages. Fig- 
ure 1 shows the  structure of file  pages,  which  we de- 
scribe gradually. The  header of each file page in- 
cludes the LRSN of the most  recently written log entry 
that corresponds to writing of that page. A file  page 
contains zero  or more data records, which the DBMS 
allocates at the beginning of the page (after the head- 

er). Deletion of records can cause gaps between re- 
maining records. The  end of a file page contains an 
ID map, which  is an array of pointers (offsets of data 
records within the page). We use  slot to mean the 
place (if any) to which an ID map entry points. 

An ID map helps to identify records. In DB2 and sev- 
eral  other DBMSS that use the S Q L ' ~  database lan- 
guage, not every table has a unique key (a set of col- 
umns that identifies rows). Therefore, file pages, 
entries in the log, and indexes (structures that speed 
access to individual records) cannot use a key for 
identification. Instead, they use a record's record 
identifier (RID), which  consists of the page number 
for the record and the offset of the entry for the 
record within the ID map. The RID for a record can 
change only during reorganization. 

Now  we turn to the effects on storage structures dur- 
ing insertion of a row or during growth by update 
(modification) of a variable-length column of an ex- 
isting  row. During these operations, if the desired 
page  lacks enough contiguousfiee space (the space 
available for insertions and growth), the DBMS com- 
pacts the page to make its free space contiguous. 
During compaction, when the DBMS moves a record, 

SOCKUT, BEAVIN, AND CHANG 413 IBM SYSTEMS JOURNAL, VOL 36, NO 3, 1997 



Figure 2 Example of index  pages 

the DBMS updates the ID map pointer to the record; 
compaction does not change the record RID. If com- 
paction produces enough free space, the  data go into 
the desired page. 

If such compaction does not produce enough space, 
the  data go into  another page. On  an insertion, a 
new record goes into  that  other page. On growth of 
existing data,  the  data move into  a new  overflow data 
record in the  other page, and the existing data record 
in the original page becomes apointer  data record, 
which contains the RID of the new  overflow data 
record. Thus  the DBMS sometimes implements a row 
by two records (a pointer record and  an overflow 
record). Data records that do not involve  overflow 
(hopefully, most data records) are regular data rec- 
ords. In Figure 1, the file page that we numbered 17 
contains a regular data record and a  pointer  data 
record. File page 22 contains a regular data record 
and an overflow data record. The pointer record in 
page 17 contains the RID of the overflow record in 
page 22. The two bits in the  header of each data 
record in Figure 1 indicate whether the record is a 
pointer and whether it  is an overflow,  respectively. 

Storage  structures for indexes.  We continue our dis- 
cussion of storage structures with the structures for 
indexes. A table has zero or more indexes, each of 
which  uses an associated key (set of columns). For 
example, an employee table might  have an index 
whose  key  is the department number, an index  whose 

414 SOCKUT, BEAVIN. AND CHANG 

key  is the social  security number, and  an index  whose 
key  is the combination of last name and first name. 
Within an index, the DBMS maintains the key values 
in sorted  order. Defining a key to be unique means 
that  no two rows can have the same values in the 
key columns. 

The DBMS divides the storage of an index into units 
called indexpages. Figure 2 shows the structure of 
index pages, which the DBMS arranges in a  hierar- 
chy. In this example, the index pages that we num- 
bered 101 and 109 are leaves of the hierarchy, and 
index page 137 is a nonleaf. Each entry in a leaf page 
contains a key  value and a list of RIDS whose records 
have that key  value. The  database designer option- 
ally  specifies that  the DBMS will sort each list by RID. 

Each entry in a nonleaf page points to  another non- 
leaf page or a leaf page, although this simple figure 
shows no entries that point to other nonleaf pages. 
Each entry in a nonleaf page also contains the value 
of the highest key  of the page to which the entry 
points. For example, the first entry in index page 137 
contains 101 (the number of another index page) and 
the highest key  value of page 101. The second entry 
contains corresponding information for page 109. A 
possible alternative implementation is for each en- 
try  in a nonleaf page to contain the value of the low- 
est key of the page after  the page to which the entry 
points. 

IBM SYSTEMS JOURNAL, VOL 36, NO 3, 1997 



Figure 3 Example of the  clustering  index  and  a  nonclustering  index  for a partitioned table space 

Now  we describe more about clustering, which our 
introduction defined. For each table, the  database 
designer declares at most one index  as a clustering 
index. In reorganization (and, whenever possible,  in 
subsequent insertions), the assignment of data rec- 
ords  to file pages reflects the  order of the  data rec- 
ords in the key  of the clustering index. For example, 
the records having the first  few values of the key 
might reside (be stored) in one file page, the records 
having the next  few  values  might  reside  in a second  file 
page,  etc.  This  clustering  speeds  some  queries. 

The database designer optionally declares the clus- 
tering index to be apaltitioningindex. Here, the DBMS 
divides the table space (and the clustering  index) into 
partitions according to values of the indexed  key.  We 
call the table space apartitioned table space. Parti- 
tions reside in separate files, whereas a nonparti- 
tioned table space can reside in one file. 

For  a partitioned table space, Figure 3 shows an ex- 
ample of the clustering index, the table space, and 
a nonclustering index (i.e., an index that is not the 
clustering index). For example, if the key  of the clus- 
tering index  is an employee’s name, partitions might 
represent names that begin  with A through F, G 
through M, and N through Z, respectively, as in the 
figure. The arrows in the figure denote RIDs in in- 
dexes. Within the set of leaf pages of the clustering 
index for a partitioned table space, the RIDS for each 
partition are contiguous. 

IBM SYSTEMS JOURNAL, VOL 36, NO 3, 1997 

Within a nonclustering index,  however, the RIDS for 
a partition need not be  contiguous. For example, sup- 
pose that  the key of a nonclustering index is an em- 
ployee’s job title. The order of RIDS in the index  might 
be the RIDS for accountants (for all partitions), the 
RIDs for architects (for all partitions), the RIDs for 
artists (for all partitions), etc. Thus  the RIDS for a 
partition are scattered throughout the index,  since 
some of them might be accountants, some might be 
architects, etc. Figure 3 illustrates lack of contiguity 
via two RIDS for the G-M partition with an interven- 
ing RID for the N-Z partition. Within each value of 
the index  key (e.g., “architect”),  the RIDS might be 
sorted. Therefore,  the RIDS for a  partition might be 
contiguous within each key value, but they are  not 
contiguous throughout the nonclustering index. 

Structural degradation and reorganization. The stor- 
age structures that we have described can degrade. 
One type  of degradation occurs when free space be- 
comes unevenly distributed among the file  pages of 
a table space. After subsequent insertions, the  or- 
der of some records no longer reflects the clustering 
index. This type of degradation slows some queries. 

A second type of degradation occurs when variable- 
length data grow too large to fit  in their original file 
page. The DBMS then  creates an overflow  in another 
page and makes the original record a pointer. In- 
dexes  still contain the RID of the original record. This 

SOCKUT, BEAVIN, AND CHANG 415 



causes an extra page reference and thus extra time 
on some queries. 

Reorganization removes  such structural degradation. 
Specifically, reorganization distributes free space 
evenly, removes overflows (so that each row uses just 
one record, not two), and clusters data. Reorgani- 

The  method of fuzzy 
dumping was the 
inspiration for our 

method. 

zation can  move records between file pages; there- 
fore,  the page that contains the record for a row af- 
ter reorganization might  differ from the page or 
pages that contained the record or records for that 
row before  reorganization.  Off-line  reorganization op- 
erates by (1) unloading (copying out)  the  data, (2) 
sorting the unloaded data by clustering key, and (3) 
reloading the  data in sorted  order. Users have read- 
only  access (i.e., they can read  but cannot write the 
data) during unloading and sorting, but have no ac- 
cess during the reloading. 

To start off-line reorganization, a  database admin- 
istrator issues a command where a  parameter of the 
command specifies the name of the table space that 
the DBMS should reorganize. For  a partitioned table 
space, another  parameter, which  is optional, spec- 
ifies the partition to reorganize; absence of this pa- 
rameter signifies reorganization of the  entire table 
space. We  use the  term area being reolganized (of- 
ten  shortened to just area) to mean the table space 
or partition on which reorganization operates. A 
command for on-line reorganization will have ad- 
ditional parameters (discussed later). 

Steps  of  the  method  for on-line reorganization. Be- 
fore describing our method for on-line reorganiza- 
tion, we describe a well-known method for unload- 
ing data during users’ writing. This method for 
unloading inspired much of our method for reorga- 
nization. The method for unloading data is  fizzy 
dumping (also calledfizzy image copying). 17-23 In this 
method  the  current LRSN for the log  is recorded and 
the desired part of the  database is unloaded. If the 

416 SOCKUT, BEAVIN, AND CHANG 

unloading references a page that users have written 
in the DBMS main storage buffers, but  the DBMS has 
not yet written the page to disk, the version that is 
in main storage is used. Later, if there is a need to 
perform recovery that uses the unloaded data,  the 
unloaded data can be reloaded and  then brought up 
to date  (to reflect users’ writing) by applying  log en- 
tries (starting from the recorded LRSN). This appli- 
cation of the log ignores an entry whose LRSN is less 
than or  equal to the LRSN of the page that  the entry 
indicates, since the page already reflects that logged 
writing. l9 

Fuzzy dumping inspired much of our method for on- 
line reorganization, which  we  call fuz.zy reolganiza- 
tion. In fuzzy reorganization, the  current LRSN for 
the log  is recorded, the  area being reorganized is un- 
loaded (while letting users read and write it), the un- 
loaded data are sorted by clustering  key, and the  data 
are reloaded into  a new  copy of the  area.  The new 
copy  is then brought up  to  date  (to reflect users’writ- 
ing of the old copy) by applying  log entries (starting 
from the recorded LRSN). Future access by users is 
then switched to  the new (reorganized) copy of the 
area. Figure 4 shows the main steps of  fuzzy reor- 
ganization. Arrows represent  the flow  of informa- 
tion. We next  briefly  discuss each step of the  reor- 
ganization, and we provide more details later in the 
paper. 

In step 1, the reorganizer (the process that performs 
the reorganization) records the  current LRSN for  the 
log. During this step, users can  use the normal fa- 
cilities of the DBMS to  read and write the  area being 
reorganized. Users’ reading and writing consist of 
copying data between the database (shown  in the fig- 
ure as “area”) and variables in  users’ programs 
(shown  as “user  data”). In the log, the normal fa- 
cilities of the DBMS also append log entries that cor- 
respond to users’ writing. 

In  step 2, the reorganizer sequentially scans each file 
page in the old (original) copy  of the  area being re- 
organized, to unload the  data, as  in  off-line reorga- 
nization. The  data  are  then  sorted by clustering key, 
and reloaded into  a new  copy of the  area (unlike off- 
line reorganization, which  involves  only the original 
copy). We often use the terms o2d copy and new copy 
to  refer to the old and new copies of the  area. A 
backup copy of the new  copy  is also created as a ba- 
sis for  future recoverability; the figure omits this cre- 
ation. We discuss this step in more detail later. 

