SpeedTracer: A Web
usage mining and
analysis tool

SpeedTracer, a World Wide Web usage mining
and analysis tool, was developed to understand
user surfing behavior by exploring the Web
server log files with data mining techniques. As
the popularity of the Web has exploded, there is
a strong desire to understand user surfing
behavior. However, it is difficult to perform user-
oriented data mining and analysis directly on
the server log files because they tend to be
ambiguous and incomplete. With innovative
algorithms, SpeedTracer first identifies user
sessions by reconstructing user traversal paths.
It does not require “cookies” or user registration
for session identification. User privacy is
protected. Once user sessions are identified,
data mining algorithms are then applied to
discover the most common traversal paths and
groups of pages frequently visited together.
Important user browsing patterns are manifested
through the frequent traversal paths and page
groups, helping the understanding of user
surfing behavior. Three types of reports are
prepared: user-based reports, path-based reports
and group-based reports. In this paper, we
describe the design of SpeedTracer and
demonstrate some of its features with a few
sample reports.

Popularity of the World Wide Web (Www) on
the Internet has exploded recently. Many orga-
nizations have invested a tremendous amount of cap-
ital to operate sites on the Web. These Web sites
provide communications and services to their em-
ployees, customers, and suppliers. With money in-
vested in these sites, there is a strong desire to un-
derstand the effectiveness of such investments and
to find ways to realize the potential opportunities
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provided by the Internet. As a result, it has become
important to understand user surfing behavior.

To understand how visitors navigate a Web site, the
Web server log files are analyzed. However, it is gen-
crally difficult to perform user-oriented data mining
or analysis directly on the server log files because
they tend to be ambiguous and incomplete. Typical
server log files contain the following information
about a request: client host Internet Protocol (IP)
address, time stamp, method, URL' (uniform re-
source locator) address of the requested document,
HTTP? (HyperText Transfer Protocol) version, re-
turn code (status of the request, i.e., success or er-
ror codes), bytes transferred, referrer page URL, and
agent (browser and client operating system). The
user identifier is usually not available in the log file.
Due to the use of proxy servers by Internet Service
Providers (1sPs) and firewalls by commercial corpo-
rate gateways, true client 1p addresses are not avail-
able to the Web server. Instead of various distinct
client 1ps, the same proxy server or firewall IP will be
recorded in the server log files, representing requests
of different users who come to the Web site through
the same proxy server or firewall. This situation cre-
ates ambiguity in the log records. Furthermore, some
Web pages are generally cached by local clients or
various proxy servers, or both, in order to reduce net-
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Table 1 Sample log entries from an NCSA HTTPd

work traffic. As a result, log records will be missing
for the corresponding accesses to the cached Web
pages, resulting in an incomplete log. A more com-
plete discussion of the difficulties in obtaining reli-
able usage data on the Web can be found in Ref-
erence 3.

For example, Table 1 shows a few sample entries of
an access log in the combined log format from a
National Center for Supercomputing Applications
(NCsA)* HTTPd.® The first entry in Table 1 represents
a GET request from a user going through peo-ill-
21.ix.netcom.com for file /images/nudge.gif follow-
ing HTTP/1.0 protocol. The user may or may not be
physically logged in on the machine peo-il1-21.ix.net-
com.com. He or she may be just using the machine as
a gateway to the Internet. The file size of nudge.gif is
37 bytes, and it was successfully transferred. The agent
used to view page nudge.gif is MSIE** 3.01 (Microsoft
Internet Explorer** 3.01) running on Windows NT**.
Finally, the user was referred to the “gif” file from http:
/fwww.internet.ibm.com/. Namely, either file nudge.gif
is on the home page of http://www.internet.ibm.com/
or there is a hyperlink to it from the home page.

To solve the problem of proxy servers or firewalls
masking user IPs, it generally requires either user reg-
istrations or log-ins or the employment of “cookies™
between the Web server and client browsers. With
log-ins or cookies, a Web server can identify distinct
requests made by individual users through a token
carried between the user’s browser and the server.
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But the desire by many, if not the majority of, users
to have privacy and remain as anonymous as pos-
sible may force many Web servers not to ask for reg-
istration or not to use cookies. As a result, there is
a strong need for a tool that can analyze user-ori-
ented behavior from the regular server log files with-
out requiring cookies or registrations. SpeedTracer,°
a Web usage mining and analysis tool, has been de-
veloped for such a purpose.

