Surf’N’Sign: Client
signatures on Web
documents

The emergence of World Wide Web-based
systems and Web transactions has led to the
need to find a mechanism that provides
electronic signature capabilities as a
replacement for written signatures. Such a
mechanism should guarantee authentication and
nonrepudiation. Many Web applications could
benefit greatly from such a mechanism, e.g.,
banking systems, tax filing, reservation systems,
and corporate procedures. This paper discusses
the various approaches that could be taken to
provide such a mechanism and suggests a
solution that provides client commitment on Web
documents by means of digital signatures. The
architecture and implementation of the solution,
called Surf’N’Sign, is outlined in detail. Our
design of the solution gives special consideration
to the semantics of such a signature and to its
proper and secure use on the Web. Its prototype
was implemented at the IBM Haifa Research
Laborato%as a plug-in to the Netscape
Navigator™ browser and is integrated naturally
into the browsing process. It provides a signing
mechanism at the client, as well as the capability
to archive and preview the signed documents.
Surf’N’Sign lends itself to easy integration with
existing applications on the Web.

In paper-based transactions, handwritten signa-
tures are used to authenticate the document, to
serve as the signer’s agreement to the information
it contains, and also as evidence that can be shown
to a third party in case of repudiation. With the emer-
gence of World Wide Web-based systems generat-
ing Web transactions, the need for a function and
a mechanism analogous to a written signature be-
comes imminent. Examples of such systems include,
among others, banking systems, tax filing, reserva-

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

0018-8670/98/$5.00 © 1998 IBM

by A. Herzberg
D. Naor

tion systems (car, travel, etc.), and corporate pro-
cedures involving expenses, evaluations, etc. Such
systems are fully Web-enabled only if some type of
signature capability is integrated into them. The sig-
nature capabilities are needed either at the client or
at the server.

Digital signatures (a.k.a. “electronic signatures”) are
the digital equivalent of handwritten signatures. Dig-
ital signatures provide data that can serve as evidence
that the signer agreed on some digital message. Such
data should be “easy” to produce and verify, but “dif-
ficult” to forge by anyone other than the signer, and
can be used as a proof to a third party. The concept
of a digital signature was first introduced in the clas-
sical paper of Diffie and Hellman, ' and the first—and
most well-known and widely used—implementation
is RSA.2 The legal state of digital signatures is cur-
rently not so clear, and adequate legislation concern-
ing digital signatures has not yet been introduced.
This situation is likely to change as digital signatures
become more widely used (see, for example, Utah’s
Digital Signature Development Program®). How-
ever, digital signatures clearly offer the closest—or
only— known alternative to handwritten signatures
when moving paper processes to the Web.

Digital signatures have been successfully incorpo-
rated into a large number of electronic applications,

©Copyright 1998 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

HERZBERG AND NAOR §1

in particular, electronic mail,*® groupware and
workflow (e.g., Lotus Notes**), and electronic com-
merce (e.g., References 7 and 8). Incorporating the
digital signature mechanism into Web technology is
now called for. Such extension requires proper de-
sign of the integration between the algorithm that
computes digital signatures and the Web interface
and implementation. This paper considers a partic-
ular scenario where the client needs to commit to
a Web document; the document may be a purchase
order, a contract, or any other committing statement.
The paper discusses the issues and difficulties in-
volved in extending digital signatures to such sce-
narios and presents the architecture and design of
a solution, called Surf’N’Sign, that provides client
commitments on Web documents by means of dig-
ital signatures.

Digital signatures and the Web. The first question
that needs to be addressed when designing a signa-
ture mechanism for the Web is the exact definition
of the “message,” or the document, that is being
signed. The appearance of Web documents, unlike
physical documents, is a function of various param-
eters besides its HTML (HyperText Markup Lan-
guage) representation. However, the main goal of
Surf’N’Sign is to provide the client with a mecha-
nism that allows him or her to commit to the doc-
ument appearance at the time of the signature, and
as a result it adopts “what you see is what you sign”
semantics. [t is natural to sign the “document source”
of a Web document, but then it is not clear to what
extent the document representation (HTML source
in our case) reflects the Web document that is seen
by the signer at the time of signing. Web documents,
written in the HTML language, are typically complex
hypertexts composed of several types of data such
as plain text, images, links, and executables (Java-
Script** procedures, Java** applets, and ActiveX**
controls).

