NetVista: Growing
an Internet solution
for schools

NetVista™ is an integrated suite of clients and
servers supporting Internet access for students
and teachers in kindergarten through 12th-grade
schools. Developed by a small team of IBM
researchers, NetVista is a prime example of using
an object-oriented framework to support user-
centered design and to accommodate Internet-
paced changes in network infrastructure,
functionality, and user expectations. In this
paper, we describe salient aspects of NetVista’s
design and development and its evolution from
research project to product. In particular, we
discuss the factors supporting a sustained focus
on end users over the life of the project, the
object-oriented framework underlying NetVista,
and the role of this framework in accommodating
both evolutionary and radical changes to the
design of the user interface and the underlying
technical infrastructure.

Most technological advances are (necessarily)
carried out by experts in technology and pro-
gramming. In computer science research, groups of-
ten emerge to push particular technologies (for ex-
ample, speech recognition or video compression)
beyond their current limits. While the potential for
new applications may be recognized, the develop-
ment of new technologies often takes place outside
real contexts of use, fostering the need to find ap-
plications later—a process sometimes referred to as
“technology push.” The place of “people experts”
in this kind of technology-driven development tra-

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

0018-8670/98/$5.00 © 1998 [BM

by W. A. Kellogg
J. T. Richards
C. Swart
P. Malkin
M. Laff
V. Hanson
B. Hailpern

ditionally has been limited to activities such as per-
forming user interface (UI) critiques, running focus
groups, or conducting usability evaluations that
largely reside outside of the activity of the primary
development team.'

Today, organizations such as ACM’s SIGCHI (Special
Interest Group on Computer-Human Interaction)
and UPA (Usability Professionals Association) have
gained visibility in the technical community. The im-
portance of “human factors” and user-centered de-
sign has become part of the mindset of software man-
agers and developers. Human behavior experts are
increasingly part of many development teams. None-
theless, it is still unusual to see the justification for
or the development of technology truly driven from
the “outside-in,” that is, grown from a focus on users
and their context of use fo the technology. By “out-
side-in” we mean development in which technology
is treated as a resource to be used along with other
resources, such as knowledge of the practices and
characteristics of the users or the usage situation, to
create a tool or solution. There are complex reasons
why this approach to design and development does

©Copyright 1998 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

KELLOGG ET AL. 19

not prevail, despite its proven ability to create more
satisfactory results.>* With the advent of the Inter-
net, the prospects for user-centered development
have in many ways worsened: new technologies are
introduced at a rapid rate, the time pressure to cre-
ate and release applications is intense, and fads and
styles in user interface “widgetry” and effects tend
to dominate seemingly more plebeian concerns such
as usability.

In this paper we describe the development, from ini-
tial concept to shipped product, of a suite of server
and client applications aimed at providing Internet
access for kindergarten through 12th-grade (K-12)
schools. The development project was completed in
less than three years, in spite of changes in product
direction, organizational participants, organizational
support (the product was canceled twice), and un-
derlying software platforms. Furthermore, in the
course of development, we did not make use of tra-
ditional artifacts such as requirements documents
and engineering specifications. Given that we devel-
oped a successful product, in a short time, using un-
conventional methods, we believe that an account
of our development practices will be of interest to
many.

Our experience with NetVista* proves that software
solutions can be developed with a firm end-user fo-
cus, in an accelerated time frame, without compro-
mising quality or innovation. It demonstrates what
can be accomplished by a small team of persons with
diverse talents and perspectives when they remain
focused on users and what we might call “usability
in the large,” which includes the entirety of the us-
er’s experience with the solution being proffered.*
We do not think of NetVista as a model for all or
even most software development, although there are
important paradigms for which it could be a model—
for example, much Internet application develop-
ment. Some projects demand a large team and a rel-
atively formal, shareable process. Our experience
suggests, however, that it is easy to underestimate
what can be accomplished by a small, focused team.

NetVista had two origins and from neither could the
end product be foreseen. The first was an attempt
to bring the Internet to K-12 schools (before the
World Wide Web). This origin is later discussed in
detail; it formed the technical core of the project.
The second origin was an attempt to bring together
research technology, IBM software, and IBM hardware
to provide a unified, very easy-to-use Internet offer-
ing. This second origin resulted in the forming of an

20 KELLOGG ET AL

interdivisional team that built one of the IBM’s first
“Web-year”-speed” products. It was the combina-
tion of the core group devoted to a custom solution
for K-12 and an interdivisional product team ded-
icated to turning out a real Internet product in a very
short time that led to the success of NetVista.

We want to emphasize that the work we present here
constitutes a report of our experience and of work
in progress. It is not meant to be, nor should it be
construed as, an experimental or scientific study of
software development. Rather, it is an attempt to
articulate and extract lessons from what was for us
afocused, creative, collaborative work effort in a way
that might be useful for others engaged in similar
pursuits.

The NetVista project

NetVista began as a research project at the IBM Tho-
mas J. Watson Research Center in late 1993, and
evolved through several stages until its release in
June, 1996, as IBM’s K-12 solution for Internet ac-
cess. The research motivation for the project in-
cluded the desire to explore the capability of Small-
talk (an object-oriented programming language and
development environment) to handle a communi-
cation-intensive client/server application and to sim-
plify the complexity of the Internet and its use, which
at the time was fairly daunting, particularly for non-
technical users.

The research group already had ties to the K-12 busi-
ness unit, so from the beginning the project aimed
to create simplified access to the Internet for the
K-12 environment. The history of the project reflects
both the philosophy of the team to “grow” software
in its context of use,® and the nature of the under-
lying programming environment, which allowed
changes to evolve with the project’s changing direc-
tion over time.

The first demonstration of what was to become
NetVista occurred less than eight weeks after the ini-
tial requirements for the project were articulated. A
prototype local area network (LAN) -based system
with 14 client machines was unveiled early in 1994
at the IBM Schools Executive Conference in Atlanta,
Georgia. During one week, team members spoke to
dozens of school administrators, sometimes demon-
strating the Internet as much as the software. Lit-
erally hundreds of conference attendees used the
software to get their first taste of the Internet or, for
some of the experienced users, to use Telnet’ to con-

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

nect to their home machines to check their e-mail.
Messages and greetings were sent, and all involved
were excited about the Internet and its potential for
education.

By mid-1994, “k12.net,” as it was then called (after
the name of the Internet domain we used for sup-
port), was installed in about a dozen beta test sites
in North America. Installing and maintaining these
sites was the primary way that we grew to understand
the environment in which the software would be
used. IBM offered “k12.net” to schools as a Limited
Auvailability Services Offering from this time until the
product was released in 1996. As was true with the
beta sites, the Services Offering sites were an ongo-
ing source of information and inspiration, generat-
ing many changes in the underlying software.

In 1995, IBM’s new Internet Division was formed and
interest developed in offering an Internet solution
for home users. The “k12.net” code was ported from
Microsoft Windows** 3.1 to Operating System/2*
(0s2*), given a thorough systems test, and released
in the fall as beta software. Named “NetComber*,”
the code was given away at conferences on a com-
pact disk and made available for download via the
Internet. Feedback via e-mail messages to the re-
search team from these 0S/2 users provided further
grist for working out the client user-interface design
and functionality, and for anticipating the range of
situations to be faced during installation.

In early 1996, NetComber became the basis for
NetVista. The client code (having gone through a
number of changes, including the incorporation of
Web browsing and a central focus on managing and
sharing URLs, or uniform resource locators) was
ported back to Windows 3.1 and over to Windows
95** An administration client was created, and the
0s/2 servers were rebuilt and extended. The core re-
search team formed a partnership with 1BM’s K-12
Solutions business unit to release the product in June,
1996. NetVista 1.1 (adding Macintosh** 0OS as a cli-
ent platform and Windows NT** as a server platform)
was released in November, 1996, and followed by
another release in late 1997. The NetVista Web site
is currently at http://www.solutions.ibm.com/netvista.

Understanding the K-12 environment. At the be-
ginning of 1994, when Mosaic® was in its infancy and
Netscape Navigator®* had not yet arrived, few
schools had Internet access.’ Those that did typically
had a UNIX** shell account through a nearby col-
lege or university, or an America Online** account

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

on a single machine. Teachers fortunate enough to
have access through one of these mechanisms often
shared their single account with a class of students,
printing out individual mail messages in order to dis-
tribute them to the intended recipients.

We visited a “model technology school” in New York
in the fall of 1993 to see the “state of the art” for
ourselves. What we found surprised us. In an ele-
mentary school with five LAN-connected computers

Teachers fortunate enough
to have access to
the Internet often shared
their account with students.

in each classroom (one with Internet access) only a
single teacher was regularly using the Internet in her
classroom. The school’s technology coordinator told
us that the teachers were slowly making a cultural
shift,® based largely on the efforts of the pioneering
teacher. This teacher was excited by the projects she
was doing with her students and served as an “evan-
gelist” for the Internet. On the wall outside her class-
room we saw a huge map of the United States, with
yarn stretching from various cities to the edge of the
map, where reports on water quality, gathered from
the Internet, were posted. This teacher’s class was
also participating in a “virtual vacations” project, in
which students contributed to a database describing
what it would be like to vacation where they lived.
Students who contributed earned the privilege of
“taking” vacations in other locations about which stu-
dents around the world had written.

Seeing the use of the Internet by the teacher was ex-
citing to us, but the “take-home” lesson was obvi-
ous: if her school was the “leading edge,” other
schools would be even less ready to take advantage
of the Internet. We needed to get a better idea of
what was really happening, both from a technical in-
frastructure point of view—what capacity machines
and networks were being used—and from a socio-
logical point of view—were teachers ready to adopt
this technology? What would help?

