A method for on-line
reorganization of a
database

Any database management system may need
some type of reorganization. However,
reorganization typically requires taking a
database off line, which can be unacceptable for
a very large or highly available (24-hour)
database. A solution is to reorganize on line
(concurrently with users’ reading and writing of
data in the database). This paper describes a
method for performing one type of reorganization
on line. The type of reorganization distributes
free space evenly, removes overflow, and
clusters data. The method for on-line
reorganization copies data while arranging the
data in the new copy in reorganized form. The
method then applies the database log to bring
the new copy up to date (to reflect users’ writing
of the old copy). The method maintains a table
that maps between old and new record
identifiers, to match log entries with data records
in the new copy.

We define reorganization of a database as chang-
ing some aspect of the logical or physical ar-
rangement of the database. In Reference 1, general
issues in reorganization and types of reorganization
are discussed, but in this paper we discuss one type
of reorganization, along with the problem in reor-
ganizing off line.

The type of reorganization that this paper describes
involves restoration of clustering. Clustering is the
practice of storing records near one another if they
meet certain criteria. One popular criterion is con-
secutive values in a column of the records. Cluster-
ing should reduce disk input and output for records
that users often access together. We use the word
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user to refer to a person who develops or executes
application programs that use the database. When
users write data into the database, this writing can
decrease the amount of clustering and thus degrade
performance. Reorganization can restore clustering
and performance.

During most types of reorganization in a typical da-
tabase, the area being reorganized is off line or only
partially available; users cannot write (and perhaps
cannot even read) data in that area. However, a
highly available database (a database that is to be
fully available 24-hours-per-day, 7-days-per-week)
should not go off-line for significant periods, of
course. Applications that require high availability in-
clude those for reservations, finance (especially
global finance), process control, hospitals, police, and
armed forces. Even for less essential applications,
many database administrators (people who supervise
the use of a database) prefer 24-hour availability. The
maximum tolerable period of unavailability is spe-
cific to the application. We asked customers of da-
tabase management systems (DBMSs), not all of
whom have highly available databases, to state the
maximum tolerable period, and their answers ranged
from 0 to 5 hours.
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Even without such a preference for 24-hour avail-
ability, reorganizing a very large database might re-
quire much longer than the maximum tolerable pe-
riod of unavailability. Giving examples of very large
databases, Reference 2 mentions a database with sev-
eral terabytes of data and the desire for one with

In this paper we
describe a method
for on-line reorganization
of a database.

petabytes. The author of Reference 3 considers off-
line reorganization such an important problem for
very large databases that he defines a very large da-
tabase as one “whose reorganization by reloading
takes a longer time than the users can afford to have
the database unavailable.”

These considerations call for the ability to reorga-
nize the database on line (concurrently with usage
or incrementally within users’ transactions), so that
users can read and write the database during most
or all phases of reorganization. In the context of pa-
pers that do not concentrate on on-line reorganiza-
tion, many people have stated the need for the abil-
ity to reorganize on line.**"* As the amount of
information and dependence on computers both
grow, the number of very large or highly available
databases will grow, and with them the importance
of on-line reorganization.

This paper describes the design of a method for on-
line reorganization (specifically, for restoration of
clustering). We oriented the paper primarily toward
DBMS researchers and designers, and to a lesser ex-
tent toward database administrators. We include
some details of design and some decisions that an
implementor must make, but we do not concentrate
on any actual implementation. The REORG utility in
Version 5 Release 1 of IBM’s DATABASE 2* (DB2*)
for 08/390* (see References 13, 14) includes on-line
reorganization that is very similar to what this paper
describes.
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Our method for on-line reorganization involves copy-
ing data from the area that users access into a new
copy of that area, in reorganized form. After the
copying, the database log is applied to the new copy,
to reflect users’ writing of the old copy. The appli-
cation uses a table that maps between old and new
record identifiers. The interaction between mainte-
nance of this mapping table and processing of the
log is the novelty of our work. We give an overview
of our method and the underlying database struc-
tures. We then cover more details of our method.
Finally, an appendix describes some alternatives.

Reorganization methods

To motivate and explain the type of reorganization
that we perform and our method for performing it,
we begin by sketching relevant aspects of database
storage structures. These structures can degrade and
thus require reorganization. We then introduce our
method for reorganizing on line. This method in-
volves a problem in identification of records, and we
discuss our solution to the problem. Finally, we com-
pare our method with previous work.

Storage structures, structural degradation, and re-
organization. In this section we describe the stor-
age structures for which we designed our method,
the degradation (e.g., reduction in the amount of clus-
tering) that can occur for these structures, the need
for reorganization (to remove the degradation), and
the control of off-line (or on-line) reorganization.
We designed the method for a set of storage struc-
tures for relational databases, specifically the style
of structures used in IBM’s DB2 and System R ° DBMSs.
Several other relational DBMSs use comparable struc-
tures.

Storage structures for data. We begin our discussion
of storage structures by describing the structures for
data.

Arow of a table in a database is a logical unit within
the table. For example, if Jones is an employee, a
table of employees includes a row for Jones. A row
contains columns of data, e.g., for name, job title,
and salary. A column can have a fixed length (which
does not change) or a variable length. A variable
length changes for each row according to the length
of the data that users place in that column in that
TOW.

Ordinarily, the DBMS implements a row by one data
record, which is a lower-level (more physical) unit in
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Figure 1 Example of file pages in a table space
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storage. We explain shortly that sometimes the DBMS
implements a row by two data records. Users see
rows but do not directly see data records.

When users write rows (and thus the DBMS writes
records to implement the writing of rows), the DBMS
tracks the writing by appending corresponding en-
tries to a collection of entries called the log. Later,
it is possible to recover the data after an accidental
loss by reloading from a backup copy of data and
then applying (performing on the data) the log en-
tries that the DBMS appended after creation of the
backup copy. The log record sequence number (LRSN)
of a log entry is a number that represents the po-
sition of that entry in the log.

A table space is a region of storage that stores the
data records for one or more tables. For simplicity,
we discuss only one table per table space. The DBMS
divides a table space into units called file pages. Fig-
ure 1 shows the structure of file pages, which we de-
scribe gradually. The header of each file page in-
cludes the LRSN of the most recently written log entry
that corresponds to writing of that page. A file page
contains zero or more data records, which the DBMS
allocates at the beginning of the page (after the head-
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er). Deletion of records can cause gaps between re-
maining records. The end of a file page contains an
ID map, which is an array of pointers {offsets of data
records within the page). We use slot to mean the
place (if any) to which an ID map entry points.

An ID map helps to identify records. In DB2 and sev-
eral other DBMSs that use the SQL'® database lan-
guage, not every table has a unique key (a set of col-
umns that identifies rows). Therefore, file pages,
entries in the log, and indexes (structures that speed
access to individual records) cannot use a key for
identification. Instead, they use a record’s record
identifier (RID), which consists of the page number
for the record and the offset of the entry for the
record within the ID map. The RID for a record can
change only during reorganization.

Now we turn to the effects on storage structures dur-
ing insertion of a row or during growth by update
(modification) of a variable-length column of an ex-
isting row. During these operations, if the desired
page lacks enough contiguous free space (the space
available for insertions and growth), the DBMS com-
pacts the page to make its frec space contiguous.
During compaction, when the DBMS moves a record,
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Figure 2 Example of index pages
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the DBMS updates the ID map pointer to the record;
compaction does not change the record RID. If com-
paction produces enough free space, the data go into
the desired page.

If such compaction does not produce enough space,
the data go into another page. On an insertion, a
new record goes into that other page. On growth of
existing data, the data move into a new overflow data
record in the other page, and the existing data record
in the original page becomes a pointer data record,
which contains the RID of the new overflow data
record. Thus the DBMS sometimes implements a row
by two records (a pointer record and an overflow
record). Data records that do not involve overflow
(hopefuily, most data records) are regular data rec-
ords. In Figure 1, the file page that we numbered 17
contains a regular data record and a pointer data
record. File page 22 contains a regular data record
and an overflow data record. The pointer record in
page 17 contains the RID of the overflow record in
page 22. The two bits in the header of each data
record in Figure 1 indicate whether the record is a
pointer and whether it is an overflow, respectively.

Storage structures for indexes. We continue our dis-
cussion of storage structures with the structures for
indexes. A table has zero or more indexes, each of
which uses an associated key (set of columns). For
example, an employee table might have an index
whose key is the department number, an index whose
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KEY RID RID

key is the social security number, and an index whose
key is the combination of last name and first name.
Within an index, the DBMS maintains the key values
in sorted order. Defining a key to be unigue means
that no two rows can have the same values in the
key columns.