Several Web server log analysis tools have been im-
plemented. Some of these tools are very simple and
do not attempt to identify individual user sessions.
These packages are simply mechanisms through
which a Web master can view the raw Web server
statistics, such as hit counts and distributions based
on geographic regions. Examples of this type of tool
include wwwstat (http://Awww.ics.uci.edu/pub/websoft/
wwwstat) and Analog (http://www.statslab.cam.ac.
uk/~sretl/analog).

To provide user-oriented Web usage analysis, user
sessions must first be identified. More sophisticated
analysis packages identify user sessions with some
or all of the following three mechanisms. First, if the
Web server provides cookies, it is a trivial task to
formulate the session. Every access to the Web server
with the same cookie value makes a single session.
Second, if the server does not provide cookies, it may
require a log-in 1D for each browser. The analysis
tool can use the log-in IDs to identify sessions. In Ref-
erence 7, a data mining tool was developed on the
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assumption that log-in IDs are available. Without
log-in 1Ds, the data mining tool cannot perform its
intended functions. In fact, most log records do not
contain log-in IDs. Lastly, if the Web server does not
provide either cookies or user IDs, the analyzer iden-
tifies sessions with host addresses. All accesses to the
Web server from a given host address are consid-
ered to be a session until a predefined amount of
time has passed between accesses. As mentioned pre-
viously, the use of a proxy and firewall causes all
browsers from a given proxy or firewall to be con-
sidered a single user. As a result, an identified ses-
sion may in fact contain many independent user ses-
sions. Several Web analyzers only use the host
address to identify sessions, such as SurfReport**
(http://software.bienlogic.com/SurfReport) and
NetTracker**  (http://www.sane.com/products/
NetTracker). Other tools use a combination of
methods to identify sessions, such as the Usage An-
alyst** by Microsoft Corporation (previously Interse
http://www.interse.com) and WebTrends** (http:
/fwww. webtrends.com).

In contrast, SpeedTracer uses the referrer page and
the URL of the requested page as a traversal step and
reconstructs the user traversal paths for session iden-
tification. No “cookies” or user registration are re-
quired. In Reference 8, an alternative approach to
reconstructing user traversal paths was proposed. In-
stead of using a referrer page, information about the
topology (i.e., hyperlink structure) of a Web site (to-
gether with other heuristics) was used to identify le-
gitimate traversals. A software agent was first used
to perform an exhaustive breadth-first traversal of
pages within the Web site in order to construct the
topology. However, the topology is not really needed
if referrer information is available.

Once user sessions are identified, statistics related
to user behavior can be obtained. Interesting user-
based statistics include the top N referrers to a Web
site, the top N pages most frequently visited by users,
the top N pages from or into which users most fre-
quently exit or enter a Web site, the top N browsers
most frequently used, the top N 1P hosts from which
most users come, the demographics (by organization
or by country) of users, the distribution of user ses-
sion durations, the distribution of numbers of pages
visited during a user session, and the distribution of
depth or breadth of a user session.

With user sessions, data mining techniques can be

applied to obtain interesting user browsing patterns.
Data mining has recently been used to discover cus-
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tomer buying patterns by many retailers and other
service corporations. One of the most important data
mining problems concerns mining association
rules.’'? Given a set of transactions, where each
transaction is a set of items, an association rule is
an expression of the form X = Y, where X and Y
are sets of items. An example of an association rule
is: “30 percent of transactions that contain bread and
butter also contain milk; 2 percent of all transactions
contain both of these items.” Here 30 percent is
called the confidence of the rule, and 2 percent the
support of the rule. The thrust of mining associa-
tion rules is to find all association rules that satisfy
user-specified minimum support and minimum con-
fidence constraints. In mining association rules, the
most important problem is to generate all combina-
tions of items that have the minimal support. These
combinations of items are called large itemsets.

In SpeedTracer, we mapped cach identified user ses-
sion into a transaction and then applied data min-
ing techniques to discover the top N most frequented
user traversal paths and the top N groups of pages
most frequently visited together. These problems are
to some extent similar to finding the top N large item-
sets for traversal paths and groups of pages. But spe-
cific differences exist. A traversal path is a collection
of consecutive URL pages in a Web presentation,
where one URL is referred to by the immediately pre-
ceding URL. The URLs in a traversal path are con-
nected in the Web presentation graph. In contrast,
the pages in a group are not necessarily connected
among themselves. A frequently visited group of
pages may contain two or more disjoint traversal
paths. By examining the traversal paths and groups
of pages, valuable user browsing patterns can be ob-
tained to improve the organization and linkage of
the Web presentation.

