72 ABAD PEIRO ET AL.

Designing a generic
payment service

The growing importance of electronic commerce
has resulted in the introduction of a variety of
different and incompatible payment systems. For
business application developers, this variety
implies the need to understand the details of
different systems, to adapt the code as soon as
new payment systems are introduced, and also
to provide a way of picking a suitable payment
instrument for every transaction. In our work, we
unify the different mechanisms in a common
framework with application programming
interfaces. Our framework provides services for
transparent negotiation and selection of payment
instruments as well. This allows applications to
be developed independent of specific payment
systems with the additional benefit of providing a
central point of control for payment information
and policies.

Ever since money was invented as an abstract way
of representing value, systems for making pay-
ments have been in place. In the course of time, new
and increasingly abstract representations of value
were introduced. A corresponding progression of
value transfer systems, starting from barter, through
bank notes, payment orders, checks, and later credit
cards, has finally culminated in “electronic” payment
systems. Mapping between these abstract payments
and the transfer of “real value” is still guaranteed
by banks through financial clearing systems. The fi-
nancial clearing systems are built on the closed,
strictly controlled networks of financial institutions
that are hence considered comparatively more se-
cure than open networks.

Recently, there has been a great deal of interest in
facilitating commercial transactions over open com-

0018-8670/98/$5.00 © 1998 1BM

by J. L. Abad Peiro
N. Asokan
M. Steiner
M. Waidner

puter networks, such as the Internet. Several elec-
tronic payment systems have been proposed and im-
plemented in the past few years.! Currently, many
different, incompatible Internet payment systems
compete with one another. Most shops accept, at
best, only a subset of them.

Consider a business application that implements
some business scenario such as on-line purchase of
goods. Ideally, the application should be able to make
use of any available means of payment. Currently,
the developer of such an application has to make sure
that the application knows how to use all the differ-
ent payment systems its users are likely to have avail-
able, and, in case multiple payment instruments are
available, provide a way to choose one of them. Our
primary motivation was to develop a framework that
frees the business application from addressing these
issues.

We describe the design and implementation of a ge-
neric payment service that provides such a frame-
work for enabling applications to use different pay-
ment systems in a transparent manner. The primary
component of this generic service is a coherent hi-
erarchy of application programming interfaces (APIs)
for the transfer of monetary value. The flow of in-
formation during transactions leads to a classifica-
tion of actual payment systems into a set of payment

©Copyright 1998 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

models. The API hierarchy reflects this separation
into different payment models. It consists of a base
API common to all payment models and extensions
specific to each model.

In addition to the unified interfaces, the generic ser-
vice has the following features and facilities:

* Mechanisms for automatic selection of the specific
payment instrument to be used in a transaction;
enables applications to be concerned just with the
questions of “how much to pay” and “to whom,”
but not with “using what payment instrument”

* Information, management, and control services to
cnable the development of applications that use
the generic payment service (e.g., inquiring what
payment systems are available)

* Tools and framework necessary for the incorpo-
ration of actual payment systems into the generic
payment service

This work is being carried out as part of the SEMPER
(Secure Electronic MarketPlace for EuRope) proj-
ect aimed at building a secure electronic market-
place.” However, the architecture of the generic
payment service is independent of the specific envi-
ronment of SEMPER: a stand-alone implementation
of the service is possible. In fact, the intermediate
results of our work were used as a basis for IBM’s In-
ternet payment framework called SuperSET and led
to 1BM’s CommercePoint* eTill product. Earlier re-
ports on this work appeared as public project re-
ports®* of SEMPER.

Models of electronic payment systems

There are several different electronic payment sys-
tems. All of them have the same basic purpose of
facilitating the transfer of value among different par-
ties. They differ in various aspects such as the point
at which an electronic transaction is linked to the
movement of real monetary value in the financial
clearing system, and the degree of security provided
by the system. In Asokan et al. a survey of existing
payment systems is presented. In this section, we
present an intuitive model of electronic payment sys-
tems as a first step in the design of the generic pay-
ment service.

Players. Electronic payments involve a payer and a
payee. The intent of the payment is to transfer mon-
etary value from the payer to the payee. Transfer is
accomplished by an electronic payment protocol. The
process also requires at least one financial institu-

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

Figure 1 Players of a payment system

ISSUER ACQUIRER

PAYER PAYEE

w————p TRANSFER OF “REAL. VALUE"

tion that links the data exchanged in the payment
protocol to transfers of monetary value. The finan-
cial institution may be a bank that deals with mon-
etary value represented in terms of “real value,” or
it may be some organization that issues and controls
other forms of representation (e.g., loyalty points).
Here we use the word bank to mean all different types
of financial institutions and the phrase “real value”
to cover all forms of value representations used by
financial institutions. Typically, banks participate in
payment protocols in two roles: as an issuer (inter-
acting with the payer) and as an acquirer (interact-
ing with the payee). Finally, an arbiter may be in-
volved in resolving disputes in the payment system.

The basic set of players involved in a payment sys-
tem is illustrated in Figure 1. In most systems, the
presence of the arbiter is not explicit. Even if the
necessary pieces of evidence are produced, dispute
handling is done outside the payment protocol and
often not even specified. Sometimes it is not even
possible to define dispute handling at the protocol
level since the resolution of disputes may be subject
to policy decisions of the users and financial insti-
tutions. (A full-fledged payment system built on top
of a given payment protocol should, however, pro-
vide appropriate dispute management services.)

Certain payment systems might involve more play-
ers, €.g., registration and certification authorities, or

ABAD PEIRO ET AL. 73

Figure 2 Payment models

ISSUER ACQUIRER

1. WITHDRAWAL 3. DEPOSIT
o

. @ 2. PAYMENT

PAYER PAYEE

A. DIRECT CASH-LIKE SYSTEM
ISSUER

ACQUIRER

SETTLEMENT
1. TRANSFER REQUEST

2. INDICATION

PAYER

C. INDIRECT PUSH SYSTEM

o o = = ~Jp TRANSFER OF REAL VALUE
el £ ECTRONIC PAYMENT MESSAGES
@ INITIATOR OF VALUE TRANSFER

other trusted third parties that provide anonymity>®
or enforce receipts for payments.”

Payment models. We classify payment systems ac-
cording to the flows of information between the play-
ers. Figure 2 lists, without claiming completeness,
the four most common payment models and their
information flows.