The DBMS divides the storage of an index into units
called index pages. Figure 2 shows the structure of
index pages, which the DBMS arranges in a hierar-
chy. In this example, the index pages that we num-
bered 101 and 109 are leaves of the hierarchy, and
index page 137is a nonleaf. Each entry in a leaf page
contains a key value and a list of RIDs whose records
have that key value. The database designer option-
ally specifies that the DBMS will sort each list by RID.

Each entry in a nonleaf page points to another non-
leaf page or a leaf page, although this simple figure
shows no entries that point to other nonleaf pages.
Each entry in a nonleaf page also contains the value
of the highest key of the page to which the entry
points. For example, the first entry in index page 137
contains 101 (the number of another index page) and
the highest key value of page 101. The second entry
contains corresponding information for page 109. A
possible alternative implementation is for each en-
try in a nonleaf page to contain the value of the low-
est key of the page after the page to which the entry
points.
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Figure 3 Example of the clustering index and a nonclustering index for a partitioned table space
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Now we describe more about clustering, which our
introduction defined. For each table, the database
designer declares at most one index as a clustering
index. In reorganization (and, whenever possible, in
subsequent insertions), the assignment of data rec-
ords to file pages reflects the order of the data rec-
ords in the key of the clustering index. For example,
the records having the first few values of the key
might reside (be stored) in one file page, the records
having the next few values might reside in a second file
page, etc. This clustering speeds some queries.

The database designer optionally declares the clus-
tering index to be a partitioning index. Here, the DBMS
divides the table space (and the clustering index) into
partitions according to values of the indexed key. We
call the table space a partitioned table space. Parti-
tions reside in separate files, whereas a nonparti-
tioned table space can reside in one file.

For a partitioned table space, Figure 3 shows an ex-
ample of the clustering index, the table space, and
a nonclustering index (i.e., an index that is not the
clustering index). For example, if the key of the clus-
tering index is an employee’s name, partitions might
represent names that begin with A through F, G
through M, and N through Z, respectively, as in the
figure. The arrows in the figure denote RIDs in in-
dexes. Within the set of leaf pages of the clustering
index for a partitioned table space, the RIDs for each
partition are contiguous.
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Within a nonclustering index, however, the RIDs for
a partition need not be contiguous. For example, sup-
pose that the key of a nonclustering index is an em-
ployee’s job title. The order of RiDs in the index might
be the RIDs for accountants (for all partitions), the
RIDs for architects (for all partitions), the RIDs for
artists (for all partitions), etc. Thus the RIDs for a
partition are scattered throughout the index, since
some of them might be accountants, some might be
architects, etc. Figure 3 illustrates lack of contiguity
via two RIDs for the G-M partition with an interven-
ing RID for the N-Z partition. Within each value of
the index key (e.g., “architect™), the RIDs might be
sorted. Therefore, the RIDs for a partition might be
contiguous within each key value, but they are not
contiguous throughout the nonclustering index.

Structural degradation and reorganization. The stor-
age structures that we have described can degrade.
One type of degradation occurs when free space be-
comes unevenly distributed among the file pages of
a table space. After subsequent insertions, the or-
der of some records no longer reflects the clustering
index. This type of degradation slows some queries.

A second type of degradation occurs when variable-
length data grow too large to fit in their original file
page. The DBMS then creates an overflow in another
page and makes the original record a pointer. In-
dexes still contain the RID of the original record. This
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causes an extra page reference and thus extra time
on some queries.

Reorganization removes such structural degradation.
Specifically, reorganization distributes free space
evenly, removes overflows (so that each row uses just
one record, not two), and clusters data. Reorgani-

The method of fuzzy
dumping was the
inspiration for our

method.

zation can move records between file pages; there-
fore, the page that contains the record for a row af-
ter reorganization might differ from the page or
pages that contained the record or records for that
row before reorganization. Off-line reorganization op-
erates by (1) unloading (copying out) the data, (2)
sorting the unloaded data by clustering key, and (3)
reloading the data in sorted order. Users have read-
only access (i.e., they can read but cannot write the
data) during unloading and sorting, but have no ac-
cess during the reloading.

To start off-line reorganization, a database admin-
istrator issues a command where a parameter of the
command specifies the name of the table space that
the DBMS should reorganize. For a partitioned table
space, another parameter, which is optional, spec-
ifies the partition to reorganize; absence of this pa-
rameter signifies reorganization of the entire table
space. We use the term area being reorganized (of-
ten shortened to just area) to mean the table space
or partition on which reorganization operates. A
command for on-line reorganization will have ad-
ditional parameters (discussed later).

Steps of the method for on-line reorganization. Be-
fore describing our method for on-line reorganiza-
tion, we describe a well-known method for unload-
ing data during users’ writing. This method for
unloading inspired much of our method for reorga-
nization. The method for unloading data is fuzzy
dumping (also called fuzzy image copying).'™ In this
method the current LRSN for the log is recorded and
the desired part of the database is unloaded. If the
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unloading references a page that users have written
in the DBMS main storage buffers, but the DBMS has
not yet written the page to disk, the version that is
in main storage is used. Later, if there is a need to
perform recovery that uses the unloaded data, the
unloaded data can be reloaded and then brought up
to date (to reflect users’ writing) by applying log en-
tries (starting from the recorded LRSN). This appli-
cation of the log ignores an entry whose LRSN is less
than or equal to the LRSN of the page that the entry
indicates, since the page already reflects that logged
writing. "

Fuzzy dumping inspired much of our method for on-
line reorganization, which we call fuzzy reorganiza-
tion. In fuzzy reorganization, the current LRSN for
the log is recorded, the area being reorganized is un-
loaded (while letting users read and write it), the un-
loaded data are sorted by clustering key, and the data
are reloaded into a new copy of the area. The new
copy is then brought up to date (to reflect users’ writ-
ing of the old copy) by applying log entries (starting
from the recorded LRSN). Future access by users is
then switched to the new (reorganized) copy of the
area. Figure 4 shows the main steps of fuzzy reor-
ganization. Arrows represent the flow of informa-
tion. We next briefly discuss each step of the reor-
ganization, and we provide more details later in the

paper.

In step 1, the reorganizer (the process that performs
the reorganization) records the current LRSN for the
log. During this step, users can use the normal fa-
cilities of the DBMS to read and write the area being
reorganized. Users’ reading and writing consist of
copying data between the database (shown in the fig-
ure as “area”) and variables in users’ programs
(shown as “user data”). In the log, the normal fa-
cilities of the DBMS also append log entries that cor-
respond to users’ writing.

In step 2, the reorganizer sequentially scans each file
page in the old (original) copy of the area being re-
organized, to unload the data, as in off-line reorga-
nization. The data are then sorted by clustering key,
and reloaded into a new copy of the area (unlike off-
line reorganization, which involves only the original
copy). We often use the terms old copy and new copy
to refer to the old and new copies of the area. A
backup copy of the new copy is also created as a ba-
sis for future recoverability; the figure omits this cre-
ation. We discuss this step in more detail later.
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Figure 4 The main steps of fuzzy reorganization
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This reorganization of the data in the area also re-
quires changes to indexes. If the area is an entire
table space, then during the reloading in step 2, all
of the indexes for the table space are reconstructed
(new copies of them are created). This reconstruc-
tion corrects degradation in the indexes and assures
that the leaves of the indexes contain the correct new
RIDs. If the area is just a partition, a partition of the
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clustering index is reconstructed. However, when just
a partition is reorganized, the RIDs (for the partition
being reorganized) must be corrected in any non-
clustering indexes. The correction replaces the old
RIDs with corresponding new RIDs. During the re-
loading in step 2, a copy of a subset of each non-
clustering index is constructed; the subset corre-
sponds to the records in the partition being
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reorganized. Step 7 (discussed shortly) corrects the
nonclustering indexes, using the copied subsets.
Within a nonclustering index, the RIDs for the par-
tition being reorganized need not be contiguous (see
Figure 3).

Concurrently with the reorganizer activities in step
2, users continue to have read/write access to the old
copy of the area, which the figure identified as sim-
ply “area” in step 1. At the end of step 2, the reor-
ganizer records the current LRSN for the log. This
value of the LRSN exceeds the previously recorded
value if users have written into the database since
the previous recording.