We invited a group of educators, who were pioneers
in bringing Internet technology into schools, to be-

KELLOGG ET AL. 21

come an advisory board for our project and to join
us for a one-day workshop on requirements for wide-
scale Internet access in K—12 schools. We asked these
experts to describe the most important requirements
from their perspective. What they told us heiped us
to understand the essential requirements for support-
ing Internet access in schools, and also helped to de-
termine our priorities. First, they had needed admin-
istrative integration with the existing Novell, Inc.,
servers that ran their schools’ LANs (but they did not
want the servers modified in any way—the servers
were critical to the running of their curriculum
courseware; server support remained something of
a “black art” to the local administrators). E-mail
(electronic mail) and Gopher were their top-prior-
ity applications; news, chat, Telnet, and FTP were use-
ful, but less important.’ “What about the Web?”
we asked. Less important than Gopher, they told
us—it takes too long to download all the graphics.

The educators also told us that blocking access to in-
appropriate sites was of paramount importance. With-
out protection for students, Internet use would never
become widespread. They needed software that would
run on Macintosh as well as IBM-compatible platforms.
They asked for a solution that was easy and cost effec-
tive to install and administer. They told us that the
common workstation being installed in the classroom
(in 1993) was a 4-MB (megabyte) machine, sometimes
lacking both a local “floppy” drive and a local hard
drive. And they pointed out that these machines were
shared rather than dedicated to a single user. Soft-
ware based on the personal computer model (“my
files reside on my hard disk”) would not work in
schools.

Design objectives. Based on our growing understand-
ing of the K-12 environment, we were able to begin
to particularize our objective of creating a simple,
sensible Internet experience for users. We knew that
the software needed to be easy for users to work with
and provide nearly effortless access to Internet con-
tent while drawing little attention to itself. Since the
same software would be used by students and their
teachers (who would generally learn it first) it needed
to appeal to children while not seeming childish to
adults. It needed to be almost immediately usable,
since many users would get no more than one or two
hours of Internet time per week and they could
scarcely afford to spend that time mastering the soft-
ware. It needed to present a consistent model of the
Internet across a number of different and separately
evolving Internet protocols. It needed to shape the
behavior of users who were mostly new to the In-

22 KELLOGG ET AL.

ternet so that they would be welcomed by those al-
ready experienced in its use. It needed to be easy to
install and maintain on dozens or hundreds of client
machines at once, and it had to be easy enough to
administer that a teacher could do it on a limited
part-time basis.

Our initial focus on the characteristics of the users
and their environment enabled us to begin to un-
derstand what simplicity would really mean for each
user. As our work progressed, we came to see sim-
plicity in terms of three constituent features of de-
sign: usefulness, appropriateness, and usability. Use-
fulness meant that every function we included had
to be justified. Function had to be important to most
users, most of the time—mnot just to experienced
users, or useful in conceivable but exceptional cir-
cumstances. Being included in other software (e.g.,
popular e-mail programs for personal computers)
was not sufficient justification for us to include a func-
tion; rather, we sought a minimal set of simple, el-
egant functions that would allow most users to do
most of the things they would need to do most of
the time.

Appropriateness meant that even if something was
useful, it also had to be needed by K-12 users in
schools. Our design choices had to enhance Internet
use for teachers and students, and remain compat-
ible with the situation in which they would engage
in Internet activities. Issues such as how to store per-
sonal information (e.g., bookmarks, nicknames, and
signatures) when machines are shared and possibly
without hard disks are a case in point. More gen-
erally, teachers and students would use the Internet
in some ways more than in others (for example,
e-mail and the Web more than direct FTP and Tel-
net), and we felt that our design should reflect those
usage biases. Simplicity could be enhanced by match-
ing the functionality we provided to the specialized
use that would occur in the K-12 environment.

Usability meant that whatever was finally included
in the application had to be easy for Internet nov-
ices to comprehend and use, but not get in the way
of experienced Internet users. So, for example, the
client programs (e.g., Gopher, e-mail) had to be easy
to use by persons with little knowledge of the Inter-
net or what it was for, and the administration client
program (for managing users’ mailboxes, news-
groups, and security) had to be understandable by
a teacher or school administrator responsible for
maintaining the server.

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

Figure 1 shows some of the more detailed objectives
that arose from considerations such as these. Some
of these design goals, such as simple, integrated func-
tion and an uncluttered visual appearance, were
about how the software would look and behave. Oth-
ers were intended to keep in mind effects that we
wanted for our users, such as getting them started
quickly and productively on the Internet, and help-
ing them to conform to the interactive conventions
of the Internet (i.e., to observe “netiquette”).

The team that created the function to be included
in NetVista and its user interface worked with a
shared background of design concerns and human-
computer interface principles. These included con-
sideration of function, its presentation, and interac-
tion with the user from many perspectives, including
that of perceptual-motor coordination, the user’s
conceptual model of the software and the Internet,
support for tasks in using the Internet,” and sup-
port for social practices that arise in any community
of Internet users. For example, we knew sharing in-
formation with colleagues to be crucial for a new
community of Internet users. Principles of human-
computer interaction (HCI) have been articulated by
many HCI researchers and designers.'* We shared
many of the perspectives, concerns, and principles
espoused by these authors, and such issues surfaced
again and again in the evolution of NetVista. Here
we offer a sketch of some of the concerns that drove
our design work and how they applied in the design
of NetVista.

We addressed interaction and tasks in NetVista at
awide variety of levels. For example, the lowest level
involves perceiving the screen and the state of the
system. We carefully considered the interface and
the movements necessary for carrying out actions at
this level. This led us to consider younger children
who could not type, as well as those who were ex-
perienced touch typists. We minimized the need for
reaching for the mouse during heavy text-entry tasks,
such as adding several names in a row to the nick-
names list. We made it possible to do all common
tasks without typing (although the body of text mes-
sages had to be typed). We simplified screens to draw
the user’s attention to the place where the action
would begin (e.g., in the Send Mail display, the cur-
sor blinks in the “to:” field in a visually simple,
streamlined message header—see the Send Mail
window in Figure 2). We also took care to position
buttons across screens used for certain high-level
tasks (e.g., deleting mail) so that the need for po-

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

Figure 1 Some of the initial design considerations for
NetVista

Usability, Usefulness, Appropriateness

" Provide a simpie, functionally elegant, integrated
“set-of client applications
Keep & visually appealing, uncluttered appearance
Let users have fun
Get users started and into productive activity fast
Support users staying on task
Make users “look good” on the internet

sitioning the cursor and moving the hands was min-
imized.

At the task level, we focused on creating simple
“plan-act-evaluate” profiles. The notion of plan-act-
evaluate cycles in human-computer interaction
comes from Norman.?' Applied in practice, this prin-
ciple meant making simple, basic things easy for users
to “figure out” and do (and, of course, we wanted
to make more advanced, difficult things possible to
do). It also meant supporting the evaluation of sys-
tem state so that the user could easily infer what else
might be needed to accomplish a task. Feedback, ac-
knowledgments, and informative messages are es-
sential in supporting the user’s ability to evaluate the
system state. When users attached a file to an e-mail
message, for example, a paper clip appeared over
the right top corner of the mail header to indicate
attachment. This is a simple response from the sys-
tem, but it provides immediate visual feedback that
an attachment has occurred.

Another application of this principle to the NetVista
interface was the general strategy for presenting
function on buttons, menus, or pop-up menus. To
warrant its own button, a function had to be essen-
tial to the window and frequently used—for exam-
ple, the “Send” button on the screen used to com-
pose mail. Menus contained less frequently needed
or integrative functions, such as “Add Sender to
Nicknames List.” Pop-up menus contained special
global integrative functions (such as “send this in a
mail message”) that could be applied anywhere on
the screen (as in bookmarking a Web page, or point-
ing to a URL or e-mail address in text to use it). When

KELLOGG ET AL. 23

Figure 2 The NetVista launch window is shown at the top. Clicking on the “send mail” icon yields the (underlying) mail
window directly below for composing a message. When the “to:” button is clicked in the mail header, the

user’s list of nicknames is presented.

k12@watson.ibm.com
vIh@watson.ibm.com

this strategy is implemented, users implicitly expe-
rience a world in which more important and pivotal
functions are more perceptually salient. Advanced
function can be encountered and exercised as the
user feels ready. Thus, in such a design there is a
kind of scaffolding for learning (both intentional and
incidental learning) and progressive disclosure of
function that is at the user’s discretion.” Adhering
to this principle also contributed to our goal to pro-
vide an uncluttered visual appearance.

Finally, another major concern in our design work
was providing support for error interpretation and
recovery. Of course, wherever a design can preempt

24 KELLOGG ET AL

an error, it does not need to address how the user
will recover from it. The Macintosh (and now wide-
spread) convention of graying out unavailable menu
commands is an example of preempting errors. It
prevents users from fruitlessly trying to execute func-
tion that is unavailable due to system state (see Car-
roll, Kellogg, and Rosson? for a description of Train-
ing Wheels, another approach to guiding users by
manipulating the availability of function). Graying
out unavailable or inappropriate functions can also
simplify the user’s learning task. For example, in the
user’s nicknames list, we grayed out the “Send to:”
and “CC to:” buttons whenever a host site, rather
than an e-mail address, was selected. This helped new

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

Internet users to grasp the difference between e-mail
addresses and host site names.