Note that finding frequent traversal paths is also to
some extent similar to the problem of mining sequen-
tial patterns.'> However, the results from the sequen-
tial-pattern-mining method in Reference 13 may
contain sequences that do not represent a traversal
path in the Web presentation graph. The reason is
there may be many backward traversal steps involved
in a user session, and pages on two different paths
may be recognized as part of a sequential pattern.

In this paper we focus on mining the frequent tra-
versal paths and groups of pages visited together.
However, other types of data mining techniques, such
as clustering pages, clustering users, or classification,
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apredetermined interval if their agents are the same.
Unfortunately, this approach cannot distinguish two
different clients with the same agent coming from
the same proxy within the specified time interval. For
instance, in Table 1 the two accesses from ss5-08.
inre.asu.edu both use Netscape Navigator** 3.0
(Moszilla/3.0) and come within four seconds. The two
accesses can be viewed as from the same user ses-
sion. But they may be from two different user ses-
sions going through the same proxy server. As the
markets for both browsers and desktop operating sys-
tems become ever more consolidated, it is highly
likely that multiple accesses from different users will
have the same agent. For instance, most home users
may use the same version of Netscape Navigator
browser running on a Windows 95** desktop. Thus,
time stamps together with agent information are not
sufficient to identify user sessions from the server log
files.

In SpeedTracer we use five key pieces of informa-
tion from a log record to identify user sessions. They
are 1P, Timestamp, URL (the requested page), Re-
ferral, and Agent. Different IPs or agents obviously
indicate different user sessions. If the time stamps
indicate that two accesses are separated by more than
a prespecified period of time, the accesses are also
considered to belong to different sessions. In addi-
tion to these obvious rules, SpeedTracer uses the re-
ferral page to help more accurately identify user ses-
sions. For each log record, we use the referral page
and the requested page URL to form a hyperlink ac-
cess pair, representing a step in a user traversal path.
Each access pair is then used to reconstruct a user
traversal path in the Web presentation. The basic
idea is that access pairs constitute a connected tra-
versal path during a user session. Note that the tra-
versal path can be forward or backward. Session iden-
tification becomes the partitioning of log records into
groups so that the access pairs within a group form
a connected traversal path. However, because brows-
ers and proxy servers generally use caching to reduce
network traffic and improve performance, there are
no corresponding log entries for those accesses to
the cached pages. As a result, missing access pairs
might be in the log files, and these missing access
pairs need to be added back during session identi-
fication.

In session identification, we process the log records
one at a time. Each access pair is added to an active
session, if possible. If (x; —y;) represents an access
pair, then the traversal path of a session S of size n
can be expressed as follows:
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S (0 =y, (k= y2)s s (6= y,)

where x;,, = y;,, 1 =i < n. A new access pair
(x; —y;) can be appended to an active session S,
ifx; =y,, 1 =k =n, orx, = x;. However, unless
X; = y,, a backward access path (y, —x,), -+,
(¥i+1 — Xi+1) must first be added back to S to
maintain a connected traversal path. For example,
if (b — d) were to be appended to a session
St (a = b), (b — ¢), a backward traversal pair
(c — b) has to be first appended to S,. Thus, the
new S; becomes (¢ — b), (b — ¢), (c — b),
(b — d).

Apparently, there can be multiple candidate sessions
to which a new access pair can be appended. Dif-
ferent criteria or combinations of them can be used
to choose one candidate session. For example, one
criterion can be the number of backward access pairs
needed to be added. Another criterion can be the
time-stamp difference between the access pair and
a session. The time stamp of a session is the time
stamp of its latest appended access pair. Combina-
tions of these two criteria can also be used. For ex-
ample, one can choose the session with the smallest
time-stamp difference with backward access pairs no
more than m, or the one with the smallest number
of backward access pairs with time-stamp difference
no more than g minutes. Advanced inference algo-
rithms are developed for this purpose.

As an example, Table 2 shows the key information
of eight example log records used by SpeedTracer
for session identification. These eight log records rep-
resent requests coming from a gateway for the 1BM
Watson Research Center. From Table 2, the hyper-
link access pairs for the eight log records are
(_ - a)? (e - b)’ (b - C)’ (_ - b)’ (b - C)’
(=—f), (a = b), (b —g), respectively. Here, “-”
means that no referral page is available for this ac-
cess. Using these access pairs and the agent infor-
mation, we can identify four user sessions as follows:
S1: (- —a), (a = b), (b — g) from log records
1,7,and 8; S,: (e — b), (b — ¢) from log records
2 and 3; S5: (- — b), (b — ¢) from log records 4
and 5;and S,: (- — f) from log record 6. Note that
if we were to use only time stamp and agent for ses-
sion identification, we would have grouped log rec-
ords 1,2, 3,7, and 8 as a user session and log records
4, 5, and 6 as another user session. However, from
the referral information of both log records 1 and
2, it is obvious that these two are from different user
sessions. The access to page b in log record 2 must
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(b — a) may be missing. These missing traversal
steps may need to be inferred in order to identify
traversal paths and user sessions.