Links pose only a semantic problem: does the mech-
anism sign the link name only, or does it sign the
content of the link at the time of signing? If the lat-
ter approach is taken, the content of the uniform re-
source locators (URLs) pointed to by all links should
be signed as well, and this must be done recursively.
Surf’N’Sign adopts the first approach: documents
containing links are signed, but the link content is
not included in the signed message.

Some components, such as images or frames, may
change with time so that the signature on the doc-
ument source no longer reflects the altered docu-

62 HERZBERG AND NAOR

ment. Moreover, some images, especially back-
ground, may be abused by the creator of the
document: it may hide some essential parts of the
document and thereby completely change the mean-
ing of the document. In order to protect the client
from such situations, Surf’N’Sign filters out HTML
documents that include “changeable” components
such as embedded images, background, and frames
and refuses to sign them. An alternative approach
could be to sign the “changeable” components along
with the document source. This solution protects the
client at a time of dispute but introduces additional
complexity and burden on the server administrator,
who must keep track of the original embedded im-
ages to prove the authenticity of the signature in the
future.

Signing active content of the document, such as Java-
Script procedures and Java applets, is dangerous if
one wants to commit to the view of a document gen-
erated at the time of signing. This view may depend
on such things as time, user input, and others (for
example, a JavaScript procedure may display differ-
ent amounts of money depending on the time of day).
To avoid such situations, Surf’N’Sign filters out HTML
documents with active content since it does not in-
tend to commit to the behavior of such components.
We should note that code signing may be very mean-
ingful in other scenarios, for example, when certain
assertions about the code are signed with it. This ap-
proach is taken by the Digital Signature Initiative,’
for example.

A long document may not be contained in the screen
viewed by the signer. One may permit long docu-
ments (and rely on the signer to scroll the display
to read all of the contents). We take the more con-
servative approach—which we found appropriate to
use on the Web, since there has not been sufficient
public experience with digital signatures—and re-
strict the length of the signed documents.

Finally, in addition to its complex nature, the doc-
ument is viewed by a specific browser with a specific
interface that may affect the outlook of the docu-
ment. In turn, Surf’N’Sign considers the identity and
version of the browser as part of the signed message.

Complying with the nature of the Web, the new
mechanism should be well-integrated with the com-
mon browsing process, with its user interface, sim-
plicity of use, and speed, thus minimizing delay
caused by the signature computation. In addition,
the open interconnection nature of the Internet im-

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

poses real threats to any application that requires
both authentication and “unforgeability.” Some of
these issues are addressed by general protocols that
provide communications privacy over the Internet,
such as Netscape’s SSL (Secure Socket Layer)'° pro-
tocol. Other issues, such as ensuring that the soft-
ware indeed produces the real signature, must be ad-
dressed separately.

Signing and verifying with public-key cryptography.
A digital signature is the process that transforms a
message M into a signed message S. If S is the se-
cret signing transformation of a user X, then for
any message M in the message-universe, S = (M,
Sx(M)) is the signature of user X on M. The pro-
cess of verifying a signature is a public transforma-
tion V', which, when applied to §, returns True or
False: V(S, M) = True if and only if the signature
originated from the message M. Also, it is compu-
tationally infeasible for any user other than the one
using Sy to compute M and S such that V', (S, M)
= True. The private and public transformations S
and Iy are performed with a key K, of user X that
consists of a private and public component. The as-
sociation between the signer’s ID (identification) and
her or his public key is done via a certificate, which
is issued to the signer by some certificate authority
(cAa)! or by a certification mechanism internal to
the application. A certificate is basically a signature
on the pair (ID, Ky) and on some assertions where
ID is the identification of the person who holds the
key Ky. A common implementation uses the RSA2
signature algorithm for the signature scheme and
MDs5 as the One-Way Hash Function.