One weakness of the graying out technique, of
course, is that it does not tell the user why the func-
tion is currently unavailable, or what would have to
be the case for the function to become available. We
observed one user trying over and over again to open
a grayed-out newsgroup because that was the only
newsgroup she wanted to see (and she wanted to see
it very much). She did not notice that the newsgroup
was empty (had zero articles), and she either did not
notice or did not understand the meaning of the
newsgroup being grayed out. Her experience led us
to a small innovation in how we handled grayed-out
functions: the second time the user clicked on a
grayed-out item, pop-up text would explain why the
item was unavailable and under what circumstances
it would become available. This design is an exam-
ple of unobtrusive and context-sensitive support for
novice users (as contrasted with unobtrusive support
for experts, discussed below). It helps the novice user
without burdening the expert or the user who knows
what grayed-out items mean but has made a click-
ing error. Thus, the explanation is only invoked when
a user clicks twice on an unavailable item—an un-
likely behavior for an expert. And a user who makes
a pointing or clicking error (once) will not trigger
the explanation, thus taking into account the per-
ceptual-motor coordination dimension.

Where errors can be made, users need support to
recover from them—both to recognize the nature
of the problem, and to remedy it in whatever way
is most desirable. Whenever possible, NetVista re-
instated the context in which an error occurred af-
ter offering an explanation of what was amiss. For
example, nicknames for people and host sites had
to be unique. If a user tried to add a second e-mail
address with a nickname that was already in use, for
example, NetVista would respond that the nickname
was already in use, and then re-present the dialog
box where the user had specified the duplicate nick-
name. The nickname was already highlighted, ready
for the user to type a different nickname. This de-
sign helps users resolve the problem, in multiple
ways: it says plainly what the problem is and what
needs to be done to remedy it; it puts users right
where they need to be to take the requisite action;
it reminds them of what nickname they tried before,
and the highlighting allows them to just think of a
different nickname and type it (i.e., without having
to backspace, or click the mouse, or make any su-
perfluous action). The dialog thus boils down to its

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

essence, with NetVista in effect saying “that nick-
name is already taken,” and the user responding
“well how about this, then?” This kind of design de-
tail seems like a small thing, but attended to along
with many others, it builds both a solid sense of us-
ability and the user’s trust.

NetVista architecture overview. At the risk of get-
ting somewhat ahead of our story, we offer a brief
description of NetVista’s overall architecture. We
hope that an understanding of the software’s main
components will assist the reader in following the
rest of the discussion.

First, it should be noted that NetVista is a
client/server solution. A typical installation will in-
clude both a server (running either 0S/2 or Windows
NT) and an integrated suite of client applications run-
ning on Microsoft Windows 3.1, Windows 95, or
Macintosh 0s workstations. NetVista is typically in-
stalled into a school that already has a LAN for pur-
poses of controlling access to and delivering courseware
to the workstations. The LAN itself can be simple or
quite complex but it must be able to carry both 1p
(Internet Protocol) packets and (in the case of No-
vell) IPx** (Internet Packet Exchange) packets. Fig-
ure 3 shows a typical installation with a simple LAN.

The LAN file servers supported by NetVista are No-
vell and Windows NT. Although no modifications are
made to these file servers, the NetVista clients and
server make requests of them at critical points dur-
ing user log on and during the processing of mail to
tie NetVista into the existing user name space at the
school. The NetVista server also (optionally) serves
as the gateway to the Internet for all workstations
on the LAN. In a low-end installation, the NetVista
server is equipped with both a LAN adapter and a
modem for this purpose. In higher-end installations,
aseparate router takes over as the LAN gateway. Note
that while all of these components are present in a
typical installation, the server and clients can be used
separately if the situation warrants. In such a case,
the clients behave as standard Internet clients and
the servers as standard Internet servers.

The NetVista server is actually a set of server ap-
plications, one per supported Internet protocol.
E-mail is provided by the usual combination of an
SMTP (Simple Mail Transfer Protocol) server and a
POP (Post Office Protocol) server. The SMTP server
receives mail coming in from the Internet and mail
being sent by users from client machines. The POP
server manages mailboxes and mailbox contents and

KELLOGG ET AL. 25

Figure 3 NetVista’s architecture consists of a suite of Internet clients (e-mail, news, chat, Gopher, FTP, Telnet, and an
integrated Netscape Navigator client) designed for teachers and students, along with a set of servers (SMTP,
POP3, NNTP, HTTP) capable of handling Internet traffic and of authenticating users in partnership with the
school’s Novell or Windows NT LAN server or servers. In addition, an administration client (not pictured) is
provided that allows a teacher or computer coordinator to manage the school’s Internet access.

: ‘:N’ETVISTA COMPONENTS

provides user access to mail. News, both local and
Internet-wide “Usenet” news, is provided by an NNTP
(Network News Transfer Protocol) server. The NNTP
server receives news articles from the Internet and
news posts being sent by users. A Web server, also
used as a caching proxy for NetVista clients, an au-

26 KELLOGG ET AL.

(Mrc GSOFT WINDOWS 3.1, WINDOWS 9‘ _’MAClNTOsH os; CACHING DNS

N FILE SERVERS (NOVELL,’W&NQGWS NT)

INTERNET

POP3 MAIL
SMTP MAIL
NNTP NEWS
HTTP WEB
ADMINISTRATION
AUTHORIZATION

ROUTING

thorization server (for controlling user access), and
an administration server (for managing the other
NetVista servers) round out the set of servers.

The NetVista client is an integrated suite of appli-
cations for viewing and sending e-mail and news, con-

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

versing on IRC (Internet Relay Chat), browsing the
Web, retrieving files via FTP (File Transfer Proto-
col), and connecting to remote computers via Tel-
net. The client applications share a number of com-
mon interface mechanisms and have been designed
to work well together in support of common Inter-
net tasks. They also make nonstandard requests of
the NetVista server to achieve improved perfor-
mance and enhanced functionality. Many of these
mechanisms and custom protocols are reviewed later.

Technology for usability

Usability is often viewed as the result of many small
design decisions manifested directly to the end user
through the application interface. The placement of
buttons, the labeling of menu items, and the visual
cues directing user attention are elements contrib-
uting to usability at this level. At another level, us-
ability is viewed as the result of a good fit between
the users’ model of a task and the model of the task
embedded in the design of the application software.
Both perspectives are valid but incomplete. For us,
usability includes the ease of system installation, the
degree of integration with the larger network infra-
structure, the relatively seamless integration with
“foreign” applications incorporated into NetVista,
the lack of routine maintenance (or alternatively, the
automaticity of routine maintenance), and the per-
formance of the client/server package as an ensem-
ble. Iterating in both the field and the lab, we worked
in all of these areas to improve the end-user expe-
rience. Our work depended on two mainstays for cre-
ating a useful, appropriate, and usable solution: a
relentless and comprehensive end-user focus, and
an object-oriented langnage and environment
(Smalltalk) in which to carry out the development
work. In the following sections, we elaborate on these
strengths and describe key aspects of our develop-
ment process and the technology that resulted.

End-user focus. There is no single way to achieve
usability in the large, and there is no process that
can guarantee good or appropriate design. Recog-
nizing this, the philosophy of the team was that soft-
ware “seeds” are best sown in the fertile soils of the
user environment, with a plan to engage in iteration
and adaptation throughout the process. Of the many
possible design and development activities that could
have contributed to a sustained focus on end users
and their environment, our predilection was for in-
formal, “messy,” rich, intense methods for under-
standing our users and their environments; our meth-
ods were always rooted in the fact that representative

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

users in representative usage environments were us-
ing our software from the beginning and through-
out our development process. We drew no diagrams
and wrote no scenarios, but we “lived” scenarios by
using NetVista for real tasks ourselves, and we got
to know our users by spending time installing, mod-
ifying, and building code on site and by talking with
them about their experiences using the software. We
wrote no memos or requirements documents, but we
worked together in the lab where design and imple-
mentation discussions were continual and pervasive.
In this section we outline some of the main factors
that contributed to a sustained focus on users in the
NetVista project.

An interdisciplinary team. From the start, the NetVista
project was unusual in that three of the five team
members were cognitive psychologists. One psychol-
ogist had expertise and experience with teachers,
schools, and education and was responsible for in-
terfacing with our advisory board and with the teach-
ers and technology coordinators in the schools that
would become our beta test sites. She was also re-
sponsible for creating the user manual, aimed pri-
marily at teachers, for getting started using the In-
ternet in the classroom (this was before other
resources, for example, Serim and Koch,* were
available). Another was a Smalltalk expert and ad-
vocate, who not only managed the project, but was
responsible for virtually all of the Smalltalk code that
created the client and server applications that com-
prised NetVista. The third was a human-computer
interaction expert who took on the role of user ad-
vocate during the design process, maintaining the
perspective of an end user within design discussions,
testing the code continuously by using it for real (and
simulated) purposes, and who created the on-line
Help system.

This user-oriented subteam was responsible for vir-
tually all aspects of the software with which end users
would come in contact. At the beginning of the proj-
ect, their shared, if unarticulated, vision of an easy-
to-use, integrated Internet suite served as scaffold-
ing to get the first versions of the client software built.
Later, as more pieces were put in place, the mental
filters of “Is this useful?” and “Is this appropriate?”
became familiar refrains for everything the team did.

The multiple perspectives and expertise of the team,
and each person’s specialization within a number of
key roles, were critical for instantiating our design
objectives. Three of the team members virtually lived
in the lab during months of intense development and

KELLOGG ET AL. 27

test activity. This allowed the interplay of user needs
and design objectives, on the one hand, and coding
infrastructure and capabilities, on the other, to be
interwoven in a continuous and fine-grained man-
ner. Design discussions encompassed all of these con-
siderations fluidly, as each of the three team mem-
bers naturally exercised a particular advocacy (of the
user, of the Smalltalk code, and of the underlying

Because of our object-
oriented implementation,
fixing a problem in one place
usually fixed it everywhere.

operating systems and the communication between
it and Smalltalk, respectively). It was in these day-
to-day arguments and struggles that a sustained fo-
cus on end users was incrementally realized.