74 ABAD PEIRO ET AL.

ACQUIRER

SETTLEMENT. @

3. INDICATION

. @ 1. PAYMENT

PAYER

B, DIRECT CHECK-LIKE SYSTEM
ISBUER AGQUIRER

1. TRANSFER REQUEST
e

2. INDIGATION

PAYER

PAYEE

D. INDIRECT PULL SYSTEM

One criterion for distinction is whether the commu-
nication between the payer and the payee is direct
or indirect. In the latter case, the payment operation
is initiated by one player and involves only the ini-
tiator and the bank(s). The other player is notified
by its bank at the completion of the transaction. An
example of direct payment is paying by cash or check.
An example of indirect payment is paying by means

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

of a standing order or wire transfer. Most currently
proposed Internet payment systems implement di-
rect payments. Consequently, we will focus only on
those systems.

According to the relationship between the time the
payment initiator considers the payment as finished
and the time the value is actually taken from the
payer, one can distinguish among: (1) prepaid (or
cash-like) payment systems, (2) pay-now payment
systems, and (3) pay-later payment systems. The lat-
ter two are quite similar; in both cases, the user must
have some sort of an “account” with the bank, and
a payment is always done by sending some sort of
“form” from payer to payee (check, credit-card slip,
etc.). Thus, we consider these two cases to belong
to the same model, which we call the check-like mod-
el.! In the rest of this paper, we use the terms cash-
like and check-like to refer to the two models. Sim-
ilar informal models of payment systems have been
used by various others.”'"!? A large number of pro-
posed or existing payment systems can be grouped
into these two categories. Examples of cash-like pay-
ment systems include ecash**,"* NetCash, CAFE,
and Mondex**.1® Examples of check-like systems in-
clude credit-card protocols such as SET**,'" ikp,'®
CyberCash**,'* and electronic check schemes such
as the scheme proposed by FSTC**.% The process
of defining a generic payment service goes hand in
hand with the development of a formal definition of
a secure payment system and the properties it should
possess. Such a formal definition will be a useful
framework for verification and comparison of secur-
ity properties of payment systems. Additional work
in this direction has already begun."*

Design of the generic payment service

Scope and terminology. The main functionality of
any payment system is to provide value transfer ser-
vices consisting of the following:

* Moving electronic value from a payer to a payee.
The players may specify certain security attributes
for this value transfer.

* Moving electronic value back from payee to payer
in a payment reversal.

e Converting “real money” into electronic value
(“loading”) or vice versa (“deposit”); the former
is relevant only in the cash-like model.

In the simplest case, the transfer of value happens
between two end points. We call such an end point

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

a purse.™ A purse corresponds to a single instance
of a specific payment system and contains all the user
information related to that instance. For example,
a user who has a credit-card account, an instance of
a stored-value card, and an ecash account will have
three separate purses associated with each of the
above. Purse management services allow a user to set
up, configure, manage, and delete purses. Some
purse-related services might require authorization
(e.g., insert a smart card or enter a pass phrase, or
both, for each withdrawal), whereas others may not
have any access control.

Each value transfer in progress is embodied in a sep-
arate fransaction. A purse may be involved in sev-
eral concurrent transactions. Transaction manage-
ment services allow transactions to be queried for
their status, canceled, or recovered from a crash. Be-
fore beginning a transaction, each player must choose
a suitable purse. This selection may have two parts:
a local decision based on preferences and require-
ments and a mutual decision based on negotiations.
The services that enable this decision-making are col-
lectively known as purse selection services.

In addition to purses and transactions, we use a sep-
arate entity called the payment manager to manage
the overall operation of the generic payment service.
Each player will have one active payment manager
managing its purses and transactions. Information ser-
vices permit the retrieval of information on the state
of the payment manager or a specific purse, for ex-
ample, a list of previous transactions or statistics on
all payments received and made in a certain period
of time.

Finally, dispute management services allow the user
to make claims about (alleged) past transactions as
well as prove or disprove them to an arbiter. As we
mentioned earlier, none of the payment systems in-
troduced so far has integrated dispute-handling fea-
tures. Most limit themselves to the collection of ev-
idence alone. Thus, in the original design, we did not
address the dispute management issue. We discuss
the problem and outline an approach to a solution
in a later section. The detailed treatment of dispute
handling is a focus of our current work and will be
described in a forthcoming paper.

Figure 3 shows the entities in the generic payment
service and the services they provide. We treat trans-
actions as transient entities. Each transaction is as-
sociated with a longer-lived transaction record where
all relevant information about the transaction is

ABAD PEIRO ET AL. 5

Figure 3

Generic payment service in action (entities in a typical instance)

BUSINESS APPLICATIONS
(e.g., ON-LINE PURCHASE)

PAYMENT MANAGER

PM INFORMATION SERVICES
PURSE SELECTION SERVICES
PURSE MANAGEMENT SERVICES

PURSE

PURSE INFORMATION SERVICES
PURSE MANAGEMENT SERVICES
TRANSACTION SERVICES

SPECIAL APPLICATIONS
{&.g., PURSE MANAGER, TRANSACTION

BROWSER, BATCH-CAPTURE)

TRANSACTION

TRANSACTION SERVICES

TRANSACTION RECORD
TRANSACTION INFORMATION SERVIGES

L

PAYMENT SYSTEM

INSTANCE (e.g., SET)

mmis————) (ONE-TO-MANY
ONE-TO-ONE

maintained. Some of the services are distributed over
more than one entity (e.g., information services are
provided jointly by the payment manager, purses, and
transaction records).

Design overview. To define each of the above ser-
vices more concretely, we adopted the following ap-
proach. For a given class of services (¢.g., value trans-
fer services):

1. Identify the primitives for this service that are
common to most payment systems. Describe these
in the form of a base service interface. For exam-
ple, the ValueTransferServices* interface contains
primitives such as pay.

2. Then for each payment model, identify any ad-

76 ABAD PEIRO ET AL.

OTHER SERVICES

{ARCHIVAL, CRYPTOGRAPHIC,
ACCESS CONTROL, TRUSTED USER INTERFACE)

ditional primitives not already covered in the base
interface but common to all payment systems of
that model. Describe these in the form of a sub-
interface. For example, the subinterface Cash-
LikeValueTransferServices for the cash-like model
defines primitives such as withdraw() that are rel-
evant only in the cash-like model.

