
Designing a generic
payment service

by J. L. Abad Peiro
N. Asokan
M. Steiner
M. Waidner

The growing importance of electronic commerce
has resulted in the introduction of a variety of
different and incompatible payment systems. For
business application developers, this variety
implies the need to understand the details of
different systems, to adapt the code as soon as
new payment systems are introduced, and also
to provide a way of picking a suitable payment
instrument for every transaction. In our work, we
unify the different mechanisms in a common
framework with application programming
interfaces. Our framework provides services for
transparent negotiation and selection of payment
instruments as well. This allows applications to
be developed independent of specific payment
systems with the additional benefit of providing a
central point of control for payment information
and policies.

E ver since money was invented as an abstract way
of representing value, systems for making pay-

ments have been in place. In the course of time, new
and increasingly abstract representations of value
were introduced. A corresponding progression of
value transfer systems, starting from barter, through
bank notes, payment orders, checks, and later credit
cards, has finally culminated in “electronic” payment
systems. Mapping between these abstract payments
and the transfer of “real value” is still guaranteed
by banks through financial clearing systems. The fi-
nancial clearing systems are built on the closed,
strictly controlled networks of financial institutions
that are hence considered comparatively more se-
cure than open networks.

Recently, there has been a great deal of interest in
facilitating commercial transactions over open com-

puter networks, such as the Internet. Several elec-
tronic payment systems have been proposed and im-
plemented in the past few years.’ Currently, many
different, incompatible Internet payment systems
compete with one another. Most shops accept, at
best, only a subset of them.

Consider a business application that implements
some business scenario such as on-line purchase of
goods. Ideally, the application should be able to make
use of any available means of payment. Currently,
the developer of such an application has to make sure
that the application knows how to use all the differ-
ent payment systems its users are likely to have avail-
able, and, in case multiple payment instruments are
available, provide a way to choose one of them. Our
primary motivation was to develop a framework that
frees the business application from addressing these
issues.

We describe the design and implementation of a ge-
neric payment service that provides such a frame-
work for enabling applications to use different pay-
ment systems in a transparent manner. The primary
component of this generic service is a coherent hi-
erarchy of application programming interfaces (M I S)
for the transfer of monetary value. The flow of in-
formation during transactions leads to a classifica-
tion of actual payment systems into a set of payment

Wopyright 1998 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproductionis done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

72 ABAD PEIRO ET AL. 0018-8670/98/$5.00 0 1998 IBM IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

models. The API hierarchy reflects this separation
into different payment models. It consists of a base
LWI common to all payment models and extensions
specific to each model.

In addition to the unified interfaces, the generic ser-
vice has the following features and facilities:

Mechanisms for automatic selection of the specific
payment instrument to be used in a transaction;
enables applications to be concerned just with the
questions of “how much to pay” and “to whom,”
but not with “using what payment instrument”
Information, management, and control services to
enable the development of applications that use
the generic payment service (e.g., inquiring what
payment systems are available)
Tools and framework necessary for the incorpo-
ration of actual payment systems into the generic
payment service

This work is being carried out as part of the SEMPER
(Secure Electronic Marketplace for EuRope) proj-
ect aimed at building a secure electronic market-
place.’ However, the architecture of the generic
payment service is independent of the specific envi-
ronment of SEMPER: a stand-alone implementation
of the service is possible. In fact, the intermediate
results of our work were used as a basis for IBM’S In-
ternet payment framework called SuperSET and led
to IBM’s CommercePoint* eTill product. Earlier re-
ports on this work appeared as public project re-
ports”‘ of SEMPER.

Models of electronic payment systems

There are several different electronic payment sys-
tems. All of them have the same basic purpose of
facilitating the transfer of value among different par-
ties. They differ in various aspects such as the point
at which an electronic transaction is linked to the
movement of real monetary value in the financial
clearing system, and the degree of security provided
by the system. In Asokan et al.’ a survey of existing
payment systems is presented. In this section, we
present an intuitive model of electronic payment sys-
tems as a first step in the design of the generic pay-
ment service.

Players. Electronic payments involve a payer and a
payee. The intent of the payment is to transfer mon-
etary value from the payer to the payee. Transfer is
accomplished by an electronic payment protocol. The
process also requires at least one financial institu-

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

Figure 1 Players of a payment system

ISSUER ACQUIRER

PAYER PAYEE

-.3 TRANSFER OF Iy1EAL VALUE”

tion that links the data exchanged in the payment
protocol to transfers of monetary value. The finan-
cial institution may be a bank that deals with mon-
etary value represented in terms of “real value,” or
it may be some organization that issues and controls
other forms of representation (e.g., loyalty points).
Here we use the word bank to mean all different types
of financial institutions and the phrase “real value”
to cover all forms of value representations used by
financial institutions. Typically, banks participate in
payment protocols in two roles: as an issuer (inter-
acting with the payer) and as an acquirer (interact-
ing with the payee). Finally, an arbiter may be in-
volved in resolving disputes in the payment system.

The basic set of players involved in a payment sys-
tem is illustrated in Figure 1. In most systems, the
presence of the arbiter is not explicit. Even if the
necessary pieces of evidence are produced, dispute
handling is done outside the payment protocol and
often not even specified. Sometimes it is not even
possible to define dispute handling at the protocol
level since the resolution of disputes may be subject
to policy decisions of the users and financial insti-
tutions. (A full-fledged payment system built on top
of a given payment protocol should, however, pro-
vide appropriate dispute management services.)

Certain payment systems might involve more play-
ers, e.g., registration and certification authorities, or

ABAD PElRO ET AL. 73

ISSUER ACQUIRER

"""

S€TTLEMENT

1. WITHDRAWAL

PAYER PAYEE

A DIRECT CASH-LIKE SYSl'EM

ISSUER ACQUIRER

""_
SEITLEMENT

1. TRANSFER REQUEST

PAYER PAYEE

C. INDIRECT PUSH SYSTEM

""

-) ELECTRONIC PAYMENT MESSAGES
-b TRANSFER OF REAL VALUE

0 INITIATOR of VALUE TRANSFER

ISSUER ACQUIRER

"""

PAYER PAYEE

B, DIRECT CHECK-LIKE SYSTEM

ISSUER ACQUIRER

-\ ""_

PAYER PAYEE

D. INDIRECT PULL SYSTEM

other trusted third parties that provide anonymity5f'
or enforce receipts for payrnents7A9

Payment models. We classify payment systems ac-
cording to the flows of information between the play-
ers. Figure 2 lists, without claiming completeness,
the four most common payment models and their
information flows.