The impact of user-centered design on the implemen-
tation. User-centered, object-oriented design implied
that the features that users saw were realized by
classes and objects in the code; the code ended up
being structured based on what the user needed in
addition to what the low-level “plumbing” required.
As a result, we were able to iterate quickly when we
detected a problem with the interface, based on a
test subject, or even just to answer a “what if” ques-
tion. We went through more than 50 significant user-
interface designs in our first few months. Similarly
we were able to “drop in” alternative implementa-
tions with relative ease—such as going from an 0S/2
WebExplorer*-based custom-built browser to a
Netscape-based browser, or permitting concurrent
development of a NetWare**-based user identifica-
tion management system and a stand-alone NetVista
user identification system.

We had the good fortune to work with an extremely
adaptable test team from the IBM Endicott Labora-
tory. They were willing to “throw out the book” on
testing and focus on what we really wanted to de-
liver—bug-free code by a certain date. That meant
tracking problems, classifying the ones that mattered,
and making sure they got fixed. All other “process”
(e.g., a formal process and the stipulated database
for tracking problems) was dropped. For example,

28 KELLOGG ET AL.

the test team agreed to use the NetVista news server
and client viewer as the vehicle for documenting and
responding to problems identified during testing.
Each problem was created as a thread in the news
reader, and responses, dialog about the problem, and
its status (e.g., severity and whether it was open or
closed) were entered as contributions to the thread.
This allowed an extensive test of the news function
under realistic conditions of use. Similarly, the team
used the FTP subsystem for code distribution and the
mail application for communication. These practices,
and other changes that made the testing process
more incremental, significantly changed the process
to which the test team was accustomed, affecting re-
gression testing as well.

Because our object-oriented implementation was
structured around the features that the user actu-
ally saw and used, when users or the test team found
a problem with an application, the developers could
quickly localize the problem, fix it, and put a new
version of the code out for the test team to use. It
was not uncommon for the testers to have a new ver-
sion every day—there were actually more versions,
but the test team did not want to restart their testing
many times each day. More importantly, when a us-
ability problem affected one module (say, e-mail),
there was a good chance that it could also affect oth-
ers (such as news). Our design principles led to an
implementation in which common function was rep-
resented by a common superclass shared by all ob-
jects needing to provide the function. Hence fixing
a problem in one place usually fixed it everywhere
(or at least pointed to a small set of related subclasses
that needed to be fixed).

Our Smalitalk development environment and class
libraries also facilitated fixing extremely annoying
bugs below the user-interface level—as far down as
the TCp/IP (Transmission Control Protocol/Internet
Protocol) infrastructure. We were stressing the low-
level code in ways that its original developers had
never anticipated. If we had not had access to the
Smalltalk source for the class libraries, we could
never have delivered our work on time. That same
environment also permitted a degree of portability
and code sharing between different platforms that
was uncommon before the advent of Java™*.
NetVista was developed for Microsoft Windows 3.1,
0872, Windows 95, Windows NT, and the Macintosh
with roughly 90 percent common application-level
code among the different platform implementa-
tions.

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

#

Formative evaluation: NetVista in the field and in the
lab. In addition to the system and user testing pre-
viously described, the NetVista code evolved from
the start in the context of a series of beta test sites
that encompassed different users and contexts of use
(e.g., elementary vs middle schools vs high schools),
and different networking infrastructures. The team
was respounsible for establishing the relationships with
beta test sites and installing and supporting the code
once an agreement was reached. An important con-
sequence of having the developers install the initial
versions was that they were exposed early to the real-
world needs of representative customers and the va-
riety of their networking environments.

In the first beta site, for example, we learned that
the usage patterns for Internet clients were not as
we had expected. Rather than small groups of users
working independently within the classroom, as we
had imagined, we found computer labs—Ilarge rooms
with dozens of computers. Students mainly used the
computers as part of computer courses, and during
class periods all students did about the same thing
at the same time (e.g., reading one or more news-
groups). This meant not only that the load on the
NetVista server was very bursty, but that the bursts
were directed against a single server (e.g., the news
server) at a time—a worst-case scenario for a server.
Although unanticipated, this usage pattern appeared
in many future beta sites and, once recognized, was
obvious. Hence, NetVista’s design needed to accom-
modate sudden and severe increases in activity di-
rected at a single server. A system test tool, described
later, was developed to help evaluate each server’s
ability to cope with bursty usage patterns.

Another lesson we learned from beta-site installa-
tion experiences was that many Internet service pro-
viders (ISPs) used by schools at that time were in-
experienced in connecting entire LANs. In order to
get NetVista running at several sites, ISPs had to be
contacted and educated to provide services one
would assume were already available. For example,
several 18Ps did not sufficiently understand IP rout-
ing: even though a school’s modem connection to
the ISP was up and running, the school could not
reach any external hosts, and no external hosts could
reach the school. As a result, the prerequisites for
installation of NetVista were carefully written to help
guarantee that everything required of a school’s ISP
was in place and operational before anyone tried to
install the product. (There was a selfish side to this
as well, since once NetVista installation began, all
problems were assumed to be caused by NetVista.)

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

From our first visit to the model technology school,
the team was exposed to its end-user population,
sometimes virtually living with the end-user popu-
lation during installation of beta-test field sites. Each
member of the initial five-person team had signif-
icant exposure to real end users during the project.
The week-long demonstration of the earliest version
of the code on a 14-machine LAN at the IBM Schools
Executive Conference was a free-form live usability
test—with 14 “subjects” at a time, who set their own
goals (to explore the Internet, get their e-mail, read
a newsgroup) and naturally “thought out loud” and
asked questions of the team. We learned a lot, and
we taught people a lot about the Internet. We left
with a good idea not only of how our software fared,
but also of our users’ level of knowledge about the
Internet and what kinds of help they most needed
to get started.

As the project progressed, members of the team
spent significant time in the field, either installing at
beta sites or troubleshooting when remote access to
the Internet server did not resolve the problem. On
one of the early trips, the team realized that a work-
station-based, LAN-aware set of servers was becom-
ing inevitable. Schools were resistant, we had dis-
covered, to UNIX machines (the solution we had
envisioned), and the 0872 servers that we had been
using in the lab had been designed (in certain cases)
to support a single user, making adaptation to a LAN
difficult. Because the Smalltalk development envi-
ronment was easily carried from the lab (all our de-
velopment machines were laptops), the design and
coding of the first NetVista servers began in the field.
By the end of the visit, the first NetVista servers had
been coded and installed.

Often we learned startling things from our field vis-
its, some profoundly inspirational. One of the team
members related the following experience:

When I was installing NetVista into the Hillcrest
Elementary School, one of the teachers com-
mented, “You don’t have to install it in my room
because I will never use it.” This teacher was close
to retirement and did not see the need for this new
technology in the school. Another teacher, who
was excited about the Internet, worked with the
first for about six months. Some time later, we re-
turned to the school for a follow-up visit. We
talked with several of the teachers about their ex-
periences with the software and the Internet. Sur-
prisingly, the older teacher asked if she could talk
with us. She was very excited about the software

KELLOGG ET AL. 20

and what she had learned. She commented, “It is
s0 easy to use. I just click on a button and I get
my information,” and “It’s great to be able to send
e-mail to other teachers and look at information
on the Internet.” Her final comment, which I es-
pecially enjoyed, was “I want this for a retirement
present!”

Although the beta sites and formal system testing
revealed many bugs in the NetVista server, they did
not show how well each of the services provided by
the server operated under stress. Questions like:
“What happens when 100 students try to use
NetVista at the same time?” were left unanswered.
To answer them, the StressBot Test System was de-
veloped. (See sidebar, “Testing the Limits with
StressBots™). Essentially, cach StressBot simulates
a single user repeatedly connecting to a given serv-
er: exercising the server, verifying the server’s be-
havior, and then closing the connection. Multiple
StressBots were created to simulate multiple users
engaging a variety of servers in random patterns. For
example, the StressBot Test System was able to sim-
ulate the amount of e-mail students would send and
receive for a month in about an hour, or the amount
of e-mail for a year over a weekend. Without having
to wait for problems to develop in the field, the lab-
based StressBot system was able to quickly and re-
liably elicit problems under controlled conditions.

Opver a period of several months, we ran thousands
of simulations, with two machines generating stress
tests for multiple servers. In addition to revealing
bugs in the NetVista server code (and even its de-
sign), the StressBots also revealed bugs in operating
systems and language run-time support. These find-
ings enabled the team to strengthen NetVista’s de-
sign and implementation before it failed in the field,
and, in some cases, to prevent failures that one would
not normally expect to encounter in the field (but
that we did encounter, given the “creativity” of our
field sites, which taught us among other things to be
skeptical about our expectations and assumptions).

A flexible coding environment. The coding environ-
ment of Smalltalk had many attributes and effects
on the project, not the least of which was its ability
to support iterations of the design of the applications.
What functionality was included, how it worked, and
how it was presented to the user were all changed
as our understanding of the domain and of the users
evolved. For example, we first designed and coded
arather traditional FTP client that displayed both the
local and remote directories and contained a button

30 «ELLOGG ET AL

for “transferring” (“getting”) a remote file. In tran-
sit from a beta site installation, insight and illumi-
nation struck: there was no reason that FTP could
not look and behave exactly like the more familiar
(to our users) Gopher client. A single list of the cur-
rent directory contents where subdirectories could
be opened like Gopher folders would support nav-
igation. A single button for “getting” a file would
open up the operating system’s standard file dialog
so the user could specify where to keep the file. This
is, in fact, how Netscape Navigator eventually im-
plemented FTP, but Netscape did not yet exist.