Some services, such as purse selection, are provided
by the generic payment service itself. Other services
are provided by the various payment systems. To in-
corporate a specific payment system into the generic
payment service, a system-specific adapter must be
built. The adapter uses the services provided by the
payment system to implement services defined in the
generic payment service interface. To introduce a

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

Figure 4 Generic payment service (classes and interfaces)

Purse info./Mgmt. Services

valueTransfer
Services

Cashtike
Purse Info./mMgmt.
services

CheckLike
valueTransfer
Services

CheckLike
Purse Info./Mgmt.
Servi

- -

[o e e

= IMPLEMENTS"

——p “EXTENDS"
O INSTANTIABLE CLASSES
[1 SERVICE DEFINITION

(ABSTRACT CLASS OR INTERFACE)

new model, a new (possibly empty) subinterface will
have to be defined for each service interface. In the
next subsection, we describe the services interfaces
in detail.

The high-level design described so far can be imple-
mented in a variety of ways. We opted for an object-
oriented approach. We describe the entities and ser-
vices required in the generic payment service in terms
of base classes and interfaces. The four main types
of entities identified in the previous section (purses,
transactions, transaction records, and the payment
manager) are described by four different classes.
Each service interface corresponds to an interface
or abstract class. Concrete implementations for the
services that are independent of payment systems
are provided by the payment manager or related
classes. Adapters for specific payment systems can
then provide implementations for the remaining in-
terface and abstract class methods. For example, the
Transaction class in an adapter is expected to imple-
ment the services defined in the ValueTransferServices
interface as well as the TransactionServices interface.

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

CashLike
valueTransfer

Transaction
Record info.
Services

ecash
ADAPTER

The ValueTransferServices interface has model-spe-
cific extensions. The adapter for a given payment sys-
tem should implement the branch of the ValueTrans-
ferServices interface corresponding to the model of
that payment system. Figure 4 illustrates the classes
that constitute an adapter and the services they im-
plement.

The users of the generic payment service (e.g., bus-
iness applications) can treat the various objects (such
as purses and transactions) as instantiations of the
generic base classes. In the following subsections, we
describe the services of the generic payment service
and the objects that provide them (shown in Figure
3) in more detail.

Services. The primitives of the value transfer services
interface are described briefly in Table 1. Primitives
for other services are similar. We do not show them
here for lack of space. Square parentheses ([|) in-
dicate optional parameters. We do not show excep-
tions and errors. Concrete Java** bindings of the ser-
vice descriptions can be found in Reference 25.

ABAD PEIRO ET AL. 77

Table 1 Generic payment service: Value transfer services

transaction remrd

 Primitive Clnput. ‘k Output o Qé#cription
Base services e : bE ‘
pay. ‘ payee; armount, optwns ref.* Send a payment
receivePayment | : . payee, amount, optmns, ref Recewe a paymen
reversePayment . transactwn recard Ask/get 4 re nd‘
reve‘rseBéceivedPayment :

Additions for cash-like mddcl

withdraw amount‘ “aptmns, ref.

deposit” amount opfwns, ref.

ey into purse

‘ Additmns for checkﬂhke model

~ pa‘yén aunt, options, ref.

receweﬁawpayment .

au’tho‘rize :

capture :
‘mulficapturé list of transactwn records

*ref. allows this payment to be linked to its context, €.g., an order and its description.

Purses. A purse is an abstraction of an instance of
a payment system that is available to the user. It is
necessary to have services for:

» Creating a purse (i.c., a constructor to instantiate
a purse object)

s Configuration and setup, which will be used by
purse management applications (e.g., to associate
a purse with a credit card and to register with a
certification authority)

¢ Initialization, which is invoked during startup to
activate the purse

* Creating transactions (see the next subsection)

* Information (e.g., answers to questions such as
“Does this purse provide nonrepudiatable receipts
for payments?”)

These services are part of the purse management,
purse information, and transaction services. We use
a Purse class hierarchy. The base Purse class defines
the aforementioned services and provides default im-
plementations for some of them. For each payment
model, we extend the base Purse class to a model-
specific subclass (e.g., CheckLikePurse class). Adapt-
er-writers shall extend a model-specific Purse class

78 ABAD PEIRO ET AL.

’

and override or extend default implementations as
necessary. For example, to adapt the SET payment
system (SET, or Secure Electronic Transactions**,"?
is a protocol for making credit-card transactions over
the Internet), we define a class SETPurse that extends
ChecklikePurse.

Additionally, the Purse class hierarchy also provides
services for information management correspond-
ing to these purses (e.g., answers to questions such

s “What is the user name associated with this
purse?” or “What amount is associated with this
purse [where applicable]?”).

A further classification of purses can be made based
on the subset of operations supported by the purse
as follows: a pay-only purse can be used to make but
not to receive payments, a receive-only®® purse can
be used to receive but not to make payments, and
a pay-and-receive purse can be used for making
and receiving payments.

Mondex and ecash are examples of payment systems

that do support pay-and-receive purses. Most other
payment systems do not.

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

Transactions and transaction records. As men-
tioned, the base ValueTransferServices interface de-
fines value transfer services that are common to all
payment models. Some example services defined in
this interface are: pay makes a payment from a purse
to a designated recipient; receivePayment is the coun-
terpart of pay, it receives an incoming payment. Mod-
el-specific subinterfaces may define additional ser-
vices. For example, the subinterface for the cash-like
model has a service to withdraw money from the
bank into the purse.

Every instance of a value transfer service is abstracted
by a transaction. The PaymentTransaction class im-
plements the value transfer services described in one
branch of the ValueTransferServices interface hier-
archy. Information associated with a transaction
(both transient information such as state that is rel-
evant only while the transaction is active and “per-
manent” information such as receipts or other ev-
idence that is relevant long after the transaction is
completed) is kept in a related PaymentTransaction-
Record object. This information can be used in crash
recovery and dispute management as well as for in-
formational purposes.

The base PaymentTransaction defines general trans-
action services such as trying to abort an ongoing
transaction or retrieving its current status. Each sub-
class of the base class implements a leaf interface of
the ValueTransferServices interface hierarchy (e.g.,
SETTransaction extends PaymentTransaction and im-
plements the CheckLikeValueTransferServices inter-
face). Each leaf Purse class provides a startTransac-
tion() method that creates a new transaction of the
appropriate type (e.g., in the SETPurse class, the start-
Transaction{) method will instantiate a SETTransac-
tion object).

Payment manager. The payment manager provides
services for purse selection as well as to retrieve man-
agement information. It keeps track of the currently
available purses, known payment module adapters,
etc. To maintain and manage this information, the
payment manager provides various services such as
creation and registration of a purse, deletion of a
purse, and registration of a new adapter. Additional
services are provided to make this information avail-
able to other objects and applications in a variety of
useful ways. The manager is also responsible for ini-
tializing all the relevant components on startup. The
current design does not yet address fault-tolerance
issues. The manager will be the entity providing ser-

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

vices for shut-down and fault-tolerance mechanisms
such as crash recovery.

