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In this paper we describe how a  profiling  system 
can be successfully  used to restructure the 
components of an operating system  for  improved 
overall performance. We discuss our choice of a 
profiling  system and how it was agplied to the 
AS1400 (Application  System1400 ) operating 
system  for the purpose of reordering code. 
Previous  work  in the industry  has been mainly 
useful only for application programs.  Our  work 
demonstrates how  such techniques can be 
applied to operating system code, while 
preserving maintainability of the operating 
system in the customer’s environment. 

I t is  well-known that performance of processors is 
increasing at a much faster rate than the perfor- 

mance of their attached memory subsystems. Thus 
it is  increasingly  difficult to input data to processors 
rapidly enough to keep the processors utilized to 
their maximum  capacity.  As a result, a great deal of 
ingenuity has been expended on hardware solutions 
to improve the access time and  throughput of mem- 
ory references, including caches, prefetch buffers, 
branch prediction hardware, memory module inter- 
leaving,  very  wide  buses, and so forth. Also, software 
must be optimized to take  the best possible advan- 
tage of this hardware. 

For example, instruction caches are designed to ex- 
ploit temporal and spatial locality  in programs. Tern- 
poral locality refers to  the tendency of programs to 
execute instructions repeatedly; thus the perfor- 

mance of fetching instructions from main memory 
can be improved by saving  recently executed instruc- 
tions in a small high-speed cache. Instructions in a 
program are said to exhibit good spatial  locality if 
execution of an instruction tends to be followed 
quickly  by execution of instructions packaged  nearby. 
A program with poor spatial locality will cause un- 
needed instructions to be fetched into  the cache. 
Thus the cache will not operate  at its full potential. 

Memory paging  systems are likewise designed to ex- 
ploit spatial and temporal locality. For these systems, 
volatile memory  may be thought of as a medium- 
speed cache for low-speed persistent memory, such 
as a disk. Recently used pages are  kept in  memory 
to take advantage of temporal locality. Again, good 
spatial  locality is required to avoid  bringing unneeded 
instructions and data  into memory. Poor spatial lo- 
cality thus reduces the efficiency  of memory  paging. 

Unfortunately, “naive” code generation often results 
in programs that have poorer spatial locality than is 
achievable. It is typical, for example, to generate code 
that branches around infrequently executed error 
paths. This results in poor utilization of the instruc- 
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tion  cache,  since  some of the  error  path  code will 
usually be  fetched  into  the  cache  along with the 
branch  that bypasses it.  It is also typical for  proce- 
dures  to  be  packaged  without  consideration  for lo- 
cality, so that  although  procedure A  frequently calls 
procedure B, A and  B  are located in different  mem- 
ory pages. 

Across the industry, it is becoming  more  common 
to use dynamic profiling to analyze program  behav- 
ior  during  execution.  Dynamic profiling (henceforth 
profiling) gathers  data  about  the  frequencies with 
which different execution  paths in a  program are  tra- 
versed.  These profile data can  then  be  fed back into 
the compiler to guide  optimization of the  code. 

One of the proven uses of profile data is in deter- 
mining the  order in which instructions  should be 
packaged. By discovering the "hot  traces"  through 
a  procedure,  the  optimizer  can  pack  the  instructions 
in those  traces  together tightly into  cache lines, re- 
sulting in greater cache  utilization  and fewer cache 
misses. Similarly, profile data can  help  determine 
which procedures call other  procedures most  fre- 
quently,  permitting  the called procedures  to  be  re- 
ordered in memory to reduce  page  faults. 

Related work. Research  into  reordering  programs 
for  better  performance  dates to  the  introduction of 
virtual in the 1960s. A  number of early 
researchers"' used static analysis to reduce  page 
faults by reordering  procedures within a  program, 
while Hatfield  and Gerald"'  and  Ferrari"  used dy- 
namic analysis for similar goals, using an instruction 
trace  collected  from an execution of the  program. 
Hartleyl2  extended  the  static  techniques  through  the 
use of procedure duplication  and in-line placement. 
W U ' ~  experimented with a  trace-based system for re- 
positioning  procedures  based  upon  temporal local- 
ity, with the goal of improving performance of 
shared-memory  multiprocessors. 

With the  introduction of instruction  caches,I4  focus 
began to shift to reordering  code  at  a  finer  granu- 
larity. To date, most successful approaches  to im- 
proving instruction  cache  performance have used 
profile data  to  predict branch  outcomes.  In  contrast 
to most of the foregoing work on virtual memory per- 
formance,  these  techniques  were  implemented 
within the framework of optimizing  compilers. Mc- 
Farling'' showed how to use profile information to 
reduce conflict misses in a  direct-mapped  instruc- 
tion  cache.  Mendelson,  Pinter,  and  Shtokhamer l h  

also  achieved  a  reduction in conflict misses while re- 
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quiring only static analysis of the  program. Hwu and 
Changt7 introduced  the  idea of using traces of basic 
blocks to reduce  the  number of unexecuted  instruc- 
tions  brought  into  the  instruction  cache (cachepol- 
lution), thus  reducing capacity misses. Pettis  and 
Hansen'' likewise used  traces  (or chains) to  order 
basic blocks, although  their  algorithms differ some- 
what  from  those of Hwu  and  Chang;  they  also 
pointed  out  that infrequently  executed  traces can be 
separated  entirely  from  the  main  procedure body. 
Gupta  and Chi '' produced two different  methods of 
reordering  instructions, one based on  the  presence 
of loops,  split  points,  and  join  points in the  control 
flow graph,  and one based  directly on the  control 
dependence  graph.2" 

Within IBM, Heisch2',22  suggested that instruction 
cache  performance  can  be maximized by consider- 
ing it as  a  whole-program  optimization.  Heisch's 
methods differ from  previous  approaches by oper- 
ating  as  a  post-processor on executable  program  ob- 
jects. An  interesting effect of this method is that  ba- 
sic blocks are allowed to migrate  without  being 
constrained by procedure  boundaries. Heisch's orig- 
inal  algorithm appended  the  reordered  code  to  the 
original  executable  program  objects,  resulting in re- 
ported  growth in executable file size of between 5 
percent  and 41 percent,22 although  this growth had 
negligible impact on performance.  Nahshon  and 
BernsteinZ3  later  produced  an  improved  algorithm 
that  required less code  growth;  their  techniques,  to- 
gether with those of Heisch,  were  incorporated into 
a  tool called FDPR (jeedback-directedprogram restmc- 
Luring), which has been used to improve  performance 
of executable  objects  on the AIX* (Advanced Inter- 
active Executive)  and OSD" (Operating System/2*) 
operating systems. 

Contributions of this paper. Aware of the  perfor- 
mance  benefits  achieved using FDPR on  other plat- 
forms within IBM, we began to  consider how this tech- 
nology could  be used to improve performance on  the 
Application System/4OO* ( ~ s i 4 0 0 * )  PowerPc AS*-based 
computer systems. We also  wanted to take things a 
step  further:  Rather  than just applying this  technol- 
ogy to applications, our goal was to improve the  per- 
formance of the ASI400 operating system. 