Review of existing solutions. Several general secur-
ity protocols exist for the Internet. The SSL proto-
col* of Netscape provides secure communication be-
tween the server and the client, but this by itself does
not provide the nonrepudiation features for the sig-
nature. SYMIME (Secure/Multipurpose Internet Mail
Extension), PEM (Privacy-Enhanced Mail), and PGP
(Pretty Good Privacy)*-° are designed mainly to sign
e-mail messages, and can be adapted, if desired, to
sign Web documents. However, this adaptation has
not yet been done. S-HTTP (Secure Hypertext Trans-
fer Protocol) ? does provide a signature mechanism.
However, it requires that the browser use S-HTTP.
Currently, this protocol is not widely supported in
the market (i.e., by neither Netscape Communica-
tions Corporation nor Microsoft Corporation). Shen,
an alternative security scheme for the World Wide
Web, " does not specify nonrepudiation among its
immediate goals. There are several server-oriented

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

signature mechanisms. The Digital Signature Initia-
tive,® carried out by the World Wide Web Consor-
tium, suggests a mechanism that is designed to
“. .. provide a comprehensive solution to the basic
problem of helping users decide what to trust on the
Web.” The Signature Labels of the Digital Signa-
ture Initiative sign assertions regarding a URL to-
gether with its content, and its main application is
code signing. Another protocol, the S° Server-

A Web signature mechanism
may be designed to be performed
by either the server or the
client.

Supported Signatures protocol, is suggested in the
paper by Ashokan et al.' It presents a nonrepudia-
tion scheme in which signature generations are done
at some designated signature server. This technique
has not yet been implemented.

Surf’N’Sign

Surf’N’Sign is designed to provide a mechanism to
support client commitment on Web documents by the
means of digital signatures. As such, it emphasizes
clarity and simplicity, thus avoiding possible misun-
derstanding at the client’s end, while providing ad-
equate authentication of the signer, nonrepudiation,
and the ability to prevent the forging of signatures.
It is also designed to be an easy-to-use mechanism
that becomes an integral part of the surfing process
and, as much as possible, adopts the interface of
the browser. The signature semantics adopted by
Surt’ N’Sign have been described and justified in de-
tail in the previous section.

Characteristics of Surf’N’Sign. Some of the main
features of Surf’N’Sign are now described.

Security and trust model. In general, a Web signature
mechanism may be designed to be performed either
by the server or by the client. However, for client-
based signature applications, the signature mecha-
nism that has access to the signer’s sensitive data (i.e.,
private key) and that results in a commitment of the
client, should be fully trusted by it. Hence, it is log-

HERZBERG AND NAOR §3

Figure 1 Main screen of Surf’N’Sign, displaying document to be signed with sign and cancel buttons

, Nei:srr:épe - [file:)HVIArnon{wﬁw[HTM sign,’examples/indre*.hfmij

ical to require that the software performing the sign-
ing operation must reside at the client and be a trusted
piece of code independent of the server that contains
the document to be signed. For that reason, perform-
ing the signature at the server, by a Common Gate-
way Interface (CGI) for instance, is unacceptable. An-
other natural alternative is loading a Java applet from
the server, while exploiting the trust mechanism of
a signed applet supplied by the Java language. The
problem with this solution is having access to the pri-
vate key data of the signer—it will require the pri-
vate data to be sent repeatedly to the server. More-
over, the Java applet is not independent of the
document that is being signed, since it is the same
server that supplies both the signing code (applet)

64 HERZBERG AND NAOR

and the document. As a result, we have chosen to
implement Surf’N’Sign as a plug-in to Netscape Nav-
igator**—the exact architecture of the system is ex-
plained in detail later. By this method we achieve
the goal of having the signature computation done
locally at the client by code independent of the server.

Implementation. Surf’N’Sign is implemented as a
plug-in to the Netscape browser, which interacts with
the server by a CGI script. As such, it uses a common
browsing mechanism and interface. It consists of the
signature protocol, which lets the client sign a doc-
ument and send the signature to the server. This
method requires one public-key operation that
causes a negligible delay. Another component is the

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

Figure 2 Browser window displaying an archived signature

Netscape - [file:////Amon/c/temp/archive htmi]
SRS

\\Ar\c:\tern\aru tve htrml

signature retrieval, which displays an HTML document
that has been signed with Surf’N’Sign. The digital
signature scheme employed is the RSA signature al-
gorithm? and MDs for computing the message digest
(the One-Way Hash Function). All components are
written in C or C+ +, developed with Microsoft De-
veloper Studio 4.0** and running on Windows 95**
or Windows NT**. The cryptographic operations
(signing a message and verification of the signature)
of Surf’N’Sign are implemented with the RSAREF
2.0** cryptographic library, ** developed by RSA Lab-
oratories.