Since a “gif” or “jpg” file typically does not expand
a traversal path, we eliminate all log records whose
URL contains these graphical files in our session iden-
tification. SpeedTracer also takes care of special
cases caused by a user’s clicking on the “reload” but-
ton and “bookmarking” his or her hot links. On a
reload, the repeated access pair is discarded since
it does not expand a traversal path. If an access is
the result of a user accessing the Web page through
his or her bookmark or directly typing in the URL,
no referrer information is available on the log record.
In SpeedTracer, we view this as the beginning of a
new session. Once sessions are identified, user-ori-
ented statistics can be obtained.

Interesting user-based statistics are provided by
SpeedTracer, including the most frequent N exter-
nal referrers to a site, the most frequent N visited
pages by users, the most frequent N pages that users
most often come into and exit from a site, the top
N hosts from which most users come to visit a site,
the distribution of user session durations, and the
number of pages visited in a session. Sample reports
and their applications will be presented in the next
section. N can be specified by a user of SpeedTracer
before it analyzes the log files and prepares the re-
ports.

Mining frequent traversal paths. Once user sessions
are identified, the problem of mining frequent tra-
versal paths becomes a matter of discovering the
most frequent subpaths common among all the ses-
sions. In finding user traversal patterns, we are only
interested in forward traversal subpaths. As aresult,
SpeedTracer first finds all maximum forward paths
in each user session, and then discovers all common
subpaths among all the maximum forward paths of
user sessions. A maximum forward path is a sequence
of maximum connected pages in a Web presenta-
tion where no page is previously visited.'* For ex-
ample, in Figure 2, three maximum forward paths
are in this session: (1) (a — b) (b = ¢) (c — d);
(2) (a = b) (b = e); and (3) (a = f).

Figure 3 shows the algorithm for finding all maxi-
mum forward paths from a user session. Assume
{xy, -+ ,x,,} represents a user sessionand {y,, - - -,
y;-11 represents a string holding a potential maxi-
mum forward path. The idea is to examine each page
x; in the session one at a time and try to expand the
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Figure 3  Algorithm for finding all maximum forward
paths from a session

¥q=Xq; j=2;i=2; flag = YES;
while (i <m){
if (x; ==y, ) forsome 1< k<j{
if (flag == YES)
output{y, ..., yj_1)} as a maximum forward path;
j=k+1;i=i+1; flag=NO;

else {
Yj"(ﬁ j:j+1;i=i+1;
flag = YES;

}

}
if (flag == YES) { ]
output {yy, ... ’yi—1} as the final maximum forward path;

potential maximum forward path by copying x; to
y;, if x; is not equal to any y, for every 1 = k <.
Namely, the pages in the potential maximum forward
path are all distinct pages, and we are going in the
forward direction in the user traversal path. We use
a flag to indicate that we are currently moving in the
forward direction in path traversal. In contrast, if x;
is equal to some y,, 1 = k < j, then we are going
backward in the traversal path, and subpath {y,, - - -,
yj-1} can be a maximum forward path if the flag in-
dicates that we have been going in the forward di-
rection before this step. After discovering matched
page y,, we eliminate pages {y;., - -+, ;-1 } from
the potential maximum forward path by moving j
backward to k + 1 for the next iteration, and set the
flag to indicate backward direction. At the end, if
the flag indicates forward direction, the final sub-
path is the final maximum forward path for the ses-
sion.

As an example, Table 3 shows the values of subpath
{y1, -++,y;-1} and the flag at the end of each ex-
ecution step of finding maximum forward traversal
paths. We use the user session in Figure 2 as our
input. If we represent the session as a sequence of
pages visited, this session is {a, b, ¢, d, c, b, e, b,
a, f}, and the three maximum forward paths iden-
tified are {a, b, ¢, d}, {a, b, ¢}, and {a, f}. For
the first four steps, we are going in the forward di-
rection and expanding the potential maximum for-
ward path. In step 5, page ¢ is found in subpath {a,
b, ¢, d}, so a maximum forward path is found, and
the traversing direction is reversed. Such a reversal
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Figure 4  Algorithm for discovering large traversal
path set LP,

foreach F; {
for each {xy, xg, ..., X} in Fy {
it (mzk) {
for(j=1; j<m~k+1; j++){
if ({x;, ..., i+k—1) is already in LP)
increase its corresponding count;
else if ((supportof {x;, ..., irk-2} 2 Sq) @Nd
(support of {Xi+1’ ,xi+k*1}z Spq))
insert {x;, ..., X; 1} into LPy;

Table 3 Example execution steps of finding maximum
forward paths

lasts for two steps until step 7 when page e is ex-
panded again to form {a, b, e}. In step 8, page b
forces {a, b, e} out as another maximum forward
path and reverses the traversal direction. At the end,
{a, f} is found as a maximum forward path since
the flag indicates forward direction.