Step 3 (processing of the [og) can execute iteratively.
In each iteration, the reorganizer reads a subset of
the log, namely the entries between the two most
recently recorded LRSNs. The log entries are sorted
by RID and applied to the new copy of the area, to
bring the new copy up to date. The subset of the log
reflects users’ writing that occurred during the pre-
vious step or during the previous iteration of this step.
Users have read/write access to the old copy during
this step. At the end of an iteration of this step, cri-
teria (which we discuss later) are used to choose be-
tween performing this step again or going to the next
step. If this step is performed again, the current LRSN
for the log is first recorded. If this step is not per-
formed again, the backup copy is brought up to date
by appending to it the changed pages of the new copy,
before continuing to the next step. We discuss step
3 in much more detail later.

The sorting of log entries by RID in step 3 improves
the locality of reference of log application, i.e., the
extent to which successive log entries refer to data
records that reside on the same file page or nearby
file pages. Thus the sorting should speed the log ap-
plication. It also eases the detection (and omission
during application) of a sequence of logged oper-
ations that has no net effect (e.g., insert. .. up-
date . .. delete).

Also in step 3, if the area being reorganized is an
entire table space, when a log entry is applied to data,
the corresponding changes to the new copies of the
indexes are made. For example, if a log entry de-
letes arecord, the RID for that record is deleted from
any indexes that contained the RID. If the area is just
a partition, corresponding changes are made to the
new copy of the partition of the clustering index and
to the new copies of the subsets of the nonclustering
indexes.
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Instep 4, the reorganizer quiesces writers (user trans-
actions that write into the area). This quiescing blocks
new writers and waits for existing writers to finish.
The current LRSN for the log is recorded, and users
continue to be able to read.

Instep 5 (processing of the log), the reorganizer pro-
cesses the log entries between the two most recently
recorded LRSNs for the log, as in an iteration of step
3. This last step of processing of the log is needed
only to handle writing that was in progress when (or
that began after) the previous step of processing fin-
ished reading its subset of the log. Users have read-
only access to the old copy during this step. At the
end of this step, as at the end of the last iteration
of step 3, the recently changed pages are appended
to the backup copy.

In step 6, the reorganizer quiesces all user access of
the area.

In step 7, the reorganizer switches users’ future ac-
cess to the new (reorganized) copy of the area. This
switch is performed by renaming (exchanging the
names of) the files that underlie the old and new cop-
ies. This renaming effectively changes the mapping
from logical to physical.

Also in step 7, users’ future access to indexes is
switched. If the area being reorganized is an entire
table space, the names of the files that underlie the
indexes are exchanged.

If, instead, the area is just a partition, the names of
the files that underlie the partition of the clustering
index are exchanged. The individual RIDs for this par-
tition in any nonclustering indexes are also corrected
(in place, not by copying). In each nonclustering in-
dex, for each key value, this correction consists of
replacing the old RIDs for this partition by the new
RIDs, which are found in the constructed subset of
the index. Within each key value, the old RIDs for
this partition are contiguous only if the index def-
inition specified that the DBMS will sort the RIDs (and
thus group them by partition). Therefore, the cor-
rection of RIDs is faster for a sorted index than for
an unsorted index.

During step 7, users have no access to the area, with
one exception. The exception applies during the cor-
rection of nonclustering indexes for reorganization
of just a partition. Queries that read the clustering
index and the data are allowed (after the files are
renamed), and updates are allowed for columns that

IBM SYSTEMS JOURNAL, VOL 36, NO 3, 1997




do not appear in any nonclustering indexes. In each
nonclustering index, an implementation might also
allow queries that read just the index key values but
not the RIDs.

In step 8, the reorganizer allows read/write access
of the area to resume. Users can then use the nor-
mal facilities of the DBMS to read and write the new
copy (identified in the figure as simply “area”), in
the same way that they formerly read and wrote the
old copy.

Step 8 also provides an opportunity for an alterna-
tive technique for creating a backup copy of the new

The novelty of our work
is in the interaction
between the table and
processing of the log.

copy. Our description so far includes creation of a
backup copy during step 2 and bringing the backup
copy up to date during steps 3 and 5. In the alter-
native technique, we start creating a backup copy at
the beginning of step 8 via a facility that allows con-
current writing,?** and we allow read/write access
to resume as soon as the backup copying begins.

In step 9, the reorganizer erases the mapping table
and the file for the old copy of the area. Similarly,
if the area being reorganized is an entire table space,
the old copies of the indexes are erased. If the area
is just a partition, the old copy of the partition of the
clustering index and the copies of the subsets of the
nonclustering indexes are erased.

This method for reorganization allows reading and
writing during almost all steps, including the first step
of log processing. Subsequent steps, which occur af-
ter processing of most of the logged writing, involve
a period of read-only access and a period of no ac-
cess.

Identification of records. The fuzzy reorganization
that we just described can have a problem in iden-
tification of records. We mentioned that an entry in
the log identifies a record by the RID. In fuzzy dump-
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ing, RIDs do not change. In recovery that uses the
result of fuzzy dumping, application of an entry in
the log can use the entry RID to identify the record
to which the entry should apply. As an inherent part
of reorganization, however, RIDs do change. Log en-
tries in our method for reorganization correspond
to users’ writing of the old copy and thus use the old
RIDs. Application of a log entry to the new copy re-
quires identification of the record in the new copy
to which the entry should apply. The method for re-
organization solves the problem of identification by
maintaining a temporary table that maps between
the old and new RIDs. The method uses this table to
translate log entries before sorting them by new RiD
and applying them to the new copy.

The interaction between maintenance of this map-
ping table and processing of the log (discussed later)
constitutes the main novelty of our work. The main
novel feature is the appropriate writing of the map-
ping table for each log entry. This writing reflects
(1) the state of the data record before processing of
the log entry and (2) the type of log entry. For a log
entry that represents an insertion, this writing in-
cludes the use of an estimated new RID (as a basis
for sorting) and eventual translation of the estimated
RID o an actual new RID. A patent is pending on
the interaction.

Comparison with previous work. In this subsection
we compare our method for reorganization with pre-
vious work.

Our calculation of clustering is straightforward and
not novel. We sort the data records by the cluster-
ing key, and we assign the appropriate amount of
data to each page. Therefore, we do not compare
our method with previous work in calculation of clus-
tering. References 26 and 27 discuss issues and sur-
vey previous work in many aspects of on-line reor-
ganization, including methods that restore clustering.

Instead, our novelty is in the interaction between
maintenance of the mapping table and fuzzy reor-
ganization processing of the log. Therefore, we com-
pare our method only with previous work in fuzzy
reorganization and in tables that map identifiers. We
are unaware of any previous work that combines
fuzzy reorganization log application and use of a
mapping table.

Several authors mention (but do not describe in de-
tail) what we call fuzzy reorganization. = Also, use
of a specialized file (which has some similarities
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to a log) can bring a newly created index up to
date,** but in this case the RIDs do not change. Ref-
erence 35 mentions the use of such a specialized file
for on-line reorganization, but it does not describe
the changing of RIDs.

In systems where every record has a unique iden-
tifier that does not change during reorganization,
fuzzy reorganization does not need a mapping ta-
ble. One example of such a system is the National
Crime Information Center of the United States gov-
ernment agency, the Federal Bureau of Investiga-

Our technique
of using a mapping
table has several
advantages.

tion. The system reorganizes by copying data and
then applying deletions from the log.' During reor-
ganization, the system allows deletions but not in-
sertions or updates. A second example is a facility
for replication, e.g., DataPropagator* Relational*
or Replidata/MVS.? Here reorganization can copy
data and then use the replication facility; using such
a facility resembles applying the log. A third exam-
ple involves on-line splitting of a partition into two
partitions; here reorganization applies the log after
copying the second part (e.g., half) of the original
partition into the new partition.*®* In our environ-
ment, however, many users dislike a requirement for
every row to have a unique identifier.

In languages that support linked data structures,
garbage collection® is reclamation of storage that is
no longer reachable from variables and thus is no
longer used. Reference 41 describes on-line garbage
collection for persistent data by copying data and ap-
plying the log. This garbage collection does not clus-
ter by values of a key. Each record in the old copy
of the area has a field that stores the address of the
corresponding record in the new copy. Processing
of the log uses this field to translate addresses in log
entries. In a database context (which was not the con-
text for Reference 41), our technique of using a map-
ping table has several advantages over the technique
of storing the address of the new record in the old
record.
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One advantage involves deletion (which does not ap-
ply to the environment of Reference 41, whose users
do not explicitly delete records). Suppose that after
the reorganizer has copied a record, a user deletes
the record (in the old copy of the area), and the DBMS
appends to the log an entry for the deletion. The re-
organizer will eventually find the log entry, translate
its address (RID) from old to new, and apply the de-
letion to the new copy of the area, to delete the
record there. Between the user’s deletion and the
reorganizer’s processing of the log entry, the DBMS
might reuse the space that the deleted record oc-
cupied. Therefore, we could not safely store the new
address in the old (deleted) record. A mapping ta-
ble can safely store the mapping of addresses.