One criterion for distinction is whether the commu-
nication between the payer and the payee is direct
or indirect. In the latter case, the payment operation
is initiated by one player and involves only the ini-
tiator and the bank(s). The other player is notified
by its bank at the completion of the transaction. An
example of direct payment is paying by cash or check.
An example of indirect payment is paying by means

74 ABAD PElRO ET AL IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

of a standing order or wire transfer. Most currently
proposed Internet payment systems implement di-
rect payments. Consequently, we will focus only on
those systems.

According to the relationship between the time the
payment initiator considers the payment as finished
and the time the value is actually taken from the
payer, one can distinguish among: (1) prepaid (or
cash-like) payment systems, (2) pay-now payment
systems, and (3) pay-later payment systems. The lat-
ter two are quite similar; in both cases, the user must
have some sort of an “account” with the bank, and
a payment is always done by sending some sort of
“form” from payer to payee (check, credit-card slip,
etc.). Thus, we consider these two cases to belong
to the same model, which we call the check-like mod-
el.’” In the rest of this paper, we use the terms cash-
like and check-like to refer to the two models. Sim-
ilar informal models of payment systems have been
used by various others. 7,”,12 A large number of pro-
posed or existing payment systems can be grouped
into these two categories. Examples of cash-like pay-
ment systems include ecash” *, l3 NetCash, l4 CAFE, l 5
and Mondex* * . I h Examples of check-like systems in-
clude credit-card protocols such as SET**,” iKI’,’’
CyberCash**, l9 and electronic check schemes such
as the scheme proposed by FSTC* *. 2o The process
of defining a generic payment service goes hand in
hand with the development of a formal definition of
a secure payment system and the properties it should
possess. Such a formal definition will be a useful
framework for verification and comparison of secur-
ity properties of payment systems. Additional work
in this direction has already begun.2’,22

Design of the generic payment service

Scope and terminology. The main functionality of
any payment system is to provide value transfer ser-
vices consisting of the following:

Moving electronic value from a payer to a payee.
The players may specify certain security attributes
for this value transfer.
Moving electronic value back from payee to payer
in a payment reversal.
Converting “real money” into electronic value
(“loading”) or vice versa (“deposit”); the former
is relevant only in the cash-like model.

In the simplest case, the transfer of value happens
between two end points. We call such an end point

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

apurse.23 A purse corresponds to a single instance
of a specific payment system and contains all the user
information related to that instance. For example,
a user who has a credit-card account, an instance of
a stored-value card, and an ecash account will have
three separate purses associated with each of the
above. Purse management services allow a user to set
up, configure, manage, and delete purses. Some
purse-related services might require authorization
(e.g., insert a smart card or enter a pass phrase, or
both, for each withdrawal), whereas others may not
have any access control.

Each value transfer in progress is embodied in a sep-
arate transaction. A purse may be involved in sev-
eral concurrent transactions. Transaction manage-
ment services allow transactions to be queried for
their status, canceled, or recovered from a crash. Be-
fore beginning a transaction, each player must choose
a suitable purse. This selection may have two parts:
a local decision based on preferences and require-
ments and a mutual decision based on negotiations.
The services that enable this decision-making are col-
lectively known as purse selection services.

In addition to purses and transactions, we use a sep-
arate entity called the payment manager to manage
the overall operation of the generic payment service.
Each player will have one active payment manager
managing its purses and transactions. Information ser-
vices permit the retrieval of information on the state
of the payment manager or a specific purse, for ex-
ample, a list of previous transactions or statistics on
all payments received and made in a certain period
of time.

Finally, dispute management services allow the user
to make claims about (alleged) past transactions as
well as prove or disprove them to an arbiter. As we
mentioned earlier, none of the payment systems in-
troduced so far has integrated dispute-handling fea-
tures. Most limit themselves to the collection of ev-
idence alone. Thus, in the original design, we did not
address the dispute management issue. We discuss
the problem and outline an approach to a solution
in a later section. The detailed treatment of dispute
handling is a focus of our current work and will be
described in a forthcoming paper.

Figure 3 shows the entities in the generic payment
service and the services they provide. We treat trans-
actions as transient entities. Each transaction is as-
sociated with a longer-lived transaction record where
all relevant information about the transaction is