Handling HTML forms. Surf’N’Sign is designed to
sign a plain HTML text; however, it is often desirable

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

to sign an HTML form after its fields have been
filled by the client. The current implementation of
Surf’N’Sign can be easily adapted to handle HTML
forms in the following way: the HTML form is pro-
cessed by a CGI program that dynamically creates a
new, temporary HTML document. This document
contains the user-specified values at the fields and
is then signed by Surf’N’Sign.

Use of Surf’N’Sign. As indicated, Surf’N’Sign is de-
signed to sign HTML documents at the client and send
the signature back to the server (such as to a bank
or to a car-rental company). The document is typ-
ically retrieved from the site of the server. The pro-
cess of signing an HTML document with Surf’N’Sign

HERZBERG AND NAOR B§5

Figure 3 Architecture of the signature protocol

1. VAUDATES DOCUMENT.

COMPUTES SIGNATURE
2. SHOWS DOCUMENT +
“SIGN OR CANCEL”
3. UPON “SIGN; SENDS
SIGNATURE -
PLUG-IN
INVOKE
PLUGHIN'

SiGN 94/
| CANGEL) SIGN!

CLIENT 4¢——— - SERVER.

DOCUMENT

40,‘,
47
OM’L$OG
LS
U%

CGt
SCRIPT

CHECKS SIGNATURE

is very simple. The document to be signed is displayed
in the window of the browser as shown in Figure 1.
This window is split into three parts (frames): the
first part (at the left) is the “Surf’N’Sign control win-
dow,” the second part (at the right) displays the orig-
inal document to be signed, and the bottom part con-
tains two buttons, a sign button and a cancel button.
Figure 1 shows a snapshot of the browser window
and its three parts. Pressing the cancel button aborts
the program, so that no signature is produced or sent
to the server. When the sign button is pressed, a sig-
nature is produced and is sent to the server. In re-
turn, the server sends an acknowledgment that is dis-
played at the Surf’N’Sign control window frame,
indicating that the signature has been received, ver-
ified, and is being archived at the client’s local disk.

An archived signature is displayed by the browser
as shown in Figure 2. The window of the browser is
split into two parts: one that displays the document
that has been signed, and the “control” frame that
displays the date and time when it was signed and
the signer’s identity. Figure 2 shows a snapshot of
the browser window displaying an archived signature.

Architecture of Surf’N’Sign. Netscape Navigator
plug-ins are dynamically loaded code modules (dlls)
that become part of the code of the browser. As such,
they allow a simple integration between the appli-

66 HERZBERG AND NAOR

cation and the browser. Surf’N’Sign is implemented
as a plug-in'® in the client’s browser using Netscape’s
application program interface (API) and interacts
with the server via a CGI script. The signature pro-
tocol and the signature retrieval are implemented
by the same plug-in program. The plug-in is regis-
tered by the Navigator browser using the MIME-type
application/x-sig and is called whenever a file with the
extension of “.sig” is being displayed by the Netscape
browser (Netscape Navigator 3.0 or later). Instead of
displaying it directly, the plug-in program checks the
content of the file. If the header (first word) of the file
is the keyword “ARCHIVE_Surf NSign,” it is processed
by the signature retrieval program. Otherwise, it treats
the file as a standard HTML document that needs to be
signed, and the file is processed by the signature pro-
tocol. The server’s component of the signature program
is a CGI script written in C.

The signature protocol. Surf’N’Sign implements a sim-
ple protocol that runs between the client and server.
The protocol first displays the document at the cli-
ent and asks for approval. When the client approves,
the digital signature of the document is computed
and sent to the server (the process is summarized
in Figure 3). Upon receipt, the server sends an ac-
knowledgment back to the client, and a record of
the signature is kept at both. The message that passes
from the client to the server contains the document’s
signature (signed with the client’s private key), the
client’s public key and its certificate, date, and time
of the signature, the browser’s version, and the doc-
ument’s title (serves as identification for a docu-
ment). We call it “The Signature Message.”