We  are  not  aware of any previous attempt  to ship 
an  operating system that has been  reordered in this 
manner.  (Experiments with reordering  operatingsys- 
tem  kernels have been d e s ~ r i b e d , ~ ~ . ~ ~  but  to  our 
knowledge  these  techniques have not  been  used in 
products  that have been  shipped to customers.) 
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There  are  a number of difficult  issues that must  be 
addressed when restructuring an operating system: 

It must be feasible to provide correction code 
(fixes) to customers should errors be found in the 
operating system code. An operating system  is 
much too large and complex to be rebuilt from 
scratch and redelivered to customers. It is neces- 
sary to be able to modify smaller amounts of the 
operating system  when  fixing problems by replac- 
ing a single module (compile unit) or even a sin- 
gle procedure. 
Providing  fixes  must not result in noticeably de- 
graded performance in a customer environment. 
If the operating system has been restructured to 
improve instruction cache  and  memory  paging per- 
formance, applying  fixes to restore functionality 
should not undo all or  a significant part of those 
performance gains. 
Special  memory requirements of sensitive portions 
of the operating system  must be honored. Many 
profiling  systems (including ours) gather  data by 
“instrumenting” the code to be  profiled-that  is, 
inserting snippets of code to record control flow 
events-and then running the instrumented code 
using representative inputs. These snippets typi- 
cally  access counters in memory. Some portions 
of operating system code cannot make data ref- 
erences that will cause a page fault (consider the 
code whose job it is to handle a page fault), while 
more sensitive code may not even be able to tol- 
erate  a miss  in the hardware page table. Care must 
be taken so that  the  added instrumentation does 
not violate these requirements. 
Unlike most application code, a single  copy of the 
operating system code may be executing simulta- 
neously on behalf of many  tasks. This means that 
the instrumentation methodology must be sensi- 
tive to concurrency issues. 
The process of instrumenting, benchmarking, and 
optimizing the operating system code must be kept 
simple enough to avoid  delaying product release 
schedules. 

Despite these obstacles, it is  very important  to  be 
able to improve instruction cache and memory pag- 
ing performance for operating system code, perhaps 
even more than for application code. Chen  and Ber- 
shadz5 have  shown that operating system code typ- 
ically has less instruction locality and is more sen- 
sitive to instruction cache performance than is 
application code. Measuring the performance of two 
popular workstation operating systems running a 
number of industry standard benchmarks, Chen and 
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Bershad found that  the percentage of instruction 
cache  misses attributable to the operating system  ex- 
ceeded 70 percent for over two-thirds of the bench- 
marks. This assertion appears to hold independently 
of application size and execution run time. They  also 
found that  the instruction cache penalty, measured 
as the number of instruction stall cycles  divided by 
the number of executed instructions, was higher in 
system code than in user code for 20 of their 26 
benchmark runs. For larger applications, however, 
this  effect  was not always as pronounced. 

The primary contribution of this paper is to explain 
how  we designed our profiling  system to successfully 
restructure an operating system that could  be 
shipped to customers  and  maintained in the customer 
environment without  significant loss of performance. 
Although we describe our techniques with reference 
to the ASI400 operating system, the problems we faced 
are representative of those found on any operating 
system.  We also describe improvements to known 
algorithms for restructuring code, and discuss  how 
we handle issues of concurrency and  indeterminate 
control flow. Although we use profile information 
in  many of our optimization phases, this paper con- 
centrates on its  use  in reordering code. 

The remainder of this paper is organized as follows. 
We  first provide background on  the  structure of the 
ASI400 operating system, and describe some of the 
special requirements it  imposed upon our design.  We 
then describe various types of profiling  systems that 
have been developed in the past, and discuss why 
we chose the  one we did. Next  follows a detailed de- 
scription of the profiling process we used on the  op- 
erating system code, including the algorithms for in- 
strumenting the code, the mechanisms  used to collect 
data,  the feedback mechanism for bringing the pro- 
file data  into  the compiler, and the instruction re- 
ordering algorithms. We then describe the support 
mechanism we  use that allows us to maintain the 
code, and the benchmarks on which  we measured 
the operating system.  We conclude with some pre- 
liminary performance measurements, and thoughts 
for the future. 

The  environment 

The environment of the ASI400 is  next described, fol- 
lowed  by an introductory description of the sampling, 
trace-based, and instrumented methods for gather- 
ing data about the behavior of programs. 

IEM SYSTEMS JOURNAL, VOL 37, NO 2, 1998 



Figure 1 The AS/400 operating  system  and  the  machine  interface (MI) layer 

The operating system for the AS/400. The ASI400 ar- 
chitecture differs from that of most other computer 
systems  in the level of abstraction exposed to its ap- 
plication software. Whereas software for other sys- 
tems is targeted directly to  the hardware, applica- 
tions view the AS/400 through an abstract machine 
layer  known as the Technology-Independent Ma- 
chine Interface (sometimes called TIMI, or just MI). 
Since the actual hardware and much of the system 
software are hidden beneath this  layer of abstrac- 
tion, it  is  possible to completely replace the  under- 
lying hardware and software without changing the 
application software. This is  exactly  what happened 
with the recent introduction of  new ASI4OO systems 
based on the PowerPC AS RISC (reduced instruction- 
set computer) architecture: the existing CISC (com- 
plex instruction-set computer) processors were re- 
placed with RISC processors without requiring 
customers to acquire updates for their applications. 

As shown  in Figure 1, the operating system for the 
ASI400 consists of  two parts. The portion known  as 
Operating System/400* (OS/400*) resides in a soft- 
ware layer “above the MI.” “Below the MI” is a layer 
known as system  licensed internal code (SLIC), which 
is responsible for implementing the abstract MI func- 
tions for a specific hardware architecture. 

When an application task runs on an AS/400, part of 
its  time will be spent executing  in the application  code 
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itself or in OSi400 and the rest will be spent executing 
within  SLIC. Traditional transaction-based business 
software tends  to spend most of its time in the in- 
tegrated database software below the MI, while more 
computationally intensive applications spend most 
of their time above the MI. Because most of our cus- 
tomers primarily use traditional business applica- 
tions, the performance of SLIC is crucial to  the over- 
all performance of the ASI400. SLIC modules, written 
primarily  in C+ + and a dialect of PLII, are compiled 
through a state-of-the-art optimizing  back end called 
slicox (the SLIC optimizing translator). 

As shown  in Figure 2, SLIC is partitioned into code 
that must be resident in  main memory (the nucleus) 
and code that need not be (pageable). Each of these 
code sections is further subdivided into smaller con- 
tiguous regions called replaceable unit destinations 
(RUdests). A Rudest is composed of a number of 
modules (i.e., compilation units) that  share some 
property requiring them to be kept together. The 
SLIC IinWloader,  itself a pageable component of SLIC, 
is responsible for positioning each module within  its 
assigned Rudest and resolving  all external references 
between modules. 

After a release of the operating system has been 
shipped, it is inevitable that problems will be discov- 
ered in the field. Corrections for these problems are 
packaged into Program Temporary Fixes (PTFS) and 

SCHMIDT ET AL. 273 



Figure 2 Organization of system  licensed  internal  code (SLIC) 
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made available to customers. Each SLIC PTF consists 
of one  or  more  modules  that will replace existing 
faulty  modules on customer systems. When  custom- 
ers apply a SLIC PTF to their ASI400, the SLIC 
linldloader is again responsible for positioning the 
new modules within the  appropriate Rudests,  and 
adjusting all external references to  the replaced mod- 
ules to  reference  the new ones. 

One of our goals was to  reorder  procedures within 
SLIC so that  their spatial packaging more closely 
matched  their  temporal locality. However, the  de- 
sign of SLIC and  the PTF process  impose some con- 
straints  on allowable procedure  order. 