IBM SYSTEMS  JOURNAL, VOL 36, NO 3, 1997 



~~ ~ 

Figure 4 The main steps of fuzzy reorganization 

RECORD  THE  CURRENT  LOG  RECORD  SEQUENCE  NUMBER (LRSN) FOR THE  LOG. 

UNLOAD, SOPX AND  RELOAD  DATR _ I  

c bl 

PROCESS  THE  LOG,  ALLOWING  READ-ONLY  ACCESS. 

QUIESCE ALL USER  ACCESS. 

SWITCH  USER  ACCESS  TO  THE  NEW  COPY. 

START REAWWRITE  ACCESS: 

This reorganization of the data in the area also re- 
quires changes to indexes. If the  area is an  entire 
table space, then during the reloading in step 2, all 
of the indexes for the table space are reconstructed 
(new copies of them are  created). This reconstruc- 
tion corrects degradation in the indexes and assures 
that  the leaves of the indexes contain the correct new 
RIDS. If the  area is just a  partition,  a partition of the 

clustering  index  is reconstructed. However,  when just 
a partition is reorganized, the RIDS (for the partition 
being reorganized) must be corrected in  any non- 
clustering indexes. The correction replaces the old 
RIDS with corresponding new RIDS. During the  re- 
loading in step 2, a copy of a subset of each non- 
clustering index is constructed; the subset corre- 
sponds to  the records in the partition being 

IBM SYSTEMS  JOURNAL,  VOL 36, NO 3, 1997 SOCKUT, BEAVIN, AND CHANG 417 



reorganized. Step 7 (discussed shortly) corrects the 
nonclustering indexes, using the copied subsets. 
Within a nonclustering index, the RIDS for the  par- 
tition being reorganized need not be contiguous (see 
Figure 3). 

Concurrently with the reorganizer activities  in step 
2, users continue to have read/write access to the old 
copy of the  area, which the figure identified as  sim- 
ply “area” in step 1. At  the  end of step 2, the  reor- 
ganizer records the  current LRSN for the log. This 
value of the LRSN exceeds the previously recorded 
value if users have written into  the database since 
the previous recording. 

Step 3 (processing of the log) can execute iteratively. 
In each iteration,  the reorganizer reads a subset of 
the log,  namely the entries between the two  most 
recently recorded LRSNS. The log entries are sorted 
by RID and applied to the new  copy of the  area, to 
bring the new  copy up to date. The subset of the log 
reflects users’ writing that occurred during the  pre- 
vious step or during the previous iteration of this step. 
Users have read/write access to the old copy during 
this step. At  the end of an iteration of this step, cri- 
teria (which we discuss later)  are used to choose be- 
tween performing this step again or going to the next 
step. If this step is performed again, the current LRSN 
for the log  is  first recorded. If this step is not per- 
formed again, the backup copy  is brought up to  date 
by appending to it the changed  pages of the new  copy, 
before continuing to the next step. We  discuss step 
3 in much more detail later. 

The sorting of log entries by RID in step 3 improves 
the locality of reference of log application, i.e., the 
extent to which  successive  log entries refer to  data 
records that reside on the same file page or nearby 
file  pages. Thus the sorting should speed the log ap- 
plication. It also eases the detection (and omission 
during application) of a sequence of logged oper- 
ations that has no net effect (e.g., insert. . . up- 
date . . . delete). 

Also in step 3, if the  area being reorganized is an 
entire table space, when a log entry is applied to data, 
the corresponding changes to  the new copies of the 
indexes are made. For example, if a log entry de- 
letes a record, the RID for that record is deleted from 
any  indexes that contained the RID. If the  area is just 
a partition, corresponding changes are made to the 
new  copy of the partition of the clustering index and 
to  the new copies of the subsets of the nonclustering 
indexes. 

418 SOCKUT, BEAVIN, AND CHANG 

In step 4, the reorganizer quiesces writers (user trans- 
actions that write into the area). This quiescing blocks 
new writers and waits for existing writers to finish. 
The  current LRSN for the log  is recorded, and users 
continue to be able to read. 

In step 5 (processing of the log), the reorganizer pro- 
cesses the log entries between the two  most recently 
recorded LRSNS for the log,  as in an  iteration of step 
3. This last step of processing of the log is needed 
only to handle writing that was  in progress when (or 
that began after)  the previous step of processing fin- 
ished reading its subset of the log. Users have read- 
only  access to  the old  copy during this step. At  the 
end of this step, as at the  end of the last iteration 
of step 3, the recently changed pages are  appended 
to  the backup copy. 

In step 6, the reorganizer quiesces all user access of 
the  area. 

In step 7, the reorganizer switches users’ future ac- 
cess to the new (reorganized) copy of the  area. This 
switch  is performed by renaming (exchanging the 
names of) the files that underlie the old  and new cop- 
ies. This renaming effectively changes the mapping 
from logical to physical. 

Also  in step 7, users’ future access to indexes  is 
switched. If the  area being reorganized is an entire 
table space, the names of the files that underlie the 
indexes are exchanged. 

If, instead, the area is just a  partition,  the names of 
the files that underlie the partition of the clustering 
index are exchanged. The individual RIDS for this par- 
tition in  any nonclustering indexes are also corrected 
(in place, not by copying). In each nonclustering in- 
dex, for each key value, this correction consists of 
replacing the old RIDS for this partition by the new 
RIDS, which are found in the constructed subset of 
the index. Within each key value, the old RIDs for 
this partition are contiguous only if the index def- 
inition specified that  the DBMS will sort  the RIDs (and 
thus group them by partition). Therefore,  the cor- 
rection of RIDs is faster for a sorted index than for 
an unsorted index. 

During step 7, users have no access to  the  area, with 
one exception. The exception applies during the cor- 
rection of nonclustering indexes for reorganization 
of just a  partition.  Queries  that  read  the clustering 
index and the  data  are allowed (after the files are 
renamed), and updates are allowed for columns that 

IBM SYSTEMS JOURNAL, VOL 36, NO 3, 1997 



do  not  appear in  any nonclustering indexes. In each 
nonclustering index, an implementation might  also 
allow queries that read just the index  key values but 
not  the RIDS. 

In step 8, the reorganizer allows read/write access 
of the  area  to resume. Users can then use the nor- 
mal facilities of the DBMS to  read and write the new 
copy (identified in the figure  as  simply “area”), in 
the same way that they formerly read and wrote the 
old copy. 

Step 8 also provides an opportunity for  an  alterna- 
tive technique for creating a backup copy of the new 

The  novelty of our work 
is  in the interaction 

between the table and 
processing of the log. 

copy. Our description so far includes creation of a 
backup copy during step 2 and bringing the backup 
copy up to date during steps 3 and 5. In the  alter- 
native technique, we start creating a backup copy at 
the beginning of step 8 via a facility that allows con- 
current ~ r i t i n g , ’ ~ , ~ ~  and we  allow readlwrite access 
to resume as soon as the backup copying  begins. 

In step 9, the reorganizer erases the mapping table 
and  the file for the old  copy  of the area. Similarly, 
if the  area being reorganized is an entire table space, 
the old copies of the indexes are  erased. If the  area 
is just a  partition, the old copy of the partition of the 
clustering index and the copies of the subsets of the 
nonclustering indexes are erased. 

This method for reorganization allows reading and 
writing during almost  all steps, including the first step 
of log processing. Subsequent steps, which occur af- 
ter processing of most of the logged  writing,  involve 
a period of read-only access and  a period of no ac- 
cess. 

Identification of records. The fuzzy reorganization 
that we just described can have a problem in iden- 
tification of records. We mentioned that  an entry in 
the log identifies a record by the RID. In fuzzy dump- 

IBM SYSTEMS JOURNAL, VOL 36, NO 3, 1997 

the log can use the entry RID to identify the record 
to which the entry should apply.  As an  inherent  part 
of reorganization, however, RIDS do change. Log en- 
tries in our method for reorganization correspond 
to users’ writing of the old  copy and thus use the old 
RIDS. Application of a log entry to  the new  copy re- 
quires identification of the record in the new  copy 
to which the entry should apply. The method for  re- 
organization solves the problem of identification by 
maintaining a temporary table that maps between 
the old and new RIDS. The method uses this table to 
translate log entries before sorting them by  new RID 
and  applying them to  the new  copy. 

The interaction between maintenance of this map- 
ping table and processing of the log  (discussed later) 
constitutes the main novelty of our work. The main 
novel feature is the  appropriate writing of the map- 
ping table for each log entry. This writing reflects 
(1) the  state of the  data record before processing of 
the log entry and (2) the type of log entry. For  a log 
entry that represents an insertion, this writing in- 
cludes the use of an estimated new RID (as a basis 
for sorting) and eventual translation of the estimated 
RID to  an actual new RID. A  patent is pending on 
the interaction. 

Comparison with previous work. In this subsection 
we compare our method for reorganization with pre- 
vious  work. 

Our calculation of clustering is straightforward and 
not novel. We sort the  data records by the cluster- 
ing  key, and we  assign the  appropriate amount of 
data  to each page. Therefore, we do not compare 
our method with  previous  work  in  calculation of clus- 
tering. References 26 and 27 discuss  issues and  sur- 
vey previous work  in  many aspects of on-line reor- 
ganization,  including methods that restore clustering. 

Instead,  our novelty  is  in the interaction between 
maintenance of the mapping table and fuzzy reor- 
ganization processing of the log. Therefore, we com- 
pare  our method only  with previous work  in  fuzzy 
reorganization and in tables that map identifiers. We 
are unaware of any previous work that combines 
fuzzy reorganization log application and use of a 
mapping table. 

Several authors mention (but do not describe in de- 
tail) what we call  fuzzy reorganization. 28-30 Also, use 
of a specialized file  (which has some similarities 

- - ” 

SOCKUT. BEAVIN, AND  CHANG 419 



to a log) can bring a newly created index up to 
but  in  this  case the RIDS do not change. Ref- 

erence 35 mentions the use of such a specialized file 
for on-line reorganization, but it does not describe 
the changing of RIDS. 

In systems where every record has a unique iden- 
tifier that does not change during reorganization, 
fuzzy reorganization does  not  need  a mapping ta- 
ble. One example of such a system  is the National 
Crime Information Center of the United States gov- 
ernment agency, the  Federal Bureau of Investiga- 

Our technique 
of using  a  mapping 
table has several 

advantages. 

tion. The system reorganizes by copying data and 
then applying deletions from the log. ’ During reor- 
ganization, the system  allows deletions but not in- 
sertions or updates. A second example is a facility 
for replication, e.g., Datapropagator*  Relational36 
or ReplidataJMVS. 17 Here reorganization can copy 
data and then use the replication facility;  using such 
a facility resembles applying the log. A third exam- 
ple involves on-line splitting of a partition into two 
partitions; here reorganization applies the log after 
copying the second part (e.g., half) of the original 
partition into  the new par ti ti or^.^^,^^ In our environ- 
ment, however,  many  users  dislike a requirement for 
every  row to have a unique identifier. 