Selection of a purse to be used in a transaction is
based on several factors: requirements for the trans-
action (e.g., security requirements), static user pref-
erences, negotiation with a peer payment manager,
and manual selection by a user. Except negotiation,
the remaining factors are all local. The payment man-
ager provides various services to facilitate this local
selection.

Negotiation with the peer for selection of the pay-
ment instrument can be done in several ways, But
all negotiation protocols consist of simple request-
response exchanges. Currently, we restrict negoti-
ation for tuples containing two parameters:

s Payment system name—We define “payment sys-
tem name” as follows: two purses that report the
same payment system name can potentially engage
in a payment transaction between themselves. Typ-
ically, the payment system name corresponds to
a single <protocol, brandname> pair; e.g.,
SET:MasterCard and SET:Visa will be two differ-
ent payment systems. It is up to the adapter to de-
termine the payment system name associated with
a purse as long as it satisfies the definition above.

s Amount (value and currency)

We have designed and implemented a simple nego-
tiation protocol that can support various negotiation
policies. Two example methods, selectPayingPurse
and selectReceivingPurse implementing a default pol-
icy, are provided: the payer is the initiator of nego-
tiation, the payee is allowed to adjust the amounts
in its reply (e.g., the merchant may add a surcharge
for using a credit card or give a discount for using
ecash). It is also possible to enforce other negoti-
ation policies.

Adapting a payment system

In order to incorporate a new payment system into
the generic payment service, a suitable adapter has
to be designed (Figure 4 indicates what constitutes
an adapter). The following steps are required in this
process:

1. Identify the model to which the payment system
belongs (e.g., SET belongs to the check-like modet).
2. Implement a subclass of the Purse class corre-
sponding to the payment model identified (e.g.,
SETPurse extends CheckLikePurse). This step im-

ABAD PEIRO ET AL.

79

Figure 5 Interactions during a payment (dotted lines indicate optional flows)

B

- P MESSAGE SENT TO PEER
procedure name X
(parameters) ¥ LOCAL PROCEDURE INVOCATION
« return value LOCAL PROCEDURE RETURN
USER APPLICATION GENERIC PAYMENT SERVICE PAYMENT SYSTEM (2.g., SET)
i 1
: !
' t
CLICK ON PAY BUTTON ‘ !
" g . 1
T i . 1
{payee,amournt,options) selectPayingPurse R
L. gl
G {payee amnount,optionsref)
! ; ! NEGOTIATE WITH PEER
J !) - o 0 o 7 o o o ok ot
i PROMPT FOR PURSE SELECTION |
ittt ot b ittt n
e CUCKONPURSEOFCHOICE -~ . -»
T ' ‘ ‘) CONFIRM WITH PEER .
L {)(=Gh purse) E‘----—-—_—-----"_'?—--“w---“‘-’-’
, - g
] p.startTransaction _E
»
! o L INITIATE A TRANSACTION)
; - 1r (=transaction) 4 CONFIRMATION
1 Al 1
tr.pay R
g Lol
(payes,amount,options,ref) | STARTAPAYMENT |
, i _ SET PAYMENT PROTOCOL
a2 »
STATUS i STATUS R
‘€ i
X STATUS b
y Fe
v v v -

plies providing implementations for all abstract
services defined in the ancestor Purse classes (e.g.,
Purse and CheckLikePurse) and overriding default
implementations therein, where necessary. In par-
ticular, the new class must provide a proper im-
plementation of the setup() method; this method
should allow the user to carry out all configura-
tions necessary for the payment system.

3. Implement a subclass of the PaymentTransaction
class that implements the value transfer services
defined in the leaf of the ValueTransferServices in-
terface hierarchy corresponding to the payment
model identified (e.g., SETTransaction implements
CheckLikeValueTransferServices and inherits from
PaymentTransaction).

In addition, if any special action needs to be taken
during the installation of the adapter, a suitable in-
stallation hook must be provided. A standard instal-
lation application is available as part of SEMPER. It
performs two actions: installing the contents of the

80 ABAD PEIRO ET AL.

adapter module in the correct locations, and regis-
tering the name of the new purse class with the pay-
ment manager. If there are any adapter-specific in-
stallation procedures, they must be implemented in
the form of an installation hook defined in the
ModulelnstallHook interface.

Using the generic payment service

Once a user has installed one or more payment in-
struments along with the adapters on his or her sys-
tem, two kinds of usage are possible: making pay-
ment transactions via business applications or using
special applications for various purposes.

Payment transactions. The primary use of the ge-
neric payment service is via business applications
making payment transactions.

A user will initiate payment transactions using some
sort of a high-level business application (e.g., a Web

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

browser or a CD-catalog reader). Figure 5 shows the
object interactions that take place at the payer end
during execution of a typical payment transaction.
The important things to note are:

* The user need not specify the payment instrument
to use if he or she does not want to; the payment
service can be configured to prompt him or her
for selection of a payment instrument if it cannot
do so by itself.

¢ The application is not aware of the specific pay-
ment instrument being used; it deals with generic
Purse and PaymentTransaction objects. It need not
even know the model to which the chosen purse
belongs.

The sequence of events at the payee side is similar,
with minor differences. The payee application is
probably an unattended merchant server. Thus, there
will be no user interaction. There may be interac-
tions with third parties during the transaction. For
example, in a check-like system, the payee’s adapter
may contact the acquirer for authorization. One can
also imagine a payment system where the payer’s
adapter has to obtain some sort of a credential from
the issuer before each payment. All such commu-
nication with third parties is carried out within the
adapter—the calling applications are typically un-
aware of them.

This example is also intended to give an idea about
how the generic payment service enables business
application development. The primary services used
by the business applications are purse selection and
value transfer between payer and payee. Both of
these are common to all payment systems. Thus, a
large class of applications using the generic payment
service need not be aware of system- or model-spe-
cific details. Certain special applications (see next
subsection) will make use of the model-specific com-
ponents of the generic payment service.

Special applications. The second category of usage
is via special applications. The most important spe-
cial application is a purse management tool.

Purse management. Before being able to use an in-
stalled payment instrument, a purse corresponding
to it must be created and configured. A special “purse
management application” is provided for this pur-
pose. Changes to purses are written out to stable stor-
age. Purse management is an infrequent activity.
(Typically, once a purse is created and configured,
it can be used in several subsequent payment trans-

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

actions.) Purse management makes use of a setup()
method provided by the Purse class in an adapter.
This method must implement all the necessary con-
figuration for that payment system. For example, the
setup() method of the SETPurse allows the user to
enter the credit-card information (cardholder name,
brand, number, expiry date) that is then stored as
part of the purse state.