Each  procedure is required  to  remain within its 
target  Rudest;  therefore two procedures in differ- 
ent Rudests  cannot be juxtaposed,  even if one calls 
the  other very frequently. 
The process  for applying PTFs was designed to re- 
place entire modules. If procedures  from a mod- 
ule  were  not  placed contiguously, the  job of the 
link/loader during PTF application would be greatly 
complicated. 

Because of these  considerations, we decided to re- 
order  procedures within module  boundaries,  and or- 
der modules within each  Rudest  according to tem- 
poral affinity. 

In the  future, it may be worthwhile to allow free  re- 
ordering  of  procedures  across  module  boundaries. 
An early  studyZ7 of SLIC behavior while running  an 
internal  workload  approximating the  Transaction 
Processing  Performance  Council (TPC-C* *) bench- 
mark28 indicated that  about 75 percent of all dynamic 
procedure calls occurred  across  module  boundaries. 
Unfortunately,  the  study  did  not  determine how 
many of these calls also  occurred  across  Rudest 
boundaries, which would forbid reordering. The  data 
also  indicated  a high affinity between  pairs of pro- 
cedures: On average,  each  procedure was called 83 
percent of the  time  from a single caller,  and  each 
procedure  made 60 percent of its calls to a single 
callee.  This study, though preliminary, indicates that 
full procedure  ordering would provide  some  incre- 
mental  benefit  over our  current  scheme  that  pre- 
serves  module  boundaries. 
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Types of profilers. The termprofiling, as  used in this 
paper,  refers  to using information  collected  about 
the dynamic behavior of a  program  to  improve  op- 
timization of that  program. The program is measured 
while running  one  or  more  benchmarks believed to 
be  representative of the way the  program will be used 
in practice. There  are  three typical models of pro- 
filing, distinguished by the  method of gathering data 
about  the behavior of programs. 

A sampling profiler operates using a  hardware 
timer, periodically waking up a  process that  re- 
cords  the  address of the currently  executing in- 
struction.  Although  sampling profilers can  be  ad- 
equate  for recording which procedures  are exe- 
cuted  frequently,  they do  not work well for 
recording more granular  information,  such as how 
frequently  a given branch is taken, or which pro- 
cedures  often call which other  procedures. 
A truce-bused profiler  collects  a  hardware execu- 
tion  trace of the instructions  executed by the  pro- 
gram  during  the  benchmark  trials. It then  reduces 
this  information  to  a  manageable size to  determine 
branch  and  procedure call frequencies. 
An instrumenting profiler operates by recompiling 
the  program with special instrumentation  “hooks” 
placed at important  branch  points.  As  the  instru- 
mented  program  executes,  these  hooks  cause  data 
counters  to  be  updated, recording the  branch  fre- 
quency information directly. 

We  considered  the  trace-based  and  instrumenting 
profiler  models as  candidates  on which to base our 
design. We eventually decided  upon an  instrument- 
ing profiler,  because of the difficulties we perceived 
in using a  trace-based  profiler.  First,  a full instruc- 
tion  trace  for  a nontrivial benchmark would be  quite 
large  and  time-consuming to process; in order  to  be 
practical, we would require  a  real-time  reduction  tool 
to compress the instruction  traces into  branch  fre- 
quencies.  Second, it would  not  be easy to map  in- 
formation  from  the instruction  traces  into the com- 
pilation  process. Finally, we did not have a  practical 
way to  make a full execution  trace  tool available to 
our customers. Since our  intent in subsequent  re- 
leases is to make  this technology available for cus- 
tomers to use on their own programs,  this was a key 
consideration in our decision. 

In contrast  to  these  problems,  the only major  draw- 
back of using an  instrumenting  profiler is its inva- 
sive nature: an extra  compilation step is required to 
insert  the  instrumentation  hooks.  Although  this is 
a  nontrivial  consideration  because of the  number of 
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SLIC modules  requiring  instrumentation,  this only 
needs to  be  done  once  per  release of the  operating 
system, whereas  the drawbacks of instruction  traces 
were more serious. 

Restructuring  the  operating  system 

We next discuss our process  for  gathering  data  and 
using those  data  to  reorder  and improve  portions of 
the ASI400 operating system. 

FDPR design overview. Our goal of feedback-di- 
rected  program  restructuring (FDPR) was to improve 
the performance of SLIC by more fully exploiting cer- 
tain  hardware  characteristics of the ASI400 proces- 
sors  and  memory  hierarchies. By reordering  instruc- 
tions within a  procedure so that they are likely to  be 
executed in sequence, we can  improve  performance 
of the instruction  cache by reducing  cache  pollution, 
improve the efficiency of sequential  instruction 
prefetching,  and  reduce the penalty  associated with 
taken or mispredicted  branches. By packaging pro- 
cedures in an  order  that reflects their  temporal lo- 
cality, we can  also  reduce the SLIC working set size, 
taking better advantage of the memory paging sys- 
tem. 

FDPR is a  three-phase  process:  instrumentation, 
benchmarking,  and  feedback-directed  optimization. 
The following is a brief overview of this  process, as 
illustrated in Figure 3. 

Only  those SLIC modules that  are known to be  cru- 
cial to some  aspect of system performance  are  con- 
sidered  candidates  for profiling. First  each of these 
modules is instrumented by the slicox. The  instru- 
mentation  process analyzes each  procedure in the 
module  at a  particular  point  during  translation,  and 
inserts snippets of instrumentation  code.  Each  snip- 
pet  (or  “hook”)  contains  code  that  increments a 
counter  whenever  a  particular  control flow event 
(branch decision or procedure call) occurs. The 
counters  for  each  module  are  stored  in  a  static  data 
object  associated with the  module, known as  a  mod- 
ule  counter  area (MCA). 

After all modules to  be  measured have been instru- 
mented,  they  are  loaded  onto  an AS/400 test system, 
replacing the uninstrumented versions of those  mod- 
ules. As a  result,  space is also  allocated  for  the MCAs 
of the  instrumented modules.  Special  tools are  used 
to clear all counters  to  zero,  and  to  disable  the in- 
strumentation  snippets  from  incrementing  the 
counters  until  representative  benchmarks  are  ready 
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Figure 3 Overview of feedback-directed program restructuring (FDPR) 
_ _ _ ~  ~~~~ ~ ~ _ _ _ _ ~ . ~  

to be executed. The snippets are enabled while the 
benchmarks run, and then disabled again when the 
benchmarks are finished, thus freezing the counters. 
Another tool then “harvests” the profile data by lo- 
cating all MCAs on  the system,  saving each as a file, 
and transferring the files  back to the development 
system. 

There is  now one file of profile data for each per- 
formance-critical module. Each module is once  again 
compiled, this time using the profile data to guide 
optimizations. Each counter is read from the file and 
associated with the control flow event that it was 
monitoring. Based on these data,  the slicox deter- 
mines an optimized order for the instructions for 
each procedure, favoring sequential flow  of control 
through heavily traversed paths. It also determines 
an optimized packaging order for the procedures 
within the module, based upon measured intramodu- 
lar  procedure calls. A separate tool then produces 
a suggested module ordering within each Rudest, 
based upon measured intermodular procedure calls. 
The optimized modules are  loaded according to  the 

module ordering to form a system image for distri- 
bution to customers. 