In languages that support linked data structures, 
garbage collection 40 is reclamation of storage that is 
no longer reachable from variables and thus is no 
longer used. Reference 41 describes on-line garbage 
collection for persistent data by copying data and ap- 
plying the log. This garbage collection does not clus- 
ter by values of a key. Each record in the old copy 
of the  area has a field that stores the address of the 
corresponding record in the new  copy. Processing 
of the log  uses this field to translate addresses in log 
entries. In  a database context (which  was not the con- 
text for Reference 41), our technique of using a map- 
ping table has several advantages over the technique 
of storing the address of the new record in the old 
record. 

420 SOCKUT, BEAVIN, AND CHANG 

One advantage involves deletion (which does not ap- 
ply to the environment of Reference 41, whose users 
do  not explicitly delete records). Suppose that  after 
the reorganizer has copied a record, a user deletes 
the record (in the old  copy of the area), and the DBMS 
appends  to  the log an entry for the deletion. The  re- 
organizer will eventually  find the log entry, translate 
its address (RID) from old to new, and apply the de- 
letion to  the new  copy of the  area,  to  delete  the 
record there. Between the user’s deletion and the 
reorganizer’s processing of the log entry, the DBMS 
might reuse the space that  the deleted record oc- 
cupied. Therefore, we could not safely store  the new 
address in the old (deleted) record. A mapping ta- 
ble can safely store  the mapping of addresses. 

The second advantage involves input and output. A 
data record can be much larger than a mapping ta- 
ble entry, so the set of all data records can require 
many more pages than  the set of all mapping table 
entries. Therefore, adding and reading mapping ta- 
ble entries can involve  less page input and output 
activity than writing and reading the new addresses 
in the old data records. 

The third advantage is that  our technique requires 
less  locking for each record in the old copy. Both 
techniques require a shared lock  while  unloading the 
old record. However, our technique requires no lock 
while reloading (and adding an entry to the map- 
ping table) and no lock  while  processing the log (and 
translating the address). Storing the new record ad- 
dress in the old record can require  an exclusive  lock 
while reloading (to write a new address in the old 
record)  and  a  shared lock  while processing the log 
(to translate the address). Therefore,  our technique 
is faster and allows more concurrency in the  data- 
base. 

The  fourth advantage is  avoidance of extra space 
(which  is permanent) in each data record for the ad- 
dress of the new record. In the most general case, 
an implementation of storing the new address in the 
old record can require the space, although the im- 
plementation in Reference 41 uses space that already 
existed. 

The technique of storing the address of the new 
record in the old record seems simpler and has an- 
other advantage in requiring only one field for stor- 
ing the new address, instead of fields for both  the 
old address and the new address (in a temporary 
mapping table). 

IBM SYSTEMS JOURNAL, VOL 36, NO 3, 1997 



Table 1 Structure of the  mapping table 

References 42 and 43 describe the use of a mapping 
table for loading data  into an object database. One 
of the stated purposes of loading is restoration of 
clustering, although the  authors do not mention on- 
line restoration. Objects can contain references to 
other objects. In  the  database, these references use 
object identifiers. Since the object identifiers are un- 
known before the loading, the file that is the source 
of loaded data uses surrogates (e.g., integers) for 
identifiers. During loading, the system constructs a 
mapping table and uses  it to  translate surrogates to 
identifiers in the database. Our method satisfies  sev- 
eral requirements that do not arise in the environ- 
ment of References 42 and 43. These requirements 
include the ability to handle (1) two sources of data 
(the log and  the old copy of the  area), not just one, 
(2) a variety of possible  timing relationships between 
unloading of data and generation of log entries for 
those data, (3) updates and deletions (not just in- 
sertions) in the log, and (4) overflow and pointer rec- 
ords (not just regular records). 

Reference 44 describes reorganization by copying. 
This method allows read-only access during reorga- 
nization, so it does not use the log. 

Finally, a method for reorganization in place (i.e., 
not by copying) uses a table that maps RIDS to trans- 
late entries in the leaves of indexes. 45,46 This method 
does not use the log. 

Structure of the  mapping  table 

We begin our more detailed discussion of our 
method for reorganization by describing the map- 
ping table. This table (shown  in Table 1) is a  data- 
base table or a special structure;  the choice is an im- 

IBM SYSTEMS JOURNAL, VOL 36, NO 3, 1997 

plementation decision. The columns are TYPE, 

umn  actually  contains numbers (or single characters), 
but the figure  uses  symbols for them. In the first char- 
acter of a symbol, C means that  the record corre- 
sponding to  the old RID contains columns of data, 
and P means that  the record is a  pointer.  The sec- 
ond character (if any) of a symbol is R  or E. R means 
that  the target record identifier (TARGET-RID) is the 
actual RID of a new regular record or pointer record. 
E means that TARGET-RID is the estimated RID of 
a new record that we  will insert later when we apply 
the log. We will explain this estimation mechanism 
later.  For  a TYPE of CR or P, the log record sequence 
number (LRSN) contains the LRSN of the old page 
that contained the old RID, as of the time when re- 
organization unloads the page. For  a TYPE of  CE, 
LRSN contains the LRSN of an insertion entry that 
we  find  in the log. 

Whenever we read  the mapping table, we access  it 
by finding the entry whose source record identifier 
(SOURCE-RID) contains a specified  value. Therefore, 
an efficient implementation of the mapping table 
might  use  only an index (containing all the columns, 
starting with SOURCE-RID), without actually storing 
separate  data in a table. In  our discussions, we  will 
assume that  the implementation uses  only an index. 

Behavior of the DBMS during  writing 

To explain more about the unloading in step 2 of 
our method for reorganization, we must  first  explain 
some  behavior of the DBMS during  users’  writing.  This 
behavior, which  is not  part of reorganization, influ- 
enced our design of on-line reorganization, partic- 
ularly unloading of data  and processing of the log. 

SOURCE-RID, TARGET-RID, and LRSN. The TYPE COl- 

SOCKUT, BEAVIN, AND CHANG 421 



Table 2 High-level  operations  on  rows  and  corresponding  low-level  operations  on  records 

Table 2 contains a summary of the discussion that 
follows. 

Users write rows of tables via high-level operations 
of insertion, update, and deletion. For each such 
high-level operation on a row, the DBMS performs 
one, two, or  three low-level operations on records. 
The DBMS also appends log entries  that correspond 
to the  operations on records. A log entry contains 
an LRSN, an old RID, and a low-level operation 
(among other things). 

For each high-level operation on a row  in the left 
column of Table 2, the right column shows the cor- 
responding low-level operations on records. The de- 
scription of a low-level operation includes the type 
of record to which the  operation applies. For exam- 
ple, an update (from regular to  pointer) in  row 3 of 
Table 2 is an update  that  operates on a  record  that 
is a regular record before the  update but becomes 
a pointer record as a result of the  update.  For each 
set of low-level operations, the  center column shows 

the condition (immediately before the writing) un- 
der which the DBMS chooses that set of  low-level op- 
erations  to implement the high-level operation.  The 
condition of “any” in  row 1 of Table 2 means that 
to implement the high-level operation of insertion, 
the DBMS always chooses one insertion of a regular 
record. 

For example, suppose that  a user requests an up- 
date of a row. Suppose that  there is no overflow  yet 
(i.e., the row resides in a regular record),  but  the up- 
date would cause the record to become too large to 
fit  in its current page. Then  the DBMS updates  the 
regular record to become a pointer record, and the 
DBMS inserts an overflow record to contain the  data. 
Row 3 in Table 2 describes this behavior. 

During backout of a transaction (i.e., the undoing of 
writing if a failure occurs during the transaction), the 
DBMS performs operations and appends correspond- 
ing  log entries to reverse the original operations. For 
example, row 8 in Table 2 shows two deletions of 

422 SOCKUT, BEAVIN,  AND  CHANG IBM SYSTEMS JOURNAL,  VOL 36, NO 3, 1997 



Figure 5 State  transition  diagram  for  a RID’S slot  during  users’  writing 
~ ~~ ~~~ ~~ ~ ~~~~~~ ~~ 

I (DURING BACKOUT) 

U 

records. To reverse these operations, we use two in- 
sertions (of a pointer record  and an overflow record). 

Reflecting the  operations in Table 2, Figure 5 shows 
a  state transition diagram for a RID slot during users’ 
writing. The  states indicate what the slot for the RID 
contains (an overflow record, nothing, a regular 
record, or  a pointer record). The transitions repre- 
sent operations on records, i.e., deletion (D), inser- 
tion (I), and update (U). 

For example, row 8 of Table 2 shows that if there 
is an overflow, the DBMS represents  a user’s dele- 
tion of a row as deletions of a pointer record and 
an overflow record. Figure 5 depicts the deletion of 
a pointer record by the D transition from POINTER 
to NOTHING. It depicts the deletion of an overflow 
record (which appears in  rows 5 ,  6, and 8 of Table 
2) by the D transition from OVERFLOW to NOTHING. 
Similarly, Figure 5 uses transitions to depict all the 
other low-level operations in Table 2. We noted that 
during backout of a transaction, the DBMS performs 
operations  to reverse the original operations. The 
transition labeled “I (during backout)” occurs only 
during backout of a transaction that deleted a 
pointer. 

Unloading,  sorting, and reloading of data 
(step 2) 
The behavior of the DBMS during users’ writing, 
which  we just described,  influenced our design of step 
2. This step unloads the  data, sorts the  data by clus- 
tering key, and reloads the  data.  It also builds the 
mapping table. Figure 6 shows these activities in 
more detail than  the UNLOAD,  SORT, AND RELOAD 

IBM SYSTEMS JOURNAL, VOL 36, NO 3, 1997 

action in step 2 of Figure 4. In the sections that fol- 
low,  we gradually  explain the activities  in Figure 6. 

Unloading and sorting of data. First, we unload data 
by scanning the file  pages and their ID maps (in the 
old  copy of the  area) and by unloading data  into  a 
file (the unloadfile). The UNLOAD activity  in Figure 
6 depicts this unloading. 

In this scanning, when we  find a regular or overflow 
record, we unload the data, the old RID, and the LRSN 
of the old page that contains the record. 

When a pointer record is found, a P entry (includ- 
ing values for the SOURCE-RID and LRSN columns) 
is added to  the mapping table (Table l), as the 
ADD P ENTRIES activity  in Figure 6 shows. The 
pointer is not followed. Unloading an overflow  when 
the page that contains the overflow  is scanned has 
more locality of reference and thus is faster than fol- 
lowing the pointer and unloading the overflow when 
the page that contains the pointer is scanned. 

After unloading, the unload file  is sorted by cluster- 
ing  key, as the SORT activity  in Figure 6 shows. 