The second advantage involves input and output. A
data record can be much larger than a mapping ta-
ble entry, so the set of all data records can require
many more pages than the set of all mapping table
entries. Therefore, adding and reading mapping ta-
ble entries can involve less page input and output
activity than writing and reading the new addresses
in the old data records.

The third advantage is that our technique requires
less locking for each record in the old copy. Both
techniques require a shared lock while unloading the
old record. However, our technique requires no lock
while reloading (and adding an entry to the map-
ping table) and no lock while processing the log (and
translating the address). Storing the new record ad-
dress in the old record can require an exclusive lock
while reloading (to write a new address in the old
record) and a shared lock while processing the log
(to translate the address). Therefore, our technique
is faster and allows more concurrency in the data-
base.

The fourth advantage is avoidance of extra space
(which is permanent) in each data record for the ad-
dress of the new record. In the most general case,
an implementation of storing the new address in the
old record can require the space, although the im-
plementation in Reference 41 uses space that already
existed.

The technique of storing the address of the new
record in the old record seems simpler and has an-
other advantage in requiring only one field for stor-
ing the new address, instead of fields for both the
old address and the new address (in a temporary
mapping table).
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' Log Record:
- Sequence Number

First character represents-the source
C = Record contains columns of data..
P = Record is 4 pointer

Second character represents the target
E = Estimated RID of a new record:
R = Actual RID-of a new record

References 42 and 43 describe the use of a mapping
table for loading data into an object database. One
of the stated purposes of loading is restoration of
clustering, although the authors do not mention on-
line restoration. Objects can contain references to
other objects. In the database, these references use
object identifiers. Since the object identifiers are un-
known before the loading, the file that is the source
of loaded data uses surrogates (e.g., integers) for
identifiers. During loading, the system constructs a
mapping table and uses it to translate surrogates to
identifiers in the database. Our method satisfies sev-
eral requirements that do not arise in the environ-
ment of References 42 and 43. These requirements
include the ability to handle (1) two sources of data
(the log and the old copy of the area), not just one,
(2) avariety of possible timing relationships between
unloading of data and generation of log entries for
those data, (3) updates and deletions (not just in-
sertions) in the log, and (4) overflow and pointer rec-
ords (not just regular records).

Reference 44 describes reorganization by copying.
This method allows read-only access during reorga-
nization, so it does not use the log.

Finally, a method for reorganization in place (i.e.,
not by copying) uses a table that maps RIDs to trans-
late entries in the leaves of indexes. *>* This method
does not use the log.

Structure of the mapping table

We begin our more detailed discussion of our
method for reorganization by describing the map-
ping table. This table (shown in Table 1) is a data-
base table or a special structure; the choice is an im-
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plementation decision. The columns are TYPE,
SOURCE_RID, TARGET RID, and LRSN. The TYPE col-
umn actually contains numbers (or single characters),
but the figure uses symbols for them. In the first char-
acter of a symbol, C means that the record corre-
sponding to the old RID contains columns of data,
and P means that the record is a pointer. The sec-
ond character (if any) of a symbol is R or E. R means
that the target record identifier (TARGET RID) is the
actual RID of a new regular record or pointer record.
E means that TARGET RID is the estimated RID of
anew record that we will insert later when we apply
the log. We will explain this estimation mechanism
later. For a TYPE of CR or P, the log record sequence
number (LRSN) contains the LRSN of the old page
that contained the old RID, as of the time when re-
organization unloads the page. For a TYPE of CE,
LRSN contains the LRSN of an insertion entry that
we find in the log.

Whenever we read the mapping table, we access it
by finding the entry whose source record identifier
(SOURCE_RID) contains a specified value. Therefore,
an efficient implementation of the mapping table
might use only an index (containing all the columns,
starting with SOURCE_RID), without actually storing
separate data in a table. In our discussions, we will
assume that the implementation uses only an index.

Behavior of the DBMS during writing

To explain more about the unloading in step 2 of
our method for reorganization, we must first explain
some behavior of the DBMS during users’ writing. This
behavior, which is not part of reorganization, influ-
enced our design of on-line reorganization, partic-
ularly unloading of data and processing of the log.
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Table 2 High-level operations on rows and corresponding low-level operations on records
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Table 2 contains a summary of the discussion that
follows.

Users write rows of tables via high-level operations
of insertion, update, and deletion. For each such
high-level operation on a row, the DBMS performs
one, two, or three low-level operations on records.
The DBMS also appends log entries that correspond
to the operations on records. A log entry contains
an LRSN, an old RID, and a low-level operation
(among other things).

For each high-level operation on a row in the left
column of Table 2, the right column shows the cor-
responding low-level operations on records. The de-
scription of a low-level operation includes the type
of record to which the operation applies. For exam-
ple, an update (from regular to pointer) in row 3 of
Table 2 is an update that operates on a record that
is a regular record before the update but becomes
a pointer record as a result of the update. For each
set of low-level operations, the center column shows

422 SOCKUT, BEAVIN, AND CHANG

the condition (immediately before the writing) un-
der which the DBMS chooses that set of low-level op-
erations to implement the high-level operation. The
condition of “any” in row 1 of Table 2 means that
to implement the high-level operation of insertion,
the DBMS always chooses one insertion of a regular
record.

For example, suppose that a user requests an up-
date of a row. Suppose that there is no overflow yet
(i.e., the row resides in a regular record), but the up-
date would cause the record to become too large to
fit in its current page. Then the DBMS updates the
regular record to become a pointer record, and the
DBMS inserts an overflow record to contain the data.
Row 3 in Table 2 describes this behavior.

During backout of a transaction (i.e., the undoing of
writing if a failure occurs during the transaction), the
DBMS performs operations and appends correspond-
ing log entries to reverse the original operations. For
example, row 8 in Table 2 shows two deletions of
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Figure 5 State transition diagram for a RID’s slot during users’ writing

I (DURING BACKOUT)

D

D = DELETION
| = INSERTION
U = UPDATE

records. To reverse these operations, we use two in-
sertions (of a pointer record and an overflow record).

Reflecting the operations in Table 2, Figure 5 shows
a state transition diagram for a RID slot during users’
writing. The states indicate what the slot for the RID
contains (an overflow record, nothing, a regular
record, or a pointer record). The transitions repre-
sent operations on records, i.e., deletion (D), inser-
tion (I), and update (U).

For example, row 8 of Table 2 shows that if there
is an overflow, the DBMS represents a user’s dele-
tion of a row as deletions of a pointer record and
an overflow record. Figure 5 depicts the deletion of
a pointer record by the D transition from POINTER
to NOTHING. It depicts the deletion of an overflow
record (which appears in rows 5, 6, and 8 of Table
2) by the D transition from OVERFLOW to NOTHING.
Similarly, Figure 5 uses transitions to depict all the
other low-level operations in Table 2. We noted that
during backout of a transaction, the DBMS performs
operations to reverse the original operations. The
transition labeled “I (during backout)” occurs only
during backout of a transaction that deleted a
pointer.

Unloading, sorting, and reloading of data
(step 2)

The behavior of the DBMS during users’ writing,
which we just described, influenced our design of step
2. This step unloads the data, sorts the data by clus-
tering key, and reloads the data. It also builds the
mapping table. Figure 6 shows these activities in
more detail than the UNLOAD, SORT, AND RELOAD
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action in step 2 of Figure 4. In the sections that fol-
low, we gradually explain the activities in Figure 6.

Unloading and sorting of data. First, we unload data
by scanning the file pages and their ID maps (in the
old copy of the area) and by unloading data into a
file (the unload file). The UNLOAD activity in Figure
6 depicts this unloading.

In this scanning, when we find a regular or overflow
record, we unload the data, the old RID, and the LRSN
of the old page that contains the record.

When a pointer record is found, a P entry (includ-
ing values for the SOURCE_RID and LRSN columns)
is added to the mapping table (Table 1), as the
ADD P ENTRIES activity in Figure 6 shows. The
pointer is not followed. Unloading an overflow when
the page that contains the overflow is scanned has
more locality of reference and thus is faster than fol-
lowing the pointer and unloading the overflow when
the page that contains the pointer is scanned.

After unloading, the unload file is sorted by cluster-
ing key, as the SORT activity in Figure 6 shows.

Reloading of data. After the unloading and sorting,
records are reloaded into the new copy of the area,
as the RELOAD activity in Figure 6 shows. For each
page in the new copy, the LRSN in the page header
is set to 0; any future recovery of the new copy will
use log entries starting after completion of reorga-
nization.