Module counter areas. Traditional profiling mech- 
anisms  typically do not require any sophisticated or- 
ganization for the profile counters. They are designed 
to optimize a single executable object, which  is not 
expected to be  modified after profile data have been 
applied, so a simple linear array of counters can suf- 
fice. There  are two considerations that  render this 
impractical for our purposes. First, fixes to SLIC are 
made at  the module level; an  entire module must  be 
replaced for every change. If modules that have been 
optimized using  profile data  are replaced by cor- 
rected versions of those modules without such op- 
timization, a noticeable loss of performance might 
result over time. To reduce the potential for perfor- 
mance loss, we designed our module counter areas 
to segregate and identify the counters pertinent  to 
each procedure. Thus when a single procedure is 
modified, or when procedures are  added  to  or  de- 
leted from a module, the profile data for the un- 

276 SCHMIDT ET AL IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998 



changed  procedures  can still be considered valid and 
used to direct  optimization.” 

Second,  much of the  code in the nucleus is not per- 
mitted to incur  a  page  fault on any memory access, 
so counters  for  nucleus  code must reside in “pinned” 
(unpageable)  memory. Since pinned  memory is a fi- 
nite  resource, however, it would not  be  prudent  to 
place  counters  for  nonnucleus  code in pinned  mem- 
ory. At a minimum, the nucleus and nonnucleus 
counters  must  be  kept  separate. 

A simple  solution to this  problem is to allocate the 
counters inside a data object  created by the compiler 
in the static data  space associated with the  module. 
In SLIC, static  data  for all nucleus  code are allocated 
in pinned  memory, while static data  for  nonnucleus 
code  are allocated in pageable  memory.  Each  mod- 
ule  then  addresses  its  counters via offsets from  the 
base  address of this  module  counter  area.  In  addi- 
tion  to solving the  forbidden  page  fault  problem,  this 
allocation  scheme  also  eliminates any dependency 
on  the compilation order;  the  counters  for  each  mod- 
ule  are always at fixed positions  from  the  beginning 
of its own MCA. 

The layout of a  module  counter  area is shown in Fig- 
ures 4 and 5.  Each MCA consists of an initial header 
area, followed by a  procedure  counter  area (PCA) 
for  each  procedure  contained in the associated  mod- 
ule. The  header  area  contains  information used to 
interpret  the rest of the MCA, including the  total size 
of the MCA, and  the  number  and location of the PCAs 
within the MCA. Each PCA consists of a  header  and 
several groups of counters, used to measure  branch- 
ing events within a  procedure (control flow counters), 
direct calls to known procedures  (direct call flow 
counters),  pointer-based calls to possibly unknown 
procedures  (indirect call flow counters),  and invo- 
cations of the  current  procedure (prologue  counter). 

Instrumentation methodology. The  purpose of in- 
strumentation is to  determine  the  number of times 
particular  control flow events  occur  during the ex- 
ecution of a program. The  data collected will later 
be used to  guide optimizations. Obviously, the  com- 
piler  must view a  procedure to be  identical  when it 
inserts the instrumentation  snippets  and  when it sub- 
sequently reads  the profile data back in. Since mod- 
ern compilers  perform many optimizations that  can 
alter  the  control flow of a  procedure, i t  is manda- 
tory that  the  instrumentation  and  feedback phases 
take  place at  the exact same  point  during  compila- 
tion,  and that all prior  phases of compilation  pro- 
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Figure 4 Contents of a  module  counter area (MCA) 
~~ 

Figure 5 Contents of a  procedure  counter area (PCA) 

NUMBER OF CONTROL  FLOW  COUNTERS 
NUMBER OF DIRECT C U  FLOW ENTRIES 
NUMBER  OF  INDIRECT GALL FLOW  ENTRIES 

duce precisely the  same results  when the  instrumen- 
tation  and  feedback  options  are  selected. 

There  are  four types of instrumentation  hooks  that 
match the  four kinds of counters:  control flow hooks, 
direct call flow hooks,  indirect call flow hooks,  and 
prologue  hooks.  Direct  and  indirect call flow hooks 
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are placed just prior to the corresponding procedure 
calls  in the instruction stream. A prologue hook is 
placed in the prologue code for each procedure 
(compiler-generated code that sets up for each in- 
vocation of a  procedure). Control flow hooks are 
placed along arcs in the  control flow graph (CFG) 
for the procedure. 

A control flow graph for a  procedure is an abstrac- 
tion produced by a compiler to  represent possible 
flow  of control through an instruction stream. It is 
constructed as follows. First the compiler partitions 
the instructions of the  procedure  into basic blocks. 
A basic  block  is a contiguous sequence of instruc- 
tions that will  always be executed together. That is, 
a branch into  a basic  block can only target the first 
instruction of that block, and any branch appearing 
in a basic  block  must be the last instruction in that 
block. Each basic  block  is represented by a node in 
the  control flow graph. There is a directed arc from 
block A to block B if and only if block B can be ex- 
ecuted immediately after  an execution of block A. 
An example of a CFG appears in Figure 6A. 

Note  that Figure 6A contains two artificial nodes 
marked Start and Exit, and  an artificial arc from Exit 
to Start. Any  block representing an entry point into 
the procedure is made a successor of the Start block. 
Any  block at which control may  leave the  procedure 
(by returning or by an unhandled exception, for ex- 
ample) is made a predecessor of the Exit block. The 
use of the artificial  blocks and arc ensures that, for 
every node in the graph, there is a  path from that 
node to itself; that is, the graph is  strongly connected. 
This is a necessary property for use of the spanning 
tree algorithm  described  in a later subsection on con- 
trolling instrumentation cost. 

Profile data indicating path frequencies can be rep- 
resented in the CFG in one of two ways. Block weights 
indicate the frequency with  which each block  is  ex- 
ccuted, while arc  weights indicate the frequency with 
which each arc is traversed. Block  weights can al- 
ways be derived from arc weights, but  the converse 
is not generally true. Since the frequency with  which 
a conditional branch is taken is important to the ba- 
sic  block reordering optimization, we directly instru- 
ment the control flow  arcs. This is done by inserting 
new  basic  blocks containing instrumentation hooks 
(diamond-shaped boxes in Figure 6C) along selected 
control flow arcs. 

Instrumentation hooks. In our implementation, a con- 
trol flow hook typically consists of three instructions 
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to load, increment, and  store  a 64-bit counter. The 
counter is addressed at  a fixed  offset from a base reg- 
ister. Prologue code executed when the  procedure 
is  invoked stores the address of the PCA for the  pro- 
cedure in the base register. The base address of a 
PCA is determined by adding an offset to  the static 
address of the MCA for the containing module, de- 
termined by the IinWloader at load time. The  pro- 
logue code also increments a  counter  to record the 
number of invocations of the procedure. 

The code inserted prior  to  a direct procedure call 
is identical to  that for a control flow hook. The only 
difference  is where the counters are  stored. Recall 
that direct call  flow counters are segregated from the 
control flow counters. This is because each call  flow 
counter contains an additional field  identifying the 
procedure being  called.  This information is  used later 
to reconstruct the system-wide weighted call graph 
for the benchmark. 

The code for an indirect call site, however, is quite 
different. In general, we cannot know  which proce- 
dures, or even how  many different procedures, may 
be called at an indirect call site. Previous re- 
searchers '' have ignored indirect call sites because 
of this difficulty. We chose to  create  a fixed-size ta- 
ble of callees and counts for each indirect call site. 
The management of the table is embodied in a sys- 
tem-wide subroutine that takes, as parameters,  the 
address of the  procedure  to be called, and the table 
in  which counts are  to be recorded for the call site. 
Since the number of called procedures may exceed 
the size of the table, a method is needed to ensure 
that the most frequently executed procedures are 
kept in the table. The management of the table is 
beyond the scope of this paper. 