The flow of the client’s signature protocol is as fol-
lows:

« Filtering: Checks whether the HTML document can
be signed (e.g., does not contain embedded texts
such as images and frames). If not, an error mes-
sage indicating the reason for not signing the doc-
ument is displayed, and the program exits.

s User’s approval: The valid document is displayed
by the browser, along with a frame that asks for
the client’s approval (sign or cancel button).

» Signature generation and transmission: The client’s
public key is found and read (if a key pair does not
exist, a new one is generated), and the signature
of the text is computed. A signature message con-
taining the signature, key, time and date, title, and
browser used is sent to the server by the POST
method. (The POST method could have been re-
placed by creating an HTML form with a submit

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

button. The reason for choosing the direct way of
implementing POST is given later in the section on
network and streams.)

* Archiving: When the program is notified of suc-
cessful transmission to the server, it writes the
HTML document into a “.sig” file on the client’s
disk and attaches the message containing the sig-
nature and the other relevant information. From
this file, the signed document can be retrieved in
the future (see signature retrieval).

The flow of the server’s signature program follows:

« Signature verification: The server accepts the mes-
sage, decomposes its fields, identifies the appro-
priate HTML text by the title, and performs signa-
ture verification. This also verifies that the HTML
document has not been corrupted in the midst of
handling.

» Signature acceptance or rejection: If the signature
has been successfully verified, the server writes the
HTML document into a “.sig” file and attaches the
message to it, so that the signed form can be re-
trieved in the future. An acknowledgment message
is sent back to the client. Otherwise, the server
sends an error message to the client, indicating that
the signature cannot be verified and therefore has
not been accepted.

The signature retrieval. The signature retrieval com-
ponent of Surf’N’Sign is a utility for displaying a
signed document that was produced by Surf’N’Sign.
Recall that a successful signature protocol of
Surf’N’Sign produces a file that contains a signature
message on an HTML text. The signature retrieval
does the “inverse” operation of Surf’N’Sign: it takes
the file, decomposes it, verifies the signature using
the public key, and if the signature verification has
been successful, it displays the HTML document along
with the rest of the information. It can be used for
archival purposes both at the client and at the server.
That is, the signed file is kept in some directory at the
client and at the server, and these files can later be
viewed. The input to this program is the name of a “.sig”
file, produced by the signature program of Surf’N’Sign,
containing the keyword “ARCHIVE_SurfNSign,” fol-
lowed by an encoded signature message (i.e., an HTML
document, its signature, the signer’s public key and
its certification, date, and time of the signature, the
browser version, and document title). The program
reads the various fields from the file and verifies the
signature (to avoid forgery of such files). If success-
fully verified, the program displays the HTML doc-
ument along with the time and date of the signature,

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

Figure 4 The plug-in code and Netscape Navigator

PLUG-IN CODE

¢ N NPP_ AND
NPN_ APls

NETSCAPE
NAVIGATOR
CLASSES:
MySig
SurfNSign
PLUGIN CPluginWindow T,

WINDOW

browser information, title, and the certification in-
formation. Otherwise, it displays an error message.

Software implementation

Recall that Surf’N’Sign consists of two components:
the signature protocol, which lets the client sign a
document and send its signature to the server, and
the signature retrieval, which displays an HTML doc-
ument that has been signed with Surf’N’Sign. The
signature protocol is implemented by the plug-in
Npsignature that recognizes the extension “.sig” and
interacts with a CGI program, new_sig.exe, at the
server. Signature retrieval is handled by the same
plug-in.

NPsignature—the DLL program. The plug-in NPsig-
nature is composed of three main classes: MySig,
Surf NSign, and CPluginWindow. Table 1 shows the
class definitions, and Figure 4 depicts the way by
which they are integrated with Netscape’s browser.
The main class containing the data is the Surf NSign
class. MySig is the main plug-in class, integrating the
data with the window of the plug-in and with
Netscape’s information. CPluginWindow is the
plug-in window—it is subclassed to the Navigator’s
window. These classes are embedded within the APIs
provided by Netscape to produce the plug-in.