Reloading of data. After  the unloading and sorting, 
records are reloaded into  the new  copy of the  area, 
as the RELOAD activity  in Figure 6 shows. For each 
page in the new  copy, the LRSN in the page header 
is set to 0; any future recovery of the new  copy  will 
use  log entries starting after completion of reorga- 
nization. 

This reloading does not produce any  overflow  in the 
new  copy, even if an old record overflowed.  Only the 

SOCKUT, BEAVIN, AND CHANG 423 



Figure 6 Activities  in  unloading,  sorting,  and  reloading of data 

later application of an  update found in the log can 
cause an overflow  in the new  copy. 

When a record is reloaded, a CR entry is added  to 
the mapping table, using the old RID and LRSN from 
the unload file and the new RID from the new  copy. 
The ADD CR ENTRIES activity in Figure 6 depicts this 
addition. 

To summarize what we have described for unload- 
ing (and, to  a lesser extent, what we have just de- 
scribed for reloading), Figure 7 shows a state  tran- 
sition diagram for a RID slot. It shows the 
combinations of events that can occur to  a slot dur- 
ing users’ writing and the reorganizer’s unloading. 
In Figure 7, we  have extended the diagram of Fig- 
ure 5 by adding the scanning and unloading. The 
states indicate (1) whether the reorganizer has 
scanned that RID yet during the unloading in step 
2 and (2) what the RID slot contains (an overflow 
record, nothing, a regular record, or  a pointer 
record). The four states in the  top row are  the pos- 
sible initial states (before scanning of the  RID).  The 
four states in the bottom row are  the possible  final 
states  (after scanning of the RID). The transitions 
among the  top four states and the transitions among 
the bottom four  states  represent  the DBMS opera- 
tions (resulting from users’ writing) on unscanned 
and scanned records, respectively. These transitions 
use the labels of Figure 5 (D, I, and U). 

Each vertical transition between top and bottom 
states represents reorganizer scanning of a RID dur- 

ing the unloading in step 2. For each such transition, 
the diagram  shows the actions of the reorganizer dur- 
ing the scanning. For  the two cases of scanning that 
unloads a record, the diagram  also  shows reorganizer 
actions during the  later reloading in step 2. For ex- 
ample, we explained that when an overflow record 
is scanned, its data (among other things) are un- 
loaded. We also explained that when a record is re- 
loaded (in the new copy), a CR entry is added  to  the 
mapping table. The diagram depicts these actions 
by the transition from UNSCANNED OVERFLOW to 
SCANNED OVERFLOW. Scanning a regular  record  uses 
a similar transition. When an empty slot is scanned, 
nothing is done, as  shown by the transition from 
UNSCANNED NOTHING to SCANNED NOTHING. When 
a pointer record is scanned, a P entry is added  to  the 
mapping table, as shown by the transition from 
UNSCANNED POINTER to SCANNED POINTER. 

Processing of the log  (steps 3 and 5) 

Now  we turn from unloading and reloading (which 
construct the mapping table) to processing of the log 
(which uses the mapping table). Steps 3 and 5 in the 
reorganization method process subsets of the log. 
This processing includes sorting and  other manip- 
ulation of log entries. To speed the processing, and 
to avoid  modifying the original log  (which later  re- 
covery, if any,  might need),  the processing uses a 
buffer. The buffer contains copies of the log entries, 
and it contains pointers to  the copies. When log en- 
tries are copied into  the buffer, the pointers are also 
constructed. The old RID, new RID, and LRSN of the 

424 SOCKUT, BEAVIN, AND CHANG IBM SYSTEMS  JOURNAL,  VOL 36, NO 3, 1997 1 



Figure 7 State  transition  diagram for a RID'S slot  during  users'  writing  and the reorganizer's unloading 
_ _ _ _ ~ _ _ ~ ~  __ ~ _ _ ~  ~ ~. __ ~ __ ~~ ~ 

I (DURING  BACKOUT) 

SCAN;  UNLOAD SCAN 
RECORD. LATER, 
DURING  RELOADING, 
ADD  CR  ENTRY 
TO  MAPPING  TABLE. 

DO NOTHING. 
SCAN UNLOAD 
RECORD.  LATER, 
DURING  RELOADING, 
ADD  CR  ENTRY 
TO  MAPPING  TABLE. 

SCAN;  ADD  P 

MAPPING  TABLE. 
ENTRY TO 

U I L"""""-""""""" U ' I  " 
I (DURING  BACKOUT) 

D = DELETION CR = COLUMNS OF DATA;  ACTUAL  NEW RID IS KNOWN 
I = INSERTION P = POINTER 
U = UPDATE 

log entry are stored in aprefix (extra space) for each 
copy. The sorting and  most of the  other manipula- 
tion during log  processing operate  on  the pointers 
and the prefixes, and some of the manipulation op- 
erates on the copies. In the remainder of this paper, 
most references to  the log  actually refer to the copy 
of the log in the buffer. 

If the number of log entries  to process in an iter- 
ation of log  processing (step 5 or an iteration of step 
3) exceeds the capacity of the buffer, then several 
minor iterations (each operating on one buffer of log 
entries) are performed within that major iteration. 
For simplicity,  this paper usually describes log pro- 
cessing as if each major iteration contained just one 
minor iteration. 

In the processing, sorting the pointers by old RID 
speeds the access to the mapping table for transla- 
tion from old to new  RIDs. 

Sorting the pointers by  new RID speeds application 
of the log by increasing the locality of reference in 

the access to  the new  copy of the  area. This sorting 
also eases the detection (and omission during ap- 
plication) of a sequence of logged operations  that 
has no net effect (e.g., insert, update,  delete). This 
omission  covers  log entries for which the mapping 
table no longer contains the  appropriate entries. 

Therefore, each iteration of processing of the log  in- 
cludes two types of sorting, and it has the phases in 
Figure 8. In the figure,  single  arrows represent point- 
ers,  and double arrows represent flow  of informa- 
tion. For each phase, the text that describes the copy 
of the log (including prefixes) and the pointers rep- 
resents the  state at the end of the phase. 

In phase 1 of processing of the log, the log entries 
are copied and pointers to  the log entries are con- 
structed. In the prefixes, the old RIDs and LRSNs, but 
not  the new RIDS, are filled in. In phase 2, the point- 
ers  are sorted by old RID. In phase 3, the translated 
(new) RID of each log entry is calculated, and the 
new RID is stored in the prefix.  In phase 4, the point- 
ers  are sorted by new RID. In phase 5 ,  the log entries 

IBM SYSTEMS JOURNAL,  VOL 36, NO 3, 1997 SOCKUT, BEAVIN, AND CHANG 425 



are applied to  the new  copy of the  area. An imple- 
mentation might merge phase 2 into phase 1 and 
merge phase 4 into phase 3. We  will explain  much 
more about the phases later. 

In phase 3 (translation), for an insertion, the new 
RID is not yet  known,  since the application of the 
insertion will occur in phase 5.  Therefore, phase 3 
calculates an estimated new RID for the inserted 
record. Phase 5 replaces the estimated new RIDS with 
actual new RIDS. 

To speed the processing of the log, an implemen- 
tation might  use two buffers and process them con- 
currently. It can perform phases 3,4, and 5 using one 
buffer (for the log entries in one minor iteration) 
while performing phases 1 and 2 using the  other 
buffer (for the log entries in the next minor itera- 
tion). 

Next  we  discuss the phases of processing the log  in 
more detail, along with a discussion of the control 
of iterations of log processing. 

Phase 1: Copying. In the first phase, the log entries 
are copied and pointers to them are constructed. The 
DBMS appended entries to the log (and they are read) 
in LRSN order, so the pointers are initially sorted by 
LRSN; no explicit sort by LRSN is performed. 

Phase 2: Sorting by old IUD. After the copying, the 
pointers to  the copies of log entries are sorted using 
a major sort by old RID and  a minor sort by LRSN. 
The major sort speeds the  later access to the map- 
ping table. The minor sort preserves the  order of op- 
erations on a RID slot. 

Phase 3: Translation. After the  set of pointers is 
sorted, the set is scanned and the RIDS are translated. 
As we describe in detail below, the translated (new) 
RID of each log entry is calculated and stored in the 
prefix. 

One aspect of this translation imitates an aspect of 
a DBMS log application. We noted  that log applica- 
tion (as part of recovery) ignores a log entry whose 
LRSN is  less than or equal  to  the LRSN of the page 

IBM SYSTEMS JOURNAL, VOL 36, NO 3, 1997 426 SOCKUT, BEAVIN, AND CHANG 



that  the entry indicates. This behavior handles en- 
tries that  are inapplicable to the unloaded data. Such 
a situation can arise if a user writes a record after 
unloading begins  (e.g., in  fuzzy dumping) but before 
the unloading reaches the record. Here is an exam- 
ple sequence of events: (1) A RID slot contains a 
record when unloading begins. (2) A user deletes the 
subject record, and  the DBMS appends to the log a 
deletion entry for that RID. (3) The unloading  reaches 
that slot and finds nothing. (4) During log applica- 
tion, the DBMS finds the entry. Applying the entry 
for deletion would not make sense, since the unload- 
ing found nothing. Therefore,  the DBMS ignores the 
entry. Similarly, the translation (as part of on-line 
reorganization) deletes (effectively ignores) the copy 
of an inapplicable log entry and the pointer to  the 
copy. The LRSN comparison (which the translation 
performs for updates and deletions) is necessary dur- 
ing the first iteration of log processing; it  is optional 
during later iterations. 

The next three sections describe how log entries for 
insertion, update, and deletion are translated. Then 
we summarize these translations in a figure. 

Translation  of a log entry for insertion. We begin  with 
translation of an insertion. If the old RID has an  en- 
try  in the mapping table, the copy of the log entry 
and the  pointer  to the copy are  deleted. Otherwise, 
the log entry is processed, as described here. 

If the insertion represents  a regular or overflow 
record, a new RID is estimated, based on the page 
numbers for records that have  similar values for the 
clustering key and that already exist  in the new  copy 
of the  area being reorganized. It is  efficient (for ap- 
plication after sorting) but not necessary for the es- 
timated new RID to approximate the eventual actual 
new RID. For unique identification during the  later 
phase for application, the estimated new RID must 
differ from all estimated or actual new RIDS now  in 
the mapping table. Therefore, a counter of insertions 
during the current iteration of log  processing  is  main- 
tained, and the counter is concatenated to  the es- 
timate. A CE entry is then  added to the mapping ta- 
ble, using the old RID of the log entry, the estimated 
new RID, and the LRSN of the log entry. In the prefix 
for the copy of the log entry, the estimated new RID 
is stored. 

Suppose instead that  the insertion represents a 
pointer record, which the DBMS inserts only  in aback- 
out.  Then  a P entry is added  to  the mapping table, 
using the old RID and LRSN of the log entry. The copy 

IBM SYSTEMS JOURNAL, VOL 36, NO 3, 1997 

of the log entry and the pointer to  the copy are de- 
leted. This behavior resembles the scanning of a 
pointer record during unloading. 