The question of when during compilation to insert 
instrumentation code is an interesting one. The an- 
swer often depends on the intended use of the  pro- 
file data. Obviously profile data should be collected 
prior to performing those optimizations that can ben- 
efit from use of the  data. In our case, the initial use 
of profile data within the slicox was to  reorder basic 
blocks  within each procedure; this  is a very late op- 
timization, so for its purposes profile data could be 
collected just prior to final  assembly of the instruc- 
tion stream. However, we  also had heuristic uses for 
profile data in the register assignment and global in- 
struction scheduling phases of the slicox, so we chose 
to collect data prior to these phases. 
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Figure 6 Instrumenting  a  control  flow  graph  (CFG). (A) CFG  example. (B) CFG  with  spanning  tree  and  potential  places 
for  hooks  identified  (hash  marks).  (C)  CFG  enhanced  with  instrumentation  blocks  (diamond-shaped  boxes) 
along  nonspanningtree  arcs. 

r 
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Since many optimization  phases execute after instru- 
mentation  code  has  been  inserted,  the  amount of 
code  that must be handled by those  phases is in- 
creased. To minimize this bloat,  instrumentation 
hooks are initially treated  as single-instruction mac- 
ros in the  intermediate  representation (IR), and  are 
only expanded  into the  form described above dur- 
ing final instruction assembly. To provide  for effi- 
cient register utilization, each  macro is annotated 
with unique  virtual  registers to represent  the regis- 
ters  needed when the  macro is expanded. The reg- 
ister  allocator is free  to  select  appropriate  hardware 
registers  for  these virtual registers  according  to the 
usual methods. 

Controlling  instrumentation  cost. Care must  be  taken 
to minimize the cost of the  instrumentation hooks, 
since long-running  benchmarks are  required  to  pro- 
vide useful profile data  for  an  operating system. If 
the instrumented version of the  operating system 
were  too slow, profiling would be  rendered imprac- 
tical. Time spent executing instrumentation  code can 
also perturb timings, task queue lengths, and so forth. 
This means  that (1) each instrumentation  hook must 
be as efficient as possible, and (2) the  number of 
hooks  must be  kept  to a minimum. 

There is a well-known solution  to the hook-minimi- 
zation problem.3"-33 The idea is to identify a small 
subset of the arcs  in  a  control flow graph  for  a  pro- 
cedure such that, if we knew the weights of those 
arcs, we could infer  the weights of all remaining  arcs 
in the graph. The trick is to  observe  that the flow 
into  a block must  equal  the flow out of that block. 
If a given arc is the only one with unknown weight 
incident to a block, then  the weight of that  arc can 
be inferred from the known weights of other arcs 
incident  to  that block. We thus only need  to instru- 
ment this subset of the arcs from which the  other 
weights can  be  inferred. 

Rather  than looking for  the arcs we want to  instru- 
ment, it  is convenient to identify those  that we do 
not  want  instrumented.  Suppose  that we ignore  the 
directions of arcs in the CFG, and  that we select some 
subset of the arcs such that  there is no path in the 
subset from a block to itself; that is, the subset  forms 
one  or  more trees. Suppose  further  that we have 
known weights for all arcs not in this subset. A prop- 
erty of a tree is that  there must be  at least one arc 
in the  tree  that touches  a block touched by no  other 
arc  in  the  tree. As just described, the weight of such 
an  arc  can  be  inferred  from  the weights of other arcs 
incident to  the block, which are known since those 

280 SCHMIDT ET AL. 

arcs are  not in the  tree.  Once  that weight is known, 
it can be removed from the subset of unknown- 
weight arcs. The remaining  unknown  arcs will still 
form  one  or  more trees, so the process  can be re- 
peated until all weights are known. An example can 
be  found in a  later  subsection on feedback of profile 
data. 

To instrument  the fewest arcs, we then  need to se- 
lect the largest possible tree of arcs not to be instru- 
mented.  In  a  connected  graph having N nodes, the 
largest possible tree will have N - 1 arcs. Such a 
tree is called a spanning  tree, since it touches every 
block in the CFG. The arcs  to be instrumented,  then, 
are  the arcs not in the spanning tree. Many possible 
spanning  trees exist for a strongly connected  graph, 
any one of which can be arbitrarily selected, provided 
that it includes the artificial arc from Exit to Start 
(which cannot  be directly instrumented). 

Figure 6A shows an example  control flow graph  to 
be  instrumented.  In  Figure 6B, a  spanning tree  for 
the CFG has  been arbitrarily  selected; the arcs in the 
spanning tree  appear  as bold lines to identify them. 
Those arcs not in the spanning tree  are identified 
with a  hash  mark, and  are  the  ones  to be  instru- 
mented.  Figure  6C shows the modified CFG with the 
instrumentation blocks inserted (shown as dia- 
monds).  Note  that the  number of instrumented  arcs 
is much smaller  than the  total  number of arcs in the 
original graph. 

In  most cases it is straightforward to  add  an instru- 
mentation block along  an  arc in the control flow 
graph.  Suppose  that  the original arc  originates  at 
some blockX  and targets  some block Y. ThenXwill 
either  end with a conditional or unconditional branch 
that  targets Y,  or X will fall through  into Y. In  the 
case of fall-through, it is simple to  add  the instru- 
mentation  hook  between blocks X and Y. If X ends 
with a  relative  branch that targets Y ,  a new block I 
is created  to hold the  instrumentation  hook followed 
by a  branch  to Y ,  and  the branch  in X is modified 
to target I .  

A problem  not discussed in the  literature occurs 
whenX ends with a  branch  to  an unknown code  lo- 
cation  contained in a register (a  nonrelative  branch). 
In  some cases, the  compiler may be  able  to statically 
determine  the location  or  locations that  the  branch 
can  target,  and  thus  create arcs in the CFG to  rep- 
resent  these  paths;  but  in  the  general  case, this is not 
possible. It is necessary to  add artificial arcs to  the 
cFG to  ensure  that  the  graph remains  connected  in 
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the presence of nonrelative branches, since some  tar- 
gets of such  branches may not  be  reachable by any 
other  path. Since  these artificial arcs  cannot  be ex- 
ecuted,  the spanning tree must be chosen so that 
these  arcs  are not  instrumented.  In  rare cases, 
though,  the  complement of every spanning  tree will 
contain an artificial arc.  When  this occurs, the blocks 
incident to  the artificial arc must be  instrumented 
instead. 

There  are many possible spanning trees  for a  con- 
trol flow graph.  Selecting one  that results in mini- 
mal  instrumentation  cost is an NP-hard problem,34 
so a  heuristic  approach is warranted. Ball and  La- 
rus3’  made use of static weight estimates to  reduce 
the expected  cost of instrumentation  hooks. We im- 
plemented  a very simple  heuristic that  reduces  the 
cost of instrumentation within loops by avoiding in- 
strumenting  back  arcs (flow of control  from within 
a  loop to  the beginning of the  loop).  Figure 7 shows 
an example  loop  from the flow graph of Figure 6. 
The “natural”  depth-first  algorithm  for finding a 
spanning  tree  produces  the results shown in Figure 
7A, with arcs  I + J and J + K in the  spanning  tree, 
and  arcs I + K and K -+ I in the  complement of the 
spanning  tree;  thus the back arc K + I will be in- 
strumented (with diamonds in Figure 6C). Our al- 
gorithm  prefers  to avoid instrumenting  back arcs, so 
it  exchanges the back arc K --$ I with another  arc 
incident to K, in this  case J -+ K. The result is shown 
in Figure 7B. We only avoid instrumenting  a  back 
arc in this manner when we believe the  alternate  arc 
(e.g., J + K) will be  executed less frequently  than 
the back  arc, using static  heuristics. 