Other applications. There can be a number of other
special applications. Some of these are model-spe-
cific. A batch capture application can be used by the
merchant to capture a set of received payments for
check-like purses; typically this will be used as part
of end-of-day processing. A withdrawal application
can be used to load money into cash-like purses. The
SEMPER prototype implementation comes with two
model-independent special applications: a transac-
tion browser allows the user to browse through ac-
cumulated transaction records; a module installer al-
lows a user to install a new payment instrument along
with its adapter.

Extending the design

During the first half of the SEMPER project (fall 1995
to the end of 1996), we designed the generic pay-
ment service as described so far and built a proto-
type. Since then, we have been focusing on extend-
ing the design by adding functionality, and by revising
some aspects by using better techniques. In this sec-
tion, we describe these extensions.

Dispute management. Support for handling disputes
is a crucial aspect of any system providing account-
ability. Consider some typical claims that users of a
generic service might want to make or deny:

* ABC paid $100 to XYZ on 12/29/97, 10:32 GMT

* ABC paid $100 to XYz with external reference “Or-
der #432”

¢ ABC did not pay $100 to XYZ

* ABC deposited $100 at bank B on 12/29/1997

e ABC deposited $100 at bank B on 12/29/1997, be-
fore noon GMT

A transaction may result in several items of evidence.
Only a subset of these items may be relevant to a
particular dispute. Hence, it is useful to have a way
of indicating the nature of the dispute to the under-
lying payment system so that it can produce the min-
imal amount of evidence relevant to the dispute.

ABAD PEIRO ET AL. 81

The problem of dealing with disputes in the generic
payment service has three aspects: (1) how to express
dispute claims, (2) how to map evidence collected
during a transaction to subsequent dispute claims,
and (3) since a dispute involves the interaction of
more than one player, how to define a multiparty
dispute protocol.

In general, disputes can be expressed in terms of
statements about a (possibly alleged) transaction. We
use the following structure for dispute statements:
[not] <TRANSACTION> [<role> = <player>] *

[<attr><opP><value>] *

The examples above would then correspond to state-
ments like:

* PAYMENT payer = ABC, payee = XYZ,
amount = $100, time = “12/29/97,10:32

GMT”

* PAYMENT payer = ABC, payee = XYZ,
amount = $100, reference = “Order
#4327

* not PAYMENT payer = ABC, payee = XYZ,
amount = $100
* DEPOSIT user = ABC, bank = B,
amount = $100, time = “12/29/97”
* DEPOSIT user = ABC, bank = B,
amount = $100, time < “12/29/97”

The service provided by the generic payment service,
and hence the values of the attribute service are well-
defined. Each method in the ValueTransferServices
interface hierarchy has a well-defined, finite, set of
services that it is associated with.

The dispute management interface provides services
to construct dispute claims and prove them to a ver-
ifier. In the simplest case, it is enough to extract the
right pieces of evidence (such as receipts) and present
them to the verifier. In other cases, it may be nec-
essary to interact with the verifier using a complex
proot protocol. The Purse subclasses in the adapt-
ers will be required to implement the dispute man-
agement interface.

Typically, disputes are about payment transactions.
These disputes will be started by the applications that
initiated the payment in the first place (e.g., a Web
browser on the payer’s side and a merchant server
on the payee’s side). Disputes between a user and
the bank (e.g., wrong entry in a bank statement) will

82 ABAD PEIRO ET AL.

require special bank-specific applications to drive the
dispute.

Currently, we are expanding on these ideas in build-
ing a framework for handling disputes in the generic
payment service.

Payment security policies. A number of consider-
ations apply to payment security policies. We de-
scribe them here.

Limits on value transfer. A user of the generic pay-
ment service may wish to associate several types of
limits to the purses available. Some examples of the
types of limits are:

* Each payment from a specified purse (say P1)
should not exceed 100 CHF (Swiss francs).

* Total payments from all purses taken together
should not exceed 1000 CHF in any 24-hour period.

* Total payments from all purses should not exceed
10000 CHF in a given calendar month.

* Payments below 10 CHF do not need explicit user
authorization.

* No more than four payments without explicit user
authorization can be made in any 24-hour period.

* If a payment will bring the balance in a specified
purse (say P2) below 200 CHF, it must be explicitly
authorized by the user.

Clearly, the limits may involve complex computations
and may require several different pieces of informa-
tion during the computation.

Access control. Access control is a critical function-
ality of the generic payment service. We note the fol-
lowing in order to motivate our design:

Access control is required in the following cases:

* Access to secret information required to use the
underlying payment system (e.g., personal iden-
tification numbers [PINs], pass phrases, credit-card
numbers, etc.). There may be several different
pieces of such information.

* Access to purse operations.

Even for the same purse operation, it may be nec-
essary to control access differently, depending on the
parameters. For example, a user may decide to have
no access control for payments of small amounts or
have a different pass phrase to authorize high-value
payments. The underlying payment instrument may
or may not support such granularity.

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

Figure 6 Incorporating policy in a purse

| poucy oBlECT

Figure 7 Class hierarchy for policy objects

’ "t AGGREGATE
L. poLICY

OR POLICY

A common solution: Policy framework. We have taken
a common approach to address both limits and ac-
cess control requirements by using the notion of pol-
icy objects. A purse can associate one policy object
with each service it provides. Whenever a service is
requested from a purse, the corresponding policy ob-
ject will be queried to determine authorization for
the service (Figure 6). All policy objects provide ways
to check for current availability of a service (the
isAllowed() method), and to indicate that an autho-
rized service is being provided (the update() meth-
od), so the policy object can change any relevant in-

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

Askuser

ternal state parameters (note that policies as in the
second last example above are stateful).

These methods can be used by purse services (such
as pay() and receivePayment() methods) to manage
authorization. A reference to the transaction record
is provided as an argument to the isAllowed() and
update() methods. Through the transaction record,
it is possible to access the purse(s) involved in an
operation. Thus, different implementations of these
methods can access all the information they need in
order to make the policy decisions.

ABAD PEIRO ET AL. 83

Figure 8 An example policy

The policy class hierarchy is shown in Figure 7. A
policy may be simple or aggregate. Simple policy ob-
jects are self-contained and make their decisions in-
dependently of other policy objects. There may be
several kinds of simple policy objects. Some exam-
ples are:

* The AskUser policy class displays relevant infor-
mation about the transaction to the user and asks
for his or her approval.