Translation  of a log  entry for update. Now  we turn  to 
translation of an update. Suppose that  the old RID 
has no entry in the mapping table, or  the LRSN in 
the log entry is  less than  or  equal to the LRSN in the 
mapping table entry. Then  the copy of the log entry 
and the pointer to  the copy are deleted. Otherwise, 
the log entry is processed according to  the type of 
update (e.g., from regular to regular) and the type 
of entry in the mapping table (CR, CE, or P), as de- 
scribed here. The right column of Table 2 includes 
all the possible  types of updates. 

First, consider a log entry that updates from regular 
to regular or from overflow to overflow. If the old 
RID has a P entry in the mapping table, an  error is 
announced by terminating the reorganization abnor- 
mally;  any  log entry with an appropriate LRSN should 
not contain an inappropriate  update. If the old RID 
has a CR or CE entry in the mapping table, then in 
the prefix for the copy  of the log entry, the content 
Of TARGET-RID is stored as the new  RID. 

Alternatively, consider a log entry that updates from 
pointer to pointer. If the old RID has a CR or CE en- 
try in the mapping table, the reorganization is ter- 
minated abnormally. If the old RID has a P entry in 
the mapping table, the copy of the log entry and  the 
pointer to  the copy are  deleted. 

Consider instead a log entry that  updates from reg- 
ular to  pointer. If the old RID has a P entry in the 
mapping table, the reorganization is terminated ab- 
normally. If the old RID has a CR or CE entry in the 
mapping table, these actions are performed: In the 
prefix for the copy of the log entry, the  content of 
TARGET-RID is stored as the new RID. In  the log en- 
try, the type of log entry is changed from update to 
deletion. In  the mapping table, TYPE is changed to 
P. The following  discussion contains the reason for 
this behavior. Data for this  slot were already found 
in the old copy or in the log. However, this slot (in 
the old  copy) then became a pointer. Therefore, since 
the  data  that we  have already found are not useful, 
a deletion entry is created in the log. The desired 
data  are found when the RID for the corresponding 
overflow  is processed in the old  copy or in the log. 
Since the new  copy of the  data corresponds to old 
regular records and old  overflow records but not old 
pointer records, an update from regular to pointer 
is treated similarly to  a deletion. 

SOCKUT, BEAVIN, AND CHANG 427 



Figure 9 State  transition  diagram  for  an  old RID'S mapping  table  entry  during  processing of the  log 

Finally, consider a log entry that updates from 
pointer  to regular. If the old RID has a CR or CE en- 
try in the mapping table, the reorganization is ter- 
minated abnormally. If the old RID has a P entry in 
the mapping table, the following actions are  per- 
formed. As in an insertion, a new RID is estimated; 
in the prefix for the copy of the log entry, the es- 
timated new RID is stored; in the log entry, the type 
of log entry is changed from update  to insertion; and 
in the mapping table, TYPE is changed to CE, and 
TARGET-RID is changed to  the estimated new  RID. 
Since the new  copy  of the  data corresponds to old 
regular records and old  overflow records but not old 
pointer records, an  update from pointer to regular 
is treated similarly to an insertion. 

Translation of a log entry for deletion. Next  we  dis- 
cuss translation of a deletion. Suppose that  the old 
RID has no entry in the mapping table, or the LRSN 
in the log entry is  less than or equal to  the LRSN in 
the mapping table entry. Then  the copy of the log 
entry and  the pointer to  the copy are deleted. Oth- 
erwise, the log entry is processed as described next. 

Suppose that  the old RID appears in a CR or CE en- 
try in the mapping table. Then  the  contents of 
TARGET-RID are  stored as the new RID in the prefix 

for  the copy of the log entry, and  the entry is deleted 
from the mapping table. 

Suppose instead that  the old RID appears in a P en- 
try in the mapping table. Then  the copy of the log 
entry and  the pointer to  the copy are deleted along 
with the entry in the mapping table. The reason is 
that the log contains another entry to  delete  the cor- 
responding old  overflow, and  that  other entry, not 
this entry, is translated to  delete  the  data. 

States of a mapping table entry during translation. The 
phase for translation (which we have been discuss- 
ing) and the phase for application (which we discuss 
shortly) can write (i.e., add,  delete,  or change) en- 
tries in the mapping table. For each old RID, at any 
time, the mapping table contains a CE entry, a CR 
entry, a P entry, or no entry; these are  the four pos- 
sible states of the RID in the mapping table. The writ- 
ing of an entry can change the  state of the RID for 
an entry. 

To summarize the changing of states during trans- 
lation (and,  to  a lesser extent, during application), 
Figure 9 shows a  state transition diagram for an old 
RID'S entry (if any)  in the mapping table. The rect- 
angles represent  the  four possible states. The  tran- 

428 SOCKUT, BEAVIN,  AND CHANG IBM SYSTEMS JOURNAL, VOL 36, NO 3, 1997 



sition from CE to CR (dotted line in Figure 9) rep- 
resents the processing of an insertion log entry during 
the phase for application, which  we  will  discuss 
shortly. The  other transitions represent  the process- 
ing of log entries during the phase for translation, 
which we discussed  in the previous three sections. 
Each transition is labeled with the type of log entry 
(I, D, or U). For  an insertion (I), we also show the 
type of old record (R for regular, P for pointer, or 
0 for overflow). For  an  update (U), we also show 
the type of old record before and after the  update. 
If the translation changes the type  of  log entry, we 
show an arrow and  the changed type  in parentheses. 
If the translation deletes the copy of the log entry 
and the pointer to the copy,  we  also  show an arrow 
and “no log entry” in parentheses. 

For example, consider the horizontal transition from 
state CE to  state P. This transition represents  a log 
entry that  updates (U) the old record from a regular 
record (R) to  a pointer record (P). Before the up- 
date,  the old RID has a CE entry in the mapping ta- 
ble. In this transition, the log entry is changed from 
update  to deletion (D), and  the type of entry in the 
mapping table is changed from CE to P. 

Next we list the translations of log entries, in the  or- 
der in  which  we described them in the previous three 
sections. For each translation, we identify the cor- 
responding transition in the diagram: (1) Transla- 
tion of an insertion of a regular or overflow record 
includes adding a CE entry to  the mapping table. The 
corresponding transition in the diagram (labeled “I 
of R or 0”) changes the  state of a RID from “no  en- 
try” to “CE.” (2) An insertion of a pointer corre- 
sponds to  the transition labeled ‘‘I of P.” (3) An up- 
date from regular to regular or from overflow to 
overflow corresponds to “U from R to R or from 0 
to 0,” which the diagram shows  twice (on the CR 
and CE states). (4) A n  update from pointer to pointer 
corresponds to “U from P to P.” ( 5 )  An  update from 
regular to  pointer corresponds to “U from R to P,” 
which the diagram shows  twice (from CR and CE to 
P). (6) An update from pointer to regular corre- 
sponds to “U from P to R.” (7) A deletion when the 
old RID appears in a CR or CE entry corresponds to 
“D,” which the diagram shows from CR and CE to 
no entry. (8) A deletion when the old RID appears 
in a P entry corresponds to a third “D,” which the 
diagram shows from P to no entry. 

Phase 4: Sorting by new RID. After  the phase for 
translation, we sort  the pointers to the copies of log 
entries, using a major sort by  new RID and  a minor 

IBM SYSTEMS  JOURNAL,  VOL 36, NO 3, 1997 

~ ~~ ~ 

~ 

I 

SOCKUT, BEAVIN,  AND ( 

sort by LRSN. The major sort increases the locality 
of reference (and thus the  speed) during later ap- 
plication. The minor sort preserves the  order of op- 
erations on a slot of a RID. 

Phase 5: Application. After  the sorting by  new  RID, 
the set of pointers to log entries is scanned, and  the 
log entries  are applied to  the new  copy  of the  area 
being reorganized. For each new RID value  in the 
set of prefixes, the log  is applied by performing three 
activities: 

In activity 1, all the pointers for the RID are found. 
They will be contiguous. 

In activity 2, if at least one D log entry for the RID 
is found, certain log entries (and  the pointers to 
them) are  deleted. Specifically  all the  entries before 
the last D entry are  deleted. Also the D entry itself 
is deleted if the first  log entry was I; i.e., the slot is 
initially empty. The last D entry is kept if the first 
log entry was D or U; i.e., the slot is  initially occu- 
pied. These deletions omit log entries  for which the 
mapping table no longer contains the  appropriate 
entries. These deletions also omit log entries whose 
effects  would be nullified by a  later D entry. For ex- 
ample, the sequence I U U D has no net effect, so 
the sequence should not be applied. If these dele- 
tions omit all the log entries for the RID, activity 3 
is skipped. 

In activity 3, if any  log entries still  exist,  they are  ap- 
plied sequentially, as described next. For each af- 
fected page in the new  copy, the LRSN in the page 
header is set to  the  current LRSN for the log. 

The next three sections describe how to apply  log 
entries  for insertion, update,  and deletion. 

Application of a log entry for insertion. We begin  with 
application of an insertion, for which the following 
procedure is performed: (1) The record is inserted 
in the new  copy of the  area, and its actual new RID 
is obtained. (2) In the mapping table, the CE entry 
whose SOURCE-RID matches the old RID of the log 
entry is found. (3) In that entry in the mapping ta- 
ble, the TYPE is changed from CE to CR, and  the 
TARGET-RID is changed from its estimated value to 
the actual value. (4) In the prefixes for all the  re- 
maining  log entries  for  the  current RID, the RID is 
changed from the estimated value to the actual value. 

For each new RID value, the log entries for that RID 
are applied before the log entries for any later new 

:HANG 429 



RID value are applied. Therefore, if the actual new 
RID for an inserted record equals the estimated new 
RID for any inserted record, the equality  is not a prob- 
lem. 

Application of a log entry for update. Now  we turn to 
application of an update.  The RID in the log entry 
identifies a regular record or  a  pointer record. The 
behavior of the log application (in the new  copy) re- 
sembles the behavior of DBMS processing of a user’s 
update of a row, as in the five Update rows  of Table 
2. For example, if there is no overflow, but  the new 
data  are  too large for the page that contains the 
record, the regular record is updated  to become a 
pointer,  and  an overflow record is inserted. In this 
case, the RID of the record that changed from reg- 
ular to pointer continues to occupy the TARGET-RID 
column in the mapping table. 

Application of a log entry for deletion. Finally, we dis- 
cuss application of a deletion. The RID in the log en- 
try identifies a regular record or  a pointer record. 
The behavior of the log application (in the new  copy) 
resembles the behavior of DBMS processing of a us- 
er’s deletion of a row, as in the two Deletion rows 
of Table 2. If there is no overflow, the regular record 
is deleted. If there is overflow, the  pointer record 
and  the overflow record are deleted. 