ABAD PElRO ET AL. 75

Figure 3 Generic payment service in action (entities in a typical instance)
~~~~~~~~~~~ ~ ~ 

.” 

I 

(”W&, CRYPTOGWPHIC, 
ACCESS COWROL,TRUSTEO USER  INTERFACE) - ONE-TGMANY 

ONE*”oNE 

maintained. Some of the services are distributed over 
more than  one entity (e.g., information services are 
provided  jointly by the payment manager, purses,  and 
transaction records). 

Design overview. To define each of the above ser- 
vices more concretely, we adopted  the following ap- 
proach. For  a given  class  of services  (e.g.,  value trans- 
fer services): 

1. Identify the primitives for this service that  are 
common to most  payment  systems.  Describe these 
in the form of a base service interface. For exam- 
ple, the ValueTransferSer~ices~~ interface contains 
primitives such as pay. 

2. Then for each payment model, identify  any ad- 

ditional primitives not already covered  in the base 
interface but common to all payment systems of 
that model. Describe these in the form of a sub- 
interface. For example, the subinterface Cash- 
LikeValueTransferServices for the cash-like model 
defines primitives such as withdraw( ) that  are rel- 
evant only  in the cash-like model. 

Some services, such as purse selection, are provided 
by the generic payment service  itself. Other services 
are provided by the various payment systems. To in- 
corporate a specific payment system into  the generic 
payment service, a system-specific adapter must be 
built. The  adapter uses the services provided by the 
payment  system to implement services  defined  in the 
generic payment service interface. To introduce a 

76 ABAD PEIRO ET AL IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998 



Figure 4 Generic  payment  service  (classes  and  interfaces) 

1 

I 
-"+ "IMPLEMENTS" I 
"-+ ''EXTENDS" I 

SERVICE  DEFINITION 
0 INSTANTIABLE CLASSES I 

(Af3STRAcT CLASS OR INTERFACE) 

new model, a new  (possibly empty) subinterface will 
have to be defined for each service interface. In the 
next subsection, we describe the services interfaces 
in detail. 

The high-level  design described so far can be imple- 
mented in a variety of  ways. We opted for an object- 
oriented approach. We describe the entities and ser- 
vices required in the generic payment  service  in terms 
of base classes and interfaces. The four main  types 
of entities identified in the previous section (purses, 
transactions, transaction records, and the payment 
manager) are described by four different classes. 
Each service interface corresponds to  an interface 
or abstract class. Concrete implementations for the 
services that  are  independent of payment systems 
are provided by the payment manager or related 
classes. Adapters for specific payment systems can 
then provide implementations for the remaining in- 
terface and abstract class methods. For example, the 
Transaction class in an  adapter is expected to imple- 
ment the services  defined  in the ValueTransferServices 
interface as well  as the TransactionServices interface. 

IBM SYSTEMS JOURNAL, VOL 37, NO 1 ,  1998 

The ValueTransferServices interface has model-spe- 
cific extensions. The adapter for a given  payment  sys- 
tem should implement the branch of the ValueTrans- 
ferservices interface corresponding to  the model of 
that payment system. Figure 4 illustrates the classes 
that constitute an adapter and the services they im- 
plement. 

The users of the generic payment service  (e.g., bus- 
iness applications) can treat  the various  objects  (such 
as purses and transactions) as instantiations of the 
generic base classes.  In the following subsections, we 
describe the services of the generic payment service 
and the objects that provide them (shown  in Figure 
3) in more detail. 

Services. The primitives of the value transfer services 
interface are described briefly  in Table 1. Primitives 
for other services are similar. We do not show them 
here for lack of space. Square parentheses ([ 3) in- 
dicate optional parameters. We do not show  excep- 
tions and errors. Concrete Java** bindings  of the ser- 
vice descriptions can be found in Reference 25. 

ABAD PElRO ET AL. 77 



Table 1 Generic  payment  service:  Value  transfer  services 

‘ref. allows this  payment to be  linked to its context, e.g., an order  and  Its descnption. 

Purses. A purse is an abstraction of an instance of 
a payment system that is available to  the user. It is 
necessary to have  services for: 

Creating a purse (i.e., a constructor to instantiate 
a purse object) 
Configuration and setup, which  will  be  used by 
purse management applications (e.g., to associate 
a purse with a credit card and to register with a 
certification authority) 
Initialization, which  is  invoked during startup to 
activate the purse 
Creating transactions (see the next subsection) 
Information (e.g., answers to questions such as 
“Does this purse provide nonrepudiatable receipts 
for payments?”) 

These services are  part of the purse management, 
purse information, and transaction services. We use 
a Purse class hierarchy. The base Purse class defines 
the aforementioned services and provides default im- 
plementations for some of them. For each payment 
model, we extend the base Purse class to  a model- 
specific  subclass  (e.g., CheckLikePurse class). Adapt- 
er-writers shall extend a model-specific Purse class 

78 ABAD PEIRO ET AL 

and override or extend default implementations as 
necessary. For example, to  adapt  the SET payment 
system (SET, or Secure Electronic Transactions* *, ” 
is a protocol for making credit-card transactions over 
the Internet), we define a class SETPurse that extends 
CheckLikePurse. 

Additionally, the Purse class hierarchy also provides 
services for information management correspond- 
ing to  these purses (e.g.,  answers to questions such 
as “What is the user name associated with  this 
purse?” or  “What  amount is associated with this 
purse [where applicable]?”). 

A further classification of purses can be made based 
on the subset of operations  supported by the purse 
as follows:  apay-only purse can be used to make but 
not to receive payments, a receive-only26 purse can 
be used to receive but  not to make payments, and 
a pay-and-receive purse can be used for making 
and receiving payments. 

Mondex and ecash are examples of payment systems 
that do support pay-and-receive purses. Most other 
payment systems do not. 

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998 



Transactions and transaction records. As men- 
tioned, the base ValueTransferServices interface de- 
fines  value transfer services that  are common to all 
payment models. Some example  services defined in 
this interface are: pay makes a payment from a purse 
to a designated recipient; receivepayment is the coun- 
terpart of pay, it  receives an incoming  payment.  Mod- 
el-specific subinterfaces may define additional ser- 
vices. For example, the subinterface for the cash-like 
model has a service to withdraw  money from the 
bank into the purse. 

Every  instance of a value transfer service is abstracted 
by a transaction. The PaymentTransaction class  im- 
plements the value transfer services described in one 
branch of the ValueTransferServices interface hier- 
archy. Information associated with a transaction 