This reloading does not produce any overflow in the
new copy, even if an old record overflowed. Only the
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Figure 6 Activities in unloading, sorting, and reloading of data
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later application of an update found in the log can
cause an overflow in the new copy.

When a record is reloaded, a CR entry is added to
the mapping table, using the old RID and LRSN from
the unload file and the new RID from the new copy.
The ADD CR ENTRIES activity in Figure 6 depicts this
addition.

To summarize what we have described for unload-
ing (and, to a lesser extent, what we have just de-
scribed for reloading), Figure 7 shows a state tran-
sition diagram for a RID slot. It shows the
combinations of events that can occur to a slot dur-
ing users’ writing and the reorganizer’s unloading.
In Figure 7, we have extended the diagram of Fig-
ure 5 by adding the scanning and unloading. The
states indicate (1) whether the reorganizer has
scanned that RID yet during the unloading in step
2 and (2) what the RID slot contains (an overflow
record, nothing, a regular record, or a pointer
record). The four states in the top row are the pos-
sible initial states (before scanning of the RID). The
four states in the bottom row are the possible final
states (after scanning of the RID). The transitions
among the top four states and the transitions among
the bottom four states represent the DBMS opera-
tions (resulting from users’ writing) on unscanned
and scanned records, respectively. These transitions
use the labels of Figure 5 (D, 1, and U).

Each vertical transition between top and bottom
states represents reorganizer scanning of a RID dur-
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GR = GOLUMNS OF DATA FOR AGTUAL RID; ACTUAL NEW RID 1S KNOWN '~~~

ing the unloading in step 2. For each such transition,
the diagram shows the actions of the reorganizer dur-
ing the scanning. For the two cases of scanning that
unloads a record, the diagram also shows reorganizer
actions during the later reloading in step 2. For ex-
ample, we explained that when an overflow record
is scanned, its data (among other things) are un-
loaded. We also explained that when a record is re-
loaded (in the new copy), a CR entry is added to the
mapping table. The diagram depicts these actions
by the transition from UNSCANNED OVERFLOW to
SCANNED OVERFLOW. Scanning a regular record uses
a similar transition. When an empty slot is scanned,
nothing is done, as shown by the transition from
UNSCANNED NOTHING to SCANNED NOTHING. When
a pointer record is scanned, a P entry is added to the
mapping table, as shown by the transition from
UNSCANNED POINTER to SCANNED POINTER.

Processing of the log (steps 3 and 5)

Now we turn from unloading and reloading (which
construct the mapping table) to processing of the log
(which uses the mapping table). Steps 3 and 5 in the
reorganization method process subsets of the log.
This processing includes sorting and other manip-
ulation of log entries. To speed the processing, and
to avoid modifying the original log (which later re-
covery, if any, might need), the processing uses a
buffer. The buffer contains copies of the log entries,
and it contains pointers to the copies. When log en-
tries are copied into the buffer, the pointers are also
constructed. The old RID, new RID, and LRSN of the
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Figure 7 State transition diagram for a RID’s slot during users’ writing and the reorganizer’s unloading
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log entry are stored in a prefix (extra space) for each
copy. The sorting and most of the other manipula-
tion during log processing operate on the pointers
and the prefixes, and some of the manipulation op-
erates on the copies. In the remainder of this paper,
most references to the log actually refer to the copy
of the log in the buffer.

If the number of log entries to process in an iter-
ation of log processing (step 5 or an iteration of step
3) exceeds the capacity of the buffer, then several
minor iterations (each operating on one buffer of log
entries) are performed within that major iteration.
For simplicity, this paper usually describes log pro-
cessing as if each major iteration contained just one
minor iteration.

In the processing, sorting the pointers by old RID
speeds the access to the mapping table for transla-
tion from old to new RIDs.

Sorting the pointers by new RID speeds application
of the log by increasing the locality of reference in
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the access to the new copy of the area. This sorting
also eases the detection (and omission during ap-
plication) of a sequence of logged operations that
has no net effect (e.g., insert, update, delete). This
omission covers log entries for which the mapping
table no longer contains the appropriate entries.

Therefore, each iteration of processing of the log in-
cludes two types of sorting, and it has the phases in
Figure 8. In the figure, single arrows represent point-
ers, and double arrows represent flow of informa-
tion. For each phase, the text that describes the copy
of the log (including prefixes) and the pointers rep-
resents the state at the end of the phase.

In phase 1 of processing of the log, the log entries
are copied and pointers to the log entries are con-
structed. In the prefixes, the old RIDs and LRSNs, but
not the new RIDs, are filled in. In phase 2, the point-
ers are sorted by old RID. In phase 3, the translated
(new) RID of each log entry is calculated, and the
new RID is stored in the prefix. In phase 4, the point-
ers are sorted by new RID. In phase 5, the log entries
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Figure 8 Phases of processing of the log
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are applied to the new copy of the area. An imple-
mentation might merge phase 2 into phase 1 and
merge phase 4 into phase 3. We will explain much
more about the phases later.

In phase 3 (translation), for an insertion, the new
RID is not yet known, since the application of the
insertion will occur in phase 5. Therefore, phase 3
calculates an estimated new RID for the inserted
record. Phase 5 replaces the estimated new RIDs with
actual new RIDs.

To speed the processing of the log, an implemen-
tation might use two buffers and process them con-
currently. It can perform phases 3, 4, and 5 using one
buffer (for the log entries in one minor iteration)
while performing phases 1 and 2 using the other
buffer (for the log entries in the next minor itera-
tion).

Next we discuss the phases of processing the log in
more detail, along with a discussion of the control
of iterations of log processing.
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Phase 1: Copying. In the first phase, the log entries
are copied and pointers to them are constructed. The
DBMS appended entries to the log (and they are read)
in LRSN ordet, so the pointers are initially sorted by
LRSN; no explicit sort by LRSN is performed.

Phase 2: Sorting by old RID. After the copying, the
pointers to the copies of log entries are sorted using
a major sort by old RID and a minor sort by LRSN.
The major sort speeds the later access to the map-
ping table. The minor sort preserves the order of op-
erations on a RID slot.

Phase 3: Translation. After the set of pointers is
sorted, the set is scanned and the RIDs are translated.
As we describe in detail below, the translated (new)
RID of each log entry is calculated and stored in the
prefix.

One aspect of this translation imitates an aspect of
a DBMS log application. We noted that log applica-
tion (as part of recovery) ignores a log entry whose
LRSN is less than or equal to the LRSN of the page
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that the entry indicates. This behavior handles en-
tries that are inapplicabie to the unloaded data. Such
a situation can arise if a user writes a record after
unloading begins (e.g., in fuzzy dumping) but before
the unloading reaches the record. Here is an exam-
ple sequence of events: (1) A RID slot contains a
record when unloading begins. (2) A user deletes the
subject record, and the DBMS appends to the log a
deletion entry for that RID. (3) The unloading reaches
that slot and finds nothing. (4) During log applica-
tion, the DBMS finds the entry. Applying the entry
for deletion would not make sense, since the unload-
ing found nothing. Therefore, the DBMS ignores the
entry. Similarly, the translation (as part of on-line
reorganization) deletes (effectively ignores) the copy
of an inapplicable log entry and the pointer to the
copy. The LRSN comparison (which the translation
performs for updates and deletions) is necessary dur-
ing the first iteration of log processing; it is optional
during later iterations.

The next three sections describe how log entries for
insertion, update, and deletion are translated. Then
we summarize these translations in a figure.

Transiation of a log entry for insertion. We begin with
translation of an insertion. If the old RID has an en-
try in the mapping table, the copy of the log entry
and the pointer to the copy are deleted. Otherwise,
the log entry is processed, as described here.

If the insertion represents a regular or overflow
record, a new RID is estimated, based on the page
numbers for records that have similar values for the
clustering key and that already exist in the new copy
of the area being reorganized. It is efficient (for ap-
plication after sorting) but not necessary for the es-
timated new RID to approximate the eventual actual
new RID. For unique identification during the later
phase for application, the estimated new RID must
differ from all estimated or actual new RIDs now in
the mapping table. Therefore, a counter of insertions
during the current iteration of log processing is main-
tained, and the counter is concatenated to the es-
timate. A CE entry is then added to the mapping ta-
ble, using the old RID of the log entry, the estimated
new RID, and the LRSN of the log entry. In the prefix
for the copy of the log entry, the estimated new RID
is stored.

Suppose instead that the insertion represents a
pointer record, which the DBMS inserts only in a back-
out. Then a P entry is added to the mapping table,
using the old RID and LRSN of the log entry. The copy
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of the log entry and the pointer to the copy are de-
leted. This behavior resembles the scanning of a
pointer record during unloading.