HERZBERG AND NAOR §7

Table 1 The main classes SurfNSign, MySig, and
CPluginWindow

Netscape’s APIs. The use of Netscape’s APIs' by the
plug-in is now described.

Network and streams. The plug-in is invoked upon
submitting a “.sig” file. It creates a new window in

68 HERZBERG AND NAOR

the function NPP_SetWindow and makes the new
window a subclass of the browser’s window. The con-
tent of the file is passed to the plug-in as a stream
and is read in NPP_Write. The plug-in then checks
whether the document can be signed. If so, the
text is displayed in the Netscape browser using
NPN_NewStream and NPN_Write, and two buttons
(sign and cancel) are created in the plug-in window.
When the sign button is activated, the plug-in
posts the signature message to the CGI using
NPN_PostURLNotify. In return, the plug-in is
notified of the communication results in
NPP_URLNotify.

A successtul transmission results in keeping a record
of the signature at the client, whereas any early ter-
mination of the plug-in (such as use of the cancel
button or a nonvalid HTML file) resuits in a return
of a negative number (return(—1)) in NPP_Write,
which in turn destroys the plug-in. NPP_Destroy
causes the plug-in window to unsubclass. An alter-
native, more direct, method for sending the signed
message to the CGI of the server via an HTML form
had been explored; namely, the plug-in will gener-
ate an HTML form containing the data to be signed.
By using the submit button of the form, the data
could be sent to the CGI of the server. However, this
solution required the plug-in to be running just be-
fore the data of the form are sent to the server, ac-
tivating a JavaScript procedure on submission from
within the plug-in, which in turn required the plug-in
to be “live-connected,” namely to be able to call a
JavaScript procedure from within the plug-in. In-
stead, we have chosen to implement the POST method
directly from the plug-in (using the NPN_PostURL
method), and in that way bypassing the live-connect
requirement that is supported only by Netscape.

Frames and windows. Recall that the initial window
of Surf’N’Sign (Figure 1) partitions the browser win-
dow into three parts. This partitioning is schemat-
ically depicted in Figure 5: the bottom part is the
plug-in window that contains the sign and cancel but-
tons. The upper part is again partitioned into two
frames: the Surf NSign control frame at the left that
displays the message of the program, and the frame
at the right that simply displays the document. For
that, the browser window is partitioned into the two
frames “Surf NSignWin” and “Surf NSigndummy”
before the embedded call to the plug-in. The plug-in
targets its output in NPN_Write to the frame
Surf NSignWin. SurfNSigndummy, the plug-in
frame, becomes the window containing the buttons.

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

To support the setup of these frames, four files must
be initially created: index.html, main.html, null.html,
and Call_document.htmi. The index.html file defines
the frames Surf NSignWin and Surf NSigndummy,
where Call_document.html defines the plug-in win-
dow and its size by the EMBED command. Also, the
document to be signed should have a “.sig” exten-
sion (for example, document.sig). The files are given
in Table 2.

In principle, the file main.html should contain a num-
ber of links to Call_docl.html, Call_doc2.html, etc.,
each containing an embedded call to a plug-in with
a different “sig” file (docl.sig, doc2.sig, etc.). This
corresponds to a situation where a server offers a
number of documents that can be signed by the cli-
ent (current implementation cannot handle more
than one document to sign).

Archiving Surf’N’Sign signatures. An archived
Surf’N’Sign signature is a file that begins with the
string “ARCHIVE_SurfNSign” and contains an en-
coding of a Surf’N’Sign object (namely, the HTML
text, browser version, date and time, signature, pub-
lickey and its certificate). The file is read by the same
plug-in NPsignature, hence its extension must be
“.sig”. When the plug-in receives the stream contain-
ing the file in NPP_Write, it checks whether it is an
archived file. If so, the stream is decoded and read
into a Surf’N’Sign object, the signature is verified,
and the HTML text is displayed on the browser
window in the SurfNSignWin frame, using
NPN_NewStream and NPN_Write. Figure 2 illustrates
how Surf’N’Sign displays an archived signature.