Throwing away an entirely coded and (relatively)
bug-free client program is not something most de-
velopers want to do on a tight time schedule, and we
were no exception. But we did it. Because of the
speed with which our changes could be made in
Smalltalk, the FTP client was substantially rebuilt by
the time the airplane, on which the insight occurred,
had landed. The next day in the lab, the new design
was scrutinized and its function exercised, particu-
larly in relation to the Gopher client that was its
model. We recognized that it was the right decision;
it further simplified and unified not only the code,
but the user’s experience of the Internet. And that
was our primary purpose.

Another aspect of the coding environment, impor-
tant in creating an excellent user experience, is that
we always had a running version of the code. Changes
in Smalltalk are truly incremental, and it was often
only minutes before a design change was provision-
ally implemented in the already-running application
and tried in the context of the current design con-
cern. Some changes were more extensive, or had
ramifications in other parts of the code base (and
thus were appropriately resisted by the Smalltalk ad-
vocate—usually at least until he discovered it was
not as difficult to implement as anticipated)—but
most often we were able to evaluate proposed
changes or improvements rapidly and in the context
of the entire suite of applications. This helped us to
keep the user’s experience in mind throughout the
myriad judgments we made during the development
process. The same was true, of course, of develop-
ment work that was carried out at the beta sites. If
a user voiced a complaint or made a suggestion, it
was often possible to make a change to be tried “on
the spot”—helping us to see whether a design change
would truly address the issue being raised.

NetVista installation. NetVista installation is poten-
tially daunting. Assuming a properly tuned LAN,

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

 TESTING THE LIMITS WITH “STRESSBOTS”

Software usage in the field is different from its usage in
a development or laboratory environment. Users are
always doing the unexpected, hardware and software
configurations vary widely, and load always exposes
hidden design flaws or bugs. We decided to find

these problems before shipping NetVista, rather than
subjecting our users to.them.

“StressBots,” short for “strass robots,” were used by the
NetVista team to run autornated stress tests against

the varicus NetVista servers: A stress test involved
exercising the server function by simulating heavy usage
conditions. To test a server, the tester specified the
target host, the services to be tested (e.g., HTTP, SMTR,
and POP3), and the number of concurrent users to be
simulated. Once specified, the testing system created
and launched the appropriate number and kinds of
StressBots, and then looped, accepting and displaying
returned test results. The NetVista team created

several different types of StressBots, targeting various
services (e.g., POP3StressBots tested the NetVista

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

POP3 server) or particular aspects of a service
(e.g., NewsPostStressBots tested the NetVista NNTP
server's ability to handle news article responses).

The role of the siress test system evolved over time.
Initially, the tedm believed its value would be as a
simulation of user behavior. In practice, it was most
important for-sfficiently loading and overloading
particular servers with certain kinds of input in
particular ways; that is, in mounting directed attacks
on-some aspect:of a server's function. This turned
the StressBots into a versatile development tool.
Failures reported from the field often could be
replicated in the lab for debugging purposes. Once

a fix had been coded, it could be stress-tested
before being deployed in the field. Stress testing also
revealed problems that had not (yet) surfaced in the
field. These were generally fixed in software updates,
The stress-test system was also useful for evaluating
performance, such as a comparative analysis

.. of the servers implemented in different languages.

KELLOGG ET AL. 31

there are still many issues to consider and resolve
during this process: client addressing, server iden-
tification (domain name server, upstream mail ex-
changer, news feeder), etc. The usual approach to
installing Internet servers involves having the user
edit one or more files for each server. Information
such as domain name servers and IP addresses must
be specified several times, once for each server. Hid-
den dependencies between files make it difficuit for
users to complete an installation successfully, assum-
ing they have enough knowledge to understand what
they are trying to achieve in the first place. In con-
trast, our approach was to create special installation
programs that would gather the required domain
names and IP addresses (once) from the user, and
then automatically create the files that were needed
to set up the servers. Many iterations of the client
and server installers have now made this process rea-
sonably fast and reliable.

For the development of the installation program we
adopted an approach similar to that used for
client/server development. It was developed in a fast,
iterative manner that gave users an opportunity to
use the installation program and then provide feed-
back to the development team. Since TCP/IP and net-
working is complex, we provided a worksheet to help
the user to plan ahead and have available all of the
information needed before beginning the installa-
tion. We tried to have the installation program pro-
vide intelligent default values for as many informa-
tion fields as possible. For example, when the server
installation program was invoked, the installer func-
tion would read all the local networking files to de-
termine as much as possible for the installation. It
would find out the machine name, domain name, 1P
address, primary domain-name server address, and
secondary domain-name server address. If the server
was already connected to the Internet, it would query
the domain name servers (DNSs) for the DNS names.
Because this information was obtained automatically,
the user did not have to type the unfamiliar and com-
plex host names and numerical addresses. Thus po-
tential typing errors were prevented.

By user request, the installation program looped
through the display of installation information pan-
els. The user could set up, and review, the informa-
tion as many times as desired before committing to
the installation. All information was saved in a “.dat”
file so that the user could exit the installation at any
time and restart without losing information. This al-
lowed users to seek their own level of comfort be-
fore beginning the installation “for real.” It also al-

32 KELLOGG ET AL.

lowed an installation to be interrupted, and missing
information obtained, without restarting the entire
process. The administration client program instal-
lation and the NetVista client installation program
were developed in a similar manner. All the infor-
mation was gathered “up front” to configure the ap-
plication, then the installation program would cre-
ate and modify files as needed. Once again, these
are small design details, but they add significant value
when users deviate from the “ideal” installation pro-
cedure, which is to say much of the time.

In Canada, to make the installation process even sim-
pler, a complete server was built in the lab, contain-
ing all the defaults and server/client software, and
copied to a master disk. When the installation team
was ready to install NetVista at the customer site,
they would copy the master disk to the hard disk of
the NetVista server machine. Then the installation
program would be invoked to customize the system
for the school. With this approach, servers for com-
plete Internet access can be built and customized in
approximately one-half hour. The client installation
software is copied over the network to the local No-
vell server and installed on the server. A complete
installation for both clients and servers takes approx-
imately 1 to 2 hours.

Server administration. No matter how easy NetVista
is to use, it is still something new for a school to deal
with. From the administrator’s point of view, it is yet
another server with another set of functions (some
of them quite complex) to be learned and managed.
Our experience with the beta sites showed that of-
ten the administrator was a teacher who had volun-
teered to manage the school’s technology infrastruc-
ture. These inescapable facts motivated much of our
server-side work. By maximizing the automaticity of
maintenance and the degree of integration with the
larger LAN context, we attempted to make the server
invisible. And by creating a simple, integrated view
of the server suite, we attempted to make each ad-
ministrative task as straightforward and error-free
as possible.

We decided early that since NetVista was going to
be installed in schools with LANs, we would design
it to take advantage of the preexisting Novell or Win-
dows NT user databases. One approach would have
been to provide a database import function that al-
lowed the administrator to clone an existing data-
base during setup. But since school populations are
fairly transient (at least a portion of the student body
leaves at the conclusion of each school year) it made

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

more sense for the NetVista server to query the da-
tabase when decisions had to be made. Consider the
case of incoming mail. When presented with a mail
item for a user in its domain, the server needs to de-
termine if the user is valid and able to receive the
mail. In NetVista, this is done by querying the No-
vell or Windows NT server (or servers) at the point
of decision. If the user is known by the Novell or Win-
dows NT server the mail is accepted. And, if a mail-
box does not already exist for the user, one is cre-
ated. Or take the case of mail being picked up by a
remote user (i.e., one not currently on the LAN and
hence one not already authorized by Novell or Win-
dows NT). The password presented by the POP client
is checked against the Novell or Windows NT server
to determine whether the mailbox is opened or not.

Once a mailbox is created, system resources are con-
sumed. One early design did not reclaim these re-
sources when the mailbox was emptied. At the sug-
gestion of our early users, we modified NetVista to
automatically remove empty mailboxes. Thus, at the
end of the school year, there is no associated main-
tenance. Because the user has been removed from
the Novell or Windows NT server, no more mail will
be received. And since any existing mail will be au-
tomatically purged after the server-specified hold-
ing period, the server will eventually remove all traces
of the user from storage. This is another seemingly
small thing. But to an already overburdened admin-
istrator, it is seen as highly desirable.

Occasionally, the administrator needs to change
some aspect of the NetVista server. For example,
the administrator may want to set up a new discus-
sion group, or change the blocking filters, or view
the storage consumed by user mail. To support these
tasks we created an administration server and an ad-
ministration client (Figure 4) that provided a single,
coherent view of all the server functionality. Con-
sider the potential complexity of adding a new dis-
cussion group using typical management schemes
(involving fairly complex syntax, a text editor, and
multiple files). NetVista provides a single screen that
allows all aspects of the new newsgroup to be spec-
ified, including whether responses can be posted to
the group, which other servers will receive these
posts, and whether the group is to be protected by
a password. In addition, NetVista verifies that server
names can be resolved before they are added. Hence,
a common problem (e.g., news articles building up
in the server because it cannot get rid of them to an
invalid server) will be detected before it affects the
server. More subtly, the existence of a single view

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

of the suite of servers forced us to consider each new
server feature from the perspective of the admin-
istrator. Would a proposed addition be readily in-
corporated in the administration client? Would it be
manipulated like other server features, using com-
mon mechanisms, or would it require a new set of
administrator skills? These questions helped to keep
us focused on simplicity for administrators through-
out the development of the server suite.

Other factors supporting an end-user focus. Finally,
there were interesting synergies that formed around
the factors previously discussed. As the project pro-
gressed, these provided an intangible but real sense
of what would work in the design and what would
not, what was important enough to struggle for and
what was not. NetVista’s design seemed to coalesce
in a way that made new ideas and proposals easier
to evaluate as time went on. In addition, there were
some unique characteristics of the project that
wielded important influences, such as the vision of
early champions of the project from the 1BM K-12
environment, the energy boosts provided by our first
experience demonstrating the NetVista code, and the
enthusiasm and dedication of a special marketing
representative in Canada”® who was instrumental in
supporting many of the early beta and services-
offering sites and served as a high-bandwidth infor-
mation conduit between the users and our team.