Concurrency issues. Another difference  between an 
operating system and  most  applications is the  mul- 
titasking nature of the  operating system. It is quite 
common  for a single procedure in SLIC to  be  oper- 
ating  concurrently on behalf of several  user  pro- 
cesses. This  raises  the possibility of data loss for any 
given counter,  as  illustrated in Figure 8. If the  load, 
increment,  and  store  are  not  treated  as an atomic 
operation,  one process  can be switched out  after ex- 
ecuting  the  load, another process  can  execute  for  a 
time, possibly updating  the  counter many times, and 
then  the first process  can  regain  control to execute 
the increment  and  store.  This  means that increments 
of this counter by the second  process will be lost. 

Unfortunately  the  code  to  perform an atomic  up- 
date  on  the ASi4OO is much  more expensive than  a 
simple  increment,  requiring roughly three times as 
much  time to execute  and  over twice as many static 
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Figure 7 Avoiding  instrumentation of back  arcs. 
(A) Usual  spanning  tree. (8) Revised  spanning 
tree.  Note  that J+K will be executed  no  more 
frequently  than K+I. 

instructions. We  therefore decided to allow occa- 
sional data losses to occur, relying on  the length  and 
repetitiveness of our  benchmarks  to  smooth  out  the 
losses. This  proved to  be a successful strategy,  but 
one with implications  for the profile  feedback  step, 
as discussed in a  subsequent  section. 

More  care was needed  for  the indirect call site  in- 
strumentation. In order to manage  the policy deter- 
mining which procedures will occupy the  table  for 
a given call site,  some  static data  are  maintained 
within the  table.  These  data must be  manipulated 
atomically in order  to avoid corruption of the  table. 
Since  indirect calls are relatively infrequent, we im- 
plemented  a  semaphore with each  indirect call site 
table  to  ensure  atomic access. The  overhead of the 
semaphore is less important  here,  since its cost com- 
pared  to  the  time  required  to  manage  the  table is 
relatively small. 

By implementing only simple  increments  instead of 
atomic  ones,  and by using the  spanning  tree  tech- 
nique  to minimize the  number of counters, we were 
able to limit the execution  time  overhead of instru- 
mentation  to  a very acceptable level. For example, 
for  our  internal  version of the TPC-C benchmark, we 
measured  the  number of simulated  users  required 
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Figure 8 Loss of data due to concurrent  counter  access 

to achieve CPU saturation. An instrumented version 
of SLIC attained  saturation with  roughly 33 percent 
fewer users compared with an uninstrumented ver- 
sion. The average size of a module increased by 
roughly 78 percent when adding instrumentation, 
counting both the  added instrumentation and  the 
module counter areas. 

Controlling data collection. One way in which oper- 
ating systems and other large multitasking applica- 
tions differ from smaller executable objects is that 
a significant amount of setup  time may be  required 
before the benchmarks are ready to be run. An op- 
erating system  in particular must be active during 
this setup phase. It is undesirable, though, for  the 
profile of the benchmark to be “polluted” by counts 
that have accumulated during setup. One way to deal 
with this problem is to provide a method to reset all 
counters to zero when the  setup phase is complete. 
However, the number of counters used in an  oper- 
ating system can be very large, so that by the time 
all counters have been cleared, some of them will 
have again accumulated significant counts. Further- 
more, accesses to the counters will cause memory 
paging  activity,  which  may distort the counts accu- 
mulated on behalf of the page fault handling soft- 
ware. 
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To avoid these problems, we  globally dedicated a bit 
from the condition register of the processor for use 
as aprofile enabling  bit. This bit is tested within each 
instrumentation hook to  determine whether counts 
should be accumulated. Although any  processor reg- 
ister bit could have been dedicated for this use, a bit 
in the condition register was the ideal choice, since 
condition register bits  can be tested directly by con- 
ditional branch instructions. With this  bit available, 
we were able to disable the instrumentation hooks, 
set all counters to zero, perform setup for the bench- 
marks, and then enable the hooks just prior to  run- 
ning the benchmarks. Since one bit  is  used to con- 
trol all instrumentation hooks, the effect of enabling 
or disabling  profiling is instantaneous. 

Data collection tools. After the high-use modules 
have been compiled to insert instrumentation, they 
are loaded onto  an AS1400 system for  the  data col- 
lection stage. A tool with four functions was created 
on the ASI400 to facilitate data collection. Two of the 
functions simply turn  the profile enabling bit on and 
off to  determine whether the instrumentation code 
should be executed. A third function finds  all mod- 
ule counter areas  on  the system and initializes their 
counter fields to zero. The last function again finds 
all module counter areas on the system, and extracts 
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them for transfer to the development machine for 
use  in optimization. Each module counter area is 
stored in a  separate file and given a name based on 
the module with  which  it  is associated. 

Feedback of profile data. Once the profile data have 
been transferred to the development platform, they 
are ready to be used to guide optimization of the 
code. Each profiled module is recompiled using a 
special option indicating that profile data should be 
read in and used. As each procedure in a module is 
compiled, the slicox searches the MCA for each mod- 
ule to find the PCA for that procedure. It  then lo- 
cates the control flow counters within the PCA (call 
flow counters are ignored during compilation of a 
procedure). Recall that each control flow counter 
corresponds to one of the CFG arcs selected for in- 
strumentation. The algorithm used to determine the 
arcs to be instrumented is run again during the feed- 
back phase to determine which arcs should be as- 
signed the weights collected in the control flow 
counters. Figure 9A shows a possible  weighting  as- 
signed to  the instrumented arcs from the example 
in Figure 6, as  modified in Figure 7. 

The next step is to use the weights from the instru- 
mented arcs to determine the number of times each 
of the remaining arcs  was traversed. As discussed by 
K n ~ t h , ~ '  we can repeatedly select a node with  only 
one incident arc that has not yet been assigned a 
weight, and  determine  the weight of that arc by 
Kirchhoff s first law,35 which states that flow  is con- 
served at any point in a network. Since the uninstru- 
mented arcs form a  tree,  there will  always be such 
a node to select, and this algorithm will succeed in 
determining the weights for all uninstrumented arcs. 
Figure 9B shows that node K can be selected first 
in  this  example,  and that  the arc from node K to node 
1 is determined to have  weight 400 to satisfy con- 
servation of flow. Figure 9C shows the full elabo- 
ration of the arc weights for this CFG. 

Once all arc weights  have been determined,  the 
weights are recorded in the intermediate represen- 
tation (IR) of the procedure. To facilitate subsequent 
control flow optimizations, the arc weights are  not 
stored in the CFG, but directly in the IR instruction 
stream. Each unconditional branch in the instruc- 
tion stream is annotated with the weight of its cor- 
responding  arc.  Each conditional branch is annotated 
with  two arc weights, indicating the frequencies with 
which the branch was taken and not taken. For mul- 
tiway branches (such  as  might be generated for a C 
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switch statement), we store  the weights  in a  sepa- 
rate branch table within the IR. 