(both transient information such as state  that is rel- 
evant only  while the transaction is active and “per- 
manent” information such as receipts or  other ev- 
idence that is relevant long after the transaction is 
completed) is kept in a related PayrnentTransaction- 
Record object. This information can be used in crash 
recovery and dispute management as well  as for in- 
formational purposes. 

The base PaymentTransaction defines general trans- 
action services  such  as  trying to abort  an ongoing 
transaction or retrieving its current status. Each sub- 
class of the base class implements a leaf interface of 
the ValueTransferServices interface hierarchy (e.g., 
SElTransaction extends PaymentTransaction and im- 
plements the CheckLikeValueTransferServices inter- 
face). Each leaf Purse class provides a startTransac- 
tion( ) method that creates a new transaction of the 
appropriate type  (e.g.,  in the SETPurse class, the start- 
Transaction() method will instantiate a SElTransac- 
tion object). 

Payment  manager. The payment manager provides 
services for purse selection as well  as to retrieve man- 
agement information. It keeps track of the currently 
available purses, known payment module adapters, 
etc. To maintain and manage this information, the 
payment manager provides various services  such as 
creation and registration of a purse, deletion of a 
purse, and registration of a new adapter. Additional 
services are provided to make this information avail- 
able to  other objects and applications in a variety of 
useful  ways. The manager is  also responsible for ini- 
tializing  all the relevant components on startup.  The 
current design does not yet address fault-tolerance 
issues. The manager will be the entity providing ser- 

IBM SYSTEMS JOURNAL, VOL 37, NO 1,  1998 

vices for shut-down and fault-tolerance mechanisms 
such  as crash recovery. 

Selection of a purse to be used in a transaction is 
based on several factors: requirements for the trans- 
action (e.g., security requirements), static user pref- 
erences, negotiation with a peer payment manager, 
and manual selection by a user. Except negotiation, 
the remaining  factors are all  local. The payment  man- 
ager provides various services to facilitate this  local 
selection. 

Negotiation with the  peer for selection of the pay- 
ment instrument can be done in several ways. But 
all negotiation protocols consist of simple request- 
response exchanges. Currently, we restrict negoti- 
ation for tuples containing two parameters: 

Payment  system  name-We define “payment sys- 
tem name” as  follows:  two purses that  report  the 
same payment  system name can  potentially  engage 
in a payment transaction between  themselves.  Typ- 
ically, the payment system name corresponds to 
a single <protocol, brandname> pair; e.g., 
sET:MasterCard and sET:Visa  will be two differ- 
ent payment systems. It is up to  the  adapter  to  de- 
termine the payment system name associated with 
a purse as  long  as  it  satisfies the definition above. 
Amount (value and currency) 

We have designed and implemented a simple nego- 
tiation protocol that can support various negotiation 
policies.  Two  example methods, selectPayingPurse 
and selectReceivingPurse implementing a default pol- 
icy, are provided: the payer is the initiator of nego- 
tiation, the payee is  allowed to adjust the amounts 
in its reply  (e.g., the merchant may add  a surcharge 
for using a credit card or give a discount for using 
ecash). It is also possible to enforce other negoti- 
ation policies. 

Adapting a payment  system 

In order to incorporate a new payment system into 
the generic payment service, a suitable adapter has 
to be designed (Figure 4 indicates what constitutes 
an adapter).  The following steps are required in this 
process: 

1. Identify the model to which the payment system 
belongs  (e.g., SET belongs to the check-like  model). 

2. Implement a subclass of the Purse class corre- 
sponding to the payment model identified (e.g., 
SETPurse extends CheckLikePurse). This step im- 

ABAD PElRO ET AL. 79 



Figure 5 Interactions during  a payment (dotted lines indicate optional flows) 
.~ ~~ ~ ~~~ - MESSAGE SEHTTO PEER 

procedure b LOCAL PROCEDURE %VOCATION (Paramerws) 
return value LOCAL PROCEDURE  RETURN 

USE 

1 

R APPLIqATION GENERIC PAYMENT SERVICE PAYMENT SYSTEM (e& W3) 

! 

! 

1 ( ~ a y ~ , ~ ~ t , o p ~ i o ~ , r e 9  j 

PROMFT FOR P$ 1 RSE SELECTION , """""""l"""""""-i 

I 

I NEGOTIATE WKH PEER ~~~"""","",,L""~"~~ 

" 1""" 

CLICK ON PUhSE 0 
T- -  

F CHOICE 
"""""" 3 CONFIRMWPEER 

3. 

plies providing implementations for all abstract 
services  defined  in the ancestor Purse classes  (e.g., 
Purse and CheckLikePurse) and overriding default 
implementations therein, where  necessary.  In par- 
ticular, the new  class  must  provide a  proper im- 
plementation of the setup() method; this method 
should allow the user to carry out all configura- 
tions necessary for  the payment system. 
Implement a subclass of the PaymentTransaction 
class that implements the value transfer services 
defined  in the leaf of the ValueTransferServices in- 
terface hierarchy corresponding to the payment 
model  identified  (e.g., SETTransaction implements 
CheckLikeValueTransferServices and inherits from 
PaymentTransaction). 

In addition, if any special action needs to be taken 
during the installation of the  adapter,  a suitable in- 
stallation hook must be provided. A standard instal- 
lation application is available as part of SEMPER. It 
performs two actions:  installing the contents of the 

adapter module in the correct locations, and regis- 
tering the name of the new purse class  with the pay- 
ment manager. If there  are any adapter-specific in- 
stallation procedures, they must be implemented in 
the form of an installation hook defined in the 
ModulelnstallHook interface. 

Using the generic  payment  service 

Once a user has installed one  or more payment in- 
struments along with the  adapters on his or  her sys- 
tem, two kinds of usage are possible:  making  pay- 
ment transactions via business applications or using 
special applications for various purposes. 

Payment transactions. The primary use of the ge- 
neric payment service  is  via  business applications 
making payment transactions. 

A user  will initiate payment transactions using some 
sort of a high-level business application (e.g., a Web 

80 ABAD PEIRO ET AL. IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998 



browser or  a CD-catalog reader). Figure 5 shows the 
object interactions that  take place at the payer end 
during execution of a typical payment transaction. 
The  important things to note are: 

The user need not specify the payment instrument 
to use if he or she does not want to;  the payment 
service  can  be configured to prompt him or  her 
for selection of a payment instrument if it cannot 
do so by itself. 
The application is not aware of the specific  pay- 
ment instrument being used; it deals with generic 
Purse and PaymentTransaction objects. It need not 
even  know the model to which the chosen purse 
belongs. 

The sequence of events at  the payee side is similar, 
with minor differences. The payee application is 
probably an unattended merchant server. Thus, there 