Translation of a log entry for update. Now we turn to
translation of an update. Suppose that the old RID
has no entry in the mapping table, or the LRSN in
the log entry is less than or equal to the LRSN in the
mapping table entry. Then the copy of the log entry
and the pointer to the copy are deleted. Otherwise,
the log entry is processed according to the type of
update (e.g., from regular to regular) and the type
of entry in the mapping table (CR, CE, or P), as de-
scribed here. The right column of Table 2 includes
all the possible types of updates.

First, consider a log entry that updates from regular
ta regular or from overflow to overflow. If the old
RID has a P entry in the mapping table, an error is
announced by terminating the reorganization abnor-
mally; any log entry with an appropriate LRSN should
not contain an inappropriate update. If the old RID
has a CR or CE entry in the mapping table, then in
the prefix for the copy of the log entry, the content
of TARGET RID is stored as the new RID.

Alternatively, consider a log entry that updates from
pointer to pointer. If the old RID has a CR or CE en-
try in the mapping table, the reorganization is ter-
minated abnormally. If the old RID has a P entry in
the mapping table, the copy of the log entry and the
pointer to the copy are deleted.

Consider instead a log entry that updates from reg-
ular to pointer. If the old RID has a P entry in the
mapping table, the reorganization is terminated ab-
normally. If the old RID has a CR or CE entry in the
mapping table, these actions are performed: In the
prefix for the copy of the log entry, the content of
TARGET_RID is stored as the new RID. In the log en-
try, the type of log entry is changed from update to
deletion. In the mapping table, TYPE is changed to
P. The following discussion contains the reason for
this behavior. Data for this siot were already found
in the old copy or in the log. However, this slot (in
the old copy) then became a pointer. Therefore, since
the data that we have already found are not useful,
a deletion entry is created in the log. The desired
data are found when the RID for the corresponding
overflow is processed in the old copy or in the log.
Since the new copy of the data corresponds to old
regular records and old overflow records but not old
pointer records, an update from regular to pointer
is treated similarly to a deletion.
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Figure 9  State transition diagram for an old RID’s mapping table entry during processing of the log
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Finally, consider a log entry that updates from
pointer to regular. If the old RID has a CR or CE en-
try in the mapping table, the reorganization is ter-
minated abnormally. If the old RID has a P entry in
the mapping table, the following actions are per-
formed. As in an insertion, a new RID is estimated;
in the prefix for the copy of the log entry, the es-
timated new RID is stored; in the log entry, the type
of log entry is changed from update to insertion; and
in the mapping table, TYPE is changed to CE, and
TARGET RID is changed to the estimated new RID.
Since the new copy of the data corresponds to old
regular records and old overflow records but not old
pointer records, an update from pointer to regular
is treated similarly to an insertion.

Translation of a log entry for deletion. Next we dis-
cuss translation of a deletion. Suppose that the old
RID has no entry in the mapping table, or the LRSN
in the log entry is less than or equal to the LRSN in
the mapping table entry. Then the copy of the log
entry and the pointer to the copy are deleted. Oth-
erwise, the log entry is processed as described next.

Suppose that the old RID appears in a CR or CE en-
try in the mapping table. Then the contents of
TARGET_RID are stored as the new RID in the prefix
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U'FROM R TO P (= DELETION) N o NO LOG ENTRY)
INGERTION DURING APPLICATION

TYPE OF LOGENTRY ' TYPEOF RECORD ©  'MAPHING TABLE STATES

D = DELETION O = OVERFLOW CE= COLUMNS OF DATA, ESTIMATED RID

I = INSERTION P = POINTER CR= COLUMNS OF DATA, ACTUAL RID

U = UPDATE R = REGULAR ,

for the copy of the log entry, and the entry is deleted
from the mapping table.

Suppose instead that the old RID appearsin a P en-
try in the mapping table. Then the copy of the log
entry and the pointer to the copy are deleted along
with the entry in the mapping table. The reason is
that the log contains another entry to delete the cor-
responding old overflow, and that other entry, not
this entry, is translated to delete the data.

States of a mapping table entry during translation. The
phase for translation (which we have been discuss-
ing) and the phase for application (which we discuss
shortly) can write (i.e., add, delete, or change) en-
tries in the mapping table. For each old RID, at any
time, the mapping table contains a CE entry, a CR
entry, a P entry, or no entry; these are the four pos-
sible states of the RID in the mapping table. The writ-
ing of an entry can change the state of the RID for
an entry.

To summarize the changing of states during trans-
lation (and, to a lesser extent, during application),
Figure 9 shows a state transition diagram for an old
RIDs entry (if any) in the mapping table. The rect-
angles represent the four possible states. The tran-
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sition from CE to CR (dotted line in Figure 9) rep-
resents the processing of an insertion log entry during
the phase for application, which we will discuss
shortly. The other transitions represent the process-
ing of log entries during the phase for translation,
which we discussed in the previous three sections.
Each transition is labeled with the type of log entry
(I, D, or U). For an insertion (I), we also show the
type of old record (R for regular, P for pointer, or
O for overflow). For an update (U), we also show
the type of old record before and after the update.
If the translation changes the type of log entry, we
show an arrow and the changed type in parentheses.
If the translation deletes the copy of the log entry
and the pointer to the copy, we also show an arrow
and “no log entry” in parentheses.

For example, consider the horizontal transition from
state CE to state P. This transition represents a log
entry that updates (U) the old record from a regular
record (R) to a pointer record (P). Before the up-
date, the old RID has a CE entry in the mapping ta-
ble. In this transition, the log entry is changed from
update to deletion (D), and the type of entry in the
mapping table is changed from CE to P.

Next we list the translations of log entries, in the or-
der in which we described them in the previous three
sections. For each translation, we identity the cor-
responding transition in the diagram: (1) Transla-
tion of an insertion of a regular or overflow record
includes adding a CE entry to the mapping table. The
corresponding transition in the diagram (labeled “I
of R or O”) changes the state of a RID from “no en-
try” to “CE.” (2) An insertion of a pointer corre-
sponds to the transition labeled “I of P.” (3) An up-
date from regular to regular or from overflow to
overflow corresponds to “U from R to R or from O
to O,” which the diagram shows twice (on the CR
and CE states). (4) An update from pointer to pointer
corresponds to “U from P to P.” (§) An update from
regular to pointer corresponds to “U from R to P,”
which the diagram shows twice (from CR and CE to
P). (6) An update from pointer to regular corre-
sponds to “U from P to R.” (7) A deletion when the
old RID appears in a CR or CE entry corresponds to
“D,” which the diagram shows from CR and CE to
no entry. (8) A deletion when the old RID appears
in a P entry corresponds to a third “D,” which the
diagram shows from P to no entry.

Phase 4: Sorting by new RID. After the phase for

translation, we sort the pointers to the copies of log
entries, using a major sort by new RID and a minor
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sort by LRSN. The major sort increases the locality
of reference (and thus the speed) during later ap-
plication. The minor sort preserves the order of op-
erations on a slot of a RID.

Phase 5: Application. After the sorting by new RID,
the set of pointers to log entries is scanned, and the
log entries are applied to the new copy of the area
being reorganized. For each new RID value in the
set of prefixes, the log is applied by performing three
activities:

In activity 1, all the pointers for the RID are found.
They will be contiguous.

In activity 2, if at least one D log entry for the RID
is found, certain log entries (and the pointers to
them) are deleted. Specifically all the entries before
the last D entry are deleted. Also the D entry itself
is deleted if the first log entry was I; i.e., the slot is
initially empty. The last D entry is kept if the first
log entry was D or U; i.e., the slot is initially occu-
pied. These deletions omit log entries for which the
mapping table no longer contains the appropriate
entries. These deletions also omit log entries whose
effects would be nullified by a later D entry. For ex-
ample, the sequence I U U D has no net effect, so
the sequence should not be applied. If these dele-
tions omit all the log entries for the RID, activity 3
is skipped.

In activity 3, if any log entries still exist, they are ap-
plied sequentially, as described next. For each af-
fected page in the new copy, the LRSN in the page
header is set to the current LRSN for the log.

The next three sections describe how to apply log
entries for insertion, update, and deletion.

Application of a log entry for insertion. We begin with
application of an insertion, for which the following
procedure is performed: (1) The record is inserted
in the new copy of the area, and its actual new RID
is obtained. (2) In the mapping table, the CE entry
whose SOURCE_RID matches the old RID of the log
entry is found. (3) In that entry in the mapping ta-
ble, the TYPE is changed from CE to CR, and the
TARGET_RID is changed from its estimated value to
the actual value. (4) In the prefixes for all the re-
maining log entries for the current RID, the RID is
changed from the estimated value to the actual value.

