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In this paper we present the design,  rationale, 
and  implementation  of a security architecture for 
protecting the secrecy  and integrity of Internet 
traffic at the Internet Protocol (IP)  layer.  The 
design  includes three components: (1) a security 
policy for determining when,  where, and how 
security measures  are to be  applied; (2) a 
modular  key  management  protocol,  called 
MKMP, for establishing  shared  secrets  between 
communicating parties and meta-information 
prescribed by the security  policy;  and (3) the IP 
Security  Protocol, as it is  being  standardized by 
the Internet Engineering Task  Force, for applying 
security measures using information provided 
through the key  management protocol. 
Effectively,  these three components together 
allow  for the establishment of a secure  channel 
between any two communicating  systems over 
the Internet. This  technology  is a component  of 
IBM’s firewall product and is now  being ported to 
other ISM  computer  platforms. 

A s the  Internet evolves from an academic and 
research network into  a commercial network, 

more and more organizations and individuals are 
connecting their internal networks and computers 
to it. The secrecy and integrity of the  data transmit- 
ted over the  Internet have become a primary con- 
cern, and cryptographic data encryption and authen- 
tication constitute the tools to address this concern. 
We subscribe to  the view that  the  Internet Protocol 
(IP) layer’ is a good place to secure the  data being 
communicated. Reasons include: (1) The IP layer  is 
at  the choke point of Internet communication; it  can 
capture all packets sent from the higher-layer pro- 
tocols and applications and all packets received by 
the lower-layer network protocols. (2) By the very 

definition of IP, security provided at this  layer  is in- 
dependent of lower-layer protocols. (3) Security pro- 
vided at this layer  can be made transparent  to  the 
higher-layer protocols and applications. 

Many application environments can benefit from se- 
curity provided at  the IP layer. Figure 1 depicts some 
of them, including mobile-to-base communication, 
telecommuting, and site-to-site or system-to-system 
communication. 

Three components are needed in order  to provide 
IP layer security through cryptographic means: 

1. A security policy to define the characteristics of 
the desired security. Such a policy  specifies how 
the packets between two communicating systems 
must be protected. 

2. A key managementprotocol to establish  and main- 
tain the necessary information as prescribed by 
the security policy. Such information usually in- 
cludes cryptographic algorithms, secret keys, and 
other  parameters  shared between two communi- 
cating systems. 

3. Aprotocol  for security  at the IP layer to protect IP 
packets as prescribed by the security policy,  us- 
ing information provided by the key management 
protocol. In our design,  this protocol is the emerg- 
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Figure 1 Some  applications of secure  tunnels 
~ ~~ 

1 ---- SECURETUNNEL 

ing Internet standard IP Security (IPSEC) Proto- 
col. 

Also needed is a concept to  thread  the  three com- 
ponents together; this  is the secure tunnel concept 
discussed  in the next section. In a nutshell, a secure 
tunnel is a secure passage for the IP packets trans- 
mitted between two communicating systems. The 
characteristics of a secure tunnel are defined by the 
security  policy; the tunnel is established and main- 
tained by the key management protocol, and the pro- 
tection of IP packets is carried out through the IPSEC 
protocol. 

This paper3 presents the protocols and system ar- 
chitecture that implement the above three compo- 
nents and  the secure tunnel concept. At  the  heart 
of our security architecture are theModuZarKey  Man- 
agement Protocol (MKMP) and  the IP Security Proto- 
col. MKMP provides the necessary information to 
establish a secure tunnel, and IPSEC uses this infor- 
mation to provide data security by cryptographic 
means. MKMP is a set of protocols that we  have de- 
signed for the management of the cryptographic  keys 
used by secure tunnels. It provides secure mecha- 
nisms for the derivation and periodic refreshment 
of the cryptographic keys as required by the multi- 

ple cryptographic functions used  within a secure tun- 
nel. 

IPSEC is an Internet standard from the  Internet  En- 
gineering Task Force (IETF) IPSEC Working Group. 
(Originally described in References 2,4, and 5 ,  the 
IPSEC specifications are now under revision. See Ref- 
erences 2, 4, and 5 and follow-ups.) IPSEC is essen- 
tially an encapsulation protocol, namely, one  that  de- 
fines the syntax and semantics of placing one packet 
inside another. First, IPSEC protocol-specific oper- 
ations are performed on  an IP packet to protect its 
secrecy or integrity, or  both, by cryptographic algo- 
rithms; then the output of the operations is appended 
to an IPSEC protocol header  to form an IPSEC pack- 
et; finally, the IPSEC packet is placed inside an IP 
packet so it  can be routed through the  Internet. 

An early prototype of our design became part of IBM’s 
firewall product. In addition, our key management 
approach and techniques have had an impact on the 
Internet standard proposed by the IETF IPSEC Work- 
ing Group. 

An  early proposal for providing IP layer security can 
be found in swPe.  778  However, our work  differs from 
swIPe  in several aspects, in particular, in that: (1) 
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the key management protocol is implemented and 
linked with network layer security protocol, and (2) 
the network layer  security functionality is placed in- 
side the kernel IP module and not in a network de- 
vice driver. 

In the remainder of the  paper,  the next  two sections 
describe the notion of an IP Secure Tunnel and the 
MKMP, respectively. The  fourth section outlines the 
format of the IPSEC protocols. The fifth section pre- 
sents the architecture and provides the details of our 
implementation, and  the sixth section discusses  its 
performance. In concluding the paper we mention 
some related ongoing  activities and directions for 
future work. A frequently asked question is,  why 
are both an IP layer security mechanism and a ses- 
sion layer security mechanism-such  as the Secure 
Socket Layer ( S S L ) ~  and  Transport Layer Security 
(TU) ‘““needed. In the Appendix we present a com- 
parison of features for IP and session  layer  security. 

IP Secure  Tunnel 

In this section we define the concept of a secure tun- 
nel. We  first make some clarifications on how the 
word “tunnel” is  used  in both the IPSEC arena and 
in  this paper. We then discuss the concept of a se- 
curity association on which the secure tunnel concept 
is based. We  finally  discuss the secure tunnel con- 
cept itself. 

