42 CHENG ET AL

A security architecture
for the Internet Protocol

In this paper we present the design, rationale,
and implementation of a security architecture for
protecting the secrecy and integrity of Internet
traffic at the Internet Protocol (IP) layer. The
design includes three components: (1) a security
policy for determining when, where, and how
security measures are to be applied; (2) a
modular key management protocol, called
MKMP, for establishing shared secrets between
communicating parties and meta-information
prescribed by the security policy; and (3) the IP
Security Protocol, as it is being standardized by
the Internet Engineering Task Force, for applying
security measures using information provided
through the key management protocol.
Effectively, these three components together
allow for the establishment of a secure channel
between any two communicating systems over
the Internet. This technology is a component of
IBM’s firewall product and is now being ported to
other IBM computer platforms.

As the Internet evolves from an academic and
research network into a commercial network,
more and more organizations and individuals are
connecting their internal networks and computers
to it. The secrecy and integrity of the data transmit-
ted over the Internet have become a primary con-
cern, and cryptographic data encryption and authen-
tication constitute the tools to address this concern.
We subscribe to the view that the Internet Protocol
(1p) layer! is a good place to secure the data being
communicated. Reasons include: (1) The 1P layer is
at the choke point of Internet communication; it can
capture all packets sent from the higher-layer pro-
tocols and applications and all packets received by
the lower-layer network protocols. (2) By the very

0018-8670/98/$5.00 © 1998 1BM

by P.-C. Cheng
J. A. Garay
A. Herzberg
H. Krawczyk

definition of 1P, security provided at this layer is in-
dependent of lower-layer protocols. (3) Security pro-
vided at this layer can be made transparent to the
higher-layer protocols and applications.

Many application environments can benefit from se-
curity provided at the IP layer. Figure 1 depicts some
of them, including mobile-to-base communication,
telecommuting, and site-to-site or system-to-system
communication.

Three components are needed in order to provide
IP layer security through cryptographic means:

1. A security policy to define the characteristics of
the desired security. Such a policy specifies how
the packets between two communicating systems
must be protected.

2. Akey management protocol to establish and main-
tain the necessary information as prescribed by
the security policy. Such information usually in-
cludes cryptographic algorithms, secret keys, and
other parameters shared between two communi-
cating systems.

3. A protocol for security at the Ip layer to protect IP
packets as prescribed by the security policy, us-
ing information provided by the key management
protocol. In our design, this protocol is the emerg-

©Copyright 1998 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

Figure 1 Some applications of secure tunnels

DB CLIENT. |

T 5
DBCUE‘NT\l |

ORGANIZATION 1

= e = SECURE TUNNEL

ing Internet standard IP Security (IPSEC) Proto-
col.”

Also needed is a concept to thread the three com-
ponents together; this is the secure tunnel concept
discussed in the next section. In a nutshell, a secure
tunnel is a secure passage for the IP packets trans-
mitted between two communicating systems. The
characteristics of a secure tunnel are defined by the
security policy; the tunnel is established and main-
tained by the key management protocol, and the pro-
tection of IP packets is carried out through the IPSEC
protocol.

This paper® presents the protocols and system ar-
chitecture that implement the above three compo-
nents and the secure tunnel concept. At the heart
of our security architecture are the Modular Key Man-
agement Protocol (MKMP) and the IP Security Proto-
col. MKMP provides the necessary information to
establish a secure tunnel, and IPSEC uses this infor-
mation to provide data security by cryptographic
means. MKMP is a set of protocols that we have de-
signed for the management of the cryptographic keys
used by secure tunnels. It provides secure mecha-
nisms for the derivation and periodic refreshment
of the cryptographic keys as required by the multi-

IBM SYSTEMS JOURNAL, YOL 37, NO 1, 1998

WEB CLIENT

’ BRANCH OFFICE 2
¢ ORGANIZATION 2

ple cryptographic functions used within a secure tun-
nel.

IPSEC is an Internet standard from the Internet En-
gineering Task Force (IETF) IPSEC Working Group.
(Originally described in References 2, 4, and 5, the
IPSEC specifications are now under revision. See Ref-
erences 2, 4, and 5 and follow-ups.) IPSEC is essen-
tially an encapsulation protocol, namely, one that de-
fines the syntax and semantics of placing one packet
inside another. First, IPSEC protocol-specific oper-
ations are performed on an IP packet to protect its
secrecy or integrity, or both, by cryptographic algo-
rithms; then the output of the operations is appended
to an IPSEC protocol header to form an IPSEC pack-
et; finally, the IPSEC packet is placed inside an 1P
packet so it can be routed through the Internet.

An early prototype of our design became part of IBM’s
firewall product. In addition, our key management
approach and techniques have had an impact on the
Internet standard proposed by the IETF IPSEC Work-
ing Group.®

An early proposal for providing IP layer security can
be found in swiPe.”® However, our work differs from
swlPe in several aspects, in particular, in that: (1)

CHENG ET AL. 43

the key management protocol is implemented and
linked with network layer security protocol, and (2)
the network layer security functionality is placed in-
side the kernel 1P module and not in a network de-
vice driver.

In the remainder of the paper, the next two sections
describe the notion of an IP Secure Tunnel and the
MKMP, respectively. The fourth section outlines the
format of the IPSEC protocols. The fifth section pre-
sents the architecture and provides the details of our
implementation, and the sixth section discusses its
performance. In concluding the paper we mention
some related ongoing activities and directions for
future work. A frequently asked question is, why
are both an 1P layer security mechanism and a ses-
sion layer security mechanism—such as the Secure
Socket Layer (ssL)® and Transport Layer Security
(TLS) ""—needed. In the Appendix we present a com-
parison of features for IP and session layer security.

IP Secure Tunnel

In this section we define the concept of a secure tun-
nel. We first make some clarifications on how the
word “tunnel” is used in both the IPSEC arena and
in this paper. We then discuss the concept of a se-
curity association on which the secure tunnel concept
is based. We finally discuss the secure tunnel con-
cept itself,

On the word “tunnel.” The word funnel is widely used
in the IPSEC arena. However, depending on the con-
text, it could refer to several different but related con-
cepts:

1. Conceptually, it refers to a secure passage (or chan-
nel) between two systems across the insecure In-
ternet. This passage is a realization of the secur-
ity policies of two systems. In the context of IPSEC,
a security policy establishes the specific require-
ments and meta-characteristics of a secure passage
between two given systems. The meta-character-
istics of a passage usually include the identities
or addresses of its two endpoints, the encapsu-
lation mode, the cryptographic algorithms to be
used, parameters for the algorithms (such as key
lifetime and key size[s]), etc. A security policy may
also demand more than one secure passage be-
tween the two systems, each for a specific type of
communication.

2. Implementation-wise, the word tunnel refers to
a set of items of information shared between the
endpoints of a secure passage. This set enables

44 CHENG ET AL

the realization of a secure passage; it includes in
particular the meta-characteristics and secret keys
used by the cryptographic algorithms. In the IPSEC
terminology, such a set is called a security asso-
ciation. The next subsection elaborates on SAs in
more detail. However, as the subsection subse-
quent to that explains, an SA is not a secure tun-
nel but an incarnation of a secure tunnel during
a particular time interval. An SA is usually cre-
ated and maintained by a key management en-
gine.

3. Finally, in the standard terminology of IPSEC, tun-
nel refers to one of the two encapsulation modes
defined by the IPSEC standard: tunnel mode and
transport mode. Both modes can be used to con-
struct a secure passage, although they provide
slightly different protection. The fourth section
presents a more detailed discussion on the IPSEC
standard.