For each new RID value, the log entries for that RID
are applied before the log entries for any later new
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RID value are applied. Therefore, if the actual new
RID for an inserted record equals the estimated new
RID for any inserted record, the equality is not a prob-
lem.

Application of a log entry for update. Now we turn to
application of an update. The RID in the log entry
identifies a regular record or a pointer record. The
behavior of the log application (in the new copy) re-
sembles the behavior of DBMS processing of a user’s
update of a row, as in the five Update rows of Table
2. For example, if there is no overflow, but the new
data are too large for the page that contains the
record, the regular record is updated to become a
pointer, and an overflow record is inserted. In this
case, the RID of the record that changed from reg-
ular to pointer continues to occupy the TARGET_RID
column in the mapping table.

Application of a log entry for deletion. Finally, we dis-
cuss application of a deletion. The RID in the log en-
try identifies a regular record or a pointer record.
The behavior of the log application (in the new copy)
resembles the behavior of DBMS processing of a us-
er’s deletion of a row, as in the two Deletion rows
of Table 2. If there is no overflow, the regular record
is deleted. If there is overflow, the pointer record
and the overflow record are deleted.

Control of iterations (step 3). The phases that we
have just discussed take place in each iteration of
log processing. We mentioned earlier that at the end
of an iteration of step 3, we have criteria to choose
between performing this step again and going to the
next step. We next describe these criteria.

At the end of an iteration, the estimated time for
the next iteration is compared to a parameter of the
reorganization command. The parameter specifies
the maximum desired time (for an iteration) during
which users’ access to the area can be read-only. If
the estimated time is within the maximum, then step
4 is performed; step 5 is a final step of log process-
ing, during which users have read-only access.

If, instead, the estimated time exceeds the maximum,
the amount of the log that the next iteration would
process is checked as to whether it is sufficiently lower
than the amount that this iteration processed. Here,
“sufficiently lower” means lower than a certain frac-
tion of this amount of iteration. If the amount of the
next iteration is sufficiently lower, then reorganizer
reading of the log is “catching up” quickly enough
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to DBMS appending to the log. Therefore, the reor-
ganizer iterates (perform step 3 again).

If, instead, the amount of the next iteration is not
sufficiently lower, then the reading is not catching
up quickly enough. An implementation (or another
parameter of the reorganization command) can
choose an action to solve this problem. Possible ac-
tions include aborting this invocation of reorgani-
zation, continuing with a higher maximum desired
time for read-only access, continuing after quiesc-
ing writers, and continuing after increasing the pri-
ority of the reorganizer. A database administrator
might increase the priority of the reorganizer via
scheduling by the operating system or via allocation
of buffers in main storage.

Additional information

Next we present additional information on a few as-
pects of our method. This information is not essen-
tial to the main flow of description of the method
for reorganization.

Scheduling of on-line reorganization. The first topic
of additional information involves scheduling. We
have identified several criteria that a database ad-
ministrator can use to decide when to schedule on-
line reorganization.

Suppose that the rate of users’ writing in the data-
base, and thus the rate of the appending by the DBMS
to the log, varies over time. Then scheduling on-line
reorganization during a relatively slack period makes
it easier for the reading of the log by the reorganizer
to catch up to the appending to the log by the DBMS.

Suppose that the tolerance of delay varies from one
application to another. Then scheduling on-line re-
organization when no low-tolerance applications ex-
ecute avoids irritation of users of those applications.
For example, the tolerable delay for a batch program
that produces a report at night can exceed the tol-
erable delay for interactive query processing during
normal business hours.

The execution of a long-running user transaction can
increase the time required to quiesce transactions.
Therefore, scheduling on-line reorganization when
no long-running transactions are expected to exe-
cute can speed on-line reorganization.

Omission of the mapping table if a key is unique.
The second topic of additional information involves
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an optimization. If the table that we reorganize has
at least one unique key, an implementation might
use one of the unique keys (instead of RIDs) to match
log entries with records in the new copy of the area.
This identification obviates the mapping table.

To permit this identification, the DBMS must include
the value of that key in each log entry, even for op-
erations that do not involve that key (e.g., update of

During most of the
reorganization, users
can read and write
the oid copy.

a different column). Also, the DBMS must either (1)
assure that the unique key is always unique in the
old copy, even during the intermediate states of each
user transaction, or (2) compensate for any tempo-
rary violation of uniqueness during the intermedi-
ate states.

Temporary violation of unique indexes. The third
topic of additional information involves handling of
unique indexes. During reloading and log process-
ing, a temporary violation of unique indexes might
occur in the new copy of the area, as in the following
example: (1) An early page of the area contains a
record whose unique key value is “Jones.” (2) The
reorganizer unloads the record for Jones. (3) A user
deletes Jones, and a user then inserts Jones in a later
page of the area. (4) The reorganizer unloads the
second record for Jones. (5) The reorganizer reloads
both records for Jones into the new copy, thus tem-
porarily violating uniqueness. (6) The reorganizer
eventually applies the log (using the RIDs) and de-
letes the first record for Jones, thus removing the
violation of uniqueness.

In the old copy, the unique indexes enforce unique-
ness. The set of values in the new copy will even-
tually equal the set of values in the old copy. There-
fore, any such violation of uniqueness is temporary.

In IBM’s DB2, a nonunique index but not a unique
index contains a field (for each key value) for a count
of RIDs that have the key value. Therefore, we could
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not solve this problem by temporarily marking the
unique indexes in the new copy as nonunique.

Our solution involves these actions: (1) The data are
always inserted into the new copy. (2) We try to in-
sert entries into the unique indexes. If an insertion
would violate uniqueness, the RID is instead saved
in a special list. The list is probably short, since vi-
olation is probably rare. Application of the log can
cause modification of this list. (3) At the end of the
last step of processing of the log, index entries are
inserted for the saved RIDs.

Reorganization of just an index. The last topic in-
volves reorganization of just an index without reor-
ganizing the corresponding data. Reorganizing an
index on line closely resembles reorganizing data on
line, and here we sketch on-line reorganization of
an index: the old copy of the index is unloaded, a
new copy is constructed, the log entries that deal with
the index are processed, and access by users is
switched to the new copy of the index. This reorga-
nization changes no data and thus changes no data
record RIDs, so it needs no mapping table.

Summary

We have described a method for performing a cer-
tain type of reorganization on line (concurrently with
usage), so that a very large or highly available (24-
hour) database need not go off line for reorganiza-
tion. The reorganization includes restoration of clus-
tering and removal of overflows. The method
involves (1) copying data from the old copy of the
area being reorganized to a new copy in reorganized
form, (2) applying the log to the new copy, and (3)
switching users’ access to the new copy. During most
of the reorganization, users can read and write the
old copy.

This method for on-line reorganization uses the log,
which identifies a record by its RID, which can change
during reorganization. Therefore, the method in-
cludes maintenance of a table that maps between the
old and new RIDs. The method uses this table to
translate entries in the log before applying them to
the new copy of the data. The novelty is in the in-
teraction between processing of the log and main-
tenance of the mapping table.

In our discussion of this method and in our discus-
sion of alternatives (in an appendix), we have iden-
tified design issues in several topics in on-line reor-
ganization (in addition to the identification of
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records). These topics include performance, creation
of a backup copy, correction of nonclustering indexes
during reorganization of a partition, and many other
topics. These details are necessary for practical ap-
plication of our method.

We believe that more research in on-line reorgani-
zation would be useful. One topic for such research
is the control of iterations of log processing. Another
topic is reduction (or even elimination) of the pe-
riods of read-only access and no access.

Finally, as the amount of information and depen-
dence on computers both grow, the number of very
large or highly available databases will grow, and with
them the importance of on-line reorganization.
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Appendix A: Alternatives

In this section we discuss some alternatives to tech-
niques that were discussed earlier. We explain the
disadvantages of these alternatives.

Minor alternatives. We begin with minor alterna-
tives. They apply to a few specific parts of our method
for reorganization, and they still involve fuzzy reor-
ganization.

Scanning for unloading (step 2). The first set of mi-
nor alternatives deals with the scanning for unload-
ing data. We explained that to unload data, the ta-
ble space is scanned, and the records are then sorted
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by clustering key. Here we discuss two possible al-
ternative types of scanning.

Instead of scanning the table space, a possible al-
ternative is to scan the most recent backup copy of
the table space. An advantage of this alternative is
elimination of reorganizer access and locking of the
table space (which users access). Disadvantages in-
clude processing of additional log entries (all the en-
tries since the backup) and access of tapes (if the
backup copy resides on tapes).