On the word “tunnel.” The word tunnel is  widely  used 
in the IPSEC arena. However, depending on the con- 
text,  it  could refer to several  different  but related con- 
cepts: 

1. Conceptually,  it  refers to asecurepassage (or chan- 
nel) between two systems across the insecure In- 
ternet. This passage  is a realization of the secur- 
itypolicies of two  systems. In the context of IPSEC, 
a security policy establishes the specific require- 
ments and meta-characteristics of a secure passage 
between two  given  systems. The meta-character- 
istics of a passage usually include the identities 
or addresses of its two endpoints, the encapsu- 
lation mode, the cryptographic algorithms to be 
used, parameters for the algorithms (such  as  key 
lifetime  and key  size[s]), etc. A security  policy may 
also demand more than  one secure passage be- 
tween the two  systems, each for a specific  type of 
communication. 

2. Implementation-wise, the word tunnel refers to 
a set of items of information shared between the 
endpoints of a secure passage. This set enables 
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3.  

the realization of a secure passage; it includes in 
particular the meta-characteristics and secret keys 
used by the cryptographic  algorithms. In the IPSEC 
terminology, such a set is called a security asso- 
ciation. The next subsection elaborates on SAS in 
more detail. However, as the subsection subse- 
quent  to  that explains, an SA is not a secure tun- 
nel but an incarnation of a secure tunnel during 
a particular time interval. An SA is  usually cre- 
ated and maintained by a key management en- 
gine. 
Finally,  in the standard terminology of IPSEC, tun- 
nel refers to  one of the two encapsulation modes 
defined by the IPSEC standard:  tunnel mode and 
transport mode. Both modes can be used to con- 
struct a secure passage, although they provide 
slightly  different protection. The fourth section 
presents a more detailed discussion on the IPSEC 
standard. 

From now on, unless otherwise specified, we use the 
words “tunnel”  or “secure tunnel” to  denote  the se- 
cure passage concept or an instance of it. 

Security association. A security association, or SA, 
is a set of items of information that, when shared 
between  two  communicating parties, enables the two 
parties to protect the communication in a desired 
way. 

An IPSEC SA’ includes the following meta-character- 
istics: 

Destination ID/IP address: the intended receiver 
of IPSEC packets 
Security protocol: the kind of security-integrity 
or secrecy or both-provided by the SA on the IP 
packets. Under  the security protocol, a set of cryp- 
tographic algorithms (called transforms in IPSEC) 
and its parameters, such as key lifetime and key 
size, are specified. 
Secret keys: the keys to be used by the crypto- 
graphic transforms 
Encapsulation mode: indicating which part(s) of 
the IP packet will be protected by the SA 
Security Parameterlndex (SPI): the identifier of the 
SA. On  a given  system, the SPI should be unique 
with respect to  the destination address of the SA 
so that  the pair (destination address, SPI) uniquely 
identifies an SA. An IPSEC packet constructed ac- 
cording to  an SA carries the SPI of the SA so that 
the destination will  know  how to process the 
packet. 
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The encapsulation mode of the SA, the security pro- 
tocol, and the cryptographic transforms define the 
operations  to be performed on a packet. These op- 
erations  are discussed  in more detail later. 

An IPSEC SA is unidirectional in the sense that  the 
information in  it should only be used to construct 
and process IPSEC packets intended for the destina- 
tion address in the SA. However, a secure tunnel is 
bidirectional. Thus, a pair of IPSEC SAs, one for in- 
bound traffic and  another for outbound traffic, are 
needed for each of the endpoints of a secure tunnel. 
Both MKMP and ISAKMPIOAKLEY, the new standard 
for IPSEC key  always generate such 
pairs. The two SAS in a pair share  the same meta- 
characteristics but have different keys. Our design 
treats such a pair as a bidirectional SA. 

IPSEC also includes the notion of an SA bundle. An 
SA bundle is a pair of IPSEC SAS with different secur- 
ity protocols and transforms combined together  to 
provide the desired security. For example, if one SA 
protects the integrity of packets and  the  other  pro- 
vides  secrecy, then the two SAS can be combined to 
protect both integrity and secrecy. Note that  the two 
SAS in a bundle are shared between the same two 
systems and that the destination addresses of the two 
SAS must be the same. In the fourth section we dis- 
cuss  when an SA bundle may be needed. Like an 
IPSEC SA, an IPSEC SA bundle is unidirectional, so a 
pair of SA bundles is needed for bidirectional secur- 
ity. Both MKMP and ISAKMPIOAKLEY can generate 
pairs of SA bundles. Our design treats such pairs as 
a bidirectional SA bundle. 

From now on, unless otherwise specified, we  will use 
the words “security association” or ‘‘SA’’ to refer to 
a bidirectional SA or SA bundle that provides the  de- 
sired security.  We will use the words “IPSEC security 
association” or “IPSEC SA” to denote a unidirectional 
SA as specified  in Reference 2. 

Secure tunnel. This subsection explains  what we 
mean by a “secure tunnel” in  this paper and how it 
differs from a security association. We arrive at the 
concept through an example of the series of steps 
that  are needed to establish secure communication 
between two  systems. 

Consider the case of  two sites or systemsA and B 
that  are connected to  the  Internet through two sys- 
tems X and Y,  respectively, where A and X, and B 
and Y may or may not be the same. As a first step 
toward having secure communication, A and B ne- 
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gotiate a (hypothetical) set of rules as the policy for 
communication between them (see Reference 12 for 
a clear explanation of a good, concise  security pol- 
icy). 

Policy  1: 
Rule 1-Packets of type 1 must  go through a 

secure passage betweenX and Y,  and 
the meta-characteristics of this pas- 
sage are in set 1. 

Rule 2-Packets  of type 2 must  go through a 
secure passage betweenX and Y,  and 
the meta-characteristics of this pas- 
sage are in set 2. 

Here  the type of packet is  usually defined by the 
source and destination addresses of the packet, the 
transport layer protocol (e.g., Transmission Control 
Protocol [TCP] or User Datagram Protocol [UDP]), 
and the  port numbers or types, etc. 

Although at first  sight  Policy 1 seems reasonable, an- 
other piece of information is needed, namely, the 
keys to be used  with the cryptographic algorithms 
in sets 1 and  2 in order  to enforce the policy.  In other 
words, the references to sets 1 and 2 must be trans- 
lated into references to SAS. Rewriting Policy 1 yields 
the following. 

Policy 2: 
Rule 1-Packets  of type 1 must  go through a 

secure passage between X and Y us- 
ing SA 1. 

Rule 2-Packets  of type 2 must  go through a 
secure passage between X and Y us- 
ing SA 2. 