All of these factors yielded excellent guidance for
keeping the best, most user-oriented functions and
losing the rest, separating the user-worthy wheat
from the chaft, so to speak. The integration of the
clients helped us present Internet pointers (such as
URLs and host sites) in a uniform way, and made it
possible to provide special integrative functions. For
example, we provided a function so that users could
point at a URL, host-site name, or e-mail address in
any text window (e.g., mail or news). Clicking within
such a string would produce a pop-up menu offer-
ing functions specific to the string. Clicking on an
e-mail address would offer functions such as “Add
this address to my nicknames list” or “Send a mail
message to this address.” Clicking on a URL would
invoke a pop-up menu allowing the user to open it
in the Web browser, add it as a bookmark, or for-
ward it to someone else in a mail message. (See Fig-
ure 5.) When we thought about adding functions to
a particular client, we always did so within the con-
text of all of the clients to which users would be ex-
posed.

KELLOGG ET AL. 33

\

Figure 4 The NetVista administration client. From this screen, all NetVista server functions can be monitored,
controlled, and modified. Note that the management of the user mailbox names is redirected to the Novell
server or servers, set through the “Set Novell Servers” button.

The abstraction and refinement of common code in
the underlying object-oriented framework was also
an impetus for common appearance and behavior
at the user interface. From a design point of view,
we wanted similar functions to appear and act the
same way. From a coding point of view, this was of-
ten achieved by running the same code, but having
the different objects for which the code was invoked
provide appropriate data. Thus, a two-way interplay
between design objectives and the structuring of the
code took place throughout the project. This pro-
cess, which depended on the recognition of common
function, flexibility in the coding environment, and
the ability to reuse code throughout the various cli-
ents, was a key aspect in managing the tension be-
tween rapid development and a high-quality user
experience.

34 KELLOGG ET AL.

To summarize, the main factors contributing to a fo-
cus on end users included the expertise and integra-
tion of perspectives of an interdisciplinary team, an
ongoing, continuous process of formative evaluation
in the field and in the lab, and a flexible coding envi-
ronment. In the next section, we switch our focus to
the characteristics of this coding environment and
the development of NetVista’s technical infrastruc-
ture.

Object technology base. A sustained focus on users
allowed the NetVista team to identify what worked
well and what needed to change. But knowing what
needs to change is not enough to ensure that a prod-
uct will be usable and desirable. We know of projects
in which the problems inherent in a design are dis-
covered in time but the cost of fixing them in a non-

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

Figure 5 Pointing at a URL in text and the resulting pop-up menu. The pop-up menu allows the user to open the Web
browser to the URL, to bookmark it, or to forward it to someone eise in a mail message. This was done without

preparsing the message or translating it to HTML.

P4 Re: MooseCROSSING

Michael . Ree:rs

m- 17362@mailbox.swipnet.se [Yrsa Divjak] wrote:

>Can anyone tell me where to turn for information on the MIT project:
>"MooseCrossing: Creating a learning Culture' by Amy Bruckman? I'm
>interesting in reading about it and | really want to see it in action. Any
>contact will be apreciated fullheartedly. I'm a teacher of children 10-12

i>yrs of age with a montessorioutlook.

>Yrsa

Have you tried MIT at: http://www.mit

malleable development environment is prohibitive.
We know of projects in which the resources to fix
problems are available but every change (applied as
“patches” to the existing code) increases the size and
decreases the robustness of the implementation. In
our own case, much needed to be changed as
NetVista evolved, even though we started with a good
set of requirements and an initial design that was
more often “on target” than not. Things that worked
well in the early versions were found to be out of
place in the growing application suite. Whole appli-
cations were developed, only to be discarded and re-
placed. New functions were introduced that needed
to be applied coherently across multiple protocols
and data types. In order to accommodate this level
of change we needed a flexible development envi-
ronment, with powerful tools for structuring and re-
structuring our code. We needed an environment in

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

which changes actually increased the stability and in-
tegrity of the code base. In this section we summa-
rize the important aspects of the coding environment
in which we worked, and look at NetVista from the
inside out.

NetVista’s clients and servers were developed almost
entirely in Smalltalk, an object-oriented language
and development environment. Smalltalk provided
two key advantages. First, by supporting rapid in-
cremental development, it allowed us to explore our
design in situ, testing and modifying running appli-
cations on the Internet. Many more options can be
meaningfully explored when tests can be conducted
in minutes to hours rather than days to weeks. Code
is also of higher quality when it can be tested within
a running system as soon as it is written (rather than
waiting for the elements to be brought together late

KELLOGG ET AL. 35

in the cycle for a “system” test). Second, by provid-
ing tools for structuring our code as objects within
a hierarchy of classes, Smalltalk allowed us to evolve
client and server frameworks that captured more and
more cross-application behavior as well-tested, in-
heritable code. While it is impossible to prove that
NetVista could not have been built without these ca-
pabilities, it is clear to us that without them, our small
team would not have attempted the task.

The NetVista client/server application frameworks.
Frameworks are essentially abstract applications.
They capture the common behavior of a range of
related applications and make this behavior imme-
diately available to any application developed as a
specialization of the framework. As such, they are
powerful both for structuring code and in support-
ing the reuse of that code.* Frameworks have been
developed in many domains including two of inter-
est to us here: support for network protocols?” and
support for graphical user interfaces.” The NetVista
code frameworks contributed to quality in numer-
ous ways {consistent behavior across components,
enhanced integration across applications, code com-
pactness, and ability to redesign around performance
bottlenecks, to name a few). Most importantly, the
frameworks allowed us to steadily improve the com-
mon code that was used by all clients and servers.
Thus, over time performance and reliability im-
proved as new function was added. Iterating over the
design in search of simplicity, integration, and us-
ability similarly improved the quality of the code.
And reflecting on the properties of the emerging
framework suggested further simplifications and uni-
fications in the design as seen by the user. Some ex-
amples of the interplay between usability and frame-
work evolution follow.

Naming and connecting to Internet servers—Naming
things (servers, URLs), and making use of those
names later, lies at the core of effective Internet use.
Within the NetVista framework, a common mech-
anism for resolving names and making socket con-
nections is inherited by all clients. This allows all cli-
ents to support a rich model of naming without the
overhead of creating it. From the users’ perspective
they need only remember a name of a bookmark or
a nickname to reconnect to any URL or any server
(including those, like chat, in which there is no URL
involved). The common inherited “resolver” code
maps this name through the user’s personal nick-
name list and hierarchical bookmarks and expands
it appropriately. Common connection logic is also
inherited by all clients. This allows a consistent and

36 KELLOGG ET AL

simple model of connection progress to be reflected
to the users across all applications. This logic also
made it easy to add the capability to block certain
hosts, domains, and URLs, since it was placed in the
abstract client superclass and then inherited for use
by all clients.

Finding things—Once communication is established
with a server, the user is often confronted with the
task of finding a particular thing in a list of things.
It became apparent that a common mechanism for
finding things would be advantageous. Within the
client framework, this was implemented by having
all “findable” objects implement a specialization of
the inherited asSearchableString method, thereby
returning to the sender of this message whatever the
object wanted to offer as its target string. This al-
lowed a common search mechanism to operate
across newsgroups, news posts, mail lists, FTP direc-
tories, Gopher elements, bookmarks, IRC channels,
IRC nicknames, etc. New objects could participate
in this scheme by implementing a single method
while retaining the flexibility to determine a mean-
ingful target for the search.

Coping with errors—Once something is found on the
Internet, it is commonly downloaded to be viewed
or manipulated. Downloaded files can be large and,
at least in the K-12 environment, disk space is often
limited. Common file exception handling allows all
clients to fail nicely when an attempt is made to write
to a disk where space is not available. This is unified
across clients and across platforms by a single mech-
anism that is used pervasively.

Achieving adequate performance on small ma-
chines—An important aspect of usability is perfor-
mance; without good performance, even the best
design cannot support a good user experience. A
well-structured code framework tends to be small.
Identifying and factoring out common behavior leads
not just to better code but to less code. Since poor
performance on small machines is often the result
of memory contention and swapping, code compact-
ness leads directly to better performance.

Leveraging client/server integration. The evolution of
NetVista client and server applications brought both
better performance and better function. This was
particularly true when we (judiciously) extended the
mail and news protocols for sites running both the
client and server suites. We provide two examples
of these extensions.

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

Opening a mailbox with many items on a POP server
is slow; an inefficient request/response cycle has to
be repeated for each mail item on the server. To ac-
commodate very large mail drops (where the mail
is retained on the server) we created a new server
mechanism that returns the mailbox overview (i.e.,
sender, date, and subject for all messages) in an al-
ready-parsed form. When a school installs both the
NetVista mail client and the NetVista mail server,
this greatly speeds the opening of mail. Of course,
when the components are installed separately, the
NetVista mail client works correctly with other POP
servers, and the NetVista POP server works correctly
with other mail clients.

NetVista allows private newsgroups to be created
and modified easily (e.g., a password can be added
or removed, posting can be turned on or off as need-
ed). But NNTP provides no mechanism for keeping
aclient’s view of newsgroup properties synchronized
with the server’s view (other than by generating er-
ror messages). This can lead to situations where, for
example, posting has been turned off for a news-
group, but users are still able to post to the news-
group because the client is “out of sync.” Another
private protocol was created to address this synchro-
nization problem.