Control of iterations (step 3). The phases that we 
have just discussed take place in each iteration of 
log  processing. We mentioned earlier that at the end 
of an  iteration of step 3, we  have criteria to choose 
between performing this step again and going to  the 
next step. We next describe these criteria. 

At  the  end of an  iteration,  the estimated time for 
the next iteration is compared to a  parameter of the 
reorganization command. The  parameter specifies 
the maximum desired time (for an iteration) during 
which users’ access to  the  area can be read-only. If 
the estimated time is  within the maximum, then  step 
4 is performed; step 5 is a final step of log process- 
ing, during which users have read-only access. 

If, instead, the estimated time  exceeds the maximum, 
the amount of the log that  the next iteration would 
process is checked  as to whether it  is  sufficiently  lower 
than  the  amount  that this iteration processed. Here, 
“sufficiently lower” means lower than  a certain frac- 
tion of this amount of iteration. If the  amount of the 
next iteration is  sufficiently lower, then reorganizer 
reading of the log  is “catching up” quickly enough 

430 SOCKUT, BEAVIN, AND CHANG 

to DBMS appending to  the log. Therefore,  the  reor- 
ganizer iterates (perform step 3 again). 

If, instead, the amount of the next iteration is not 
sufficiently lower, then  the reading is not catching 
up quickly enough. An implementation (or  another 
parameter of the reorganization command) can 
choose an action to solve this problem. Possible ac- 
tions include aborting this invocation of reorgani- 
zation, continuing with a higher maximum desired 
time for read-only access, continuing after quiesc- 
ing writers, and continuing after increasing the pri- 
ority of the reorganizer. A database administrator 
might increase the priority of the reorganizer via 
scheduling by the  operating system or via allocation 
of buffers  in  main storage. 

Additional  information 

Next we present additional information on a few as- 
pects of our method. This information is not essen- 
tial to  the main flow of description of the method 
for reorganization. 

Scheduling of on-line reorganization. The first topic 
of additional information involves scheduling. We 
have identified several criteria that  a  database  ad- 
ministrator can use to decide when to schedule on- 
line reorganization. 

Suppose that  the  rate of users’ writing in the data- 
base, and thus the rate of the appending by the DBMS 
to  the log, varies over time. Then scheduling on-line 
reorganization during a relatively  slack period makes 
it easier for the reading of the log by the reorganizer 
to catch up to the appending to  the log by the DBMS. 

Suppose that  the tolerance of delay varies from one 
application to  another.  Then scheduling on-line re- 
organization when no low-tolerance applications ex- 
ecute avoids irritation of users of those applications. 
For example, the tolerable delay for a batch program 
that produces a  report at night can exceed the  tol- 
erable delay for interactive query processing during 
normal business hours. 

The execution of a long-running user transaction can 
increase the time required to quiesce transactions. 
Therefore, scheduling on-line reorganization when 
no long-running transactions are expected to exe- 
cute can speed on-line reorganization. 

Omission of the mapping table if  a  key is unique. 
The second topic of additional information involves 

IBM SYSTEMS JOURNAL, VOL 36, NO 3, 1997 



an optimization. If the table that we reorganize has 
at least one unique key, an implementation might 
use one of the unique keys (instead of RIDS) to match 
log entries with records in the new  copy of the  area. 
This identification obviates the mapping table. 

To permit this identification, the DBMS must include 
the value of that key  in each log entry, even for  op- 
erations  that  do not involve that key  (e.g., update of 

During most of the 
reorganization,  users 

can  read  and  write 
the old copy. 

a different column). Also, the DBMS must either (1) 
assure that  the unique key  is  always unique in the 
old copy,  even during the intermediate states of each 
user transaction, or (2) compensate for any tempo- 
rary violation of uniqueness during the intermedi- 
ate states. 

Temporary violation of unique  indexes. The third 
topic of additional information involves handling of 
unique indexes. During reloading and log process- 
ing, a temporary violation of unique indexes might 
occur in the new  copy of the  area, as in the following 
example: (1) An early page of the  area contains a 
record whose unique key  value  is “Jones.” (2) The 
reorganizer unloads the record for Jones. (3) Auser 
deletes Jones, and  a user then inserts Jones in a  later 
page of the  area. (4) The reorganizer unloads the 
second record for Jones. (5) The reorganizer reloads 
both records for Jones  into  the new  copy, thus tem- 
porarily violating uniqueness. (6) The reorganizer 
eventually applies the log  (using the RIDS) and de- 
letes  the first record for Jones, thus removing the 
violation of uniqueness. 

In the old copy, the unique indexes enforce unique- 
ness. The set of values in the new  copy  will even- 
tually equal the set of values in the old copy. There- 
fore, any such violation of uniqueness is temporary. 

In IBM’s DB2, a nonunique index but not a unique 
index contains a field (for each key value) for a count 
of RIDS that have the key value. Therefore, we could 

IBM SYSTEMS JOURNAL, VOL 36, NO 3, 1997 

not solve this problem by temporarily marking the 
unique indexes in the new  copy  as nonunique. 

Our solution involves these actions: (1) The  data  are 
always inserted into the new  copy. (2) We try to in- 
sert  entries  into  the unique indexes. If an insertion 
would violate uniqueness, the RID is instead saved 
in a special list. The list  is probably short, since  vi- 
olation is probably rare. Application of the log can 
cause modification of this list. (3) At  the  end of the 
last step of processing of the log,  index entries are 
inserted for the saved RIDS. 

Reorganization of just an index. The last topic in- 
volves reorganization of just an index without reor- 
ganizing the corresponding data. Reorganizing an 
index on line closely resembles reorganizing data on 
line, and  here we sketch on-line reorganization of 
an index: the old copy of the index  is unloaded, a 
new  copy  is constructed, the log entries that deal with 
the index are processed, and access by users is 
switched to  the new  copy of the index. This reorga- 
nization changes no data  and  thus changes no data 
record RIDS, so it needs no mapping table. 

Summary 

We have described a method for performing a cer- 
tain  type of reorganization on line (concurrentlywith 
usage), so that  a very large or highly  available  (24- 
hour)  database need not go off line for reorganiza- 
tion. The reorganization includes restoration of clus- 
tering and removal of overflows. The method 
involves (1) copying data from the old copy of the 
area being reorganized to  a new  copy  in reorganized 
form, (2) applying the log to  the new  copy, and (3) 
switching  users’  access to  the new  copy. During most 
of the reorganization, users can read  and write the 
old copy. 

This method for on-line reorganization uses the log, 
which  identifies a record by its RID,  which can  change 
during reorganization. Therefore,  the method in- 
cludes maintenance of a table that maps between the 
old and new RIDS. The method uses this table to 
translate  entries in the log before applying them to 
the new  copy of the  data.  The novelty  is  in the in- 
teraction between processing of the log and main- 
tenance of the mapping table. 

In our discussion of this method and in our discus- 
sion of alternatives (in an appendix), we have iden- 
tified  design  issues  in several topics in on-line reor- 
ganization (in addition to  the identification of 

SOCKUT, BEAVIN, AND CHANG 431 



records). These topics include performance, creation 
of a backup copy, correction of nonclustering  indexes 
during reorganization of a partition, and many other 
topics. These details are necessary for practical ap- 
plication of our method. 

We  believe that more research in on-line reorgani- 
zation would be useful. One topic for such research 
is the control of iterations of log  processing. Another 
topic is reduction (or even elimination) of the pe- 
riods of read-only access and no access. 

Finally, as the amount of information and depen- 
dence on computers both grow, the number of very 
large or highly  available databases will  grow, and with 
them the importance of on-line reorganization. 

Acknowledgments 

A suggestion from Robert Goldberg led to  the first 
author’s early  work  in on-line reorganization. We 
thank Chuck Bonner, Harry Campbell, Dick Crus, 
Greg Davoll, Dan Dionne, Craig Friske, John  Garth, 
Rob Goldring, Kevin Gougherty, Thanh  Ha,  Don 
Haderle, Craig Heacock, Bala Iyer, Koshy John, 
Andy Johnson, Laura Kunioka-Weis, Angela Lee, 
Bob  Lyle, Tom Majithia, Debbie Matamoros, Claw 
Mikkelsen, Roger Miller, Frank Mix, C. Mohan, In- 
derpal Narang, Mai  Nguyen,  Bill  Niffenegger,  Jim 
O’Toole, Paul  Rao, Jim Ruddy, Dave Schwartz, 
Akira Shibamiya, Kalpana Shyam,  Bryan Smith, Rob 
Sokohl, V. Srinivasan,  Steve  Strawbridge,  Judy Tang, 
Jim Teng, Steve Turnbaugh, Michele Van  Patten, 
Terry Walker, Julie Watts, Steve Watts, Roy Weise, 
Gordon Yamamoto, and Jay Yothers. These peo- 
ple discussed  issues  in reorganization or reviewed 
parts of an earlier draft of this paper.  The  editors 
and referees suggested several improvements. 

Appendix A Alternatives 

In this section we discuss some alternatives to tech- 
niques that were discussed earlier. We explain the 
disadvantages of these alternatives. 

Minor alternatives. We begin with minor alterna- 
tives.  They  apply to  a few  specific parts of our method 
for reorganization, and they still  involve  fuzzy reor- 
ganization. 

Scanning for unloading (step 2). The first set of mi- 
nor alternatives deals with the scanning for unload- 
ing data. We explained that  to unload data,  the  ta- 
ble space is scanned, and  the records are  then  sorted 

432 SOCKUT, EEAVIN, AND CHANG 

by clustering key. Here we discuss two possible al- 
ternative types of scanning. 

Instead of scanning the table space, a possible al- 
ternative is to scan the most recent backup copy of 
the table space. An advantage of this alternative is 
elimination of reorganizer access and locking of the 
table space (which users access). Disadvantages in- 
clude processing of additional log entries (all the  en- 
tries since the backup) and access of tapes (if the 
backup copy resides on tapes). 

Another alternative is to obviate the sorting activity 
by scanning the clustering index (which  is already 
sorted by clustering  key) and following the index RIDS 
to  data in the table space. However, here we explain 
two reasons (involving correctness and performance) 
for our decision to scan the table space. 

We explain the reason that involves correctness by 
an example. In scanning the clustering index, con- 
sider this sequence of events: 

1. Initially, the slot for RID 3 contains a record whose 
clustering key  value  is “Jones.” 

2. The reorganizer reaches the “J” portion of the 
clustering index, and it copies the  Jones record 
from RID 3 in the old copy to RID 17 in the new. 
Now in the new  copy, RID 17 contains “Jones.” 

3. A user updates  the record, changing “Jones” to 
“Smith”; thus  a log entry indicates an  update of 
RID 3 from “Jones”  to “Smith.” Alternatively, 
users might delete  Jones and insert Smith, and 
the DBMS might use the former RID of Jones for 
Smith. 