* The MinBalance policy class makes sure that the
minimum balance is above a specified value.

* The TimebasedLimit policy class provides a way
to set simple time-based limits.

Aggregate policy objects have a list of constituent
policy objects. The policy decision of the aggregate
object is a function of the policy decisions of its con-
stituent objects. Some examples are: An OR policy
allows the service if any of its constituent policies do
s0; an AND policy allows the service if all of its con-
stituent policies do so.

With these policy objects we can express complex
policies. For example, the policy “if the amount is
less than CHF 10 and the balance afterwards is going
to be above CHF 200, allow the payment, otherwise
ask the user” will correspond to a policy object net-
work shown in Figure 8. (When a policy object has
other constituent policy objects in it, a top-to-bot-
tom evaluation order for the constituent objects is
assumed.)

Additional policy classes may be defined and incor-
porated into this hierarchy. Users of policies (e.g.,
the pay() and receivePayment() methods) will have

84 ABAD PEIRO ET AL.

AskUser

Time-Based Limit
CHF 10, Each trans,

MinBalance
CHF 200

a single access point. Notice that policy objects are
intended as a mechanism to express policies. The en-
forcement of these policies is up to the implemen-
tations of the services: for example, as shown in Fig-
ure 6, the pay method in the transaction class of an
adapter must query the payment policy object in its
purse before proceeding with the payment.

Clearly, several issues need to be resolved. We require
a language to express policies and efficient techniques
for evaluating and updating policies. A similar ap-
proach is given by the PolicyMaker framework.”
However, policies in this model cannot be defined
in terms of pure contextual information such as the
total amount spent from a purse.

The description here is intended only to give a fla-
vor of the issues involved. We are currently working
on addressing these issues in depth.

Token-based interface definition. The original de-
sign assumed a synchronous model since the first ver-
sion of the SEMPER architecture did the same.* How-
ever, we have defined a “token-based” interface that
can support an asynchronous model in a straightfor-
ward manner. Our token-based interface is inspired
by the GSS-API? approach. It has two types of meth-
ods: (1) one “starter” method for each different type
of protocol; the starter methods return a token con-
taining the first message of the protocol, and (2) a
common “processor” method; this takes a token as
input, and depending on the internal state of the pro-
tocol run, may return another token as output.

In the token-based model, the payment service does
not engage in any direct communication with the

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

#

Figure 9 Interactions during a payment in the token-based model (dotted lines indicate optional flows)

> MESSAGE SENT TOFEER

. - procedure fiame

peer. Instead, the caller is expected to take care of
the communication. The payment service is still re-
sponsible for maintaining the state of a protocol run.
The initiating caller invokes an appropriate starter
method in the payment service API to start a pro-
tocol. Typically, these starter methods will return a
“token” as output. The initiating caller application
is expected to communicate this token to its peer en-
tity, the responding caller application. The latter in
turn will invoke the processor method on its instance

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

] . "
= parameters) P 'LOCAL PROCEDURE INVOCATION
' g teturn value LOCAL PROCEDURE RETURN
USER APPLICATION GENERIC PAYMENT SERVICE ' PAYMENT SYSTEM (e.9., SET)
‘ ! i
CLICKONPAY BUTTON : i
(payee,amount,options) selectPayiri g?ufs o 3
‘ ’ (payes,amount,options,ref) ™ }
v token: ;'
RN - ;
! SEND TOKEN TO PEEFR - . - | ! N
REPEAT UNTIL o : »
! pgg%cm : RECEIVE TOKEN FROM PEER " | |
! TERMINATION ! « — !
| TOMEN i | processToken o |
! 15 OBTAINED : {token) o ?
! : < token . . |
: getChosenPurse’ o i
| SNEE gl i
E p {=chosen purse) : i
i pstantTransaction . i INMIATEATRANSACTION |
1 s »
P 1r (=transaction) » CONF*R%T!ON
tr.startPay % B i
(payee,amount,options,ref) INITIATE A PAYMENT !
! ken P ‘
i Soen. s o ®
B : SEND TOKEN.TO PEER ! N
1" REPEAT UNTIL { _ RECEIVE TOKEN FROMPEER | i
PROTOCOL { < : A ;
TERMINATION ! processToken | ‘
i TOKEN ! {icken) © ;
! 1S OBTAINED ! g :
! t token ; i
| ! ¢ s * '.
! A getstatus () !
3 status
<
\d

of the payment service and give the received token
as input. From this point on, whenever a caller en-
tity receives a token as output from the processor
method, it will send the token to its peer; whenever
a caller entity receives a token from its peer, it will
invoke the processor method on its payment service,
giving the received token as input.

We define a token-based version of value transfer
services in an interface hierarchy called TValueTrans-

ABAD PEIRO ET AL. 85

ferServices parallel to the ValueTransferServices in-
terface hierarchy. For each method (e.g., pay()) in
the latter, we define a corresponding starter method
(e.g., startPay()) in the former. In addition, a com-
mon processor method processToken() is defined in
the TValueTransferServices interface. Figure 9 illus-
trates object interactions in the same scenario de-
picted in Figure 5, but with a token-based interface
for negotiation and value transfer.

Since no peer-to-peer communication is taking place
inside the generic payment service, the caller does
not have to block on service invocations. The de-
signer of the calling application has the freedom to
use an asynchronous implementation architecture.
More importantly, the token-based approach can al-
low an application to supplement the level of secur-
ity provided by a payment system by transporting the
tokens via a channel with particular security at-
tributes. For example, even though payment proto-
col messages in SET are encrypted, an eavesdropper
may be able to determine and link the identity of
the payer and payee by watching the network ad-
dresses in the payment messages. With a token-based
interface, if the applications were able to establish
an untraceable communication channel between
them, they could extend the untraceability to SET pay-
ments as well.

Currently, the interface TValueTransferServices is op-
tionally implemented by subclasses of the Pay-
mentTransaction class. Since the token-based version
is more general than the synchronous version, we
plan to make the former the default value transfer
services interface and deprecate the latter.

We are in the process of defining a token-based in-
terface for the negotiation of payment system as well.
The designers of the E-CO System have used a sim-
ilar token-based API for the negotiation of payment
system.?