Once the maximum forward paths are constructed
for each session, we then map the problem of find-
ing the top N frequent traversal paths into the one
of finding frequently occurring consecutive subse-
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quences among the maximal forward paths of all user
sessions. A large traversal path is a sequence of con-
secutive pages that appeared in the maximal forward
paths of a sufficient number of sessions. The num-
ber of sessions in which a large traversal path ap-
pears is called its support. A large traversal path of
size k contains k pages. In this paper, we denote the
set of top M large traversal paths of size k as LP,.

Note that a significant difference exists between dis-
covering large itemsets in mining association rules and
discovering large traversal paths in mining traversal
patterns. In a large traversal path, the pages must
form a consecutive sequence in a maximal forward
path, whereas a large itemset in mining association
rules is just a set of items in a transaction.

Assume that P, ,, is the Mth largest traversal path
in LP, (the support of P, ,, is the Mth largest); s,
is the support of P, ; F; is the set of maximum for-
ward paths for session S;; and {x, x;, -, x,,} I8
the sequence of pages representing a maximum for-
ward path in F;. The algorithm for constructing LP,,
k > 1 can be described as in Figure 4. After each
LP, isconstructed, the top N traversal paths are then
reported. In SpeedTracer, we set M to be greater
than N in computing each LP,. Namely, we com-
puted more large traversal paths for each LP, than
we reported. LP, is the set of all single pages, and
s, Is the number of user sessions that referenced the
Mth hottest page.

The idea of constructing L P, is to find a candidate
path of size k, {x;, - - -, x;,4_, }, from a maximum
forward path and then compute its occurrence count
among the maximum forward paths of all user ses-
sions. The condition is that the two consecutive sub-
sequences of size £ — 1, {x;, -+, x;14—»} and
{Xj11, **+,Xj1x-1}, are among the top M largest tra-
versal paths in LP,_;. For example, assume session
§, contains two maximum forward paths: {4, B, C,
D, E} and {G, H}. To consider candidate large
paths of size 3 for inclusion in LP;, we would test
three candidate large paths: {4, B, C}, {B, C, D},
and {C, D, E}. If both {4, B} and {B, C} are
among the top M large paths in LP,, then {4, B,
C} is a candidate for LP;. Similarly, if both {B, C}
and {C, D} are in LP,, then {B, C, D} can be in-
cluded in LP;.

In Figure 4, for each candidate large path of size &,
{x;, -+, x;44-1}, from the maximum forward paths
of a user session, we increment its occurrence count
if it already is in LP,. There are (m — k + 1) total
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Figure 5 Algorithm for generating candidate groups CG

Sort the groups in LG, in lexicographical order;
for each group {Xq, ..., X4} INLGy_4 {
for each group {yy, ..., ¥x1} in LGy_q such thatx, = yy, ..., Xy =¥p0 {
construct a new group G = {Xy, ... , Xg_1.Yx-1}i
test all other combinations of subgroups of G with size (k-1);
if (all such subgroups are among the top M groups in LGy_4)
add G into CG;

Figure 6 Reports can be viewed from the Internet or an intranet

VIEW
REPORTS

THE REPORTS

ARE ACCESSIBLE
FROM THE
INTERNET/INTRANET

consecutive subsequences of size k from {x,,x,, - - -,
X }. For example, there are three such candidate
consecutive subsequences of size 3 ({4, B, C}, {B,
C, D}, and {C, D, E}) from a maximum forward
path of size 5 ({4, B, C, D, E}) as we just illus-
trated above. We examine each one of them. If the
subsequence of size k£ has not already been included
in LP,, we test to see if it can be. If yes, we add
{x;, =+, X441 } to LP,;; otherwise we do nothing.
The conditions here are based on the fact that if a
traversal path of size k is among the top M largest
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SPEEDTRACER ANALYZES
WEB SERVER LOG FILES
AND GENERATES USER,
PATH, AND GROUP REPORTS
IN HTML FORMAT

in LP,, then its two consecutive subsequences of size
k — 1 must be also among the top M largestin LP;_,.
Obviously, if m < k, nothing needs to be done for
this maximum forward path. For instance, nothing
needs to be done for {G, H} for LP,. Note that for
each k, all the maximum forward paths of all user
sessions are scanned only once.