4. The reorganizer reaches the “S” portion of the 
clustering index, and it copies the Smith record 
from RID 3 in the old copy to RID 90 in the new. 
Now, in the new  copy, RID 17 contains “Jones,” 
and RID 90 contains “Smith.” The mapping table 
might now have two entries for old RID 3. 

5. At the end of loading, we apply the log to  the new 
copy.  Specifically, we find that RID 3 changed  from 
“Jones”  to “Smith,” and we change RID 17 in the 
new  copy from “Jones”  to “Smith.” Now,  in the 
new  copy,  two RIDS (17 and 90) contain “Smith.” 
This is incorrect; there should be only one record 
for Smith. We  would need some special handling 
to prevent this error.  We should delete (not up- 
date)  the record for  Jones in the new  copy. 

The second reason involves performance. We prob- 
ably  would reorganize an  area only if the clustering 
in the  area has degraded. Studies have found that 

IBM SYSTEMS JOURNAL, VOL 36, NO 3, 1997 



for off-line reorganization of such an area, scanning 
the table space and sorting are usually faster than 
scanning the clustering  index. The difference  in speed 
arises because scanning the index for such an  area 
can result in  many jumps between file pages. 

Checking of log entries  during  translation  (steps 3 and 
5). Next  we  discuss translation of log entries. Within 
a  step of log processing, the phase for translation 
checks for existence of  an entry in the mapping ta- 
ble (for an  update  or  deletion).  For  an insertion, the 
phase checks for nonexistence of an entry. This phase 
also compares the LRSN of the log entry to  the LRSN 
of the record in the mapping table (for an  update 
or deletion). The phase also checks the mapping ta- 
ble for  appropriateness of logged updates; e.g., up- 
dating a record from overflow to overflow  is inap- 
propriate if the record is a pointer. 

For  an  update,  the LRSN comparison prevents un- 
necessary (but harmless) application of an  update 
that occurred before the reorganizer scanned the 
record. The LRSN comparison also  effectively  checks 
for appropriateness, as we explained when we dis- 
cussed  log application as part of recovery. Thus the 
explicit  checking for appropriateness is redundant 
with the LRSN comparison. 

For  a deletion, the LRSN comparison prevents un- 
necessary (but harmless) application of a pair of a 
deletion and an insertion that both occurred before 
the scanning. 

This checking  involves some redundancy and pre- 
vents some harmless applications. Several other 
methods for checking are possible.  All the methods 
include checking for existence or nonexistence in the 
mapping table. 

In  the method that we have described, we compare 
the LRSNS, and we also check for appropriateness of 
updates. The LRSN comparison can result in dele- 
tion of the copy of the log entry and the pointer to 
the copy. The appropriateness checking can result 
in announcement of an  error via abnormal termi- 
nation of reorganization; any  log entry with an ap- 
propriate LRSN should not contain an  inappropriate 
update. 

In a second method, we compare the LRSNs, and we 
also check for appropriateness of updates, as  in the 
first method. Here, however, either type of check- 
ing can result in deletion of the copy of the log entry 
and the pointer to the copy. The disadvantage of this 

IBM SYSTEMS JOURNAL,  VOL 36, NO 3, 1997 

method is its failure to announce an error upon find- 
ing an inappropriate  update. 

In a third method, we compare the LRSNS, but  we do 
not check for appropriateness of updates. This 
method, like the second, fails to announce an error. 

Finally,  in a  fourth method, we omit the LRSNs from 
the mapping table, thus saving space and omitting 
the LRSN comparison. The  appropriateness check- 
ing for updates can result in deletion of the copy of 
the log entry and the pointer to the copy. Here, how- 
ever, log processing might unnecessarily but harm- 
lessly  apply an  update  or  a pair of a deletion and an 
insertion. Again, this method fails to announce an 
error. 

Correction of nonclustering  indexes. Now  we turn  to 
correction of nonclustering indexes (for reorganiza- 
tion of a  partition), for which  we  have described a 
method. In a possible alternative method for this  cor- 
rection, during the reloading in step 2, we construct 
a copy of all (not  just  a subset) of each noncluster- 
ing  index. In steps 3 and 5 ,  for each nonclustering 
index, when we apply a log entry to  data for this par- 
tition, we make the corresponding change to the new 
copy  of the index,  using a translated log entry. When 
we find a log entry for data for another  partition, we 
make the corresponding change to  the new  copy of 
the index,  using an untranslated log entry. In  step 
7, we quiesce all  access to  the nonclustering indexes 
(even for  the  other partitions), and we rename  the 
files that underlie the indexes. This renaming effec- 
tively replaces the old copies of the indexes by the 
new copies, thus correcting all the RIDS at once. In 
step 9, we erase the old copies of nonclustering in- 
dexes. 

The advantage of this alternative is a great reduc- 
tion in the time in step 7; we  avoid an expensive op- 
eration of changing individual RIDS in nonclustering 
indexes. A disadvantage of the alternative is its added 
quiescing of all  access to all the nonclustering indexes 
(even for the  other partitions), although those in- 
dexes are off-line  only  briefly. Another disadvantage 
is prevention of concurrent reorganizations of two 
or more partitions. 

Creation of a backup copy. The final set of minor al- 
ternatives deals with creation of a backup copy of 
the new  copy of the  area being reorganized, as a  ba- 
sis for future recoverability. We mentioned that we 
create  the backup copy during step 2 (while users 
have  full  access to  the old  copy  of the  area). We bring 

SOCKUT,  BEAVIN,  AND CHANG 433 



ing step 5 (while users have read-only access). We 
also mentioned an alternative technique that takes 
place during step 8. Here we  discuss more  alterna- 
tive techniques and their disadvantages. 

One alternative, again during step 8, is to  start  read- 
only  access, create a backup copy  while  allowing 
read-only access, and then start read/write access (af- 
ter  the backup copying completes). The  entire  pe- 
riod of creation restricts users to read-only access. 

Another alternative is to  create a backup copy dur- 
ing the reloading in step 2, append translated log en- 
tries to  the original log  in steps 3 and 5 ,  and start 
read/write access immediately in step 8. Such a 
backup copy represents a less recent time and thus 
would require more log application in a recovery. 
The appending of translated log entries would also 
complicate the log. 

Major alternatives. Now  we turn from minor alter- 

fuzzy reorganization. 

On-line reorganization inplace. The first major alter- 
native  is reorganization in place (instead of reorga- 

organization by copying: (1) It can require more disk 

a transition between directing users’ accesses into 
the old copy and directing them into the new  copy. 

organized copy)  only after the transition. Reorga- 
nization in place might  begin to benefit users imme- 
diately (as we begin to reorganize the area  that users 
access). 

However, if users release some locks before com- 
mitment of a transaction, one disadvantage of re- 
organization in place is  complexity. Reorganization 
in place is  especially  complex if reorganization in- 
cludes changing the assignment of records to pages, 
as in restoration of clustering. If, instead of releas- 
ing  some  locks  early, we use  page-level  locks and hold 
them until commitment, we  avoid the ~ o m p l e x i t y , ~ ~ , ~ ~  
but this latter style of locking can dramatically re- 
duce concurrency and thus throughput. 

Another disadvantage of reorganization in place is 
that it might cause more contention with users and 
thus degradation of users’ performance, since it 

I natives to major alternatives, which do not involve 

I 

I nization by copying). There  are disadvantages of re- 

I space for  the  area being reorganized. (2) It involves 

I (3) It benefits users (by  giving them access to a re- 

I 

434 SOCKUT,  BEAVIN, AND CHANG 

Off-line  reorganization of fine-grainedpartitions. The 
second major alternative to our on-line reorganiza- 
tion is  off-line reorganization of fine-grained parti- 
tions. A partition of a table space can be a unit of 
off-line reorganization or  other utilities, during us- 
age or off-line reorganization of other partitions, as 
in DATABASE 2.2 Use of a fine granularity of parti- 
tioning can reduce the time to reorganize a parti- 
tion off line, and use of a fine enough granularity 
might even reduce the time to approximate 24-hour 
availability. However, a limitation of making the 
granularity fine  is an increase in the probability that 
areas of growth and areas of shrinkage will be in  dif- 
ferent partitions. This increase in the probability in- 
creases the likely variation (among the partitions) 
in growth rates, thus increasing the  total recom- 
mended amount of free space to reserve in the da- 
tabase. Also, off-line reorganization (like  some meth- 
ods for on-line reorganization) has a prerequisite 
period of quiescing of users’  activities, and it requires 
correction of nonclustering indexes.  Finally,  in some 
DBMSs, making the granularity fine  can slow the rout- 
ing of users’  accesses into partitions and increase the 
total space required for partition storage descriptors. 

*Trademark  or registered trademark of International Business 
Machines Corporation. 

**Trademark  or registered trademark of Tandem  Computers In- 
corporated. 

Cited references 

1. G. H. Sockut and R. P. Goldberg, “Database Reorganiza- 
tion-Principles and  Practice,” Computing Surveys 11, No. 4, 
371-395 (December 1979). 

2. C. Mohan, “A Survey of DBMS Research  Issues in Support- 
ing Very Large  Tables,” D. Lomet, Editor, Foundations of 
Data Organization and Algorithms (Proceedings of the 4th In- 
ternational Conference, Foundations of Data Organization and 
Algorithms), Springer-Verlag, New York  (October 1993), 

3. G. Wiederhold, Database Design, McGraw-Hill, Inc., New 
York (1983). 

4. R. F. Schubert,  “Directions in Data Base Management  Tech- 
nology,” Datamation 20, No. 9,  48-51 (September 1974). 

5.  H. S. Meltzer, “An Overview of the  Administration of Data 
Bases,” Proceedings of the 2nd USA-Japan  Computer Confer- 
ence, AFIPS Press, Reston, VA (August 1975), pp. 365-370. 

6. H. S. Meltzer,  “Structure and Redundancy in the Concep- 
tual  Schema in the  Administration of Very Large Data 
Bases,” P. C. Lockemann  and E. J. Neuhold,  Editors, Sys- 
tems  for Large Data Bases (Proceedings of the 2nd International 
Conference on Very Large Data Bases), North-Holland  Pub- 
lishing Co., Amsterdam,  Netherlands  (September 1976), 

pp. 279-300. 

pp. 13-25. 

IBM SYSTEMS JOURNAL,  VOL 36, NO 3, 1997 



Systems: Achievements and  Opportunities,” Communications 
of the ACM 34, No. 10,  110-120 (October 1991). 

8. J. Keyes, “DBAs  Face Challenge of  24  by 7Availability,”Soft- 
ware Magazine 12, No. 11, 58-63 (August 1992). 

9. D. J. DeWitt and  J. Gray, “Parallel Database Systems: The 
Future of High  Performance  Database Systems,” Commu- 
nications of the ACM 35, No. 6, 85-98 (June 1992). 

10. P. Valduriez, “Parallel Database Systems: Open Problems 
and New Issues,” Distributed and Parallel Databases 1, No. 
2,137-165 (April 1993), Kluwer Academic Publishers, Bos- 
ton, MA. 