A useful side effect of branch annotation is that SLIC 
programmers can see the branch frequencies in their 
program listings.  Since each instruction in the low- 
level IR typically corresponds to a single PowerPc AS 
machine instruction, we  display both sets of instruc- 
tions in our program listings. By careful examina- 
tion of these listings, programmers can make infer- 
ences about control flow patterns, such  as the average 
number of iterations executed per entrance to a loop. 
This can be used, for example, to make informed 
choices among alternative data structures. 

Determination of all arc weights according to Kirch- 
hoffs law  is  easily performed when  all arcs can be 
instrumented. Recall, however, that some arcs can- 
not be directly instrumented due to the presence of 
indirect branches. In such cases we inserted control 
flow hooks directly  within  basic  blocks incident to 
the uninstrumentable arcs. We therefore  needed 
some place to  store these block  weights during feed- 
back,  since they could not be  annotated  on branches 
like the rest. For this purpose we introduced a new 
IR instruction called aprofweight. During feedback, 
each directly instrumented block has a profweight 
inserted at  the beginning or  end of the block, indi- 
cating the number of times the block  was entered 
or exited (the distinction can be important in the 
presence of exceptions). In almost  all  cases,  this per- 
mits us to infer the weight of each arc in the CFG. 
In cases such as that shown  in Figure 10 where we 
cannot be certain of the exact  weights of certain arcs, 
we must arbitrarily assign  weights to them that  sat- 
isfy conservation of flow. 

A more serious concern arises from the possibility 
of data loss due  to concurrency. Suppose that  the 
counter for arc G + H in Figure 9A suffered a loss 
in count of 60, as shown  in Figure 11A. Then  the 
elaborated arc weights  would appear as shown  in  Fig- 
ure 11B. Note  that  the  data loss has caused a change 
in perception of the likely path of the branch at  the 
end of block B, and in the weights along paths from 
B to H, but  that this  effect  is  localized and has not 
changed the rest of the  graph. Fortunately, we  have 
found the occurrences of data loss to be relatively 
rare,  and  the amounts of data lost relatively  low, so 
that by using long-running benchmarks, the effects 
of data loss are quite small  in practice. (The ped- 
agogical example of Figure 11 is extreme in that  a 
majority of the count for the affected arc was lost.) 