Policy 2 is already usable but still not satisfactory 
from a cryptographic standpoint.  The reason is that 
the keys  in a security association should be changed 
frequently in order  to defeat cryptanalysis or  brute- 
force attacks. One first option could be changing the 
keys  in an SA frequently but keeping everything else 
the same. It  turns  out  that this solution is not good 
either.  In such a solution, the same reference to an 
SA must be reused for a key and its replacement. In 
practice, the life of a key and its replacement must 
have some time overlap in order  to avoid a disrup- 
tion of communication caused by expiration of the 
key.  Using the same reference for different keys  will 
cause false security alarms because the wrong  key 
is used to check the integrity of a message or  a sig- 
nificant  processing overhead, or both, because both 
the old key and the new  key have to be tried. 
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Therefore, in our design, a security association ex- 
pires as its keys expire. This design decision makes 
Policy 2 very impractical because a stable security 
policy cannot be defined in terms of short-lived SAS. 
To resolve the conflict between the  need  for  a sta- 
ble,  relatively long-term security  policy and the need 
for changing keys frequently, we took a  further look 
at a security  association and concluded that its meta- 
characteristics (i.e., the SA minus  its  keys) are rel- 
atively stable and long term. In fact, the strength of 
protection usually does not  depend  on  the exact  val- 
ues of the keys, but  rather on their sizes, lifetime, 
the cryptographic algorithms, etc. With this conclu- 
sion, we are now ready to introduce the secure tun- 
nel concept: 

Asecure tunnel  is a secure passage between two  sys- 
tems across the insecure Internet.  It has a set of 
meta-characteristics determined by the security  pol- 
icies of the two  systems.  Such a secure tunnel is re- 
alized by a series of SAS that change with time; these 
SAS share the same meta-characteristics but have 
different cryptographic keys. 

Each of these SAs is t-he replacement of its  imme- 
diate predecessor and can be considered an incar- 
nation of the secure tunnel during the lifetime of the 
SA. 

With the secure tunnel concept, the final form of the 
security policy becomes the following. 

Policy 3: 
Rule 1-Packets  of  type 1 must  go through se- 

Rule 2-Packets  of type 2 must  go through se- 
cure tunnel 1 between X and Y. 

cure tunnel  2 between X and Y. 

Our implementation assigns each secure tunnel an 
identifier (ID). Each SA will include the ID of the se- 
cure tunnel to which  it  belongs; this inclusion of the 
secure tunnel ID provides a two-way  linkage between 
a secure tunnel and its current incarnation. In the 
fifth section more details are given on these aspects 
of the implementation. 

From now on, if a packet is encapsulated according 
to  the information in a secure tunnel, we  say that 
the packet goes or comes  through  the  tunnel. 

Modular  Key Management Protocol 

The basic goal of a key management scheme is to 
provide the two communicating parties with a com- 
mon, “freshly” shared cryptographic key that is 
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known to these parties only.  In general, a typical  key 
management scheme will achieve that in  two phas- 
es: one in  which a “master key”  is shared between 
the parties, and the other in  which the already-shared 
master key  is  used for the derivation, sharing, and 
refreshment of additional “session keys.” The  term 
“session key”  is used here  to  denote short-lived keys 
(say,  in the range of seconds or minutes); it does not 
imply or require a session-based communication 
model. The  frequent change in the values of these 
keys  usually requires a fast way to generate and share 
the keys so as to reduce the key  exchange overhead 
in terms of computation and communication. The 
term “master key”  is used to  denote keys  with a 
longer life period than  a session  key  (say, a range 
of hours), and then they may  allow for more time- 
consuming procedures for their generation and shar- 
ing. 

The split into these two phases is not mandatory, and 
in  fact there  are systems that do not establish (at least 
explicitly)  this separation. However, we argue here 
that for most scenarios this  explicit separation has 
a significant  methodological  and  design  value. In par- 
ticular, we advocate the separation of these functions 
into two modules: one for the sharing of the master 
key, and  one for the key management “below” the 
shared master key. Thus, our approach to key man- 
agement is  hierarchical-namely,  session  keys are de- 
rived from the shared master keys and, in turn,  the 
master keys are derived using  any of the well-estab- 
lished key  exchange methods: public key exchange, 
key distribution centers (e.g., Kerber~s’~), and man- 
ual key installation. (See Reference 14 for a  further 
elaboration of these various scenarios and trust mod- 
els.) Our hierarchical approach is illustrated in  Fig- 
ure 2. 

In this paper we concentrate on the basic mecha- 
nisms for the derivation and management of the ses- 
sion  keys (i.e., the “lower” module). Our protocol 
can be extended to support the derivation of master 
keys from public keys;  however, the description of 
these particular mechanisms is  beyond the scope of 
this paper. We refer to SKEME14 for a design of such 
extensions  as  well  as for a more comprehensive treat- 
ment of security requirements and mechanisms for 
key management. We  now turn  to  the description 
of the session  key protocol. 

Session key negotiation protocol. The basic goal of 
a key negotiation protocol is to provide both inter- 
vening IP nodes with shared session  keys. The keys 
are then used for data authentication and encryp- 
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tion, thus allowing the establishment of a secure tun- 
nel between the two parties. 

We now list some of the goals and requirements that 
our session  key protocol is required to support. 

Security  handshakes-A  basic assumption that we 
make in  this paper is that  parties  are able to es- 
tablish periodic two-way (or interactive) commu- 
nication, as opposed to just sending information in 
a one-way mode. This interactive mode of  key re- 
freshment allows for  the parties to have periodic 
handshakes whereby cryptographic information is 
refreshed and verified by both parties simulta- 
neously. This mode has a significant impact on  the 
security aspects of the protocol, as pointed out be- 
low. 

Secrecy and authenticity-For the intervening par- 
ties the protocol needs to guarantee  that only the 
intended party learns the key  exchanged and that 
this key  is “fresh,” random, and unique. Secrecy and 
authenticity of the exchanged  key need to be pro- 
tected against passive (eavesdroppers) and active 
(man-in-the-middle) attackers, and these proper- 
ties must be guaranteed for as long as the  under- 
lying cryptographic functions in use are secure 
against such adversaries. 

Efficiency-Another important goal of a key ne- 
gotiation protocol is  efficiency,  namely, to keep both 
the number of messages  exchanged between the 
parties and the computational overhead (e.g., the 
number of expensive public key operations)  to  a 
minimum. It is worth noting that by having a highly 
efficient method for session  key renewal, the need 
for frequently updating the master  key,  which is usu- 
ally computationally intensive, is alleviated. 