11. G. Graefe,  “Query Evaluation Techniques  for  Large Data- 
bases,” Computing Surveys 25, No. 2,  73-170 (June 1993). 

12. P. G. Selinger, “Predictions and Challenges for Database Sys- 
tems in the  Year 2000,” Proceedings of the 19th International 
Conferenceon Very  Large Data Bases, Morgan Kaufmann Pub- 
lishers, Palo Alto, CA (August 1993), pp. 667-675. 

13. D.  J.  Haderle  and  R.  D. Jackson, “IBM Database 2  Over- 
view,” IBM Systems Journal 23, No. 2,  112-125 (1984). 

14. C. J. Date  and C. J. White, A Guide to DB2,4th edition,  Ad- 
dison-Wesley Publishing Co., Reading, MA (1993). 

15. M. M. Astrahan et al., “System R: Relational  Approach to 
Database  Management,”ACM Transactions on Database Sys- 
tems 1, No. 2,  97-137 (June 1976). 

16. Database Language SQL, X3.135-1992, American  National 
Standards  Institute, New York, NY (1992). 

17. J. Gray, “Notes on  Data Base Operating Systems,” R. Bayer 
et al., Editors, Operating Systems-An Advanced Course, 
Springer-Verlag, New York, NY (1978), pp, 393-481. 

18. T. Haerder  and A. Reuter, “Principles of Transaction-Ori- 
ented  Database Recovery,” Computing Surveys 15, No. 4,287- 
317 (December 1983). 

19. R. A. Crus, “Data Recovery in IBM Database 2,” IBM Sys- 
tems Journal 23, No. 2, 178-188 (1984). 

20. IMSIVS-Version I ,  Utilities Reference Manual, SH20-9029-9, 
IBM Corporation  (June 1986); available through IBM branch 
offices. 

21. C.  Mohan, D.  Haderle, B. Lindsay, H. Pirahesh, and 
P. Schwarz, “ARIES:  A  Transaction Recovery Method  Sup- 
porting  Fine-Granularity Locking and Partial Rollbacks Us- 
ing Write-Ahead Logging,” ACM Transactions on Database 
Systems 17, No. 1, 94-162 (March 1992). 

22. J. Gray and A. Reuter, Transaction Processing: Concepts and 
Techniques, Morgan  Kaufmann Publishers, Palo Alto, CA 
(1993). 

23. C.  Mohan and I. Narang, “An Efficient and Flexible Method 
for Archiving a Data Base,” Proceedings of the 1993 ACM 
SIGMOD International Conference on Management of Data 
(June 1993), pp. 139-146. 

24. D. J. Rosenkrantz, “Dynamic Database Dumping,” Proceed- 
ings of the ACM  SIGMOD International Conference on Man- 
agement of Data (May 1978), pp. 3-8. 

25. Implementing Concurrent Copy, GG24-3990-00, IBM  Corpo- 
ration  (December 1993); available through IBM branch of- 
fices. 

26. G. H. Sockut and B. R. Iyer, Reorganizing Databases Con- 
currently with Usage:A Survey, Technical Report 03.488, IBM 
Santa  Teresa  Laboratory,  San  Jose, CA  (June 1993). 

27. G. H. Sockut and B. R. Iyer, “A Survey of Online  Reorga- 
nization in IBM Products and Research,” Data Engineering, 
19, No. 2, 4-11 (June 1996). 

28. T. B. Wilson, “Data Base Restructuring:  Options  and Ob- 
stacles,’’ P. A. Samet,  Editor, EURO IFIP 79 (Proceedings of 
the European Conference on Applied Information Technolo- 

IBM SYSTEMS JOURNAL, VOL 36, NO 3, 1997 

(September 1979), pp. 567-573. 
29. M. Stonebraker, R. Katz, D. Patterson, and  J. Ousterhout, 

“The Design of XPRS,” Proceedings of the 14th International 
Conference on Very  Large Data Bases, Morgan Kaufmann Pub- 
lishers, Palo Alto, CA (August 1988), pp. 318-330. 

30. C. Mohan and  I. Narang, “Algorithms for  Creating Indexes 
for Very Large Tables Without Quiescing Updates,”Proceed- 
ings of the 1992 ACM  SIGMOD International Conference on 
Management of Data (June 1992), pp. 361-370. 

31. V. Srinivasan and M. J. Carey, On-Line  Index Construction 
Algorithms, Technical Report 1008, Computer Sciences De- 
partment, University of Wisconsin, Madison,  WI  (March 
1991); presented at  the 4th International  Workshop  on High 
Performance  Transaction Systems (September 1991). For 
more details, see  Reference 32. 

32. V. Srinivasan, On-Line Processingin Lauge-Scale Transaction 
Systems, Ph.D. thesis, Computer Sciences Department, Uni- 
versity of Wisconsin, Madison, WI  (January 1992). 

33. V. Srinivasan and M. J. Carey, “Performance of On-Line In- 
dex Construction Algorithms,” A. Pirotte  et al., Editors,Ad- 
vances in Database Techno1ogy”EDBT ’92  (Proceedings  of the 
3rd International Conference on Extending Database Technol- 
ogy), Springer-Verlag, New York (March 1992), pp. 293-309; 
more details appear in Technical Report 1047, Computer Sci- 
ences Department, University of Wisconsin, Madison, WI 
(September 1991). For  more details, see  Reference 32. 

34. V. Srinivasan and M. J. Carey, “Compensation-Based On- 
Line Query Processing,” Proceedings of the 1992 ACM 
SIGMOD International Conference on Management of Data 
(June 1992), pp. 331-340. For  more details, see Reference 
32. 

35. M. Stonebraker,  “Hypothetical Data Bases as Views,” Pro- 
ceedings of the ACM-SIGMOD 1981 International Conference 
on Management of Data (April 1981), pp. 224-229. 

36. A n  Introduction to DataPropagator Relational Release I ,  GC26- 
3398-01, IBM Corporation (1993); available through IBM 
branch offices. 

37. ReplidataiWS User’s Guide, BLD-REP-UG-00, IBM Cor- 
poration and Integrated Systems Solutions Corp.  (January 
1994). 

38. J. Troisi, “Nonstop Availability and  Database Configuration 
Operations,” Tandem Systems Review 10, No.  3,18-23 (July 
1994). 

39. S. Englert, “Nonstop SQL: Scalability and Availability for 
Decision Support,” Proceedings of the 1994 ACM  SIGMOD 
International Conference on Management ofData (May 1994), 
p. 491. 

40. J. Cohen,  “Garbage Collection of Linked Data Structures,” 
Computing Surveys 13, No. 3, 341-367 (September 1981). 

41. J. O’Toole, S. Nettles, and  D. Gifford, “Concurrent Compact- 
ing Garbage Collection of a Persistent Heap,” Proceedings 
of the 14th ACMSymposium, Operating Systems Principles (De- 
cember 1993), pp. 161-174. 

42. J. L. Wiener  and J. F. Naughton, “Bulk Loading into an 
OODB: A  Performance Study,” Proceedings of the 20th In- 
ternational Conference on Very  Large Data Bases, Morgan 
Kaufmann Publishers, Palo  Alto, CA (September 1994), pp. 
120-131. 

43. J. L. Wiener and  J. F. Naughton, “OODB Bulk Loading Re- 
visited: The Partitioned-List  Approach,” Proceedings of the 
21st International Conference on V e y  Large Data Bases, Mor- 
gan Kaufmann Publishers, Palo  Alto, CA (September 1995), 

44. F. Mix, “DB2 Reorg  and Continuous Select,” Proceedings of 
pp. 30-41. 

SOCKUT, BEAVIN. AND CHANG 435 



45, 

46 

the 6th  Annual  North  American Conference, International DB2 
Users Group, IDUG, Chicago, IL (May 10, 1994), pp. 545- 
563. 
E. Omiecinski, L. Lee, and P. Scheuermann, “Concurrent File 
Reorganization  for  Record Clustering: A  Performance 
Study,” Proceedings  of the 8th International Conference on Data 
Engineering, IEEE-CS (February 1992), pp. 265-272. For 
more details, see  Reference 46. 
E. Omiecinski, L. Lee, and  P. Scheuermann,  “Performance 
Analysis of a  Concurrent File Reorganization Algorithm for 
Record Clustering,” IEEE Transactions on Knowledge and 
Data Engineering 6, No. 2, 248-257 (April 1994). 

Accepted for publication March 26, 1997. 

Gary H. Sockut IBMSanta Teresa Laboratory, P.O. Box 49023, 
San Jose, California 95161-9023 (electronic mail: ghs@vnet. ibm. 
com). Dr. Sockut is an advisory programmer at  the IBM Santa 
Teresa  Laboratory. He has been  a  member of the  team  that de- 
veloped on-line  reorganization  for DB2 for OSi390. Previously 
he was with BGS Systems, the  National  Institute of Standards 
and Technology, and  the IBM T. J. Watson  Research Center. He 
received an Sc.B. (magna cum laude) in applied mathematics from 
Brown University, an S.M. in electrical engineeringfrom  the Mas- 
sachusetts  Institute of Technology, and a Ph.D. in applied  math- 
ematics from  Harvard University. His main areas of interest are 
database  management (especially reorganization and graphical 
languages), office systems, and operating systems. He has writ- 
ten 25 papers. He is a  member of ACM and  the IEEE Computer 
Society, and  he has  been  a  member of Sigma Xi. 

Thomas A. Beavin IBM Santa Teresa Laboratory, P.O. Box 
49023, San Jose, California 95161-9023 (electronic mail: 
beavin@vnet.ibm.com). Mr. Beavin is an advisory programmer 
at  the IBM Santa  Teresa Laboratory. He is currently  a  member 
of the  DB2  development  organization  and has worked in that de- 
partment  and in the OW390 development  organization  for  the 
past 11 years. His focus is on utility development, including the 
design of on-line reorganization, and  more recently on query op- 
timization. Mr. Beavin received a B.S. in applied  computer sci- 
ence from Illinois State University in  1985. 

Chung-C.  Chang Oracle Corporation, Redwood Shores, Califor- 
nia 94065 (electronic mail: ccchang@us.oracle.com). Mr.  Chang 
is  now a principal consultant of Oracle  Corp. He worked with the 
DB2 development  team at  the IBM Santa  Teresa  Laboratory  for 
more  than 12 years, and was a  member of the team that devel- 
oped on-line reorganization  for  DB2  for OS/390. Previously he 
was with BLI  (Britton-Lee, Inc.) for the development of intel- 
ligent database machines. He received a B.S.  in mathematics from 
National Taiwan University and  an MS. in computer science from 
Wayne State University. His main areas of interest are operating 
systems, database management, and network computing architec- 
tures. 

Reprint  Order No. G321-5651. 

436 SOCKUT, BEAVIN, AND CHANG IBM SYSTEMS JOURNAL,  VOL 36, NO 3, 1997 