From now on, unless otherwise specified, we use the
words “tunnel” or “secure tunnel” to denote the se-
cure passage concept or an instance of it.

Security association. A security association, or SA,
is a set of items of information that, when shared
between two commmunicating parties, enables the two
parties to protect the communication in a desired
way.

An IPSEC SA? includes the following meta-character-
istics:

» Destination ID/IP address: the intended receiver
of IPSEC packets

» Security protocol: the kind of security—integrity
or secrecy or both—provided by the SA on the 1P
packets. Under the security protocol, a set of cryp-
tographic algorithms (called transforms in IPSEC)
and its parameters, such as key lifetime and key
size, are specified.

~ Secret keys: the keys to be used by the crypto-
graphic transforms

» Encapsulation mode: indicating which part(s) of
the 1P packet will be protected by the SA

~ Security Parameter Index (SP1): the identifier of the
SA. On a given system, the SPI should be unique
with respect to the destination address of the SA
so that the pair (destination address, SPI) uniquely
identifies an SA. An IPSEC packet constructed ac-
cording to an SA carries the SPI of the SA so that
the destination will know how to process the
packet.

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

The encapsulation mode of the SA, the security pro-
tocol, and the cryptographic transforms define the
operations to be performed on a packet. These op-
crations are discussed in more detail later.

An IPSEC SA is unidirectional in the sense that the
information in it should only be used to construct
and process IPSEC packets intended for the destina-
tion address in the SA. However, a secure tunnel is
bidirectional. Thus, a pair of IPSEC SAs, one for in-
bound traffic and another for outbound traffic, are
needed for each of the endpoints of a secure tunnel.
Both MKMP and ISAKMP/OAKLEY, the new standard
for IPSEC key management,®'' always generate such
pairs. The two SAs in a pair share the same meta-
characteristics but have different keys. Our design
treats such a pair as a bidirectional SA.

IPSEC also includes the notion of an 54 bundle. An
SA bundle is a pair of IPSEC SAs with different secur-
ity protocols and transforms combined together to
provide the desired security. For example, if one SA
protects the integrity of packets and the other pro-
vides secrecy, then the two SAs can be combined to
protect both integrity and secrecy. Note that the two
SAs in a bundle are shared between the same two
systems and that the destination addresses of the two
SAs must be the same. In the fourth section we dis-
cuss when an SA bundle may be needed. Like an
IPSEC SA, an IPSEC SA bundle is unidirectional, so a
pair of SA bundles is needed for bidirectional secur-
ity. Both MKMP and ISAKMP/OAKLEY can generate
pairs of SA bundles. Our design treats such pairs as
a bidirectional SA bundle.

From now on, unless otherwise specified, we will use
the words “security association” or “SA” to refer to
a bidirectional SA or SA bundle that provides the de-
sired security. We will use the words “IPSEC security
association” or “IPSEC SA” to denote a unidirectional
SA as specified in Reference 2.

Secure tunnel. This subsection explains what we
mean by a “secure tunnel” in this paper and how it
differs from a security association. We arrive at the
concept through an example of the series of steps
that are needed to establish secure communication
between two systems.

Consider the case of two sites or systems 4 and B
that are connected to the Internet through two sys-
tems X and Y, respectively, where 4 and X, and B
and Y may or may not be the same. As a first step
toward having secure communication, 4 and B ne-

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

gotiate a (hypothetical) set of rules as the policy for
communication between them (see Reference 12 for
a clear explanation of a good, concise security pol-

icy).

Policy 1:

Rule 1—Packets of type 1 must go through a
secure passage between X and Y, and
the meta-characteristics of this pas-
sage are in set 1.

Rule 2—Packets of type 2 must go through a
secure passage between X and Y, and
the meta-characteristics of this pas-
sage are in set 2.

Here the type of packet is usually defined by the
source and destination addresses of the packet, the
transport layer protocol (e.g., Transmission Control
Protocol [TCP] or User Datagram Protocol [UDP]),
and the port numbers or types, etc.

Although at first sight Policy 1 seems reasonable, an-
other piece of information is needed, namely, the
keys to be used with the cryptographic algorithms
insets 1 and 2 in order to enforce the policy. In other
words, the references to sets 1 and 2 must be trans-
lated into references to SAs. Rewriting Policy 1 yields
the following.

Policy 2:
Rule 1—Packets of type 1 must go through a
secure passage between X and Y us-
ing SA 1.
Rule 2—Packets of type 2 must go through a
secure passage between X and Y us-
ing SA 2.

Policy 2 is already usable but still not satisfactory
from a cryptographic standpoint. The reason is that
the keys in a security association should be changed
frequently in order to defeat cryptanalysis or brute-
force attacks. One first option could be changing the
keys in an SA frequently but keeping everything else
the same. It turns out that this solution is not good
either. In such a solution, the same reference to an
SA must be reused for a key and its replacement. In
practice, the life of a key and its replacement must
have some time overlap in order to avoid a disrup-
tion of communication caused by expiration of the
key. Using the same reference for different keys will
cause false security alarms because the wrong key
is used to check the integrity of a message or a sig-
nificant processing overhead, or both, because both
the old key and the new key have to be tried.

CHENG ET AL. 45

Therefore, in our design, a security association ex-
pires as its keys expire. This design decision makes
Policy 2 very impractical because a stable security
policy cannot be defined in terms of short-lived SAs.
To resolve the conflict between the need for a sta-
ble, relatively long-term security policy and the need
for changing keys frequently, we took a further look
at a security association and concluded that its meta-
characteristics (i.e., the SA minus its keys) are rel-
atively stable and long term. In fact, the strength of
protection usually does not depend on the exact val-
ues of the keys, but rather on their sizes, lifetime,
the cryptographic algorithms, etc. With this conclu-
sion, we are now ready to introduce the secure tun-
nel concept:

A secure tunnel is a secure passage between two sys-
tems across the insecure Internet. It has a set of
meta-characteristics determined by the security pol-
icies of the two systems. Such a secure tunnel is re-
alized by a scries of SAs that change with time; these
SAs share the same meta-characteristics but have
different cryptographic keys.

Each of these SAs is t-he replacement of its imme-
diate predecessor and can be considered an incar-
nation of the secure tunnel during the lifetime of the
SA.

With the secure tunnel concept, the final form of the
security policy becomes the following.

Policy 3:
Rule 1—Packets of type 1 must go through se-
cure tunnel 1 between X and Y.
Rule 2—Packets of type 2 must go through se-
cure tunnel 2 between X and Y.

Our implementation assigns each secure tunnel an
identifier (ID). Each SA will include the 1D of the se-
cure tunnel to which it belongs; this inclusion of the
secure tunnel ID provides a two-way linkage between
a secure tunnel and its current incarnation. In the
fifth section more details are given on these aspects
of the implementation. ‘

From now on, if a packet is encapsulated according
to the information in a secure tunnel, we say that
the packet goes or comes through the tunnel.

Modular Key Management Protocol

The basic goal of a key management scheme is to
provide the two communicating parties with a com-
mon, “freshly” shared cryptographic key that is

46 CHENG ET AL.

known to these parties only. In general, a typical key
management scheme will achieve that in two phas-
es: one in which a “master key” is shared between
the parties, and the other in which the already-shared
master key is used for the derivation, sharing, and
refreshment of additional “session keys.” The term
“session key” is used here to denote short-lived keys
(say, in the range of seconds or minutes); it does not
imply or require a session-based communication
model. The frequent change in the values of these
keys usually requires a fast way to generate and share
the keys so as to reduce the key exchange overhead
in terms of computation and communication. The
term “master key” is used to denote keys with a
longer life period than a session key (say, a range
of hours), and then they may allow for more time-
consuming procedures for their generation and shar-
ing.