Mining groups of pages most frequently visited. Fre-
quent traversal paths identify pages that are on the
same forward path in a Web presentation. These
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Figure 7 Sample statistics from user reports: external referrers

and most frequently visited pages

mzmgp.m@mmstgn_ummﬂm
thttp:/fww internetibm.com/icphoneficdownld htm

thttp://cgin 0! ‘mozi

*MJ’ [fergrw softwrare.ibm.com/download

Pages most frequently visited by users

usercount | clickcount  page
s 508 ’
396

339

252

pages represent consecutive subsequences in the
maximum forward paths of user sessions. However,
there might be groups of pages not on the same tra-
versal path but frequently visited together by users.
By examining both frequented traversal paths and
frequently visited groups, valuable information can
be obtained to improve the organization and link-
age of the Web presentation. For example, in Fig-
ure 2, pages a, b, e, and f may be visited most fre-
quently by users, but these four pages are not on the
same path in the Web presentation. Thus, it may be
better to provide an HTTP link from page e to page
fso that most users would not have to traverse back-
wards from page e to b, then to page a before they
can go to page f.

08 wu, YU, AND BALLMAN

To mine the frequently visited groups from user ses-
sions, we need the distinct pages in each session.
Thus, any duplication of pages caused by backward
traversals was first eliminated in each session. Un-
like traversal paths where the ordering of pages in
a sequence is important, there is no ordering in a
group of pages. Similar to mining the traversal paths
described above, let us assume that LG, is the set
of top M largest groups, each consisting of k pages,
and the support of the smallest group in LG is s,.
Unlike mining traversal paths, however, LG, can-
not be efficiently constructed directly because of the
numerous possible combinations of candidate groups
of size k + 1 from each session. For example, a max-
imum forward path {x, - -+ ,x,,} has(m — k + 1)
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Figure 8 Sample statistics from user reports: IP/hosts from which most users come

IP/Host from which most users come to visit us
multi- users
IP/Host fotal | 1-page e
count | ™E duration nvg. pages

ked raleigh.ibm.com 55 36 |19 10min 16sec 4
socks2 raleigh.ibm.com 54 35 19 Imin4lsec 2
ntent15a.advantis.com 47 35 12 3min3isec 2
socks1.raleigh.ibm.com 40 17 23 Omind47sec 3
mpngate5.ny.us.ibm.com 35 15 20 2min 33sec 3
mpngate2 nyus.ibm com 26 12 14 2mind2sec 2
‘mpngatet.ny.us.ibm.com 25 15 10 3min 17sec 3
webgate.yamato ibm.co.jp 19 S 14 2min 9sec 3
mpngated.ny.us.ibm.com 16 7 imin37sec 3
ampngate3.nyus.ibm com 15 ; i1 AminS2sec 4
piweba3y—ext.prodigy.com 11 9 2 Omin 34sec 2
medea.castlerigalv i§1 4 7 1mind8sec 4
menlo.ge.com 11 3 8 4 min 2 sec 2
1503723628 i 10 1 2Smind8sec 3
wrww —bab.proxy.aol.com a1 S 3 2min40sec 3
513park—209- A pols.indiana.edu 10 5 5 4min5lsec 2
socks3 raleigh.ibm com 10 7 3 3min 22sec 2
129.35.251.68 16 5 S 6min 15sec 5
orangege.com 10 2 3 2min 38sec 2
202441447 9 7 2 Omin49sec 2

candidate traversal paths of size k. But a session
{xy, - ,x,+ willhave C}* (orm!/k!(m — k)!) can-
didate groups of size k. As a result, SpeedTracer con-
structed LG, by (1) generating a set of candidate
groups of size k + 1, denoted as CG,,, from LG,
and (2) counting the occurrences of each group in
CG ., against all sessions. The approach to mining
frequently visited groups of pages is thus similar to
the discovery of large itemsets in most prior liter-
ature of mining association rules.*!®!?