Another alternative is to obviate the sorting activity
by scanning the clustering index (which is already
sorted by clustering key) and following the index RIDs
to data in the table space. However, here we explain
two reasons (involving correctness and performance)
for our decision to scan the table space.

We explain the reason that involves correctness by
an example. In scanning the clustering index, con-
sider this sequence of events:

1. Initially, the slot for RID 3 contains a record whose
clustering key value is “Jones.”

2. The reorganizer reaches the “J” portion of the
clustering index, and it copies the Jones record
from RID 3 in the old copy to RID 17 in the new.
Now in the new copy, RID 17 contains “Jones.”

3. A user updates the record, changing “Jones” to
“Smith”; thus a log entry indicates an update of
RID 3 from “Jones” to “Smith.” Alternatively,
users might delete Jones and insert Smith, and
the DBMS might use the former RID of Jones for
Smith.

4. The reorganizer reaches the “S” portion of the
clustering index, and it copies the Smith record
from RID 3 in the old copy to RID 90 in the new.
Now, in the new copy, RID 17 contains “Jones,”
and RID 90 contains “Smith.” The mapping table
might now have two entries for old RID 3.

5. Atthe end of loading, we apply the log to the new
copy. Specifically, we find that RID 3 changed from
“Jones” to “Smith,” and we change RID 17 in the
new copy from “Jones” to “Smith.” Now, in the
new copy, two RIDs (17 and 90) contain “Smith.”
This is incorrect; there should be only one record
for Smith. We would need some special handling
to prevent this error. We should delete (not up-
date) the record for Jones in the new copy.

The second reason involves performance. We prob-
ably would reorganize an area only if the clustering
in the area has degraded. Studies have found that
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for off-line reorganization of such an area, scanning
the table space and sorting are usually faster than
scanning the clustering index. The difference in speed
arises because scanning the index for such an area
can result in many jumps between file pages.

Checking of log entries during translation (steps 3 and
5). Next we discuss translation of log entries. Within
a step of log processing, the phase for translation
checks for existence of an entry in the mapping ta-
ble (for an update or deletion). For an insertion, the
phase checks for nonexistence of an entry. This phase
also compares the LRSN of the log entry to the LRSN
of the record in the mapping table (for an update
or deletion). The phase also checks the mapping ta-
ble for appropriateness of logged updates; e.g., up-
dating a record from overflow to overflow is inap-
propriate if the record is a pointer.

For an update, the LRSN comparison prevents un-
necessary (but harmless) application of an update
that occurred before the reorganizer scanned the
record. The LRSN comparison also effectively checks
for appropriateness, as we explained when we dis-
cussed log application as part of recovery. Thus the
explicit checking for appropriateness is redundant
with the LRSN comparison.

For a deletion, the LRSN comparison prevents un-
necessary (but harmless) application of a pair of a
deletion and an insertion that both occurred before
the scanning.

This checking involves some redundancy and pre-
vents some harmless applications. Several other
methods for checking are possible. All the methods
include checking for existence or nonexistence in the
mapping table.

In the method that we have described, we compare
the LRSNs, and we also check for appropriateness of
updates. The LRSN comparison can result in dele-
tion of the copy of the log entry and the pointer to
the copy. The appropriateness checking can result
in announcement of an error via abnormal termi-
nation of reorganization; any log entry with an ap-
propriate LRSN should not contain an inappropriate
update.

In a second method, we compare the LRSNs, and we
also check for appropriateness of updates, as in the
first method. Here, however, either type of check-
ing can result in deletion of the copy of the log entry
and the pointer to the copy. The disadvantage of this
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method is its failure to announce an error upon find-
ing an inappropriate update.

In athird method, we compare the LRSNs, but we do
not check for appropriateness of updates. This
method, like the second, fails to announce an error.

Finally, in a fourth method, we omit the LRSNs from
the mapping table, thus saving space and omitting
the LRSN comparison. The appropriateness check-
ing for updates can result in deletion of the copy of
the log entry and the pointer to the copy. Here, how-
ever, log processing might unnecessarily but harm-
lessly apply an update or a pair of a deletion and an
insertion. Again, this method fails to announce an
error.

Correction of nonclustering indexes. Now we turn to
correction of nonclustering indexes (for reorganiza-
tion of a partition), for which we have described a
method. In a possible alternative method for this cor-
rection, during the reloading in step 2, we construct
a copy of all (not just a subset) of each noncluster-
ing index. In steps 3 and 5, for each nonclustering
index, when we apply a log entry to data for this par-
tition, we make the corresponding change to the new
copy of the index, using a translated log entry. When
we find a log entry for data for another partition, we
make the corresponding change to the new copy of
the index, using an untranslated log entry. In step
7, we quiesce all access to the nonclustering indexes
(even for the other partitions), and we rename the
files that underlie the indexes. This renaming effec-
tively replaces the old copies of the indexes by the
new copies, thus correcting all the RIDs at once. In
step 9, we erase the old copies of nonclustering in-
dexes.

The advantage of this alternative is a great reduc-
tion in the time in step 7; we avoid an expensive op-
eration of changing individual RIDs in nonclustering
indexes. A disadvantage of the alternative is its added
quiescing of all access to all the nonclustering indexes
(even for the other partitions), although those in-
dexes are off-line only briefly. Another disadvantage
is prevention of concurrent reorganizations of two
or more partitions.

Creation of a backup copy. The final set of minor al-
ternatives deals with creation of a backup copy of
the new copy of the area being reorganized, as a ba-
sis for future recoverability. We mentioned that we
create the backup copy during step 2 (while users
have full access to the old copy of the area). We bring
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the backup copy up to date during the last iteration
of step 3 (while users still have full access) and dur-
ing step 5 (while users have read-only access). We
also mentioned an alternative technique that takes
place during step 8. Here we discuss more alterna-
tive techniques and their disadvantages.

One alternative, again during step 8, is to start read-
only access, create a backup copy while allowing
read-only access, and then start read/write access (af-
ter the backup copying completes). The entire pe-
riod of creation restricts users to read-only access.

Another alternative is to create a backup copy dur-
ing the reloading in step 2, append translated log en-
tries to the original log in steps 3 and 5, and start
read/write access immediately in step 8. Such a
backup copy represents a less recent time and thus
would require more log application in a recovery.
The appending of translated log entries would also
complicate the log.

Major alternatives. Now we turn from minor alter-
natives to major alternatives, which do not involve
fuzzy reorganization.

On-line reorganization in place. The first major alter-
native is reorganization in place (instead of reorga-
nization by copying). There are disadvantages of re-
organization by copying: (1) It can require more disk
space for the area being reorganized. (2) It involves
a transition between directing users’ accesses into
the old copy and directing them into the new copy.
(3) It benefits users (by giving them access to a re-
organized copy) only after the transition. Reorga-
nization in place might begin to benefit users imme-
diately (as we begin to reorganize the area that users
access).

However, if users release some locks before com-
mitment of a transaction, one disadvantage of re-
organization in place is complexity. Reorganization
in place is especially complex if reorganization in-
cludes changing the assignment of records to pages,
as in restoration of clustering. If, instead of releas-
ing some locks early, we use page-level locks and hold
them until commitment, we avoid the complexity, 4
but this latter style of locking can dramatically re-
duce concurrency and thus throughput.

Another disadvantage of reorganization in place is
that it might cause more contention with users and
thus degradation of users’ performance, since it
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writes (instead of just reading) the copy that users
access.

Off-line reorganization of fine-grained partitions. The
second major alternative to our on-line reorganiza-
tion is off-line reorganization of fine-grained parti-
tions. A partition of a table space can be a unit of
off-line reorganization or other utilities, during us-
age or off-line reorganization of other partitions, as
in DATABASE 2.2 Use of a fine granularity of parti-
tioning can reduce the time to reorganize a parti-
tion off line, and use of a fine enough granularity
might even reduce the time to approximate 24-hour
availability. However, a limitation of making the
granularity fine is an increase in the probability that
areas of growth and areas of shrinkage will be in dif-
ferent partitions. This increase in the probability in-
creases the likely variation (among the partitions)
in growth rates, thus increasing the total recom-
mended amount of free space to reserve in the da-
tabase. Also, off-line reorganization (like some meth-
ods for on-line reorganization) has a prerequisite
period of quiescing of users’ activities, and it requires
correction of nonclustering indexes. Finally, in some
DBMSs, making the granularity fine can slow the rout-
ing of users’ accesses into partitions and increase the
total space required for partition storage descriptors.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Tandem Computers In-
corporated.
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