The split into these two phases is not mandatory, and
in fact there are systems that do not establish (at least
explicitly) this separation. However, we argue here
that for most scenarios this explicit separation has
a significant methodological and design value. In par-
ticular, we advocate the separation of these functions
into two modules: one for the sharing of the master
key, and one for the key management “below” the
shared master key. Thus, our approach to key man-
agement is hierarchical—namely, session keys are de-
rived from the shared master keys and, in turn, the
master keys are derived using any of the well-estab-
lished key exchange methods: public key exchange,
key distribution centers (e.g., Kerberos'?), and man-
ual key installation. (See Reference 14 for a further
elaboration of these various scenarios and trust mod-
els.) Our hierarchical approach is illustrated in Fig-
ure 2.

In this paper we concentrate on the basic mecha-
nisms for the derivation and management of the ses-
sion keys (i.e., the “lower” module). Our protocol
can be extended to support the derivation of master
keys from public keys; however, the description of
these particular mechanisms is beyond the scope of
this paper. We refer to SKEME™ for a design of such
extensions as well as for a more comprehensive treat-
ment of security requirements and mechanisms for
key management. We now turn to the description
of the session key protocol.

Session key negotiation protocol. The basic goal of
a key negotiation protocol is to provide both inter-
vening 1P nodes with shared session keys. The keys
are then used for data authentication and encryp-

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

tion, thus allowing the establishment of a secure tun-
nel between the two parties.

We now list some of the goals and requirements that
our session key protocol is required to support.

Security handshakes—A basic assumption that we
make in this paper is that parties are able to es-
tablish periodic two-way (or interactive) commu-
nication, as opposed to just sending information in
a one-way mode. This interactive mode of key re-
freshment allows for the parties to have periodic
handshakes whereby cryptographic information is
refreshed and verified by both parties simulta-
neously. This mode has a significant impact on the
security aspects of the protocol, as pointed out be-
low.

Secrecy and authenticity—For the intervening par-
ties the protocol needs to guarantee that only the
intended party learns the key exchanged and that
this key is “fresh,” random, and unique. Secrecy and
authenticity of the exchanged key need to be pro-
tected against passive (eavesdroppers) and active
(man-in-the-middle) attackers, and these proper-
ties must be guaranteed for as long as the under-
lying cryptographic functions in use are secure
against such adversaries.

Efficiency—Another important goal of a key ne-
gotiation protocol is efficiency, namely, to keep both
the number of messages exchanged between the
parties and the computational overhead (e.g., the
number of expensive public key operations) to a
minimum. It is worth noting that by having a highly
efficient method for session key renewal, the need
for frequently updating the master key, which is usu-
ally computationally intensive, is alleviated.

Forward secrecy—Another consideration is the
level of security provided by the protocol. One de-
sired property of the session keys is that of forward
secrecy:' Even if an attacker is eventually able to
derive the key for one session, past and future ses-
sion (and, of course, master) keys are not compro-
mised. Our protocol achieves this level of security
for session keys. We remark that achieving such se-
curity even in the case of the compromise of a mas-
ter key requires relatively costly mechanisms such
as a Diffie-Hellman exchange for the sharing of the
master keys. However, this cost is usually compen-
sated by the long-lived nature of these keys.

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

Figure 2 Hierarchical approach to key management

MANUAL KDC PUBLIC KEY

MASTER KEY

Simplicity—Finally, simplicity and being amenable
to analysis and proof are important features of any
cryptographic protocol.

Figure 3 shows the “cryptographic skeleton” of the
session key negotiation protocol, including only the
relevant (i.e., related to authentication) information.
In the full implementation of the protocol, further
information, such as cryptographic parameters, ne-
gotiation attributes, key identifiers, etc., is trans-
mitted and authenticated between the parties, us-
ing the same two communication flows. There are
two parties, a sender S and a receiver R. S is the
party that initiates the protocol. In the presentation
of the protocol we use the following terminology:

IDy = The identity of party X.

Ny = A nonce (i.e., a random number) chosen
by party X.

K = The currently shared master key. In our
case it represents a pair of keys K, K.

MAC, = Amessage authentication code (or integ-

rity check function) applied to a piece of
information for authentication using a se-
cret key k. Examples include block ciphers
(e.g., Data Encryption Standard, or DES,
in cipher block chain-message authenti-
cation code, or CBC-MAC, mode'®), and
keyed cryptographic hash functions (e.g.,
keyed-MDs5,'7 HMAC,™® etc.).

fe = A pseudorandom function with key 4.
Roughly speaking, pseudorandom func-
tions" are characterized by the pseudo-
randomness of their output; namely, each
bit in the output of the function is unpre-

CHENG ET AL. 47

Figure 3 MKMP—the session key negotiation protocol

S
S RANDOMLY CHOOSES Ng (N SHARED IN PREVIOUS RUN)

“ Ng MACy (Np,Ng,IDg,IDg)

N'g, MACy, (Ng,N'5, D, IDg)

R RANDOMLY CHOOSES N'g |

SK: = szm

LET T = MACy, (V'3 Ng)

dictable if £ is unknown. We use pseudo-
random functions primarily for the der-
ivation or expansion of key material given
an initial key k. The examples of MAC
functions given above are also commonly
believed to be pseudorandom functions.

SK = The session key, outcome of the proto-
col.

As Figure 3 shows, the protocol consists of two mes-
sages (or flows). It is assumed that S and R already
share two master keys, K, and K,, as well as the
nonce N, exchanged in a previous run of the pro-
tocol. New nonces are exchanged and authenticated
in each run of the protocol under the MAC function
keyed with the master key K. There is no explicit
transmission of a cryptographic key from one party
to the other; instead, the shared session key is com-
puted by both parties on the basis of the master key
K, and the fresh information exchanged in the pro-
tocol. Upon (successful) termination of the proto-
col, parties § and R have exchanged a session key
SK, besides mutually authenticating each other. (We
note that the same protocol allows for periodic key
refreshments within a session.)

We now turn to argue how the protocol satisfies the
requirements listed above. Although we omit from
this paper any formal proofs, we note that the pro-
tocol presented here is structured, simple, and thus
easier to analyze. Hence, rigorous methods similar
to those of References 20 and 21 can be used to es-
tablish the desired security properties of the proto-
col.

48 CHENG ET AL.

The protocol is essentially a “cryptographic hand-
shake” that allows the parties to directly authenti-
cate one another. The challenge provided by the
nonce guarantees the freshness of the authentica-
tion and avoids the so-called replay attacks. The bind-
ing between master key, nonces, and identities pro-
vides security even in the case where several such
protocols are run in parallel, and thus it prevents in-
terleaving attacks.™® We note that keeping a shared
nonce (Ny) between runs of the protocol is not es-
sential; it can be replaced by the use of time stamps
(at the expense of requiring a secure clock synchro-
nization) or by adding an extra flow to the protocol
(at the expense of performance). The nonce also
serves the purpose of alleviating the effect of the so-
called clogging, or “denial of service” attacks, as it
allows for rapid detection and dumping of mali-
ciously replayed traffic. In any case, the nonces do
not require any secrecy; that is, they can be trans-
mitted in the clear.

Also notice, as mentioned before, that the session
key SK is not explicitly transmitted. This avoids the
need to encrypt this key as well as the need to ex-
plicitly authenticate it. The authenticity and fresh-
ness of SK are derived from the authenticity and
freshness of the expression 7. Even if an adversary
succeeds in replaying an old message from § to R
(for example, in case a time stamp is used instead
of the nonce N), the freshness of SK is guaranteed
by the incorporation of N%, chosen by R, into the
MAC expression T from which SK is derived. Thus,
the session keys that are derived are fresh and in-

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

dependent from the past session keys (the only ex-
isting dependence is to the current shared master

key).