will be no user interaction. There may be interac- 
tions with third parties during the transaction. For 
example, in a check-like system, the payee’s adapter 
may contact the acquirer for authorization. One can 
also imagine a payment system where the payer’s 
adapter has to obtain some sort of a credential from 
the issuer before each payment. All such commu- 
nication with third parties is carried out within the 
adapter-the  calling applications are typically un- 
aware of them. 

This example  is  also intended  to give an idea about 
how the generic payment service enables business 
application development. The primary  services  used 
by the business applications are purse selection and 
value transfer between payer and payee. Both of 
these are common to all payment systems. Thus, a 
large class of applications using the generic payment 
service need  not be aware of system- or model-spe- 
cific details. Certain special applications (see next 
subsection) will make  use of the model-specific  com- 
ponents of the generic payment service. 

Special applications. The second category of usage 
is  via special applications. The most important spe- 
cial application is a purse management tool. 

Purse management. Before being able to use an in- 
stalled payment instrument, a purse corresponding 
to it must  be created and  configured. A special “purse 
management application” is provided for this pur- 
pose.  Changes to purses are written out to stable stor- 
age. Purse management is an infrequent activity. 
(Typically, once a purse is created and configured, 
it  can be used in several subsequent payment trans- 

IBM SYSTEMS JOURNAL, VOL 37, NO 1 ,  1998 

actions.) Purse management makes use of a setup() 
method provided by the Purse class  in an adapter. 
This method must implement all the necessary con- 
figuration for that payment system. For example, the 
setup() method of the SETPurse allows the user to 
enter the credit-card information (cardholder name, 
brand, number, expiry date)  that is then stored as 
part of the purse state. 

Other applications. There can be a number of other 
special applications. Some of these are model-spe- 
cific. A batch capture application can be used by the 
merchant to  capture  a set of received payments for 
check-like purses; typically  this  will be used  as part 
of end-of-day processing. A withdrawal application 
can be used to load money into cash-like purses. The 
SEMPER prototype implementation comes  with  two 
model-independent special applications: a transac- 
tion browser allows the user to browse through ac- 
cumulated transaction records; a module installer al- 
lows a user to install a new payment instrument along 
with  its adapter. 

Extending  the  design 

During the first  half  of the SEMPER project (fall  1995 
to  the  end of 1996),  we designed the generic pay- 
ment service  as described so far and built a  proto- 
type.  Since then, we have been focusing on extend- 
ing the design by adding functionality, and by revising 
some aspects by using better techniques. In this  sec- 
tion, we describe these extensions. 

Dispute management. Support for handling disputes 
is a crucial aspect of any  system  providing account- 
ability. Consider some typical  claims that users of a 
generic service  might  want to make or deny: 

ABC paid $100 to XYZ on 12/29/97, 10:32 GMT 
ABC paid $100 to xyz with external reference “Or- 

ABC did not pay  $100 to XYZ 
ABC deposited $100 at bank B  on 12/29/1997 
ABC deposited $100 at bank B on 1212911997, be- 

der #432” 

fore noon GMT 

A transaction may result in several items of evidence. 
Only a subset of these items may be relevant to  a 
particular dispute. Hence, it is  useful to have a way 
of indicating the  nature of the dispute to  the  under- 
lying payment system so that it  can produce the min- 
imal amount of evidence relevant to  the dispute. 

ABAD PEIRO ET AL. 81 



The problem of dealing with disputes in the generic 
payment  service has three aspects:  (1) how to express 
dispute claims, (2) how to  map evidence collected 
during a transaction to subsequent dispute claims, 
and (3) since a dispute involves the interaction of 
more than one player, how to define a multiparty 
dispute protocol. 

In general, disputes can be expressed in terms of 
statements about a (possibly alleged) transaction. We 
use the following structure  for dispute statements: 

[not] <TRANSACTION> [<role> = <player>] * 
[ <attr> <OP> <value>] * 

The examples  above  would then correspond to state- 
ments like: 

PAYMENT payer = ABC, payee = XYZ, 
amount = $100, time = “12129/97,10:32 
GMT” 

PAYMENT payer = ABC, payee = XYZ, 
amount = $100, reference = “Order 
#432” 

not PAYMENT payer = ABC, payee = XYZ, 

DEPOSIT user = ABC, bank = B, 

DEPOSIT user = ABC, bank = B, 

amount = $100 

amount = $100, time = “12/29/97” 

amount = $100, time < “12129197” 

The service  provided by the generic payment  service, 
and hence the values of the  attribute sewice are well- 
defined. Each method in the ValueTransferServices 
interface hierarchy has a well-defined, finite, set of 
services that it  is associated with. 

The dispute management interface provides  services 
to construct dispute claims and prove them  to  a ver- 
ifier. In the simplest case, it  is enough to extract the 
right  pieces of evidence  (such  as receipts) and present 
them to  the verifier. In other cases,  it may be nec- 
essary to interact with the verifier using a complex 
proof protocol. The Purse subclasses in the adapt- 
ers will be required to implement the dispute man- 
agement interface. 

Typically, disputes are  about payment transactions. 
These disputes will be started by the applications that 
initiated the payment in the first place (e.g., a Web 
browser on the payer’s side and a merchant server 
on the payee’s side). Disputes between a user and 
the bank (e.g.,  wrong entry in a bank statement) will 

82 ABAD PEIRO ET AL. 

require special  bank-specific  applications to drive the 
dispute. 

Currently, we are expanding on these ideas in build- 
ing a framework for handling disputes in the generic 
payment service. 

Payment  security policies. A number of consider- 
ations apply to payment security policies.  We de- 
scribe them here. 

Limits on value transfer. A user of the generic pay- 
ment service may  wish to associate several types of 
limits to  the purses available. Some examples of the 
types of limits are: 

Each payment from a specified purse (say P1) 
should not exceed 100 CHF (Swiss francs). 
Total payments from all purses taken together 
should not exceed 1000 cHF in  any  24-hour period. 
Total payments from all purses should not exceed 
10 000 CHF in a given calendar month. 
Payments below 10 CHF do  not  need explicit user 
authorization. 
No more than four payments without explicit user 
authorization can be made in any 24-hour period. 
If a payment will bring the balance in a specified 
purse (say P2) below  200 CHF, it must be explicitly 
authorized by the user. 

Clearly, the limits may  involve  complex computations 
and may require several different pieces of informa- 
tion during the computation. 

Access control. Access control is a critical function- 
ality of the generic payment service. We note the fol- 
lowing  in order  to motivate our design: 