Forward secrecy-Another consideration is the 
level  of security provided by the protocol. One  de- 
sired property of the session  keys  is that of forward 
secrecy: l5 Even if an attacker is eventually able to 
derive the key for one session, past and future ses- 
sion (and, of course, master) keys are not compro- 
mised. Our protocol achieves  this  level of security 
for session  keys. We remark that achieving  such  se- 
curity even in the case of the compromise of a mas- 
ter key requires relatively  costly mechanisms such 
as a Diffie-Hellman exchange for the sharing of the 
master keys. However, this cost  is  usually compen- 
sated by the long-lived nature of these keys. 
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Figure 2 Hierarchical  approach  to  key  management 

).c) 

Simplicity-Finally,  simplicity and being amenable 
to analysis and proof are  important  features of any 
cryptographic protocol. 

Figure 3 shows the “cryptographic skeleton” of the 
session  key negotiation protocol, including  only the 
relevant  (i.e., related to authentication) information. 
In the full implementation of the protocol, further 
information, such as cryptographic parameters, ne- 
gotiation attributes, key identifiers, etc., is trans- 
mitted and  authenticated between the parties, us- 
ing the same two communication flows. There  are 
two parties, a  sender S and  a receiver R.  S is the 
party that initiates the protocol. In the presentation 
of the protocol we use the following  terminology: 

IDx = The identity of party X .  
Nx = A nonce (i.e., a random number) chosen 

by party X .  

case it represents  a pair of  keys K 1 ,  K2.  
M A C k  = A message authentication code (or integ- 

rity  check function) applied to a piece of 
information for authentication using a se- 
cret key k .  Examples  include  block  ciphers 
(e.g., Data Encryption Standard,  or DES, 
in cipher block chain-message authenti- 
cation code, or CBC-MAC, model6),  and 
keyed cryptographic hash functions (e.g., 
keyed-MD5, l7 HMAC, etc.). 

Roughly speaking, pseudorandom func- 
t i o n ~ ’ ~  are characterized by the pseudo- 
randomness of their output; namely, each 
bit  in the  output of the function is unpre- 

K = The currently shared master key. In our 

f k  = A pseudorandom function with  key k .  
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Figure 3 MKMP- the session key negotiation  protocol 

dictable if k is  unknown. We use pseudo- 
random functions primarily for the  der- 
ivation or expansion of  key material given 
an initial key k .  The examples of MAC 
functions given above are also  commonly 
believed to be pseudorandom functions. 

SK = The session  key, outcome of the proto- 
col. 

As Figure 3 shows, the protocol consists of two mes- 
sages (or flows). It is assumed that S and R already 
share two master keys, K ,  and K,, as well  as the 
nonce N R ,  exchanged in a previous run of the  pro- 
tocol. New nonces are exchanged and authenticated 
in each run of the protocol under  the MAC function 
keyed  with the master key K 1 .  There is no explicit 
transmission of a cryptographic key from one party 
to  the  other; instead, the  shared session  key  is  com- 
puted by both parties on the basis of the master key 
K2 and  the fresh information exchanged  in the pro- 
tocol. Upon (successful) termination of the  proto- 
col, parties S and R have  exchanged a session  key 
SK, besides  mutually authenticating each other. (We 
note  that  the same protocol allows for periodic key 
refreshments within a session.) 

We now turn  to argue how the protocol satisfies the 
requirements listed above. Although we omit from 
this paper any formal proofs, we note  that  the pro- 
tocol presented here is structured, simple, and thus 
easier to analyze. Hence, rigorous methods similar 
to those of References 20 and 21 can be used to es- 
tablish the desired security properties of the  proto- 
col. 
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The protocol is essentially a “cryptographic hand- 
shake” that allows the parties to directly authenti- 
cate one  another.  The challenge provided by the 
nonce guarantees  the freshness of the authentica- 
tion  and  avoids the so-called replay attacks. The bind- 
ing between master key, nonces, and identities pro- 
vides security even  in the case where several such 
protocols are run in parallel, and thus it prevents in- 
terleaving attacks.20 We note  that keeping a  shared 
nonce ( N R )  between runs of the protocol is not es- 
sential; it  can be replaced by the use of time stamps 
(at the expense of requiring a secure clock  synchro- 
nization) or by adding an extra flow to the protocol 
(at  the expense of performance). The nonce also 
serves the purpose of alleviating the effect of the so- 
called clogging, or “denial of service” attacks, as  it 
allows for rapid detection and dumping of mali- 
ciously replayed traffic.  In  any case, the nonces do 
not require any  secrecy; that is, they can be trans- 
mitted in the clear. 

Also notice, as mentioned before, that  the session 
key SK is not explicitly transmitted. This avoids the 
need to encrypt this  key as well as the need to ex- 
plicitly authenticate it. The authenticity and fresh- 
ness of SK are derived from the authenticity and 
freshness of the expression T. Even if an adversary 
succeeds in  replaying an old  message from S to R 
(for example, in  case a time stamp is  used instead 
of the nonce N s ) ,  the freshness of SK is guaranteed 
by the incorporation of N ; ,  chosen by R,  into the 
MAC expression T from which SK is derived. Thus, 
the session  keys that  are derived are fresh and in- 
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dependent from the past session  keys (the only  ex- 
isting dependence is to  the  current  shared master 
key). 

Regarding efficiency, the protocol requires only two 
message  flows and no expensive operations (e.g.,  ex- 
ponentiations) at all,  given that  the parties already 
share a master key;  only  efficient  symmetric-key tech- 
niques are used. The forward secrecy of the session 
key SK follows from the unpredictability and one- 
wayness properties of pseudorandom functions and 
our particular application of these functions to  de- 
rive SK. 

We stress that usually more than one key  is required 
for  a single  security association. For example, one 
needs different keys for the encryption and for the 
authentication of information; in  some  cases the keys 
are used  unidirectionally; etc. The derivation of more 
than  one key  using the protocol of Figure 3 is 
straightforward: Instead of a single application of 
f K 2 (  T ) ,  one can  applyf,, (“transform-id,” T )  for each 
required key, where “transform-id” is a unique iden- 
tifier that identifies the algorithm for which the key 
is to be  used (e.g., DES-CBC), the key length, the di- 
rection of the communication (e.g., for message au- 
thentication from S to R only), etc. 

Finally, we note  that  one can replace the use of the 
message authentication code (MAC) function in the 
above protocol with the pseudorandom function f. 
The  latter would provide the authentication prop- 
erties of a message authentication function. (These 
properties follow  from the strong unpredictability re- 
quirements of a pseudorandom function.) In this 
case, one could use  only one master key, K,  to key 
both the uses offK as a MAC as  well as for its uses 
for key derivation. 