Regarding efficiency, the protocol requires only two
message flows and no expensive operations (e.g., ex-
ponentiations) at all, given that the parties already
share a master key; only efficient symmetric-key tech-
niques are used. The forward secrecy of the session
key SK follows from the unpredictability and one-
wayness properties of pseudorandom functions and
our particular application of these functions to de-
rive SK.

‘We stress that usually more than one key is required
for a single security association. For example, one
needs different keys for the encryption and for the
authentication of information; in some cases the keys
are used unidirectionally; etc. The derivation of more
than one key using the protocol of Figure 3 is
straightforward: Instead of a single application of
fx,(T), one can apply f, (“transform-id,” T) for each
required key, where “transform-id” is a unique iden-
tifier that identifies the algorithm for which the key
is to be used (e.g., DES-CBC), the key length, the di-
rection of the communication (e.g., for message au-
thentication from § to R only), etc.

Finally, we note that one can replace the use of the
message authentication code (MAC) function in the
above protocol with the pseudorandom function f.
The latter would provide the authentication prop-
erties of a message authentication function. (These
properties follow from the strong unpredictability re-
quirements of a pseudorandom function.) In this
case, one could use only one master key, K, to key
both the uses of fx as a MAC as well as for its uses
for key derivation.

The IPSEC protocols

This section discusses the Internet IPSEC protocols
presented in References 2, 4, and 5. These proto-
cols are not in their final form yet, though they are
converging toward a stable specification. These doc-
uments will eventually become standard RFCs (re-
quests for comments). We refer the reader to them
for more details.”? We previously discussed the con-
cept of an IPSEC security association, which is essen-
tial to the protocols. Now we discuss the syntax and
semantics of an IPSEC packet by explaining how an
IP packet carrying an IPSEC packet is constructed.

An 1PSEC packet is constructed according to the in-
formation in an IPSEC SA, and its format depends on

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

the security protocol in that SA. The security pro-
tocol can be either Encapsulating Security Payload
(ESP)* or Authentication Header (AH).? ESP protects
the secrecy and, optionally, the integrity of a packet,
whereas AH protects only integrity. Secrecy is pro-
tected through encryption, and integrity is protected
by a MAC function. The specific algorithms and keys
(and related parameters) for computing these cryp-
tographic functions are specified in the IPSEC SA. The
default IPSEC encryption algorithm is DES in CBC
mode; the default algorithm for IPSEC message au-
thentication code is HMAC-MD3. '8%32

The high-level layout of an ESP packet is shown in
Figure 4, and the high-level layout of an 44 packet
is shown in Figure 5. An IPSEC packet is either an
ESP packet or an AH packet.

Although the ESP protocol allows for the application
of encryption without integrity protection, this mode
of operation is strongly discouraged. Except for very
rare exceptions, a packet requiring secrecy will also
require integrity protection. Moreover, as demon-
strated in Reference 25, the lack of integrity protec-
tion may lead to a loss of confidentiality even if a
secure encryption function is applied.

Another measure for integrity protection is provid-
ing an anti-replay defense. This type of defense pre-
vents an attacker from re-injecting previously authen-
ticated 1P packets into the communication stream.
More precisely, anti-replay measures make it pos-
sible to detect such “replayed” packets. To imple-
ment these measures, the AH and ESP protocols add
a sequence number field to their headers. This field
is meaningful only when the packet is authenticated
via a MAC function. The value of the sequence num-
ber is maintained in an IPSEC SA. A sequence num-
ber is 32 bits long and always starts from 1. It is in-
cremented by 1 each time an IPSEC packet is
constructed according to the SA, and it is not allowed
to wrap around. The receiver of an IPSEC packet (the
“destination” in an IPSEC SA) uses a locally defined
sliding window to keep track of which sequence num-
bers have already been received. It rejects those pack-
ets that fall outside that window or that carry an al-
ready-seen sequence number.

Although the security protocol in an IPSEC SA de-
termines the format of the packet, the encapsula-
tion mode determines which part of an 1P packet is
protected. There are two encapsulation modes:

CHENG ET AL. 49

Figure 4 An ESP packet encapsulated in an IP packet

1P HEADER ESP HEADER

0 :
Ireresormsemssns ENCRYPTED

»

ESP PACKET

o1

't

Figure 5 An AH packet encapsulated in an IP packet

AUTHENTICATED

'AH HEADER, MAC

" PAYLOAD

L AH PACKET

1. Tunnel mode: This mode protects the entire IP
packet. The entire IP packet is encapsulated in an
IPSEC packet, and a new IP header is constructed
and attached at the beginning of the IPSEC packet
to form a new IP packet. The source and destina-
tion addresses may or may not be the same as those
in the encapsulated 1P packets. This mode is typ-
ically used for a secure tunnel between two firewalls,
or between a firewall and a remote system, i.e.,
whenever either of the two communicating systems
is not an endpoint of the tunnel.* The source and
destination addresses in the new IP header are the
addresses of the endpoints of the tunnel.

B0 CHENG ET AL

2. Transport mode: This mode only protects the
transport-layer packet (such as a TCP or a UDP
packet) inside an IP packet. In this mode the 1P
header is first separated from the transport-layer
packet, then the transport-layer packet is encap-
sulated in an IPSEC packet, then the IP header is
attached to the IPSEC packet to form a new IP
packet, and finally, the length, protocol, and header
checksum fields in the 1P header are modified ac-
cordingly. The source and destination addresses
in the 1P header remain unchanged. This mode
is used when the endpoints of the secure tunnel
are the two communicating systems.

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

There are two exceptions to the above description
of the two modes if the security protocol is AH:

1. Inthe case of AH, the integrity protection extends
to part of the “prepended” IP header. More de-
tails are given below when describing the proce-
dure to construct an AH packet.

2. An ESP packet can be encapsulated in an AH
packet. This may happen when an SA bundle is
used to protect secrecy and integrity. Conceptu-
ally, this case can be thought of as first construct-
ing an IP packet with an ESP packet inside, and
then using this IP packet as the input to the con-
struction of an AH packet. More details are given
toward the end of this section when the use of AH
and sA bundles are discussed.

Constructing the IPSEC packet. With the knowledge
of the security protocol, the transform, and the en-
capsulation mode, one can determine how to assem-
ble an IPSEC packet from the IP packet. We first de-
scribe the procedure to construct an ESP packet:

1. Construct an ESP protocol header; this includes
the SpI of the IPSEC SA and the sequence number.

2. Append the to-be-encapsulated packet to the ESP
header.

3. Construct an ESP trailer and append it to the to-
be-encapsulated packet. The trailer serves the fol-
lowing purposes:

— It contains the protocol number of the to-be-
encapsulated packet, such as the TCP number
(6) or the IP-IN-IP number (4, if tunnel mode
is used).

— If a block cipher (e.g., DES) is used for encryp-
tion, then the trailer contains some padding
bytes so that the size of the encapsulated
packet, the padding bytes, and the protocol
number (1 byte) will be an integral multiple of
the block size of the cipher.

4. Encrypt the to-be-encapsulated packet and the
trailer and append the ciphertext (namely the out-
put of the encryption) to the ESP header.

5. If, as recommended, integrity protection is pro-
vided, compute the message authentication code
over the ESP header and the ciphertext and ap-
pend the output of the MAC computation to the
ciphertext. This output is indicated by the “MAC”
field in Figure 4.