Access control is required in the following cases: 

Access to secret information required to use the 
underlying payment system  (e.g., personal iden- 
tification numbers [PINS], pass phrases, credit-card 
numbers, etc.). There may be several different 
pieces of such information. 
Access to purse operations. 

Even for the same purse  operation, it may be nec- 
essary to control access  differently, depending on the 
parameters. For example, a user may decide to have 
no  access control for payments of small amounts or 
have a different pass phrase to authorize high-value 
payments. The underlying payment instrument may 
or may not  support such granularity. 

IBM SYSTEMS  JOURNAL, VOL 37, NO 1, 1998 



Figure 6 Incorporating  policy in a  purse 

. . ;, 

A common solution:  Policyframework.  We  have taken 
a common approach to address both limits and ac- 
cess control requirements by using the notion ofpol- 
icy objects. A purse can associate one policy object 
with each service  it provides. Whenever a service  is 
requested from a purse, the corresponding policy ob- 
ject will be queried to  determine authorization for 
the service (Figure 6). All policy objects provide ways 
to check for  current availability of a service (the 
isAllowed( ) method),  and  to indicate that  an  autho- 
rized  service  is being provided (the update( ) meth- 
od), so the policy object can change any relevant in- 

ternal  state  parameters  (note  that policies as in the 
second last  example above are  stateful). 

These methods can be used by purse services  (such 
as pay( ) and receivepayment( ) methods) to manage 
authorization. A reference to the transaction record 
is provided as an argument to  the isAllowed() and 
update( ) methods. Through the transaction record, 
it is  possible to access the purse(s) involved  in  an 
operation. Thus, different implementations of these 
methods can access  all the information they need in 
order to make the policy  decisions. 

IBM SYSTEMS  JOURNAL, VOL 37, NO 1, 1998 ABAD PEIRO ET AL. 83 



Figure 8 An example  policy 
~ ~ ~~ ~~ 

AND 

I 

The policy  class hierarchy is  shown  in Figure 7. A 
policy  may be simple or aggregate. Simple policy ob- 
jects are self-contained and make their decisions  in- 
dependently of other policy  objects. There may  be 
several kinds of simple policy objects. Some exam- 
ples are: 

The AskUser policy  class  displays relevant infor- 
mation about the transaction to  the user and asks 
for his or  her approval. 
The MinBaZunce policy  class makes sure  that  the 
minimum balance is above a specified value. 
The TimebasedLirnit policy  class provides a way 
to set simple time-based limits. 

Aggregate policy objects have a list  of constituent 
policy  objects. The policy decision of the aggregate 
object is a function of the policy  decisions of its con- 
stituent objects. Some examples are: An OR policy 
allows the service if any of its constituent policies do 
so; an AND policy  allows the service if all of its con- 
stituent policies do so. 

With these policy objects we can express  complex 
policies. For example, the policy  “if the  amount is 
less than CHF 10 and the balance afterwards is  going 
to  be above CHF 200, allow the payment, otherwise 
ask the  user” will correspond to a policy object net- 
work  shown in Figure 8. (When a policy object has 
other constituent policy objects in it, a top-to-bot- 
tom evaluation order for the constituent objects is 
assumed.) 

Additional policy  classes may be defined and incor- 
porated  into this hierarchy. Users of policies (e.g., 
the pay( ) and receivepayment( ) methods) will  have 

84 ABAD PEIRO ET AL. 

a single  access point. Notice that policy objects are 
intended as a mechanism to express  policies. The  en- 
forcement of these policies is up to  the implemen- 
tations of the services: for example, as  shown  in  Fig- 
ure 6, the pay method in the transaction class of an 
adapter must query the payment policy object in its 
purse before proceeding with the payment. 

Clearly,  several  issues  need to be  resolved.  We require 
a language to express  policies  and  efficient  techniques 
for evaluating and updating policies. A similar ap- 
proach is  given by the PolicyMaker frame~ork.~’ 
However,  policies in this model cannot be defined 
in terms of pure contextual information such as the 
total amount spent from a purse. 

The description here is intended only to give a fla- 
vor of the issues  involved. We are currently working 
on addressing these issues in depth. 

Token-based interface definition. The original de- 
sign  assumed a synchronous  model  since the first  ver- 
sion of the SEMPER architecture did the same. 25 How- 
ever, we have defined a “token-based interface that 
can support an asynchronous model in a straightfor- 
ward manner. Our token-based interface is inspired 
by the GSS-API~  approach. It has two types of meth- 
ods: (1) one  “starter” method for each different type 
of protocol; the  starter methods return a token con- 
taining the first message of the protocol, and (2) a 
common “processor” method; this takes a token as 
input, and depending on the internal state of the pro- 
tocol run, may return  another token as output. 

In  the token-based model, the payment service does 
not engage in  any direct communication with the 

IBM SYSTEMS JOURNAL,  VOL 37, NO 1, 1998 



Figure 9 Interactions  during a payment  in  the  token-based  model  (dotted  lines  indicate  optional flows) 
_____. ~ ~___ . 

1 - MESSAGE  SENTTOPEER 

@aramam] 
p f o d u ~  mm * LOCAL  PROCEDURE  INVo64TION 

return value LOCAL  PROCEDURE  RETURN * 
USER  APPLlCAnON  QENERIC PAYENT SERVICE  PAYMENT SYSFM (e.g,, sE7) 

I 
I 
# , 
j CLIGKON PAY  BUTTON ! 

i 

REPEAT  UNTIL 

TERMINATION 
PROTOCOL 

TOKEN 
IS OBTANED 

I 

! 

peer. Instead,  the caller is expected to  take care of 
the communication. The payment service  is  still re- 
sponsible for maintaining the  state of a protocol run. 
The initiating caller invokes an appropriate  starter 
method in the payment service API to  start  a pro- 
tocol. Typically, these starter methods will return  a 
"token" as output.  The initiating caller application 
is expected to communicate this token to its peer en- 
tity, the responding caller application. The  latter in 
turn will invoke the processor method on its instance 

of the payment service and give the received token 
as input. From this point on, whenever a caller en- 
tity receives a token as output from the processor 
method, it  will send the token to its peer; whenever 
a caller entity receives a token from its peer, it will 
invoke the processor method on its payment service, 
giving the received token as input. 

We define a token-based version of value transfer 
services in an interface hierarchy  called TValueTrans- 

IBM SYSTEMS JOURNAL, VOL 37, NO 1 ,  1998 ABAD PEIRO ET AL. 85 



ferservices parallel to  the ValueTransferServices in- 
terface hierarchy. For each method (e.g., pay( )) in 
the  latter, we define a corresponding starter method 
(e.g., startpay( )) in the former. In addition, a com- 
mon processor method processToken( ) is defined in 
the TValueTransferServices interface. Figure 9 illus- 
trates object interactions in the same scenario de- 
picted in Figure 5, but with a token-based interface 