The IPSEC protocols 

This section discusses the  Internet IPSEC protocols 
presented in References 2, 4, and 5. These proto- 
cols are  not in their final form yet, though they are 
converging toward a stable specification. These doc- 
uments will eventually become standard RFCS (re- 
quests for comments). We refer  the  reader to them 
for more details. 22 We previously  discussed the con- 
cept of an IPSEC security association, which  is essen- 
tial to  the protocols. Now  we discuss the syntax and 
semantics of an IPSEC packet by explaining how an 
IP packet carrying an IPSK packet is constructed. 

An IPSEC packet is constructed according to  the in- 
formation in an IPSEC SA, and its format depends on 
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the security protocol in that SA. The security pro- 
tocol can be either Encapsulating Security  Payload 
(ESP)4 OrAuthentication Header (AH).5 ESP protects 
the secrecy and, optionally, the integrity of a packet, 
whereas AH protects only  integrity.  Secrecy  is pro- 
tected through encryption, and integrity  is protected 
by a MAC function. The specific algorithms and keys 
(and related parameters) for computing these cryp- 
tographic functions are specified  in the IPSEC SA. The 
default IPSEC encryption algorithm is DES in CBC 
mode; the default algorithm for IPSEC message au- 
thentication code is HMAC-MDS. ‘N923,24 

The high-level  layout of an ~ s ~ p a c k e t  is  shown  in 
Figure 4, and the high-level layout of an AHpacket 
is shown  in Figure 5. An IPSEC packet is either  an 
ESP packet or an AH packet. 

Although the ESP protocol allows for the application 
of encryption without integrity protection, this mode 
of operation is  strongly discouraged. Except for very 
rare exceptions, a packet requiring secrecy will also 
require integrity protection. Moreover, as demon- 
strated in Reference 25, the lack of integrity protec- 
tion may lead to  a loss of confidentiality even if a 
secure encryption function is applied. 

Another measure for integrity protection is provid- 
ing an anti-replay defense. This type  of defense pre- 
vents an attacker from  re-injecting  previously authen- 
ticated IP packets into  the communication stream. 
More precisely, anti-replay measures make it  pos- 
sible to detect such “replayed” packets. To imple- 
ment these measures, the AH and ESP protocols add 
a sequence number field to their headers. This field 
is meaningful only  when the packet is authenticated 
via a MAC function. The value of the sequence num- 
ber is maintained in an IPSEC  SA. A sequence num- 
ber is 32 bits long and always starts from 1. It is in- 
cremented by 1 each time an IPSEC packet is 
constructed according to the SA, and  it  is not allowed 
to wrap around. The receiver of an IPSEC packet (the 
“destination” in an IPSEC SA) uses a locally defined 
sliding  window to keep track of  which sequence num- 
bers  have  already  been  received. It rejects  those  pack- 
ets that fall outside that window or  that carry an al- 
ready-seen sequence number. 

Although the security protocol in an IPSEC SA de- 
termines the format of the packet, the encapsula- 
tion mode determines which part of an IP packet is 
protected. There  are two encapsulation modes: 
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Figure 4 An ESP packet  encapsulated  in  an IP packet 

Figure 5 An AH packet  encapsulated  in  an IP packet 

1. Tunnel  mode: This  mode  protects the entire IP 
packet. The entire IP packet is encapsulated in  an 
IPSEC packet,  and a new IP header is constructed 
and attached at the beginning of the IPSEC packet 
to form a new IP packet. The source  and  destina- 
tion  addresses may or may not  be the same  as  those 
in the encapsulated IP packets.  This  mode is  typ- 
ically  used for a secure  tunnel  between two  firewalls, 
or between a firewall  and a remote system,  i.e., 
whenever either of the two  communicating  systems 
is not an endpoint of the tunnel. The source  and 
destination  addresses  in the new IP header are the 
addresses of the endpoints of the tunnel. 

2. Transport  mode: This mode only protects the 
transport-layer packet (such as a TCP or a UDP 
packet) inside an IP packet. In this mode the Ip 
header is  first separated from the transport-layer 
packet, then  the transport-layer packet is encap- 
sulated in an IPSEC packet, then  the IP header is 
attached to  the IPSEC packet to form a new IP 
packet, and finally, the length,protocol, and header 
checksum fields  in the IP header  are modified ac- 
cordingly. The source and destination addresses 
in the IP header remain unchanged. This mode 
is used when the  endpoints of the secure tunnel 
are  the two communicating systems. 
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There  are two exceptions to  the above description 
of the two modes if the security protocol is AH: 

1. In  the case of AH, the integrity protection extends 
to  part of the  “prepended” IP header.  More  de- 
tails are given  below when describing the proce- 
dure  to construct an AH packet. 

2. An ESP packet can be encapsulated in an AH 
packet. This may happen when an SA bundle is 
used to protect secrecy and integrity. Conceptu- 
ally,  this case can be thought of as first construct- 
ing an IP packet with an ESP packet inside, and 
then using  this IP packet as the input to the con- 
struction of an AH packet. More details are given 
toward the  end of this section when the use of AH 
and SA bundles are discussed. 

Constructing  the  IPSEC packet. With the knowledge 
of the security protocol, the transform, and  the en- 
capsulation mode, one can determine how to assem- 
ble an IPSEC packet from the IP packet. We first de- 
scribe the procedure to construct an ESP packet: 

1. 

2.  

3. 

4. 

5. 

Construct an ESP protocol header; this includes 
the SPI of the IPSEC SA and the sequence number. 
Append the to-be-encapsulated packet to  the ESP 
header. 
Construct an ESP trailer and append it to  the  to- 
be-encapsulated packet. The trailer serves the fol- 
lowing purposes: 

- It contains the protocol number of the  to-be- 
encapsulated packet, such  as the TCP number 
(6) or  the IP-IN-IP number (4, if tunnel mode 
is used). 

- If a block cipher (e.g., DES) is used for encryp- 
tion, then  the trailer contains some padding 
bytes so that  the size of the encapsulated 
packet, the padding bytes, and the protocol 
number (1 byte) will be an integral multiple of 
the block  size of the cipher. 

Encrypt the to-be-encapsulated packet and the 
trailer and append the ciphertext (namely the out- 
put of the encryption) to  the ESP header. 
If, as recommended, integrity protection is pro- 
vided, compute the message authentication code 
over the ESP header and  the ciphertext and ap- 
pend the  output of the MAC computation to the 
ciphertext. This output is indicated by the “MAC” 
field  in Figure 4. 