The ESP header, the ciphertext, and, optionally, the
MAC field form the ESP packet.

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

The procedure to construct an AH packet is as fol-
lows:

1. Construct an AH protocol header. This header in-
cludes the SPI of the IPSEC SA, the sequence num-
ber, the protocol number of the to-be-encapsu-
lated packet, and zero-filled bytes to hold the
output of the message authentication function.

2. Append the to-be-encapsulated packet to the AH
header.

3. Prepend the 1P header to the AH header.

4. Compute the message authentication code over
the 1P header, AH header, and the to-be-encap-
sulated packet; place the output in the AH header.
The output is indicated by the word “MAC” in-
side the “AH header” box in Figure 5.

The AH header and the packet attached to it form
an AH packet. One special feature of the AH pro-
tocol is that the computation of the message authen-
tication code includes the 1p header of the IP packet
that carries the AH packet. However, not all fields
in the 1P header are covered. Prior to the compu-
tation, a field in the 1P header is zeroed if its content
may change en route. Such fields are called mutable
in Reference 5. After the computation, the values
of these mutable fields must be restored. The effi-
cient construction of an AH packet and restoration
of the mutable fields is a tricky implementation is-
sue not discussed here.

Although ESP can provide both secrecy and integ-
rity protection, AH is still needed for the following
reasons:

* If secrecy protection is not needed or prohibited
by law, AH can provide integrity protection with-
out the cost of encryption.

» The integrity protection of AH covers part of the
IP header, whereas that of ESP does not. Whether
this difference in coverage is needed depends on
the specific operational security requirements. (For
example, a military application may want to pro-
tect the sensitivity labels included in the option
fields in an IP header.) If both the difference in
coverage and secrecy protection are needed, an
IPSEC SA bundle (see earlier subsection on secur-
ity association) can be used, and the result is shown
in Figure 6. In this figure an ESP packet is encap-
sulated inside an AH packet, and the AH packet is
encapsulated inside an 1P packet. This layout im-
plies that the ESP packet is constructed first.
The sequence number field in the AH header en-

CHENG ET AL.

51

Figure 6 An ESP packet encapsulated in an AH packet encapsulated in an IP packet

]
AUTHENTICATED >

ESP HEADER

PAYLOAD

»

ESP PACKET »

AH PACKET b

Figure 7 IPSEC system architecture

ENGINE

USER

POLIGY-

POLICY CACHE

B2 CHENG ET AL

IPSEC ARCHITECTURE

PACKAGING —

1 - -

: { MKMP ENGINE

U runneL ' -
1| “TooLs . MANLAL KDC, PUBLIC KEY .
A ESSION KEY ENGINE:
: ESTABLISH, PIPELINE

1

1

1

1

1

]
'

IPSEC ENGINE H
1
i

o |

ENCAPSULATION

DECAPSULATION

e -y

CRYPTO

message .| “encrypt/decrypt
authentication -

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

ables the receiver to detect a replay attack early,
therefore saving the decryption operation.

System architecture

Figure 7 shows the system architecture of our im-
plementation on 1BM’s Advanced Interactive Exec-
utive (AIX*) operating system. It consists of three
parts. On the right of the figure is the key manage-
ment part, including the MKMP engine, the tunnel in-
terface, and the tunnel cache. On the left is the IPSEC
policy part, including the policy engine, the policy in-
terface, and the policy cache. In the middle is the IPSEC
encapsulation part, including the IPSEC engine and
the crypro engine. There is also an IPSEC-enabled 1p
engine.

The MKMP engine establishes and manages the se-
cure tunnels and stores the security associations of
these tunnels in the tunnel cache through the tun-
nel interface. The policy engine allows an adminis-
trator to define and to manage IPSEC policies; it trans-
lates a human-readable policy into binary form and
stores the binary form in the policy cache through
the policy interface. For each inbound and outbound
IP packet, the IP engine queries the policy cache on
what actions to take on the packet. For an inbound
packet, the action may be either to permit or deny
the packet, a decision that may be partially based on
what tunnel the packet has gone through. For an out-
bound packet, the action may also be to encapsulate,
meaning that the packet should go through a secure
tunnel designated by the policy. The IPSEC encap-
sulation part is invoked by the IP engine to perform
IPSEC encapsulation and decapsulation on IPSEC
packets.

We stress that an important principle followed by
our design is to decouple the IPSEC encapsulation
part from the key management part; doing so allows
us to link different key management protocols—and
their underlying distributed security infrastruc-
tures—with the IPSEC encapsulation protocol. The
linkages between the two parts are the IDs of secure
tunnels. The key management part generates SAs
with their tunnel IDs inside. The IPSEC encapsula-
tion part can use a secure tunnel ID to find which
SA is the current incarnation of the tunnel. It can
also use the destination address and SP1in a received
packet to find the corresponding SA and therefore
the secure tunnel to which the SA belongs.

Another important design principle is to decouple
the policy part from the key management part and

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

the IPSEC encapsulation part. We believe that it
should be up to the policy part to decide what to do
with a packet, whereas the other two parts should
implement the decision regardless of how the de-
cision is made. Doing so allows us to accommodate
different policy models and switch to better decision-
making mechanisms in the future. The linkages be-
tween the policy part and the other parts are also
ID’s secure tunnels; the following subsection provides
more details.

Figures 8 and 9 show the flowcharts of IP/IPSEC out-
put and input processing, respectively. IPSEC process-
ing was introduced into the so-called “vanilla 1P” pro-
cessing by adding function call hooks into the original
AIX IP code. The blocks outlined in dashes indicate
IPSEC processing. On output processing, a packet
passes through the output packet filter'**” imple-
mented by the policy cache. The outcome of output
packet filtering can be: (1) permit: proceed with va-
nilla IP processing, (2) deny: throw away the packet
and (optionally) log the event, or (3) encapsulate: per-
form IPSEC encapsulation on the packet based on the
specification of a policy-designated secure tunnel,
and then transmit the resultant new IP packet.

On input processing, a packet first passes through
the input packet filter implemented by the policy
cache. The result of input packet filtering can be:
(1) permit: proceed with vanilla IP processing, or (2)
deny: throw away the packet and (optionally) log the
event. If the result is “permit,” then after some
vanilla IP processing, the “protocol” field in the 1P
header is examined. If its value is either ESP or AH,
which indicates that the payload is IPSEC-encapsulated,
the packet is sent through the IPSEC decapsulation
process implemented by the IPSEC encapsulation
part; otherwise, the packet is passed directly up to
the transport layer protocol. In turn, the result of
IPSEC decapsulation consists of two parts: (1) the 1p
packet that was encapsulated, and (2) the ID of the
secure tunnel through which the packet has come.
This ID indicates in what way the packet has been
protected. This result is fed back to the beginning
of IP input processing and passes through the
input filter again. Now the filter can make decisions
based on the packet and the way in which it was pro-
tected. For example, the policy can state “accept the
packet only if it came through a certain tunnel.” We
now describe the parts of the architecture in more
detail.

The IPSEC policy part. Conceptually, an IPSEC pol-
icy consists of packet-filtering rules. These rules de-

CHENG ET AL. §3

Figure 8 IP/IPSEC output processing

FILL IN IP HEADER

v

AND GATEWAY (IF NEEDED)

\ 4

ROUTING DEGISION, SELECT QUTGOING NETWORK INTERFACE

=7 OUTPUT FILTERING

" PERMIT '

ASSIGN SCURCE ADDRESS IF NOT SPECIFIED

-
- |

COMPUTE IP HEADER CHECKS

UM

NO

CHOP INTO
FRAGMENTS?