Novell integration. After talking with several school
administrators, it became clear that we needed to
use their existing Novell server name space. Schools
already had procedures for entering user names and
passwords into the system for their Novell accounts.
When logging into Novell, the student or teacher had
already entered a user name and password. For both
usability and security reasons, we did not want to
have NetVista ask again for the name and password.
Also, using the same user name on the Internet
would allow users to have a single identity on both
the Novell server and the Internet.

NetVista is designed so that when it starts, it que-
ries Novell for the “logged-on” user information.
From this it can determine the user name of the per-
son logged on, which becomes the Internet user
name. This process also avoids the problem of a per-
son logging into Novell as one person, and then en-
tering a different name for the Internet, i.e., attempt-
ing to “spoof” (pretend to be) another user for
e-mail. The Novell user name also becomes the In-
ternet mailbox name when e-mail is received. As de-
scribed previously, the NetVista server queries the
Novell server (or servers) to determine whether in-
coming mail is addressed to a valid user. If the user

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

name is not found, the mail is rejected. Thus a one-
to-one mapping of Internet and Novell user names
is maintained. This arrangement is much appreci-
ated by the schools, since it prevents site adminis-
trators from having to define and maintain a sep-
arate name space for Internet access.

Making it Macintosh. One of our final challenges was
to create a true Macintosh version of NetVista. For
many reasons, the first target for NetVista was Mi-
crosoft Windows 3.1, a GUI (graphical user interface)
platform small enough to fit into school-sized Intel-
based computers. The fact remained, however, that
many schools were on a Macintosh base, and we
wanted to support these customers as well.

Although significant system and user-interface dif-
ferences exist between Microsoft Windows and
Macintosh 0s, both are based on the “desktop” met-
aphor, utilizing windows, icons, menus, and point-
ers to accomplish the same goals. Given the proper
system support, a mapping between the two plat-
forms was tractable.

Without a common computer language between Mi-
crosoft Windows and Macintosh OS, supporting
NetVista on two different computer systems (hard-
ware and software) would have been prohibitively
expensive. Rewriting in a different language would
have been very costly in time and person resources.
Operating system and language differences would
have required accommodations in the internal de-
sign. Further, it would have created a maintenance
nightmare for future NetVista development and sup-
port. Each change would need to be planned for, im-
plemented, tested, and tracked in two separate im-
plementations. A common programming language
between Microsoft Windows and Macintosh OS was
required.

Fortunately, a common programming language so-
lution did exist at the time, although the solution was
far from perfect. As discussed above, NetVista is im-
plemented in the Smalltalk programming language.
By its design, Smalltalk is a high-level language based
on a “virtual machine” implementation. The details
of the underlying hardware and operating system are
(mostly) hidden from the Smalltalk programmer.
Our Smalltalk vendor, Digitalk, Inc., was marketing
what we were looking for: Smalltalk/V** Macintosh.
To the extent that Smalltalk/V Macintosh was iden-
tical to Smalltalk/V Windows, the cross-platform is-
sues would have already been solved for us by our
colleagues at Digitalk.

KELLOGG ET AL. 37

Inevitably, there were significant differences between
the Smalltalk implementations on Microsoft Win-
dows and on Macintosh. The Smalltalk syntax is quite
compact. Many components in the Smalltalk envi-
ronment are well-specified, system independent, and
therefore could be coded identically for each plat-
form. Outside this common ground, however, the sit-
uation was more complex. Developed from differ-
ent original code bases, in different parts of the
United States, and designed to accommodate the
style and philosophy of the underlying platform, dif-
ferences were understandable, but not good news.
The major software components upon which
NetVista relies are the window system, TCP/IP net-
working, the file system, and interprogram commu-
nication. Of these, only the window system and the
file system were addressed in the cross-platform
Smalltalk definition. In order to bring NetVista to
the Macintosh, the other differences had to be rec-
onciled as well.

In addition, with the introduction of Apple Guide
in System 7, the model of on-line help in the Macin-
tosh became significantly different from the Mi-
crosoft Windows and 08,2 platforms. Apple Guide
eschewed graphically rich “mini-tutorials” and de-
scriptive information for help systems in favor of
seriously task-oriented, step-by-step procedures pre-
sented in small windows viewable from an applica-
tion. Accordingly, the on-line help system for
NetVista was completely reconceptualized and re-
implemented to support this model.

Conclusion

NetVista was shipped in June, 1996, with a second
release in November, 1996. At the time of the June,
1996, release, NetVista had been in beta test in
eleven schools for approximately two years. From
the beginning of the project, the five-person core
team had created the software on Microsoft Win-
dows 3.1, 0s/2, Windows 95, Windows NT, and Macin-
tosh 0S. As mentioned previously, earlier versions
of the code had been released as a Limited Avail-
ability Services Offering in 1994 (for Microsoft Win-
dows 3.1), and as beta software on a compact disk
and over the Internet in 1995 (for 0s/2).

As members of the CHI (computer-human interac-
tion) community, and long-standing advocates of the
value of usability engineering and iterative design,
it was somewhat surprising to reflect on our own de-
sign process and see how little it incorporated some
of the activities typically prescribed, particularly more

38 KELLOGG ET AL.

structured and formal analyses of users, tasks, and
context.? It is important to point out, however, that
this information was not missing from our design pro-
cess—rather it was provided via a continual and rich
process of immersing the team in the user’s environ-
ment and developing the software in the context of
real usage. It is hard to imagine that it could have
been otherwise, or that more formal representations
of these users and their contexts could have served
us better. In the final analysis, although we believe
we could have learned useful things from more for-
mal analyses, such as usability tests in the lab, the
process we followed was essential for grasping the
crucial requirements of a complex project and meld-
ing them into a useful and appropriate product.

Similarly, feedback from students and teachers in the
field using NetVista has been informal and contin-
uous throughout the project. We have not yet vis-
ited some of the new schools using NetVista, but we
are delighted to see some of the work they are doing
on the Internet. (See, for example, http://cses.scbe.on.
ca/index.htm and http://www.lbe.edu.on.ca/bonavent/
welcome.htm, which have both won site awards.) We
are also gratified to see the emergence of district-
wide licenses for NetVista, including the Province
of British Columbia, Canada, which has licensed its
1700 schools to use NetVista. Success with our users
and in the marketplace is our ultimate yardstick. We
are interested in carrying out measurements of ef-
fectiveness and satisfaction with the NetVista soft-
ware, but in the meantime, changes and refinements
to the software continue to be driven from ongoing
informal reviews and conversations with our users.

Our experience and reflection leads us to expand our
notion of what a small team can achieve, and to em-
phasize particular aspects of our project as condu-
cive to creating software rapidly that is focused on
usability in the large. We state the lessons we have
learned in general terms in the hope that they can
be more easily applied by others, and we hope that
the foregoing discussion has given the reader some
idea of how these abstractions were realized in prac-
tice within the NetVista project:

* Begin a design process by immersing principal
team members in the users’ environment. Continue
this exposure throughout the life of the project.

* Create a collaborative, reflective design process
that has significant representation of different per-
spectives. Respond to the insights produced by
these perspectives.

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

’

* Learn to live with design questions. Give your code
and your understanding of the design space time
to evolve together. In a supportive coding environ-
ment, this need not translate into longer develop-
ment time. Be prepared to handle radical revisions
if necessary.

e Maintain an intense focus on simplification. No
matter how sophisticated your users, seek a design
that does not exceed the inherent complexity of
the problem the design is addressing.

* “Live” your users’ scenarios to the greatest extent
possible. Use your developing system for your own
work wherever applicable.

* Seek continual informal feedback from users or
representative others, even if you can afford a more
formal usability testing program. Better yet, have
representative users use your code from its ear-
liest incarnations.

* Be willing to ignore “common knowledge” (i.e.,
conventions or what others say you must do), and
focus on what really needs to be done.

Although our project was largely unable to take ad-
vantage of conventional usability measures and ac-
tivities, we believe in the value of a test suite of user
scenarios and tasks to drive design in the direction
of greater usefulness, appropriateness, and usabil-
ity. At the same time, we wonder whether practition-
ers of “user-centered design” sometimes become
complacent—satisfied if a project incorporates stan-
dard usability practices, whether or not they actu-
ally succeed in achieving usability in the large. A
paper representation of user tasks, or even an elab-
oration of particular usage scenarios will almost
never be as effective as putting developers in the us-
er’s environment to meet and interact with the users
around the software. We are committed to reaching
for a design ethic deeper than common GUI elements,
and a process more meaningful and more discovery-
oriented than can be easily prescribed. In this quest,
an enduring end-user focus and a coding environ-
ment that makes it possible to respond to the kinds
of changes that focus can engender are paramount.

Each development project is unique, and we do not
mean to suggest here any procedure or recipe for
success. We do know that there seemed to be un-
mistakable signs that we were on the right track: for
example, the fact that our work was truly collabo-
rative and engaged multiple points of view, and that
the effect of iterations and introducing new elements
was visible in the simplifying contractions of the
evolving code framework. Other aspects were im-
portant as well: we worked with detailed knowledge

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

of who our users were (with the corresponding in-
convenient realities that knowledge forced us to ad-
dress), and we had the luxury of designing a signif-
icant portion of the school’s Internet solution, one
that could respond to the entirety of the environ-
ment in which the software would exist.

Our experience has led us to realize that the iter-
ation in this project had a different focus than the
one we normally think of in traditional usability prac-
tice. We iterated not in the sense of climbing incre-
mentally toward usability objectives, but in terms of
discovery: What is this software about? What func-
tion belongs? How can we make this simpler? As
designers, we sought to reveal to ourselves, and then
through our design to our users, the most basic and
important dimensions of using the Internet. As de-
velopers, we sought to reform and gain insight in our
understanding of the domain of Internet protocols,
clients, and servers, and the relationship between
Smalltalk and the underlying operating systems with
which we worked. What emerged from this process
is not only a particular product from a particular
team, but collaboratively owned expertise and an ob-
ject-oriented framework for implementing net-
worked applications that can be extended in new di-
rections in the future.