for negotiation and value transfer. 

Since  no peer-to-peer communication is taking  place 
inside the generic payment service, the caller does 
not have to block on service invocations. The de- 
signer of the calling application has the freedom to 
use an asynchronous implementation architecture. 
More importantly, the token-based approach can al- 
low an application to supplement the level of secur- 
ity  provided by a payment  system by transporting the 
tokens via a channel with particular security at- 
tributes. For example, even though payment proto- 
col  messages  in SET are encrypted, an eavesdropper 
may be able to  determine and link the identity of 
the payer and payee by watching the network ad- 
dresses  in the payment  messages.  With a token-based 
interface, if the applications were able to establish 
an untraceable communication channel between 
them, they  could  extend the untraceability to SET pay- 
ments as  well. 

Currently, the interface TValueTransferServices is op- 
tionally implemented by subclasses of the Pay- 
mentTransaction class.  Since the token-based version 
is more general than  the synchronous version, we 
plan to make the former the default value transfer 
services interface and  deprecate  the  latter. 

We are in the process of defining a token-based in- 
terface for the negotiation of payment  system  as  well. 
The designers of the E-co System  have used a sim- 
ilar token-based API for the negotiation of payment 
system. 29 

Related work 

U-PA13” is being developed as part of the Stanford 
Digital Libraries project.31 Their focus  is on provid- 
ing a unified interface to payment services. They do 
not address negotiation for parameters before a pay- 
ment transaction begins; nor do they explicitly ad- 
dress issues  like refunds. They  also appear to assume 
a distributed object infrastructure such  as CORBA 
(Common  Object Request Broker Architecture) and 
do  not have a very clear security and trust model. 

86 ABAD PEIRO ET AL. 

The Joint Electronic Payments Initiative (JEPI) fo- 
cuses only on defining the protocol for the negoti- 
ation of various payment-related parameters such 
as the payment system. The scope of our work 
roughly corresponds to  the scope of these two 
projects taken together. 

Sun recently announced their Java Electronic Com- 
merce Framework (JECF).32 The framework is  still 
in the process of being defined. Their emphasis ap- 
pears to be on  the payer side: payers will be able to 
download  different “payment cassettes”  (roughly cor- 
responds to  a payment instrument and its adapter 
in our terminology) and  integrate them into their 
JECF installation. They also propose a sophisticated 
general-access-control scheme that can be used  in 
our work. 

The E-co System project had roughly the same 
scope29 as our work, although their main  focus so 
far seemed to be on establishing APIS and mecha- 
nisms for payment neg~ t i a t ion .~~  Additional infor- 
mation was not public, and  the project appears to 
have been discontinued. 

Status  and  conclusions 

We  have presented the design of a generic payment 
service. Complete Java bindings of our payment ser- 
vice interfaces can be found in the home page of 
SEMPER deliverable D03.25 A prototype of the ge- 
neric payment service  with  all the basic functional- 
ity has been implemented as part of the SEMPER proj- 
ect and tested using a “dummy” payment. Our work 
served as a basis for the design of IBM’s Internet pay- 
ment framework, SUperSET. Adapters  for  a variety 
of other payment systems are  under development 
by various partners in the SEMPER consortium. For 
example, DigiCash  is developing an  adapter  for 
ecash, Royal PTT Nederland NV (KPN) integrates 
Chipper,* * 34 and SET is adapted by IBM. 

Acknowledgments 

This work  was partially supported by the Swiss Fed- 
eral  Department for Education and Science  in the 
context of the ACTS Project AC026, SEMPER; how- 
ever, it represents  the view  of the authors. SEMPER 
is part of the Advanced Communication Technol- 
ogies and Services (ACTS) research program estab- 
lished by the  European Commission Directorate 
General XIII. For more information on SEMPER, see 
http://www.semper.org/. 

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998 



Interesting discussions  with several people helped 
us develop and refine the ideas presented in  this pa- 
per; in particular we thank Ali Bahreman, Mark 
Linehan, Birgit  Pfitzmann,  Tom  Scanlan, John Schey, 
Berry Schoenmakers, Julia Sime, Els van Herre- 
weghen, and John West.  We are grateful to Jay  Black 
and Matthias Schunter and the anonymous referees 
for their valuable comments on previous versions of 
this paper. 

*Trademark or registered trademark of International Business 
Machines Corporation. 

**Trademark or registered trademark of DigiCash bv, Mondex 
International Limited, Visa International Service Association, 
Mastercard International, Inc., CyberCash, Inc., Financial Ser- 
vices Technology Consortium, Inc., Sun Microsystems, Inc., Royal 
PTT Nederland NV, or the Dutch Postbank. 

Cited references and notes 

1. N. Asokan, P. Janson, M. Steiner,  and M. Waidner, “State 
of the Art in Electronic Payment Systems,” Computer 30, 
No. 9, 28-35 (September 1997). 

2. M. Waidner,  “Development of a  Secure  Electronic  Market- 
place for Europe,” Proceedings of the Fourth European Sym- 
posium on Research in Computer Security (ESORICS), Rome, 
Italy, E. Bertino, H. Kurth, G. Martella,  and E. Montolivo, 
Editors,  number 1146 in Lecture Notes in Computer Science, 
Springer-Verlag, Berlin (September 1996); also published in 
ED1  Forum 9, No. 2, 98-106 (1996). 

3.  J. L. Abad Peiro, N. Asokan, and M. Waidner,PaymentMan- 
ager-Overview, 212ZR054, SEMPER Consortium  (March 
1996). 

4. J. L. Abad  Peiro, N. Asokan, M. Steiner, and M. Waidner, 
Designing a Generic Payment Service, 212ZR055, SEMPER 
Consortium (September 1996). 

5. S. H. Low, N. F. Maxemchuk, and S. Pau1,Anonymous Credit 
Cards, Technical Report, AT&T Bell Laboratories, Murray 
Hill, NJ (1993); submitted to 1993 IEEE  Symposium on Re- 
search in Security and Privacy, Oakland, CA. 

6. D. L. Chaum,  “Untraceable  Electronic Mail, Return Ad- 
dresses, and Digital Pseudonyms,” Communications of the 
ACM 24, No. 2, 84-88 (February 1981). 

7. H. Biirk and A. Pfitzmann, “Payment Systems Enabling Se- 
curity and Unobservability,” Computers and Security 8, 
No. 5 ,  399-416 (August 1989). 

8. B.  Cox, J.  D. Tygar, and M. Sirbu, “NetBill Security and Trans- 
action Protoco1,”Proceedings of the First USENIXElectronic 
Commerce  Workshop, USENIX, New York (July 1995), pp. 
77- 88. 

9. B. Pfitzmann, M. Waidner, and A. Pfitzmann, “Recthssicher- 
heit trotz Anonymitat in offenen digitalen Systamen,” Com- 
puter und Recht 3, No. 10,712-717 (October 1987), No. 11, 
796-803 (November 1987), No. 12,  898-904 (December 
1987); also published inDatenschutzund DatensicherungDuD 
14, No. 5, 243-253 (1990) and No. 6, 305-315 (1990). 

10. In our prototype  implementation, we used the  phrase  “ac- 
count-based.’’ It was somewhat confusing because certain 
practical implementations of cash-like payment systems, such 
as DigiCash’s ecash also have a notion of an  “account” in the 
bank. Thus, in the interest of avoiding confusion, we use the 