FRAGMENTATION

A

SEND THROUGH THE INTERFACE

termine whether an IP packet should be received (i.e.,
passed up to the transport layer protocol) or trans-
mitted. Basically, the rules are put in a list, and the
first rule that matches the relevant information of
the IP packet determines the decision. A rule is com-
posed of several fields, including the action to be
taken (permit, deny, or encapsulate), the source ad-
dress and address mask, the destination address and
address mask, the transport protocol, the port num-
ber or message type (if applicable), the direction (in-
bound or outbound), and the secure tunnel ID. For
an outbound packet, a nonzero tunnel ID specifies
that the packet should be encapsulated by the IPSEC
encapsulation defined by the tunnel—i.e., the packet
should go through the tunnel. For an inbound packet,
a nonzero tunnel ID says that the packet should be

B4 CHENG ET AL.

protected by the IPSEC encapsulation designated by
the tunnel ID—the packet should have come through
the tunnel.

We have realized the policy part with the following
components:

s Administration tools—These tools are applications
running in the user space that allow the admin-
istration to create and modify IPSEC policies. One
important function of the tools is to translate hu-
man-friendly policy statements into binary form
and to put the binary form into the kernel policy
cache through the policy interface.

» Policy interface—This interface is a pseudodevice
driver acting as the interface between the admin-

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

Figure 9 IP/IPSEC input processing

1P INPUT

FRAGMENT REASSEMBLY

i e il >
: v
. SANITY CHECK
1
! "
: ST T T
H ;
| |
! . 2 e ,
‘‘‘‘ b ' DROP PACKET
; =7~ " INPUT FILTERING P , DR I
; ——— - DENY
1 ~r 7
i ' PERMIT
: v
| 1P OPTION PROCESSING
1
t
i
1
: | FORWARDING
1
1
1
.
1
t
]
.
1
+
1
t
i
1
1

DECAPSULATED
IP PACKET +
REF TO TUNNEL <+
e Gl . X COMPLETE IP DATAGRAM
' YES __.--"7C -~
| IPSEC DECAPSULATE VB~ PSECPACKET T T2s
b e e e o - L
-
No t
1
v

DISPATCH TO TRANSPORT PROTOCOLS

istration tools and the policy cache. It allows the
administration to change or view the kernel pol-
icy cache.

s Policy cache—This cache is a repository for IPSEC
policies in the kernel, used by the 1P module. The
policy cache exports an IP packet filter interface
to the IP module. The interface is divided into in-
put filtering and output filtering. The input to the
interface is an IP packet. For input filtering, the
output is a simple permit or deny answer. For out-
put filtering, the output is a permit, deny, or en-
capsulate answer. In the case of encapsulate, the
packet is encapsulated according to the current SA
in the corresponding tunnel.

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

In our implementation, the policy cache can only be
changed as a whole. If the administration tool wants
to add one rule to the policy, it will read the whole
cache into a copy in the user space, add the rule to
the copy, and write the modified copy back to the
policy interface. The policy interface will lock the
policy cache, do a pointer-swap operation to make
the cache point to the new copy, and then unlock
and delete the old copy. The reason for this whole-
sale manner of operation is performance. Since the
processing of every packet involves searching and
matching the policy cache, a per-rule lock would def-
initely degrade the performance. In fact, our expe-

CHENG ET AL. §§

rience shows that the number of locking operations
on the policy cache should be kept to a minimum.

The key management part. A brief description of the
key management part is given at the beginning of
this section. This subsection discusses the MKMP en-
gine and tunnel administration tools shown in Fig-
ure 7. More details can be found in Reference 3.

The MKMP engine. The MKMP engine establishes and
manages secure tunnels by creating and refreshing
SAs within the tunnels. It also caches the SAs of a se-
cure tunnel in the tunnel cache through the tunnel
interface. The engine is divided into two modules:
the session key engine and the master key engine,
which we now describe in detail.

The master key engine negotiates the master keys,
the first shared nonce, and the meta-characteristics
of a secure tunnel, and passes the information to the
session key engine in a data structure called master
key context. The master key is actually a pair of keys:
one key is used to authenticate the messages from
the session key protocol, and the other is used as an
input to the pseudorandom function in order to de-
rive session keys (see Figure 3). The master key en-
gine can be instantiated in several ways: It can be
a simple user-level command that implements the
manual distribution of master keys, or it may use a
Key Distribution Center-based protocol, such as Ker-
beros or NetSP,? or it may be a process that derives
master keys using public key cryptography, such as
ISAKMP/OAKLEY.*"" At present, we have imple-
mented two master key engines: (1) manual param-
eter negotiation and key distribution, and (2) man-
ual parameter negotiation and Diffie-Hellman key
exchange,” authenticated by a preshared secret. We
are currently in the process of building a prototype
of the ISAKMP/OAKLEY protocol.

The session key engine implements the session key
protocol described earlier. It accepts a master key
context from the master key engine and uses this con-
text to establish and maintain a secure tunnel with
the session key engine on the other end of the tun-
nel. A run of the session key protocol derives two
session keys, one for IP packet encryption and the
other for authentication. The IDs of the encryption
and authentication algorithms are used to index the
pseudorandom functions to generate different keys.
The session key engine refreshes a key before it ex-
pires to ensure uninterrupted secure communication.
The length of the overlapping period between the
old and new keys is in the master key context. For

BB CHENG ET AL

each key refreshment, the session key engine cre-
ates new SAs with new SPIs and keys, but keeps all
other information unchanged.

Figure 10 shows the architecture of the session key
engine and the master key engine and their relations
to other parts of the operating system.

The design goals of this part of the architecture are
modularity, flexibility, and portability. Since we en-
vision the possibility of the session key engine inter-
operating with many master key engines of different
types, the session key engine is an independent pro-
cess separated from the master key engines. A ses-
sion key context is sent in a UDP message from the
master key engine to the session key engine. In or-
der to prevent an adversary from sending a bogus
master key context to the session key engine, the con-
tent of the UDP message is authenticated by a secret
key that is preshared between the session key en-
gine and the master key engine. In order to provide
portability across different platforms, we have im-
plemented an 08 (operating system) dependency li-
brary. This library provides Os-independent appli-
cation programming interfaces (APIs), which in turn
provide the following services:

e Secure communication for network communica-
tion, encryption, and authentication of messages
from the master key engine to the session key en-
gine

* Timer/alarm for retransmission and key refresh-
ment or deletion

* Asynchronous wait for capturing asynchronous
events (e.g, time-out events and receipts of mes-
sages)

e Tunnel caching for the caching of security asso-
ciations

The tunnel administration tools. Briefly, the tunnel
administration tools are a set of applications to ex-
amine and delete security associations in the tunnel
cache. They also provide an interface for inserting
manually created security associations into the tun-
nel cache. These tools have proved to be invaluable
for the debugging of IPSEC protocols and for diag-
nosing secure tunnel configurations.