The CGI program new_sig.exe. The component of
Surf’N’Sign at the server is the CGI program
new_sig.exe that accepts the client’s signature mes-
sage. The plug-in sends to the server an encoded,
“stripped” version of the object Surf’N’Sign—it con-
tains all but the HTML text itself. It is expected that
the server has the HTML text at hand. This is done
in order to verify that the HTML document has not
been corrupted and, in addition, to reduce commu-
nication. It requires a mechanism for identifying
which HTML text has been signed. Currently this is
done through the title of the document, which
uniquely maps to the URL of the document at the
server. Alternatively, the mapping between the doc-
ument and its URL should preferably be done with
a <METATAG>>, namely the document should con-
tain a <METATAG> that contains the URL of the doc-
ument. Right now, the function “const char *Get-

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

Figure 5 The schematic partition of window into frames

SurfNSignWin
DOCUMENT
TOBE
CONTROL SIGNED
FRAME
SurfNSigndummy

SIGN/CANCEL

FileName(const char *title)” returns the file (at the
server) associated with the title. When the signature
is received and the correct HTML document is at-
tached to it, the signature is verified and archived
at the server, and a message is sent back to the cli-
ent’s browser.

Cryptographic functions. The cryptographic oper-
ations (signing a text and verification of a signature)
of Surf’N’Sign are implemented using the RSAREF
2.0 cryptographic library, developed by RSA Labo-
ratories. RSAREF" is a free, portable implementa-
tion of public key cryptography. Surf’N’Sign uses the
RSA signature algorithm for the signature scheme and
key generation (using 512 bit-long keys) and MDs5 for
the message digest (hashing) algorithm. The four ba-
sic cryptographic classes are: Private_key, Public_key,
Signature, and Certificate. The Private_key and Pub-
lic_key classes are derived from the corresponding
constructs of RSAREF. The certification class is cur-
rently unimplemented. A public and private key is
generated when the application is first initiated by
the static class SignatureStaticData. In subsequent ap-
plications, the key is read from a file.

HERZBERG AND NAOR 69

Table 2 The four files to support setup of frames

ainhtml”>
= “null html”>

File</TTTLE>

= “Surf NSigndummy” > {im; me

0 HEIGHT = 50>

document HTML File</TITEE>

Further extensions

Surf’N’Sign is a protocol that was developed to al-
low clients to sign committing Web documents. It
naturally integrates a digital signature mechanism at
the client into the browsing process—its prototype has
been implemented as a Netscape Navigator plug-in.
The need for such a mechanism in numerous Web
applications such as banking, reservations, and in-
surance is obvious. Several extensions can be called
for. The most natural extension to this mechanism
is a server-based signature mechanism that, when in-
tegrated together with Surf’N’Sign, will allow both
the client and the server to commit to one another.

Another extension that is called for is the semantic 2.

extension. We have chosen the “what you see is what
you sign” approach for two reasons: first, since it sim-
plifies the model and implementation greatly and
second, since we have emphasized the requirement
for a client trust in the system. This resulted in a

rather restricted notion of a signature. The most ob- 4.

vious addition is to include content of the embed-
ded parts (images, links, etc.) into the signed mes-
sage. A few important components are still missing

from the implemented system. These include, among 6.

others, the certification class (which is currently un-
implemented), a directory-based interface for the ar-
chived signature, and the support for a number of

documents that may be signed at once. 8.

70 HERZBERG AND NAOR

Acknowledgment

We would like to thank the anonymous referees for
their useful comments on an earlier version of this

paper.

**Trademark or registered trademark of Netscape Communica-
tions Corporation, Lotus Development Corporation, Sun Micro-
systems, Inc., Microsoft Corporation, or RSA Data Security.

Cited references

1. W. Diffie and M. Hellman, “New Directions in Cryptogra-

phy,” IEEE Transactions on Information Theory IT-22, No.
6, 644654 (November 1976).

R. L. Rivest, A. Shamir, and L. Adleman, “A Method for
Obtaining Digital Signatures and Public Key Cryptosystems,”
Communications of the ACM 21, 120-126 (February 1978).

. Utah Digital Signature Development Program, http://www.

commerce.state.ut.us/web/commerce/digsig/dsmain.htm, Di-
vision of Corporations and Commercial Code, State of Utah,
Salt Lake City, UT.