Similar to LP,, LG, contains the top M hottest pages
referenced by user sessions. As pointed out in Ref-
erence 12, because of the nature of C¥, the com-
putations of CG, and L G, can be substantially more
demanding than other CG, and LG, for k > 2. This
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is in contrast to the case of mining traversal paths,
where the candidate paths of LP, cannot be more
than the number of links in the Web presentation.
Therefore, special treatment is needed.'*

The task of generating CG, (candidate groups set)
from LG, _, can be described as in Figure 5. Note
that we generate CG, from LG,_ . To simplify enu-
merating all possible combinations of groups, we sort
the M groups in LG, _, based on their lexicographical
order. The basic idea here is to find all possible
groups of size k from LG, _; based on the fact that
for a group of size k to be a candidate groupin CG,
all its subgroups of size k — 1 mustbe in LG, ;.1
So, we first try to construct a group of size k for each
{xy, -+ ,x;_1}in LG, byfinding all the {y, - - -,

WU, YU, AND BALLMAN §9




Figure 9 Sample statistics from user reports: distributions of user session duration and number of pages in a session

Distribution of user session
duration (overall)
{ interval (minutes)  [user count
f - 1093
(0,5 733
(5,16 33
(10, 15] 53
(15, %] 7%
(%0, 357 70
(35,30] ii
(30,9 i

* - duration cannot be estimated due to single access

Distribution of pages visited
by users (overall)
[ pages visited juser count
1 1098
25 720
{6, 10j 335
{11, 15§ /3
{16, 30§ 5
""""""""" (2,35 1
126,730 ]
i

Vi1t MLG,_;suchthatx, =y, -+, X1 = ys o
The new k-sized group is thus an expansion of
{x1, =+, x4_1} with {y,_1}. In order for such new
k-sized group to be included into CG,, all the com-
binations of (k — 1)-sized subgroups of it must all
be in LG,_;.

Once CG, is generated, we scan all the user sessions
one at a time and increment the occurrence count
of each candidate group in CG,, if a session contains
all the pages in the group. Upon completion, the top
M candidate groups in CG become LG,.

Sample reports from SpeedTracer

Now that we have described the implementation of
SpeedTracer, we present some sample reports here.
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comt
722
133
52
2 20
- 22 nu

user commt
1098

- (0.,5] {5,16](10,15X15,20)20,25)25.30] (30,-)
interval (minutes)

720
225
I 21 s 1 9 1

1 [2,5] [6,101111,15]16.200 21,251 26,30]{31.-)

pages visited

Three types of reports are generated by SpeedTracer:
user reports, path reports, and group reports. These re-
ports are generated in HTML format so that one can
view the reports through a browser from the Inter-
net or an intranet (see Figure 6). Hot links are also
provided so that one can click on them through a
browser and go to the original pages to see what they
are. Java*®* applets are used to show various charts
in the user reports.

To demonstrate some of the features of Speed-
Tracer, we processed the server log files generated
at one of the IBM Web sites running IBM ICS. There
were 37 984 entries in the access, referrer, and agent
log. Note that the three IBM ICS logs contain exactly
the same number of entries. However, there might
be a big discrepancy among the three log files from
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Figure 10 Sample statistics from path reports with two links

Most frequently visited paths with 2 links

user count path

éﬁcsbetggggjﬂ. htm

183 fics own)

i—bi i/Save/l ocalficsbeta

39 Hficsbeta/downlist.htm

{ficsbeta/ICPhonedS htm

{ficsbeta/downlisthtm

—bil avi

39 ificsbeta/ICPhoned5 him
i csbeta

36 Vicsbeta/register htm

i—bi i/Sav

csbeta

{ficsbeta/ICPhoneMW htm
fcgi-binfiwpcgi/Save/Localficsbeta

ficsbeta/register htm
27 ficsbeta/downlist htm

fics oneMW.htmm

\ficsftechexp htm

ficsbeta/downlist htm

Vics/gived hiom
2 ficsbeta/register htm
AV

2

:[_cg'_m'n mm {Save/l ocalficsbeta

ﬁcsm&_lgvm_ list htm

other Web servers, such as the NCSA HTTPd. Some-
times log entries are simply dropped by the Web
server in one of the files. Special logic in SpeedTracer
is designed to synchronize the three files.

Figure 7 shows a snapshot of two statistics from the
user reports. One is the top 10 most frequent exter-
nal referrers to the server site, and the other is the
top 10 most frequently visited pages. Note that “ex-
ternal” is with respect to the server site whose log
files are being analyzed. The largest user count in
the external referrer table is “no referrer.” When a
user visits a URL from his or her bookmark or by di-
rectly typing in the URL, there is no referrer infor-
mation for such an access. But, the large count is
due mostly to the fact that many of the accesses in-
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volve CGI (Common Gateway Interface) programs.
As a result, these accesses were treated as single-
page sessions. The most frequent external referrer
table can be used to measure the effectiveness of Web
advertisements. It indicates the top external URLs
from which most user sessions begin. If one has paid
to place an advertisement on a certain site but the
user count for this external referral is consistently
low, one immediately realizes that the money was
not well spent.