The IPSEC encapsulation part. As a follow-on to
the discussion in the previous section, the IPSEC en-
capsulation process can be divided into two main
steps: (1) packaging that handles all of the IP head-
ers, IPSEC headers, and ESP trailers, and invokes the
necessary crypto operations, and (2) cryptographic

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

Figure 10 Architecture of key management engines

-

SESSION KEY ENGINE MASTER KEY ENGINE
OS-DEPENDENT
LIB WITH
OS-INDEPENDENT PSEUDO-
API ENCRYPT/
RANDOM DECRYPT/
FUNCTION/ DECS
MAC

TUNNEL RETRANS/ | NETWORK ' ASYNC
CACHE REFRESH SEND/ , WAIT
INTERFACE | TIMER RECEIVE '
¥
PSEUDO TIMER SOCKET SOCKET SELECT/
DEVICE TO/FROM TOFROM SIGNAL TO/FROM
DRIVER SK ENGINES MK ENGINES SK ENGINES

UDP/IP

NETWORK
DEVICE
DRIVER

INTERNET

SESSION KEY ENGINES

operation that performs the actual cryptographic The IPSEC engine. The IPSEC engine is responsible
computation. Accordingly, the IPSEC encapsulation for the packaging part of the IPSEC encapsulation
part is divided into the IPSEC engine and the crypto and decapsulation processes.
engine. This division of functionality has the follow-
ing advantages: For encapsulation, the inputs of the engine are an
IP packet from the IP engine and a secure tunnel ID
¢ Implementations of cryptographic algorithms are from the policy cache. The IPSEC engine will find the
decoupled from the details of IPSEC syntax and se- current SA of the tunnel through the tunnel 1D and
mantics. Thus, new algorithms and improved im- encapsulate the input packet using the information
plementations can be easily introduced. in the SA. The encapsulation procedure was discussed
¢ It is much easier to keep up with the changes in previously. The output of the procedure is an IPSEC
IPSEC syntax and semantics. We have actually up- packet inside an IP packet.
dated the IPSEC engine a few times as the IPSEC
standards evolved; the changes were all within the For decapsulation, the input of the engine is a re-
IPSEC engine and no other parts were affected. ceived 1P packet with an IPSEC packet inside. This
IP packet should be the output of its sender’s encap-
We now describe the two engines in detail. sulation procedure. The IPSEC engine finds the SA

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998 CHENG ET AL. §7

corresponding to the SPIin the IPSEC packet and the
destination address of the Ip packet. The decapsu-
lation procedure is the inverse of the encapsulation
procedure. If the SA indicates that the integrity of
the message should be protected, the decapsulation
procedure first checks on whether the received 1P
packet is a replay and then verifies the MAC inside
the received IPSEC packet. The received packet is re-
jected if it is a replay or if the MAC verification fails.
Other error conditions, such as a failure of decryp-
tion, may also happen during decapsulation. All er-
ror conditions cause the received packet to be re-
jected.

The crypto engine. The crypto engine is divided into
alower and an upper layer. The lower-layer module
implements and exports a specific cryptographic
algorithm. For example, one module imple-
ments DES-CBC and another module implements
HMAC-MDS5. The lower-layer module is identified by
an implementation-dependent integer ID of the spe-
cific cryptographic algorithm it implements and ex-
ports one of two generic interfaces, depending on
whether it implements encryption or message au-
thentication.

The upper layer is also a framework that holds dif-
ferent lower-layer modules. However, the crypto up-
per layer does not hide the interfaces exported by
the lower layer. A reference to a lower-layer crypto
module can be acquired through a search function
provided by the upper layer, with the ID of the crypto
transform as the search key.

All the lower-layer modules in the IPSEC engine and
the crypto engine are optimized to use mbuf chains*
as 1/0 buffers.

Performance

The performance of our implementation is very sim-
ilar to that reported in our earlier work.® Although
the code has been improved and modified to fit the
new standard, the dominant factor of performance,
namely, the cost of the cryptographic operations, re-
mains unchanged. Since the same cryptographic op-
crations are still used by the new standard, the per-
formance stays about the same. Refer to Reference
3 for more details.

Currently, work is underway to produce handcrafted,
high-performance cryptographic code. We are also
investigating the use of cryptographic hardware.

B8 CHENG ET AL

Ongoing and future work

We are currently implementing a key management
engine based on the emerging Internet standard key
management protocols, ISAKMP!! and OAKLEY. %!
OAKLEY has been strongly influenced by the SKEME
protocol,™* which in turn is a natural extension of
the MKMP protocol presented here.

As IPSEC and other security protocols such as TLS™
become ubiquitous, we believe it is important to re-
fine the policy part in order to provide a unified, easy-
to-use administration and user interface so that dif-
ferent security protocols can be combined in a correct
and desirable way to achieve a security goal.

Acknowledgments

We wish to thank the following colleagues for their
useful technical advice and logistic support without
whose help this work would have been impossible:
Erol Basturk, Mihir Bellare, Maria A. Butrico, Chee-
Seng Chow, Mark C. Davis, Edie E. Gunter, Donald
B. Johnson, Dilip D. Kandlur, Jed Kaplan, Arvind
Krishna, Mark H. Linehan, Charles C. Palmer, Ed
Pring, Stephen E. Smith, and Moti M. Yung. We also
thank the anonymous referees for their many com-
ments, which helped improve the presentation of the

paper.

Appendix: IP layer security vs session layer
security

A frequently asked question is why are both an 1P
layer security mechanism and a session layer secur-
ity mechanism—such as $sL.? and TLS '*—needed. Ta-
ble 1 presents a comparison of features for IPSEC and
SSL.

In summary, we feel that IPSEC and SSL are largely
complementary technologies. When the trafficis re-
stricted to Web or HTTP (HyperText Transfer Pro-
tocol) type, then SSL is more suitable, assuming that
all the browsers and Web servers have SSL already
built in. When traffic cannot be restricted to only
Web or HTTP, but must include other popular In-
ternet applications such as Telnet, FTP, network file
system (NFS), directory services, database applica-
tions, real-time audio and video, as well as many
other legacy applications, then IPSEC is simply more
suitable.

*Trademark or registered trademark of International Business
Machines Corporation.

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

Table 1 IP layer security vs session layer security

Protection

Cited references and notes

1.

2.

3.

J. Postel, Internet Protocol, Internet RFC 791 (September
1981).

S. Kent and R. Atkinson, Security Architecture for the Internet
Protocol, IETF (draft-ietf-ipsec-arch-sec-01.txt) (March 1997).
A preliminary version of this paper was presented in Salt Lake
City by the authors: P.-C. Cheng, J. A. Garay, A. Herzberg,
and H. Krawczyk, “Design and Implementation of Modular
Key Management Protocol and IP Secure Tunnel on AIX,”
Proceedings of the 5th USENIX UNIX Security Symposium
(June 1995), pp. 41-54.

. S. Kent and R. Atkinson, IP Encapsulating Security Payload

(ESP), IETF (draft-ietf-ipsec-esp-v2-00) (July 1997).

. S. Kent and R. Atkinson, IP Authentication Header, IETF

(draft-ietf-ipsec-auth-header-01.txt) (July 1997).

. D. Harkins and D. Carrel, The Resolution of ISAKMP with

Oakley, TETF (draft-ietf-ipsec-isakmp-oakley-04.txt) (July
1997).

. J.Toannidis and M. Blaze, “The Architecture and Implemen-

tation of Network-Layer Security under UNIX,” Proceedings
of the 4th USENIX UNIX Security Symposium (1993), pp. 29—
39.

. J. loannidis and M. Blaze, The swiPe IP Security Protocol,

IETF (draft-ietf-ipsec-swipe-01.txt) (June 1994).

. A. O.Freier, P. Karlton, and P. C. Kocher, The SSL Protocol

Version 3.0, 1ETF (draft-ietf-tls-ssl-version3-00.txt) (Novem-
ber 1996).

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

T. Dierks and C. Allen, The TLS Protocol Version 1.0, IETF
(draft-ietf-tls-protocol-02.txt) (March 1997).

D. Maughan, M. Schertler, M. Schneide, and J. Turner, In-
ternet Security Association and Key Management Protocol
(ISAKMP), TETF (draft-ietf-ipsec-isakmp-08.txt) (July 1997).
W. R. Cheswick and S. M. Bellovin, Firewalls and Internet
Security, Repelling the Wily Hacker, Addison-Wesley Publish-
ing Co., Reading, MA (1994).