Pretty Good Privacy: The International PGP Home Page,
http://www.ifi.uio.no/pgp/.

. S/MIME Central, http://www.rsa.com/rsa/S-MIME/, RSA

Data Security, 100 Marine Parkway, Suite 500, Redwood City,
CA 94065-1031.

B. Schneier, E-Mail Security, John Wiley & Sons, Inc., New
York (1995).

. A. Herzberg and H. Yochai, “Mini-Pay: Charging per Click

on the Web,” Proceedings of the Sixth WWW Conference (April
1997), pp. 239-256.
Secure Electronic Transactions, MasterCard and VISA, http:

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

/fwww.mastercard.com/set/, MasterCard International, Pur-
chase, NY.

9. W3C Digital Signature Initiative, World Wide Web Consor-
tium, http://www.w3.org/pub/WWW/Security/DSig/Overview.
html.

10. The SSL Protocol, http://home.netscape.com/newsref/std/
SSL.html, Netscape Communications Corporation, Moun-
tain View, CA.

11. Public Key Cryptography and Digital ID Certificates, a White
Paper by Cylink Corporation, Sunnyvale, CA, http://www.
cylink.com/products/security/x509.htm.

12. The Secure HyperText Transfer Protocol, work in progress,
http://www.terisa.com/shttp/current.txt, Terisa Systems, Inc.,
4984 El Camino Real, Los Altos, CA 94022.

13. Shen: A Security Scheme for the World Wide Web, http:
/iwww.pku.edu.cn/on_line/w3html/Shen/ref/shen.html.

14. A. Ashokan, G. Tzudik, and M. Waidner, “Server Supported
Signatures,” Proceedings of the Fourth European Symposium
on Research in Computer Security (ESORICS), Number 1146
in Lecture Notes in Computer Science, Springer-Verlag, Ber-
lin (September 1996), pp. 131-143. To appear in Journal of
Computer Security (1997).

15. ftp://ftp.rsa.com/rsaref/, http://www.rsa.com/rsalabs/newfaq/
worldreal.htm, Question 174, RSA Data Security, 100 Ma-
rine Parkway, Suite 500, Redwood City, CA 94065-1031.

16. Z. Oliphant, Programming Netscape Plug-Ins, Sams.net Pub-
lishing (1996). Also, in http://home.netscape.com/comprod/
development_partners/plugin_api/index.html, Netscape Nav-
igator LiveConnect/Plug-in Software Development Kit.

Accepted for publication September 8, 1997.

Amir Herzberg IBM Research Division, Haifa Research Labora-
tory at Tel Aviv, IBM Building, 2 Weizmann Street, Tel Aviv 61336,
Israel (electronic mail: amir@haifa.vret.ibm.com). Dr. Herzberg
received the B.Sc. in computer engineering, the M.Sc. in elec-
trical engineering, and the D.Sc. in computer science from the
Technion-Israel Institute of Technology, in 1982, 1986, and 1991,
respectively. In 1991, he joined the IBM Research Division, where
he now manages the Network Computing and Security group.
He established this group, as a Tel-Aviv annex of the Haifa Re-
search Laboratory, in January 1996. His previous assignment was
manager of the Network Security group in the IBM Thomas
J. Watson Research Center. His research areas include network
security, applied cryptography, electronic commerce, communi-
cation protocols, and fault tolerant distributed algorithms. Dr.
Herzberg is the author of numerous publications and patents in
these areas.

Dalit Naor IBM Research Division, Haifa Research Laboratory at
Tel Aviv, IBM Building, 2 Weizmann Street, Tel Aviv 61336, Israel
(electronic mail: dalit@haifa.vnet.ibm.com). Dr. Naor received her
B.A. from the Technion-Israel Institute of Technology in 1985,
and M.Sc. and Ph.D. from the University of California at Davis
in 1988 and 1991, all in computer science. During the years
1991-95 she was involved in postdoctoral research at Stanford
University and Tel Aviv University, working on bioinformatics
topics. She joined the IBM Haifa Research Laboratory in 1996,
where she is currently a research staff member in the Network
Computing and Security group.

Reprint Order No. G321-5663.

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998 HERZBERG AND NAOR 71