The ESP header, the ciphertext, and, optionally, the 
MAC field form the ESP packet. 

The procedure to construct an AH packet is as fol- 
lows: 

1. Construct an AH protocol header. This header in- 
cludes the SPI of the IPSEC SA, the sequence num- 
ber, the protocol number of the to-be-encapsu- 
lated packet, and zero-filled  bytes to hold the 
output of the message authentication function. 

2. Append the to-be-encapsulated packet to  the AH 
header. 

3.  Prepend the IP header  to  the AH header. 
4. Compute  the message authentication code over 

the IP header, AH header,  and  the to-be-encap- 
sulated packet; place the  output in the AH header. 
The  output is indicated by the word “MAC” in- 
side the “AH header” box  in Figure 5. 

The AH header  and  the packet attached to it form 
an AH packet. One special feature of the AH pro- 
tocol is that  the computation of the message authen- 
tication code includes the IP header of the IP packet 
that carries the AH packet. However, not all  fields 
in the IP header  are covered. Prior to  the compu- 
tation,  a field  in the IP header is zeroed if its content 
may change en  route. Such fields are called mutable 
in Reference 5. After  the computation, the values 
of these mutable fields  must be restored.  The effi- 
cient construction of an AH packet and restoration 
of the mutable fields  is a tricky implementation is- 
sue not discussed here. 

Although ESP can provide both secrecy and integ- 
rity protection, AH is  still needed for the following 
reasons: 

If secrecy protection is not needed or prohibited 
by law, AH can provide integrity protection with- 
out the cost of encryption. 
The integrity protection of AH covers part of the 
IP header, whereas that of ESP does not. Whether 
this difference in coverage is needed depends on 
the specific operational security requirements. (For 
example, a military application may want to  pro- 
tect the sensitivity labels included in the option 
fields in an IP header.) If both the difference  in 
coverage and secrecy protection are needed, an 
IPSEC SA bundle (see earlier subsection on secur- 
ity association)  can  be used, and the result is shown 
in Figure 6. In  this  figure an ESP packet is encap- 
sulated inside an AH packet, and  the AH packet is 
encapsulated inside an IP packet. This layout im- 
plies that  the ESP packet is constructed first. 
The sequence number field  in the AH header  en- 
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Figure 6 An ESP  packet  encapsulated  in  an AH packet  encapsulated  in  an IP packet 

Figure 7 IPSEC system  architecture 
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ables the receiver to detect  a  replay  attack early, 
therefore saving the decryption operation. 

System architecture 

Figure 7 shows the system architecture of our im- 
plementation on IBM’S Advanced  Interactive Exec- 
utive (AIX*) operating system. It consists of three 
parts. On  the right of the figure is the key manage- 
ment  part, including the MKMP engine, the tunnel in- 
teface, and  the tunnel  cache. On  the left is the IPSEC 
policy part, including thepolicy engine, thepolicy in- 
terjiace, and thepolicy cache. In  the middle is the IPSEC 
encapsulation  part, including the IPSEC engine  and 
the clypto engine. There is also an IPsEc-enabled IP 
engine. 

The MKMP engine  establishes  and  manages the se- 
cure  tunnels  and  stores  the security  associations of 
these  tunnels in the  tunnel  cache  through  the  tun- 
nel  interface. The policy engine allows an adminis- 
trator  to define and to manage IPSEC policies; it trans- 
lates  a  human-readable policy into  binary  form  and 
stores  the binary  form in the policy cache  through 
the policy interface. For each  inbound  and  outbound 
IP packet, the IP engine  queries  the policy cache  on 
what  actions to take  on  the packet. For  an  inbound 
packet, the action may be  either  to permit or deny 
the packet,  a decision that may be  partially  based on 
what  tunnel the packet  has  gone  through. For  an  out- 
bound  packet,  the  action may also be  to encapsulate, 
meaning that  the  packet should go through  a  secure 
tunnel  designated by the policy. The IPSEC encap- 
sulation part is invoked by the IP engine to perform 
IPSEC encapsulation  and  decapsulation  on IPSEC 
packets. 

We stress that  an  important principle followed by 
our design is to decouple  the IPSEC encapsulation 
part  from  the key management  part;  doing so allows 
us to link different key management protocols-and 
their  underlying  distributed security infrastruc- 
tures-with the IPSEC encapsulation  protocol. The 
linkages  between the two parts  are  the IDS of secure 
tunnels. The key management  part  generates SAS 
with their  tunnel IDS inside. The IPSEC encapsula- 
tion part  can use  a  secure  tunnel ID to find which 
SA is the  current  incarnation of the  tunnel.  It  can 
also use the destination  address  and SPI in a received 
packet to find the  corresponding SA and  therefore 
the secure  tunnel to which the SA belongs. 

Another  important design principle is to decouple 
the policy part  from  the key management  part  and 
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the IPSEC encapsulation  part.  We believe that it 
should be  up  to  the policy part  to  decide what to  do 
with a  packet,  whereas the  other two parts  should 
implement  the decision  regardless of how the  de- 
cision is made.  Doing so allows us to accommodate 
different policy models  and switch to  better decision- 
making  mechanisms in the  future.  The linkages  be- 
tween the policy part  and  the  other  parts  are also 
ID’S secure  tunnels;  the following subsection provides 
more details. 

Figures 8 and 9 show the flowcharts of IP/IPSEC out- 
put  and  input processing, respectively. IPSEC process- 
ing was introduced  into the so-called “vanilla IP” pro- 
cessing by addingfunction  call hooks into  the original 
AIX IP code. The blocks outlined  in  dashes  indicate 
IPSEC processing. On  output processing,  a  packet 
passes through  the  output  packet filter’2,27  imple- 
mented by the policy cache. The outcome of output 
packet  filtering  can  be:  (1)permit:  proceed with va- 
nilla IP processing, (2) deny: throw away the  packet 
and (optionally) log the event, or (3) encapsulate: per- 
form IPSEC encapsulation on  the packet  based on  the 
specification of a  policy-designated  secure  tunnel, 
and  then  transmit  the  resultant new IP packet. 