J. Kohl and B. C. Neuman, The Kerberos Network Authen-
tication Service (V5), Internet RFC 1510 (September 1993).
H. Krawczyk, “SKEME: A Versatile Secure Key Exchange
Mechanism for Internet,” Proceedings of the 1996 Internet So-
ciety Symposium on Network and Distributed Systems Security
(February 1996), pp. 114-127.

W. Diffie, P. van Oorschot, and M. Wiener, “Authentication
and Authenticated Key Exchanges,” Designs, Codes and Cryp-
tography 2, 107-125 (1992).

American Bankers Association, American National Standard
for Financial Institution Message Authentication (Wholesale),
ANSI X9.9 (1981, revised 1986).

G. Tsudik, “Message Authentication with One-Way Hash
Functions,” Proceedings of Infocom 92 (1992), pp. 2055-2059.
M. Bellare, R. Canetti, and H. Krawczyk, “Keyed Hash Func-
tions and Message Authentication,” Advances in Cryptology—
Crypto *96, N. Koblitz, Editor, Lecture Notes in Computer
Science No. 1109, Springer-Verlag, (1996), pp. 1-15.

O. Goldreich, S. Goldwasser, and S. Micali, “How to Con-

CHENG ET AL.

59

struct Random Functions,” Journal of the ACM 33, No. 4,210-
217 (1986).

20. R. Bird, I. Gopal, A. Herzberg, P. A. Janson, S. Kutten,
R. Molva, and M. Yung, “Systematic Design of a Family of
Attack-Resistant Authentication Protocols,” IEEE Journal
on Selected Areas in Communications 11,No. 5, 679-693 (June
1993).

21. M. Bellare and P. Rogaway, “Entity Authentication and Key
Distribution,” Advances in Cryptography, Springer-Verlag,
New York (August 1993), pp. 232-249.

22. Information on the development of this standard can be found
in the IPSEC home page, http://www.ietf.org/html.charters/
ipsec-charter.html and the IPSEC mailing list ipsec@tis.com.

23. M. Oehler and R. Glenn, HMAC-MDS5-96 IP Authentication
with Replay Prevention, IETF (draft-ietf-ipsec-ah-hmac-md5-
96-00.txt) (March 1997).

24. H.Krawczyk, M. Bellare, and R. Canetti, HMAC: Keyed-Hash-
ing for Message Authentication, Internet RFC 2104 (Febru-
ary 1997).

25. S. M. Bellovin, “Problem Areas for the IP Security Proto-
cols,” Proceedings of the 6th USENIX UNIX Security Sympo-
sium (July 1996), pp. 205-214.

26. In other words, in the scenario in the section about the se-
cure tunnel, either 4 and X or B and Y are not the same.

27. D. B. Chapman, “Network (In)Security Through IP Packet
Filtering,” UNIX Security Symposium III Proceedings (1992),
pp. 63-76.

28. R.Bird, I. Gopal, A. Herzberg, P. Janson, S. Kutten, R. Molva,
and M. Yung, “The KryptoKnight Family of Light-Weight
Protocols for Authentication and Key Distribution,”
IEEE[ACM Transactions on Networking 3, No. 1,31-41 (Feb-
ruary 1995).

29. W. Diffie and M. E. Hellman, “New Directions in Cryptog-
raphy,” IEEE Transactions on Information Theory 1T-22,
No. 6, 644-654 (November 1976).

30. S.J. Leffler, W. N. Joy, R. S. Farby, and M. J. Karel, “Net-
working Implementation Notes, 4.3BSD Edition,” UNIX Sys-
tem Manager’s Manual, 4.3 Berkeley Software Distribution, Vir-
tual VAX-11 Edition, USENIX Association (April 1986).

31. H. Orman, The Oakley Key Determination Protocol, IETF
(draft-ietf-ipsec-oakley-02.txt) (July 1997).

Accepted for publication September 22, 1997.

Pau-Chen Cheng /BM Research Division, Thomas J. Watson Re-
search Center, P.O. Box 704, Yorktown Heights, New York 10598
(electronic mail: pau@watson.ibm.com). Dr. Cheng is a research
staff member. He received his Ph.D. in electrical engineering from
the University of Maryland in 1990. He joined the Computing
Systems Department of the Watson Research Center in 1990 to
work on the development of security functions of AIX. In 1994
he joined the Network Security group to work on IP Security tech-
nology. He is the principal developer of the IPSEC technology
on the AIX operating system. His areas of interest are in the sys-
tem aspects of computer and network security. He has been in-
volved in the design, analysis, and implementation of solutions
for data encryption and authentication, key management, user
authentication, and Internet security.

Juan A. Garay IBM Research Division, Thomas J. Watson Re-
search Center, P.O. Box 704, Yorktown Heights, New York 10598
(electronic mail: garay@watson.ibm.com). Dr. Garay received his
Ph.D. in computer science from the Pennsylvania State Univer-
sity in 1989. He also holds a degree in electrical engineering from

60 CHENG ET AL

the Universidad Nacional de Rosario in Argentina, and a mas-
ter’s degree in electronic engineering from the Eindhoven Inter-
national Institute of the Eindhoven University of Technology in
the Netherlands. He has been with IBM Research since 1990. In
1992 he was a postdoctoral Fellow at The Weizmann Institute
of Science in Israel, and in 1996 a visiting scientist at the Cen-
trum voor Wiskunde en Informatica (CWI) of the Stichting Math-
ematish Centrum in the Netherlands. Dr. Garay has published
extensively in the areas of algorithms, distributed computing, fault
tolerance, and cryptographic protocols.

Amir Herzberg IBM Research Division, Haifa Research Labora-
tory at Tel Aviv, IBM Building, 2 Weizmann Street, Tel Aviv 61336,
Israel (electronic mail: amir@haifa.vaet.ibm.com). Dr. Herzberg
received the B.Sc. in computer engineering, the M.Sc. in elec-
trical engineering, and the D.Sc. in computer science from the
Technion-Israel Institute of Technology, in 1982, 1986, and 1991,
respectively. In 1991, he joined the IBM Research Division where
he now manages the Network Computing and Security group.
He established this group, as a Tel-Aviv annex of the Haifa Re-
search Laboratory, in January 1996. His previous assignment was
manager of the Network Security group in the IBM Thomas
J. Watson Research Center. His research areas include network
security, applied cryptography, electronic commerce, communi-
cation protocols, and fault tolerant distributed algorithms. Dr.
Herzberg is the author of numerous publications and patents in
these areas.

Hugo Krawczyk Department of Electrical Engineering, Technion,
Haifa 32000, Israel (electronic mail: hugo@ee.technion.ac.il). Dr.
Krawczyk is a senior lecturer in the Department of Electrical En-
gineering at the Technion and a visiting scientist at the IBM
Watson Research Center. He received his Ph.D. in computer sci-
ence from the Technion in 1990. In 1990 and 1991 he spent a
year in the Computer Science Department of Princeton Univer-
sity under a Weizmann postdoctoral fellowship. From 1991 to
1997 he was a research staff member in the Cryptography and
Network Security group at the IBM Watson Research Center.
His areas of interest span applied and theoretical aspects of cryp-
tography with particular emphasis on applications to network se-
curity. He has been involved in the design and implementation
of solutions for data encryption and authentication, key manage-
ment, public key cryptography, Internet security, electronic com-
merce, payment systems, and security of mobile and wireless sys-
tems.

Reprint Order No. G321-5662.

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