phrase “check-like’’ here. 

11. C. Neuman and G. Medvinsky, “Requirements for Network 

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998 

Payment: The NetCheque Perspective,”Proceedings ofIEEE 
Compcon ’95, San Francisco (March 1995). 

12. F. F. Masaguer, “Security in Electronic  Trading Over Open 
Networks: ADetailed Analysis and Comparison,” 14th World- 
wide  Congress on Computer and Communications Security  Pro- 
tection, C.N.1.T Paris-La Defense, France (June 1996), 
pp. 39-66. 

13. See http://www.digicash.com/ for more information. 
14. G. Medvinsky and B. C. Neuman,  “NetCash:  A Design for 

Practical Electronic Currencyon  the  Internet,” 1stACMCon- 
ference on Computerand  Communications Security, V. Ashby, 
Editor,  ACM Press, Fairfax, VA (November 1993), pp. 102- 
106. 

15. J.-P. Boly,  A. Bosselaers, R. Cramer, R. Michelsen, S. Mj0l- 
snes, F. Muller, T. Pedersen, B. Pfitzmann, P. de Rooij, 
B. Schoenmakers, M. Schunter, L. Vallte, and M. Waidner, 
“The ESPRIT Project CAFE-High Security Digital Payment 
Systems,” Proceedings of the Third European Symposium on 
Research in  Computer Security (ESORICS), Brighton, UK, 
D. Gollmann,  Editor,  number 875 in Lecture Notes  in  Com- 
puter Science, Springer-Verlag, Berlin (November 1994). 

16. See http://www.mondex.com/ for more information. 
17. Mastercard and Visa, SETSecure Elechonic Transactions Pro- 

tocol, Version 1.0 edition (May 1997); Book One: Business 
Specifications, Book Two: Technical Specification, Book 
Three: Formal  Protocol Definition; available from  http: 
//www.mastercard.com/set/. 

18. M. Bellare, J. Garay, R. Hauser,  A.  Herzberg, H. Krawczyk, 
M. Steiner, G. Tsudik, and M. Waidner, “iKP-A Family of 
Secure  Electronic Payment Protocols,” First USENIX  Work- 
shop on Electronic Commerce, New York (July 1995), pp. 89- 
106. 

19. D. E. Eastlake, B. Boesch, S. Crocker, and M. Yesil, Cyber- 
Cash Credit Card Protocol Version 0.8, Internet Draft (July 
1995). 

20. Electronic Check Proposal, Technical Report, Financial Ser- 
vices Technology Consortium (1995). 

21.  B. Pfitzmann and M. Waidner, Properties of Payment Sys- 
tems-General Definition Sketch and Classification, Research 
Report R Z  2823 (#90126), IBM Research (May 1996). 

22. B. Pfitzmann and M. Waidner,  “Integrity  Properties of  Pay- 
ment Systems,” private communication of work in progress 
(December 1996); contact  the  authors for the current status 
of the work. 

23. Other names to  denote the same concept have been used in 
the literature. The wordpocket appears to  be gaining favor. 

24. In the  prototype  implementation, this hierarchy was named 
PurseServices. Here we opt for a  more intuitive name. 

25. SEMPER Consortium, Basic Services:Architecture and Design, 
Deliverable DO3 of ACTS Project AC026, Public Specification 
(September 24,1996); available from http://www.semper.orgi 
info/index.html#deliverables. 

26. Sometimes the word till is used to  denote  a receive-only purse. 
27.  M. Blaze, J. Feigenbaum,  and J. Lacy, “Decentralized  Trust 

Management,” Proceedings of the IEEE Symposium on Re- 
search in Security andPrivacy, Oakland,  CA, IEEE Computer 
Society, Technical Committee  on Security and Privacy, IEEE 
Computer Society Press, Los Alamitos, CA (May 1996). 

28. J. Linn, Generic Security Service Application Program Inter- 
face, Version 2, Internet Network Working Group,  Standards 
Track,  Request  for Comments: RFC 2078 (January 1997); 
obsoletes RFC 1508. 

29. A.  Bahreman,  “Generic Electronic Payment Services: Frame- 
work and Functional Specification,” Second CJSENIX Work- 

ABAD PEIRO ET AL. 87 



shop on Electronic Commerce, USENIX, Oakland, CA (No- pects of dependability in distributed systems. He has  coauthored 
vember 1996), pp. 87-103. numerous publications in these fields. Dr. Waidner received his 

30. S. P. Ketchpel, H. Garcia-Molina, A. Paepcke, S. Hassan, and diploma and  doctorate in computer science from the University 
S. Cousins, “U-PAI:  A Universal Payment Application In- of Karlsruhe, Germany. He is a  member of the ACM, GI,  IACR, 
terface,” Second USENIX Worhhop on Electronic Commerce, and SIAM. 
USENIX,  Oakland, CA (November 1996), pp. 105-121. 

31. See http://www-diglib.stanford.edu for more- information. 
32. See http://wwv.iavasoft.com/commerce for more information. Reprint Order No. G321-5664. 

33.  A. Bahreman and R. Narayanaswamy, “Payment Method Ne- 
gotiation Service,” Second USENIX Workshop on Electronic 
Commerce, USENIX,  Oakland, CA (November 1996), pp. 
299-314. 

34. See http://www.chipper.com/ for more information. 

General reference 

For a collection of WWW pointers on electronic  commerce, see 
http://www.semper.orgisirene/outsideworld/ecommerce.html. 

Accepted for publication August 20, 199% 

Jose L. Abad  Peiro IBMResearch  Division,  Zurich  Research Lab- 
oratory,  Saumerstrasse 4, 8803 Ruschlikon, Switzerland  (electronic 
mail: jla@zurich.ibm.com). Mr.  Abad  Peiro is a  member of the 
network security research group at the IBM Zurich Research Lab- 
oratory. He received an MS. in computer science from the  Uni- 
versidad Politkcnica de Valencia, Spain, and finished the last year 
of telecommunications engineering in the  Ecole  Nationale Su- 
ptrieure des Teltcommunications de Bretagne,  France.  Prior to 
joining IBM, he was a network manager in the communications 
division of the  European Space Agency in Darmstadt, Germany. 
He is pursuing a  Ph.D. in computer science from  the Catholic 
University of Louvain. Mr.  Abad  Peiro is a  member of the ACM. 

N. Asokan IBM Research  Division, Zurich Research Laboratoly, 
Saumerstrasse 4, 8803 Ruschlikon, Switzerland  (electronic  mail: 
aso@zurich.ibm.com). Mr. Asokan has been  a  member of the net- 
work security research group at  the IBM Zurich Laboratory since 
1995. His research  interests  include network security, electronic 
commerce, and mobile computing. He received his B.Tech. in 
computer science and  engineering from the  Indian  Institute of 
Technology, Kharagpur, an M.S. in computer science from Syr- 
acuse University, and is a  candidate for a Ph.D. in computer sci- 
ence  from the University of Waterloo.  From 1990 to 1995, he 
was a software systems specialist at  the University of Waterloo, 
working primarily on network security issues, Mr. Asokan is a 
member of the  ACM. 

Michael Steiner IBM Research  Division, Zurich Research Lab- 
orato y, Saumerstrasse 4, 8803 Ruschlikon, Switzerland  (electronic 
mail: sti@zurich.ibm.com). Mr. Steiner is a  research staff mem- 
ber of the network security research group  at  the IBM Zurich 
Research Laboratory, where he works on security in network man- 
agement  and  electronic commerce. His interests include secure 
and reliable systems as well as cryptography. He received a  Di- 
ploma in computer science from  the Swiss Federal Institute of 
Technology (ETH). Mr.  Steiner is a  member of the  ACM. 

Michael Waidner ZBM Research  Division, Zurich Research Lab- 
oratoly,  Saumerstrasse 4, 8803 Riischlikon, Switzerland  (electronic 
mail: wmi@zurich.ibm.com). Dr. Waidner is the  manager of the 
network security group at the IBM Zurich  Research  Laboratory. 
His research  interests include cryptography, security, and all as- 

88 ABAD PEIRO  ET  AL. IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998 