On input  processing,  a  packet first passes  through 
the  input  packet filter implemented by the policy 
cache. The result of input  packet  filtering  can  be: 
(1)permit:  proceed with vanilla IP processing, or (2) 
deny: throw away the  packet  and (optionally) log the 
event. If the result is “permit,”  then  after  some 
vanilla IP processing, the  “protocol” field in the IP 
header is examined. If its value is either ESP or AH, 
which indicates that  the payload is IPSEC-encapsulated, 
the  packet is sent  through  the IPSEC decapsulation 
process  implemented by the IPSEC encapsulation 
part;  otherwise, the  packet is passed directly up  to 
the  transport layer  protocol.  In  turn,  the  result of 
IPSEC decapsulation  consists of two parts: (1) the IP 
packet  that was encapsulated,  and (2) the ID of the 
secure  tunnel  through which the  packet  has come. 
This ID indicates in what way the  packet  has  been 
protected.  This  result is fed  back to  the beginning 
of IP input  processing  and  passes  through the 
input  filter again. Now the filter can  make  decisions 
based on  the  packet  and  the way in which it was pro- 
tected.  For example, the policy can  state  “accept  the 
packet only if it  came  through  a  certain  tunnel.” We 
now describe the  parts of the  architecture in more 
detail. 

The IPSEC policy part. Conceptually, an IPSEC pol- 
icy consists of packet-filtering  rules. These  rules  de- 
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Figure 8 IP/IPSEC output  processing 
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termine whether an IP packet should be  received  (i.e., 
passed up to  the  transport layer protocol) or trans- 
mitted. Basically, the rules are  put in a list, and the 
first rule that matches the relevant information of 
the IP packet determines the decision. A rule is com- 
posed of several fields, including the action to be 
taken  (permit, deny, or encapsulate), the source ad- 
dress and address mask, the destination address and 
address mask, the  transport protocol, the port num- 
ber or message  type (if applicable), the direction (in- 
bound or  outbound), and the secure tunnel ID. For 
an outbound packet, a nonzero tunnel ID specifies 
that  the packet should be encapsulated by the IPSEC 
encapsulation defined by the tunnel-i.e., the packet 
should  go through the tunnel. For an inbound packet, 
a nonzero tunnel ID says that  the packet should be 

protected by the IPSEC encapsulation designated by 
the tunnel ID-the packet should  have  come through 
the tunnel. 

We have realized the policy part with the following 
components: 

Administration tools-These  tools are applications 
running in the user space that allow the admin- 
istration to  create  and modify IPSEC policies. One 
important function of the tools is to translate hu- 
man-friendly policy statements  into binary form 
and to  put  the binary form into  the kernelpolicy 
cache through the policy  interface. 
Policy  interface-This interface is a pseudodevice 
driver acting as the interface between the admin- 
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Figure 9 IPAPSEC input  processing 
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istration  tools  and the policy cache.  It allows the 
administration  to  change or view the  kernel pol- 
icy cache. 
Policy cache-This cache is a  repository  for IPSEC 
policies in the kernel,  used by the IP module. The 
policy cache  exports an IP packet  filter  interface 
to the IP module.  The  interface is divided into in- 
put filtering and output filtering. The input  to  the 
interface is an IP packet.  For  input filtering, the 
output is a  simple  permit or deny  answer. For  out- 
put  filtering, the  output is a  permit, deny, or  en- 
capsulate answer. In  the case of encapsulate,  the 
packet is encapsulated  according to the  current SA 
in the  corresponding  tunnel. 

In our implementation,  the policy cache  can only be 
changed as a whole. If the  administration  tool  wants 
to  add  one  rule  to  the policy, it will read  the whole 
cache  into a copy in the  user space, add  the  rule  to 
the copy, and  write the modified copy back to  the 
policy interface.  The policy interface will lock the 
policy cache, do a  pointer-swap operation  to  make 
the  cache point to  the new copy, and  then unlock 
and  delete  the old copy. The  reason  for this whole- 
sale manner of operation is performance.  Since  the 
processing of every packet involves searching and 
matching the policy cache,  a  per-rule lock would def- 
initely degrade  the  performance. In fact, our expe- 
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rience shows that  the number of locking operations 
on the policy cache should be kept to  a minimum. 

The key management part. A brief description of the 
key management part is  given at the beginning of 
this section. This subsection discusses the MKMP en- 
gine and tunnel administration tools shown  in  Fig- 
ure 7. More details can be found in Reference 3. 

The MKMP engme. The MKMP engine establishes and 
manages secure tunnels by creating and refreshing 
SAs within the tunnels. It also caches the SAs of a se- 
cure tunnel in the tunnel cache through the tunnel 
interface. The engine is  divided into two modules: 
the session  key engine and  the master key engine, 
which  we  now describe in detail. 

The master key engine negotiates the master keys, 
the first shared nonce, and the meta-characteristics 
of a secure tunnel, and passes the information to  the 
session  key engine in a  data  structure called master 
key context. The master key  is  actually a pair of  keys: 
one key  is used to  authenticate  the messages from 
the session  key protocol, and  the  other is used as an 
input to the pseudorandom function in order  to  de- 
rive  session  keys (see Figure 3). The master key en- 
gine can be instantiated in several ways: It can be 
a simple user-level command that implements the 
manual distribution of master keys, or it  may use a 
Key Distribution Center-based protocol, such  as  Ker- 
beros  or NetSP,28 or it  may be a process that derives 
master keys  using public key cryptography, such as 
ISAKMPIOAKLEY.~," At  present, we have imple- 
mented two master key engines: (1) manual param- 
eter negotiation and key distribution, and (2) man- 
ual parameter negotiation and Diffie-Hellman key 
exchange, 29 authenticated by a preshared secret. We 
are currently in the process of building a prototype 
of the ISAKMP/OAKLEY protocol. 

The session  key engine implements the session  key 
protocol described earlier. It accepts a master key 
context  from the master key engine and  uses  this  con- 
text to establish and maintain a secure tunnel with 
the session key engine on the  other  end of the  tun- 
nel. A run of the session  key protocol derives two 
session  keys, one for IP packet encryption and the 
other for authentication. The IDS of the encryption 
and authentication algorithms are used to index the 
pseudorandom functions to  generate different keys. 
The session  key engine refreshes a key before it  ex- 
pires to ensure uninterrupted secure communication. 
The length of the overlapping period between the 
old and new  keys  is  in the master key context. For 
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each key refreshment, the session  key engine cre- 
ates new SAs with  new SPIS and keys, but keeps all 
other information unchanged. 

Figure 10 shows the architecture of the session  key 
engine and  the master key engine and their relations 
to  other  parts of the operating system. 