Related work

U-PAIY is being developed as part of the Stanford
Digital Libraries project.* Their focus is on provid-
ing a unified interface to payment services. They do
not address negotiation for parameters before a pay-
ment transaction begins; nor do they explicitly ad-
dress issues like refunds. They also appear to assume
a distributed object infrastructure such as CORBA
(Common Object Request Broker Architecture) and
do not have a very clear security and trust model.

86 ABAD PEIRO ET AL

The Joint Electronic Payments Initiative (JEPI) fo-
cuses only on defining the protocol for the negoti-
ation of various payment-related parameters such
as the payment system. The scope of our work
roughly corresponds to the scope of these two
projects taken together.

Sun recently announced their Java Electronic Com-
merce Framework (JECF).* The framework is still
in the process of being defined. Their emphasis ap-
pears to be on the payer side: payers will be able to
download different “payment cassettes” (roughly cor-
responds to a payment instrument and its adapter
in our terminology) and integrate them into their
JECF installation. They also propose a sophisticated
general-access-control scheme that can be used in
our work.

The E-cO System project had roughly the same
scope® as our work, although their main focus so
far seemed to be on establishing APIs and mecha-
nisms for payment negotiation.* Additional infor-
mation was not public, and the project appears to
have been discontinued.

Status and conclusions

We have presented the design of a generic payment
service. Complete Java bindings of our payment ser-
vice interfaces can be found in the home page of
SEMPER deliverable D03.% A prototype of the ge-
neric payment service with all the basic functional-
ity has been implemented as part of the SEMPER proj-
ect and tested using a “dummy” payment. Our work
served as a basis for the design of IBM’s Internet pay-
ment framework, SuperSET. Adapters for a variety
of other payment systems are under development
by various partners in the SEMPER consortium. For
example, DigiCash is developing an adapter for
ecash, Royal PTT Nederland Nv (KPN) integrates
Chipper,*** and SET is adapted by IBM.

Acknowledgments

This work was partially supported by the Swiss Fed-
eral Department for Education and Science in the
context of the ACTS Project AC026, SEMPER; how-
ever, it represents the view of the authors. SEMPER
is part of the Advanced Communication Technol-
ogies and Services (ACTS) research program estab-
lished by the European Commission Directorate
General XIII. For more information on SEMPER, see
http://’www.semper.org/.

IBM SYSTEMS JOURNAL, VOL. 37, NO 1, 1998

Interesting discussions with several people helped
us develop and refine the ideas presented in this pa-
per; in particular we thank Ali Bahreman, Mark
Linehan, Birgit Pfitzmann, Tom Scanlan, John Schey,
Berry Schoenmakers, Julia Sime, Els van Herre-
weghen, and John West. We are grateful to Jay Black
and Matthias Schunter and the anonymous referees
for their valuable comments on previous versions of
this paper.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of DigiCash bv, Mondex
International Limited, Visa International Service Association,
MasterCard International, Inc., CyberCash, Inc., Financial Ser-
vices Technology Consortium, Inc., Sun Microsystems, Inc., Royal
PTT Nederland NV, or the Dutch Postbank.

Cited references and notes

1. N. Asokan, P. Janson, M. Steiner, and M. Waidner, “State
of the Art in Electronic Payment Systems,” Computer 30,
No. 9, 28-35 (September 1997).

2. M. Waidner, “Development of a Secure Electronic Market-
place for Europe,” Proceedings of the Fourth European Sym-
posium on Research in Computer Security (ESORICS), Rome,
Italy, E. Bertino, H. Kurth, G. Martella, and E. Montolivo,
Editors, number 1146 in Lecture Notes in Computer Science,
Springer-Verlag, Berlin (September 1996); also published in
EDI Forum 9, No. 2, 98-106 (1996).

3. J.L. Abad Peiro, N. Asokan, and M. Waidner, Payment Man-
ager—Overview, 212ZR054, SEMPER Consortium (March
1996).

4. J. L. Abad Peiro, N. Asokan, M. Steiner, and M. Waidner,
Designing a Generic Payment Service, 212ZR055, SEMPER
Consortium (September 1996).

5. S.H. Low, N. F. Maxemchuk, and S. Paul, Anonymous Credit
Cards, Technical Report, AT&T Bell Laboratories, Murray
Hill, NJ (1993); submitted to 1993 IEEE Symposium on Re-
search in Security and Privacy, Oakland, CA.

6. D. L. Chaum, “Untraceable Electronic Mail, Return Ad-
dresses, and Digital Pseudonyms,” Communications of the
ACM 24, No. 2, 84-88 (February 1981).

7. H. Birk and A. Pfitzmann, “Payment Systems Enabling Se-
curity and Unobservability,” Computers and Security 8,
No. 5, 399-416 (August 1989).

8. B.Cox,J.D. Tygar, and M. Sirbu, “NetBill Security and Trans-
action Protocol,” Proceedings of the First USENIX Electronic
Commerce Workshop, USENIX, New York (July 1995), pp.
77-88.

9. B.Pfitzmann, M. Waidner, and A. Pfitzmann, “Recthssicher-
heit trotz Anonymitat in offenen digitalen Systamen,” Com-
puter und Recht 3, No. 10, 712-717 (October 1987), No. 11,
796803 (November 1987), No. 12, 898-904 (December
1987); also published in Datenschutz und Datensicherung DuD
14, No. 5, 243-253 (1990) and No. 6, 305-315 (1990).

10. In our prototype implementation, we used the phrase “ac-
count-based.” It was somewhat confusing because certain
practical implementations of cash-like payment systems, such
as DigiCash’s ecash also have a notion of an “account” in the
bank. Thus, in the interest of avoiding confusion, we use the
phrase “check-like” here.

11. C. Neuman and G. Medvinsky, “Requirements for Network

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

12.

13.
. G. Medvinsky and B. C. Neuman, “NetCash: A Design for

15.

16.
. MasterCard and Visa, SET Secure Electronic Transactions Pro-

18.

19.

20.

21.

22.

23.

24.

25.

26.
. M. Blaze, J. Feigenbaum, and J. Lacy, “Decentralized Trust

28.

29.

Payment: The NetCheque Perspective,” Proceedings of IEEE
Compcon 95, San Francisco (March 1995).

F. F. Masaguer, “Security in Electronic Trading Over Open
Networks: A Detailed Analysis and Comparison,” 14th World-
wide Congress on Computer and Communications Security Pro-
tection, C.N.L'T Paris-La Defense, France (June 1996),
pp. 39-66.

See http://www.digicash.com/ for more information.

Practical Electronic Currency on the Internet,” Ist ACM Con-
ference on Computer and Communications Security, V. Ashby,
Editor, ACM Press, Fairfax, VA (November 1993), pp. 102-
106.