In the table for the most frequently visited pages in
Figure 7, both click counts and user counts are pro-
vided. Differences between click and user counts do
exist, and some of them can be substantial. As ex-
pected, the most frequently visited page by user count
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Figure 11

Sample statistics from group reports consisting of three pages

Most frequently visited groups consisting of 3 pages

user count ipage groups

195 Vicsbeta/downlist htm
Vicsbeta/register htm

Vcgi—bin/fiwpcgi/Save/Local/icsbeta

70
/icsbeta/register htm

Yegi-binfivpcgi/Save/l ocal/ficsbeta
A

62 ficsficfgive.htm
ficsbeta/register htm

/cgi—binfiwpcgi/Save/Localficsbeta

58 {ficsbeta/downlist htm
v

/cgi-bin/iwpcgi/Save/Localficsbeta

vicsbeta/dovmlist.htin
A
yicsheta/register htm

S1 |ficsbeta/downlist. htm

h

Vicsficfgivehtm

Vegi-bin/iwpcgi/Save/l ocalficsbeta

v

50 Fics[icfgjve.htm

icsbeta/register htm

{licsbeta/downlisthtm
49 diesficfgivehtm

Vicsbeta/register htm

i’
ficsficfgivehtm

Vcgi—bin/htimage/gifs/anim 18.map

41 ficsbeta/dovmlist htm
vicsbeta/ICPhoned5.htm

Vegi —bin/iwpcgi/Save/Local/icsbeta

is the home page (/). However, on other experiments,
we found that the home page is not always the hot-
test page visited by users because some users may
have bookmarked some page other than the home
page and go directly to it. In fact, this can be verified
by the statistics that show the top pages to which users
most often enter a Web site as provided by Speed-
Tracer (not shown here).

Figure 8 shows other interesting statistics from the
user reports: the top 20 1P/host names from which
most users come to visit the Web site, the total num-
ber of user sessions from each 1p/host, the average
duration, and the number of pages visited for these
user sessions. There are a lot of single-page sessions
because of the lack of referrer information. The over-
all distributions of user session duration and num-
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ber of pages visited by users are also provided in Fig-
ure 9. The majority of the user sessions last less than
10 minutes and are visited by less than 10 pages. Java
applets were used to draw charts on the user’s
browser based automatically on the data in the re-
port.

Figure 10 shows sample statistics from the path re-
ports. SpeedTracer presents the top N most fre-
quently visited paths with different numbers of links.
In Figure 10, we only present the top 10 most fre-
quently visited paths with two links. These paths are
forward paths, meaning that one can follow the path
to visit each page. Figure 11, in contrast, shows the
top 10 most frequently visited groups consisting of
three pages. These pages may or may not be on the
same path. Even if they are, they may be visited at
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Figure 12 Sample statistics from path reports with five links

various times via other intermediate pages. For ex-
ample, the top path in Figure 10 and the top group
in Figure 11 contain the same three pages. But their
user counts are different. The user count for the path
is less than that for the group of pages because there
are many different ways to visit these three pages.

By comparing Figures 10 and 11, we notice that only
the first group and the 10th group in Figure 11 are
also among the top 10 frequented paths in Figure
10. However, seven of these eight remaining groups
contain pages on the top 10 paths with five links
(see Figure 12) except (/, /ics/icfgive.htm, and /cgi-
bin/htimage/gifs/anim18.map). Such findings suggest
that many users may have traveled very deep through
various paths before they found the commonly de-
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sired pages. A simplified design to shorten the depth
of the traversal paths might be warranted. Since HTTP
links are typically embedded in a very complex way,
an examination of both frequently visited paths and
groups can help a Web site to better organize its pre-
sentation.

Summary

In this paper, we described the design of Speed-
Tracer, a Web usage mining and analysis tool. It re-
constructs user traversal paths to identify user ses-
sions even if user identities are hidden behind proxy
servers or firewalls. No “cookies” or user registra-
tion are required for user session identification. User-
oriented statistics are provided, such as the most fre-
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quent external referrers, the most frequently visited
pages, the distributions of user session durations and
number of pages visited. In addition, the most fre-
quented traversal paths and the most frequently vis-
ited group of pages are also reported by Speed-
Tracer. We also presented a few snapshots of sample
reports generated with SpeedTracer.
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