The design  goals of this part of the architecture are 
modularity, flexibility, and portability. Since we en- 
vision the possibility of the session  key engine inter- 
operating with  many master key engines of different 
types, the session  key engine is an  independent pro- 
cess separated from the master key engines. A ses- 
sion key context is sent in a UDP message from the 
master key engine to  the session key engine. In or- 
der  to prevent an adversary from sending a bogus 
master key  context to  the session key engine, the con- 
tent of the UDP message  is authenticated by a secret 
key that is preshared between the session key en- 
gine and the master key engine. In  order  to provide 
portability across different platforms, we  have  im- 
plemented an OS (operating system) dependency li- 
brary. This library provides os-independent appli- 
cation programming interfaces (MIS), which  in turn 
provide the following  services: 

Secure communication for network communica- 
tion, encryption, and authentication of messages 
from the master key engine to the session key en- 
gine 
Timedalarm for retransmission and key refresh- 
ment or deletion 
Asynchronous wait for capturing asynchronous 
events (e.g, time-out events and receipts of mes- 
sages) 
Tunnel caching for the caching of security asso- 
ciations 

The  tunnel administration  tools. Briefly, the tunnel 
administration tools are  a set of applications to ex- 
amine and  delete security associations in the tunnel 
cache. They also provide an interface for inserting 
manually created security associations into  the  tun- 
nel cache. These tools have proved to be invaluable 
for the debugging of IPSEC protocols and for diag- 
nosing secure tunnel configurations. 

The IPSEC encapsulation part. As a follow-on to 
the discussion in the previous section, the IPSEC en- 
capsulation process can be divided into two  main 
steps: (1) packaging that handles all of the IP head- 
ers, IPSEC headers, and ESP trailers, and invokes the 
necessary crypto operations, and (2)  clyptogruphic 
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Figure 10 Architecture of key  management  engines 
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operation that performs the actual cryptographic 
computation. Accordingly, the IPSEC encapsulation 
part is divided into  the IPSEC engine and  the crypto 
engine. This division of functionality has the follow- 
ing advantages: 

Implementations of cryptographic algorithms are 
decoupled from the details of IPSEC syntax and se- 
mantics. Thus, new algorithms and improved im- 
plementations can  be  easily introduced. 
It is much easier to keep up with the changes in 
IPSEC syntax and semantics. We  have  actually up- 
dated  the IPSEC engine a few times as the IPSEC 
standards evolved; the changes were all  within the 
IPSEC engine and no other  parts were affected. 

We now describe the two engines in detail. 

The IPSEC engine. The IPsEC engine is responsible 
for the packaging part of the IPSEC encapsulation 
and decapsulation processes. 

For encapsulation, the inputs of the engine are  an 
IP packet from the IP engine and  a secure tunnel ID 
from the policy cache. The IPSEC engine will  find the 
current SA of the tunnel through the  tunnel ID and 
encapsulate the input packet using the information 
in the SA. The encapsulation procedure was  discussed 
previously. The  output of the  procedure is an IPSEC 
packet inside an IP packet. 

For decapsulation, the input of the engine is a  re- 
ceived IP packet with an IPSEC packet inside. This 
IP packet should be  the  output of its sender’s encap- 
sulation procedure. The IPSEC engine finds the SA 
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corresponding to  the SPI in the IPSEC packet and the 
destination address of the IP packet. The decapsu- 
lation procedure is the inverse of the encapsulation 
procedure. If the SA indicates that  the integrity of 
the message should be protected,  the decapsulation 
procedure first  checks on whether the received IP 
packet is a replay and then verifies the MAC inside 
the received IPSEC packet. The received packet is re- 
jected if it  is a replay or if the MAC verification  fails. 
Other  error conditions, such as a failure of decryp- 
tion, may also happen during decapsulation. All er- 
ror conditions cause the received packet to be re- 
jected. 

The crypt0 engine. The crypto engine is  divided into 
a lower and an  upper layer. The lower-layer module 
implements and exports a specific cryptographic 
algorithm. For example, one module imple- 
ments DES-CBC and another module implements 
HMAC-MD5. The lower-layer module is identified by 
an implementation-dependent integer ID of the spe- 
cific cryptographic algorithm it implements and ex- 
ports one of two generic interfaces, depending on 
whether it implements encryption or message au- 
thentication. 

The  upper layer  is  also a framework that holds dif- 
ferent lower-layer  modules.  However, the crypto up- 
per layer does not hide the interfaces exported by 
the lower layer. A reference to a lower-layer crypto 
module can be acquired through a search function 
provided by the upper layer,  with the ID of the crypto 
transform as the search key. 

All the lower-layer modules in the IPSEC engine and 
the crypto engine are optimized to use  mbuf  chains30 
as I/O buffers. 

Performance 

The performance of our implementation is  very  sim- 
ilar to  that  reported in our earlier work.3 Although 
the code has been improved and modified to fit the 
new standard,  the dominant factor of performance, 
namely, the cost of the cryptographic operations, re- 
mains unchanged. Since the same cryptographic op- 
erations  are still used by the new standard,  the per- 
formance stays about the same. Refer to Reference 
3 for more details. 

Currently, work is underway to produce handcrafted, 
high-performance cryptographic code. We are also 
investigating the use of cryptographic hardware. 
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Ongoing  and  future  work 

We are currently implementing a key management 
engine based on  the emerging Internet standard key 
management protocols, ISAKMP" and OAKLEY.6,31 
OAKLEY has been strongly influenced by the SKEME 
protocol,14  which in turn is a  natural extension of 
the MKMP protocol presented  here. 

As IPSEC and other security protocols such as TLS" 
become ubiquitous, we believe it  is important to re- 
fine the policy part in order to provide a unified,  easy- 
to-use administration and user interface so that dif- 
ferent security  protocols  can  be  combined  in a correct 
and desirable way to achieve a security goal. 
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Appendix: IP layer  security vs session  layer 
security 

A frequently asked question is  why are both an IP 
layer security mechanism and a session  layer secur- 
ity  mechanism-such  as S S L ~  and m'O-needed. Ta- 
ble l presents a comparison of features for lPSEC and 
SSL. 

In summary, we feel that IPSEC and SSL are largely 
complementary technologies. When the traffic  is re- 
stricted to Web or HTTP (HyperText Transfer Pro- 
tocol) type, then SSL is more suitable, assuming that 
all the browsers and Web servers have SSL already 
built in. When traffic cannot be restricted to only 
Web or HTTP, but must include other popular In- 
ternet applications such as Telnet, FTP, network file 
system (NFS), directory services, database applica- 
tions, real-time audio and video, as well  as  many 
other legacy applications, then IPSEC is  simply more 
suitable. 

*Trademark or registered trademark of International Business 
Machines Corporation. 
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