J.-P. Boly, A. Bosselaers, R. Cramer, R. Michelsen, S. Mjgl-
snes, F. Muller, T. Pedersen, B. Pfitzmann, P. de Rooij,
B. Schoenmakers, M. Schunter, L. Vallée, and M. Waidner,
“The ESPRIT Project CAFE—High Security Digital Payment
Systems,” Proceedings of the Third European Symposium on
Research in Computer Security (ESORICS), Brighton, UK,
D. Gollmann, Editor, number 875 in Lecture Notes in Com-
puter Science, Springer-Verlag, Berlin (November 1994).
See http://www.mondex.com/ for more information.

tocol, Version 1.0 edition (May 1997); Book One: Business
Specifications, Book Two: Technical Specification, Book
Three: Formal Protocol Definition; available from http:
//www.mastercard.com/set/.

M. Bellare, J. Garay, R. Hauser, A. Herzberg, H. Krawczyk,
M. Steiner, G. Tsudik, and M. Waidner, “iKP—A Family of
Secure Electronic Payment Protocols,” First USENIX Work-
shop on Electronic Commerce, New York (July 1995), pp. 89—
106.

D. E. Eastlake, B. Boesch, S. Crocker, and M. Yesil, Cyber-
Cash Credit Card Protocol Version 0.8, Internet Draft (July
1995).

Electronic Check Proposal, Technical Report, Financial Ser-
vices Technology Consortium (1995).

B. Pfitzmann and M. Waidner, Properties of Payment Sys-
tems—General Definition Sketch and Classification, Research
Report RZ 2823 (#90126), IBM Research (May 1996).
B. Pfitzmann and M. Waidner, “Integrity Properties of Pay-
ment Systems,” private communication of work in progress
(December 1996); contact the authors for the current status
of the work.

Other names to denote the same concept have been used in
the literature. The word pocket appears to be gaining favor.
In the prototype implementation, this hierarchy was named
PurseServices. Here we opt for a more intuitive name.
SEMPER Consortium, Basic Services: Architecture and Design,
Deliverable D03 of ACTS Project AC026, Public Specification
(September 24, 1996); available from http://www.semper.org/
info/index.html#deliverables.

Sometimes the word #ill is used to denote a receive-only purse.

Management,” Proceedings of the IEEE Symposium on Re-
search in Security and Privacy, Oakland, CA, IEEE Computer
Society, Technical Committee on Security and Privacy, IEEE
Computer Society Press, Los Alamitos, CA (May 1996).
J. Linn, Generic Security Service Application Program Inter-
face, Version 2, Internet Network Working Group, Standards
Track, Request for Comments: RFC 2078 (January 1997);
obsoletes RFC 1508.

A. Bahreman, “Generic Electronic Payment Services: Frame-
work and Functional Specification,” Second USENIX Work-

ABAD PEIRO ET AL.

87

shop on Electronic Commerce, USENIX, Oakland, CA (No-
vember 1996), pp. 87-103.

30. S.P.Ketchpel, H. Garcia-Molina, A. Paepcke, S. Hassan, and
S. Cousins, “U-PAI: A Universal Payment Application In-
terface,” Second USENIX Workshop on Electronic Commerce,
USENIX, Oakland, CA (November 1996), pp. 105-121.

31. See http://www-diglib.stanford.edu for more information.

32. See http://www javasoft.com/commerce for more information.

33. A.Bahreman and R. Narayanaswamy, “Payment Method Ne-
gotiation Service,” Second USENIX Workshop on Electronic
Commerce, USENIX, Oakland, CA (November 1996), pp.
299-314.

34. See http://www.chipper.com/ for more information.

General reference

For a collection of WWW pointers on electronic commerce, see
http://www.semper.org/sirene/outsideworld/ecommerce.html.

Accepted for publication August 20, 1997.

José L. Abad Peiro /BM Research Division, Zurich Research Lab-
oratory, Saumerstrasse 4, 8803 Riischlikon, Switzerland (electronic
mail: jla@zurich.ibm.com). Mr. Abad Peiro is a member of the
network security research group at the IBM Zurich Research Lab-
oratory. He received an M.S. in computer science from the Uni-
versidad Politécnica de Valencia, Spain, and finished the last year
of telecommunications engineering in the Ecole Nationale Su-
périeure des Télécommunications de Bretagne, France. Prior to
joining IBM, he was a network manager in the communications
division of the European Space Agency in Darmstadt, Germany.
He is pursuing a Ph.D. in computer science from the Catholic
University of Louvain. Mr. Abad Peiro is a member of the ACM.

N. Asokan IBM Research Division, Zurich Research Laboratory,
Sdumerstrasse 4, 8803 Riischlikon, Switzerland (electronic mail:
aso@zurich.ibm.com). Mr. Asokan has been a member of the net-
work security research group at the IBM Zurich Laboratory since
1995. His research interests include network security, electronic
commerce, and mobile computing. He received his B.Tech. in
computer science and engineering from the Indian Institute of
Technology, Kharagpur, an M.S. in computer science from Syr-
acuse University, and is a candidate for a Ph.D. in computer sci-
ence from the University of Waterloo. From 1990 to 1995, he
was a software systems specialist at the University of Waterloo,
working primarily on network security issues. Mr. Asokan is a
member of the ACM.

Michael Steiner IBM Research Division, Zurich Research Lab-
oratory, Saumerstrasse 4, 8803 Riischlikon, Switzerland (electronic
mail: sti@zurich.ibm.com). Mr. Steiner is a research staff mem-
ber of the network security research group at the IBM Zurich
Research Laboratory, where he works on security in network man-
agement and electronic commerce. His interests include secure
and reliable systems as well as cryptography. He received a Di-
ploma in computer science from the Swiss Federal Institute of
Technology (ETH). Mr. Steiner is a member of the ACM.

Michael Waidner IBM Research Division, Zurich Research Lab-
oratory, Sdumerstrasse 4, 8803 Riischlikon, Switzerland (electronic
mail: wmi@zurich.ibm.com). Dr. Waidner is the manager of the
network security group at the IBM Zurich Research Laboratory.
His research interests include cryptography, security, and all as-

88 ABAD PEIRO ET AL

pects of dependability in distributed systems. He has coauthored
numerous publications in these ficlds. Dr. Waidner received his
diploma and doctorate in computer science from the University
of Karlsruhe, Germany. He is a member of the ACM, GI, IACR,
and SIAM.

Reprint Order No. G321-5664.

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