The potential for extending our work to new domains
or problems is important to us from a research per-
spective. It has taught us the value of developing a
whole solution within a niche, and then turning at-
tention to how it might apply or be leveraged in new
domains. We have often seen work that takes the
approach of developing technology meant for “ev-
eryone.” However, we suspect that as networked ap-
plications grow more sophisticated and capable,
many of the most interesting efforts will find their
origins in particular domains, with particular users,
where a real-world problem urges upon us a new un-
derstanding of computing in a networked world.

Acknowledgments

We thank Tom Erickson, John Thomas, John Karat,
and three anonymous reviewers for helpful com-
ments. We also thank the members of the larger
NetVista family: Rink Bingham, Jonathan Brezin,
Jerry Chwazik, Gary Cole, Norm Cox, Don Daria,
Dave DeSantis, Scott Engleman, Stu Feldman, Ar-
mando Garcia, Pat Goldberg, Ambuj Goyal, Jan
Jackman, Jeff Jaffe, Merwyn Jones, Carl Kessler,
Brian Mackay, Petar Makara, Bruce McClellan,
Dave McQueeney, Bruce Nelson, Lori Neumann,

KELLOGG ET AL.

39

Bob Petti, Bill Rubin, Dave Smith, Vicki Spirito, Bill
Stanton, Pat Sueltz, Mike Sutherland, John Vlissides,
Leslie Wilkes, David Wood, and Carol Young,.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Microsoft Corporation,
Apple Computer, Inc., Netscape Communications Corporation,
X/Open Co., Ltd., America Online, Inc., Novell, Inc., Sun Mi-
crosystems, Inc., or Digitalk, Inc.

Cited references and notes

1. C.Danis and J. Karat, “Technology-Driven Design of Speech
Recognition Systems,” Designing Interactive Systems (DIS’95),
G. Olson, Editor, ACM Press, New York (1995).

2. 1.D. Gould, S.J. Boies, S. Levy, J. T. Richards, and J. Schoo-
nard, “The 1984 Olympic Message System: A Test of Behav-
ioral Principles of System Design,” Communications of the
ACM 30, No. 9, 758-769 (September 1987).

3. T. K. Landauer, The Trouble with Computers: Usability, Use-
fulness, and Productivity, MIT Press, Cambridge, MA (1996).

4. J.LaiandJ. Vergo, “MedSpeak: Report Creation with Con-
tinuous Speech Recognition,” Human Factors in Computing
Systems: The Proceedings of CHI'97, S. Pemberton, Editor,
ACM Press, New York (1997), pp. 431-438.

5. A “Web-year” is only three months long.

6. F. P. Brooks, “No Silver Bullet—Essence and Accidents of
Software Engineering,” IEEE Computer 20 No. 4, 10-19
(April 1987).

7. Telnetis an application used for logging on to a remote com-
puter.

8. Mosaic was the first publicly available commercial Web
browser.

9. Computers & Education 24, No. 3 (April 1995). Special issue
on education and the Internet, W. A. Kellogg and D. W. Vieh-
land, Editors.

10. R. Eurich-Fulcer and J. W. Schofield, “Wide-Area Network-
ing in K-12 Education: Issues Shaping Implementation and
Use,” Computers & Education 24, No. 3, 211-220 (April 1995).

11. Gopher is an application that presents information from In-
ternet servers as menus of folders and documents; news re-
fers to bulletin-board-style discussions over the Internet on
a particular topic; a chat is a multiway text-based conversa-
tion with others on the Internet; F7P (File Transfer Proto-
col) is a way to find and transfer files from (or to) remote
computers.

12. E. Soloway and R. Wallace, “Does the Internet Support Stu-
dent Inquiry? Don’t Ask,” Communications of the ACM 40,
No. 5, 11-16 (May 1997).

13. W. A. Kellogg and J. T. Richards, “The Human Factors of
Information on the Internet,” Advances in Human-Computer
Interaction, Volume 5, J. Nielsen, Editor, Ablex, Norwood,
NIJ (1995), pp. 1-36.

14. P.Heckel, The Elements of Friendly Software Design: The New
Edition, Sybex, Inc., Alameda, CA (1992).

15. B.Laurel, The Art of Human-Computer Interface Design, Ad-
dison-Wesley Publishing Co., Reading, MA (1990).

16. B. Laurel, Computers as Theatre, Addison-Wesley Publish-
ing Co., Reading, MA (1991).

17. D. Norman, The Psychology of Everyday Things, Basic Books,
New York (1988).

18. B. Shneiderman, Designing the User Interface: Strategies for

40 KELLOGG ET AL.

Effective Human-Computer Interaction (Second Edition), Ad-
dison-Wesley Publishing Co., Reading, MA (1992).

19. B. Tognazzini, Tog on Interface, Addison-Wesley Publishing
Co., Reading, MA (1992).

20. See http:/Avww.ibm.com/ibm/hci/guidelines/design/principles.
html.

21. User-Centered System Design, D. Norman, Editor, Lawrence
Erlbaum Press, New York (1987).

22. J. M. Carroll and W. A. Kellogg, “Artifact as Theory-Nexus:
Hermeneutics Meets Theory-Based Design,” Human Factors
in Computing Systems: The Proceedings of CHI'89, K. Bice and
C. Lewis, Editors, ACM, New York (1989), pp. 7-14.

23. J. M. Carroll, W. A. Kellogg, and M. B. Rosson, “The Task-
Artifact Cycle,” Designing Interaction: Psychology at the Hu-
man-Computer Interface, J. M. Carroll, Editor, MIT Press,
Cambridge, MA (1991), pp. 74-102.

24. F. Serim and M. Koch, NetLearning: Why Teachers Use the
Internet, O’Reilly and Associates, Sebastapol, CA (1996).

25. Fred Jennings, IBM Canada.

26. R. E.Johnson and B. Foote, “Designing Reusable Classes,”
Journal of Object-Oriented Programming 1, No. 2, 22-35
(June/July 1988).

27. H. Hiini, R. Johnson, and R. Engel, “A Framework for Net-
work Protocol Software,” OOPSLA 95 Proceedings, ACM
Press, New York (1995), pp. 358-369.

28. M. A. Linton, J. M. Vlissides, and P. R. Calder, “Composing
User Interfaces with Interviews,” Computer 22, No. 2, 8-22
(February 1989).

29. D. Hix and H. R. Hartson, Developing User Interfaces: En-
suring Usability Through Product and Process, John Wiley &
Sons, Inc., New York (1993).

Accepted for publication September 12, 1997.

Wendy A. Kellogg IBM Research Division, Thomas J. Watson Re-
search Center, P.O. Box 704, Yorktown Heights, New York 10598
(electronic mail: kellogg@watson.ibm.com). Dr. Kellogg, a research
staff member, holds a Ph.D. degree in cognitive psychology from
the University of Oregon. Her research interests include human-
computer interaction, the Internet, and virtual communities.

John T. Richards IBM Research Division, Thomas J. Watson Re-
search Center, P.O. Box 704, Yorktown Heights, New York 10598
(electronic mail: jir@watson.ibm.com). Dr. Richards manages the
Niche Networking department at the Thomas J. Watson Research
Center. His research interests include object-oriented applica-
tion development and human-computer interaction. Dr. Rich-
ards holds a Ph.D. degree in cognitive psychology from the Uni-
versity of Oregon.

Calvin Swart IBM Research Division, Thomas J. Watson Research
Center, P.O. Box 704, Yorktown Heights, New York 10598 (elec-
tronic mail: cals@watson.ibm.com). Mr. Swart is a senior software
engineer whose work has included object-oriented toolkits, video
subsystems, and Internet technology.

Peter Malkin IBM Research Division, ThomasJ. Watson Research
Center, P.O. Box 704, Yorktown Heights, New York 10598 (elec-
tronic mail: malkin@watson.ibm.com). Mr. Malkin’s work has in-
cluded mobile robotics, multimedia object-oriented databases, and
network design. He is an advisory software engineer.

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

Mark Laff IBM Research Division, Thomas J. Watson Research
Center, P.O. Box 704, Yorktown Heights, New York 10598 (elec-
tronic mail: mrl@watson.ibm.com). Mr. Laff, a research staff mem-
ber, has been affiliated with the Thomas J. Watson Research Cen-
ter since 1960. His research has ranged from fractals to operating
systems and from video editing to VLSI (very large scale inte-
grated) circuit logic design. He continues to try to make com-
puters do things that are useful for people.

Vicki Hanson IBM Research Division, ThomasJ. Watson Research
Center, P.O. Box 704, Yorktown Heights, New York 10598 (elec-
tronic mail: vih@watson.ibm.com). Dr. Hanson manages the K-12
Networking and Collaborative Learning department at the Tho-
mas J. Watson Research Center. Her research interests include
language and reading, software tools for performance-based as-
sessment of students, and professional development for teach-
ers. Dr. Hanson holds a Ph.D. degree in cognitive psychology from
the University of Oregon.

Brent Hailpern IBM Research Division, Thomas J. Watson Re-
search Center, P.O. Box 704, Yorktown Heights, New York 10598
(electronic mail: bth@watson.ibm.com). Dr. Hailpern manages the
Internet Technology organization at the Thomas J. Watson Re-
search Center, which includes workflow, Internet server perfor-
mance, Internet software for K-12 education, electronic mail, in-
telligent agents, and antivirus software. Dr. Hailpern holds a Ph.D.
degree in computer science from Stanford University.

Reprint Order No. G321-5661.

IBM SYSTEMS JOURNAL, VOL 37, NO 1, 1998

KELLOGG ET AL. 41