SCHMIDT ET AL. 283 



Figure 9 Inference of  control  flow  graph  (CFG)  weights  from a  subset. (A) Weights  assigned  to  the  complement  of  a 
spanning  tree. (B) Calculating  conservation  of  flow  at  node K. (C) Fully weighted  CFG. 

~~~ __________ 
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Figure 10 Indeterminate  arc  weights.  The  five  node  weights are given,  but  the  exact  arc  weights  cannot be determined. 

After branch and profweight annotations have been 
inserted, subsequent optimizations such as register 
allocation and instruction scheduling take advantage 
of the weights. Any optimization that changes the 
CFG must maintain the branch annotations correctly. 

Reordering basic blocks. After most other optimi- 
zation phases have completed, the slicox analyzes the 
weighted CFG to determine an optimized order for 
basic  blocks that  attempts  to maximize sequential 
control flow. That is,  blocks are positioned so that, 
insofar as possible, conditional branches will  usually 
not be taken.  Our algorithm is  largely based on the 
greedy algorithm identified as algol by Pettis and 
Hansen. l8 

Use of thegreedy algorithm. The greedy algorithm op- 
erates by constructing a new  basic  block order from 
the current order, in  which  it attempts to find long 
traces of basic  blocks that  are likely to be executed 
in sequence. It begins by selecting the procedure pro- 
logue (entry point) block  as the seed block for the 
first trace. For each trace, the algorithm  first attempts 
to extend the trace backwards by searching for a  pre- 
decessor of the seed block that has not yet been re- 
ordered; if multiple candidates are  found,  the  pre- 
decessor whose arc to the seed block has highest 
weight is selected. This block is placed prior to  the 
seed block  in the new order, and the process repeats 
for the newly selected block. This phase terminates 
when no unreordered predecessor can be found. 
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Note that this backward extension of the trace will 
be  vacuous for the first trace, since the prologue block 
for a  procedure will not have  any control flow pre- 
decessors. 

The  trace is then extended forward from the seed 
block in a similar manner. Candidates to follow the 
seed block are those of its control flow  successors 
that have not yet been reordered. If multiple can- 
didates are available, the  one with highest weight 
along the  arc from the seed block to the candidate 
is selected, and the process repeats for the newly se- 
lected block. The  trace terminates when no unre- 
ordered successor can be found. 

Each time a  trace has been terminated, a new seed 
block  must be determined for the next trace. Since 
we want to place code together  that is  likely to ex- 
ecute closely together in time, we consider only those 
blocks that are successors or predecessors of blocks 
that have already been placed in a trace. Each such 
block  is  assigned a priority value, computed as the 
sum of weights of all arcs incident to  the candidate 
block and to some previously reordered block. The 
block  with  highest  priority  is selected as the new seed 
block,  and the trace selection  algorithm repeats. Each 
trace is  placed  contiguously  following the previously 
generated trace. 

Figure 12A shows the traces selected for a sample 
CFG, with the new  block order shown  in Figure 12C. 
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Figure 11 Effect of data loss on  weight  inference. (A) A count  of 60 is  lost  from  arc G+H. (B) Resulting  inferred  weights 
(compare  with  Figure 9C). 

1 

0 
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Figure 12 Trace  selection  in  a  weighted  CFG. (A) Selecting  a  trace. (B) Mapping to cache  lines  for  naive  code 
generation  order.  (C)  Mapping to cache  lines  after  profile-based  reordering. 

Compare this to the naive code  generation  order of 
Figure 12B. Note  that  the blue-shaded blocks rep- 
resent  the  “hottest”  trace  through  the  procedure. The 
dashed  lines in these figures show how the basic 
blocks might  be  mapped to instruction  cache lines. 
Note  that executing the  hot  trace when  placed in 
naive order  requires touching five cache lines, while 
the optimized order  requires only three. 

Modifications  to  the greedy algorithm. We chose to 
limit the greediness of the  Pettis  and  Hansen algo- 
rithm by sometimes  terminating  traces  even  when 
there  are  candidate successors  for the last block in 
the  trace.  One  reason  for  truncating a  trace is if the 
best  candidate successor is executed  much less fre- 
quently  than the last block in the  trace.  This  can oc- 
cur  when the  preferred successor of the last block 
has  already  been reordered.  It is sometimes the case 
that it would be  better  to begin a new trace  to pick 
up blocks that  are executed much more frequently. 
Figure 13 shows an example of this. Suppose  that 
the  current  trace has been  extended to include blocks 
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Figure 13 Limiting  the  greedy  algorithm 

r- 
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Figure 14 Limiting  the  greedy  algorithm  using  the 
perfect  partner  heuristic 

Figure 15 The  isolated  block  optimization 

X and Z. Note that  the preference X has for Z over 
Y is statistically insignificant, and that block W was 
executed much  less frequently than  either Y or Z. 
Once block Z has been  reordered, it  will  usually be 
preferable to  start  a new trace with  block Y rather 
than continuing on with  block  W, so that  the  hotter 
trace beginning at Y is packaged close to its prede- 
cessor X. 
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Another reason to  truncate  a trace is to avoid re- 
ordering a successor of a block  when that successor 
would  actually “prefer”  to  be  reordered after a dif- 
ferent block that has not yet been reordered.  The 
greedy algorithm always looks at candidates in  only 
one direction; when scanning backwards to extend 
a trace, it determines which predecessor a given  block 
prefers, and when scanning forward, it determines 
which  successor a given  block prefers. No consid- 
eration is  given to preferences of the candidate 
blocks. Figure 14  shows an example of this. Assume 
that blocks V and Z have already been placed in a 
previous trace, block X has just been added to the 
current  trace, and blocks W and Y have not yet been 
reordered.  The greedy algorithm would reorder 
block Y after block X, regardless of the preference 
of block Y to follow  block W. Our modified algo- 
rithm will  only extend a trace when the candidate 
block  is ape~ectpartner-that is, if the current block 
prefers the candidate block, and the candidate block 
also prefers the  current block. 

Another modification to  the greedy algorithm was 
implemented to improve performance for cases  such 
as the  one shown  in Figure 15. The greedy algorithm 
will select a trace containing blocks A, C, and D, and 
possibly  many more blocks, before reordering block 
B, even though arc A + B is executed almost as fre- 
quently as arc A + C. If block B is reasonably small, 
placing  block B a long distance away from blocks A 
and C would  clearly not make the most  efficient  use 
of the instruction cache. A more efficient ordering 
would be ACBD. Our algorithm detects isolated 
blocks  such as B as  follows. Whenever we consider 
adding a successor  block D to  a trace, we check to 
see if (1) D has an unreordered predecessor B, (2) 
B is isolated (has no unreordered predecessors and 
no  successors other than D), (3) B contains relatively 
few statements, and (4) the execution frequency for 
B is not negligible relative to  the frequency of the 
predecessor for D in the trace (C in our example). 
If all  of these conditions hold, the  current  trace is 
ended without adding D, and a new trace is started 
with B as the seed 

Sometimes it is important  to  keep two blocks to- 
gether in their original textual order. We introduced 
a ShouldFollow flag to indicate that  a relationship of 
a blockwith its textual predecessor is important. For 
example, the instruction prefetching mechanism  im- 
plemented in the PowerPC AS A30 processor is con- 
strained (due  to limited resources) when branch in- 
structions are executed on two consecutive cycles. 
One way that this  can happen is  if a  return from a 
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called procedure is immediately followed by a 
branch.-To reduce such occurrences, we detect when 
a block B ends with a  procedure call and mark its 
textual successor S with the ShouldFollow flag,  since 
if any other block  were  placed after B, we  would  have 
to add an unconditional branch to S following the 
procedure call. 

The ShouldFollow flag should only be  honored when 
the block containing the call  is executed relatively 
frequently. Consider the example  in Figure 16. Even 
though ordering block C after block A would cause 
a branch to be added after the procedure call in  block 
B, this  is  still preferable to  the  order ABC, which 
would require keeping the branch at the end of block 
A, because the  arc from A to  C is taken much more 
frequently than the arc from B to C. That is, the pen- 
alty of the back-to-back branch occurs rarely, and is 
therefore not important, whereas the presence of the 
extra branch in A may be costly. 

Whenever a block marked as ShouldFollow is about 
to  be added to  a trace, we check whether its textual 
predecessor was the last block added to the trace. 
If not, we  only add it to  the trace if the weight of the 
arc from its textual predecessor is  negligible  in  com- 
parison with the weight of the arc being followed  in 
the trace. The requirements for negligibility  can be 
tuned heuristically; we currently use a ratio of ten 
to  one. 

Although much of SLIC was rewritten in C+ + for 
the PowerPC AS  processor^,^^ quite a bit of legacy 
code dating back to  the System/38* (the predeces- 
sor to AWOO) still remains. Much of this code is  writ- 
ten in a variant of PL/I that is  very different from lan- 
guages  in common use today. One of the  features 
of this PL~I variant language is the ability to specify 
that  an exception handler should be enabled over a 
given textual range of the source code. The internal 
implementation of this  exception  model requires that 
the machine code covered by such an exception han- 
dler must  also remain contiguous. This places severe 
limitations on block reordering. We were forced to 
modify the trace selection algorithm to  treat each 
textual exception range within a procedure sepa- 
rately. The algorithm considers as candidates for  a 
trace only those blocks  in the CFG that reside in the 
current textual  exception range. Only after all  blocks 
in one range have been placed into traces can blocks 
in the next textual range be considered. This clearly 
reduces the opportunity for performance improve- 
ments due  to code reordering. 
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Figure 16 Example  motivating  the  ShouldFollow flag 

Reordering procedures within a module. After com- 
piling  all procedures for a module, the slicox deter- 
mines a packaging order  for those procedures such 
that their spatial affinity reflects their temporal af- 
finity. This is done by examining the call  flow entries 
for each procedure and using them  to construct a 
weighted intramodular callgraph. This graph contains 
one  node  for each procedure in the module. There 
is a directed arc from procedure A to  procedure B 
if there is at least one (direct or indirect) call  flow 
entry in A  that targets B. The weight of this arc is 
the sum of the weights of all such call flow entries. 
Calls to procedures outside the module being com- 
piled are ignored; these will be considered when re- 
ordering modules, as discussed  below. 

Pettis and Hansen’s algorithm to construct a pro- 
cedure  orderIs is based on coalescing  high-weight 
arcs in an undirected call graph. Our intuition was 
that this method successfully places together pairs 
of procedures that have  high  affinity for one  another, 
but that this limited view of temporal affinity  may 
not do so well for larger groups of procedures ex- 
ecuted close together in time. We chose to imple- 
ment an algorithm for selecting  call traces that is  very 
similar to  our algorithm for selecting basic  block 
traces. As in the basic  block case, it proves useful to 
extend traces only  when perfect partners  are found. 
When seeding a new trace, we also  limit our choice 
of seed procedure  to those procedures adjacent to 
procedures that have already been reordered, when 
such procedures exist. The result is that all proce- 
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dures in each  connected  component of the call graph 
are packaged  together.  This is particularly  impor- 
tant for  modules (such as dynamic link libraries)  that 
provide  several  independent services, each of which 
is implemented using several procedures.  More work 
is needed  to  compare  the effectiveness of our algo- 
rithm with that of Pettis  and  Hansen. 

Reordering modules. As previously mentioned, we 
were  constrained by our software  maintenance  pro- 
cesses to permit  reordering of procedures only within 
module  boundaries. To reduce  this  lost  performance 
opportunity, we decided to also order modules so 
that  those modules  containing  procedures that  tend 
to be  executed  together in time would have spatial 
affinity. We developed two tools to produce this pack- 
aging order. 

The first tool analyzes the call flow entries  from all 
MCAs within SLIC and  produces  a full weighted call 
graph  for all SLIC procedures.  The second  tool  reads 
the call graph  and  reduces it to  an internodular call 
graph. This call graph  contains  one  node  for  each 
profiled  module in SLIC, with an  arc  from  module 
A to module B if there is at least one procedure 
within A that calls at least one  procedure within B. 
The weight of this arc is the  sum of the weights of 
the (direct  and  indirect) call flow entries  from  A  to 
B. The tool then analyzes the  intermodular call graph 
and  determines an optimized  module  packaging  or- 
der, using the  same algorithm to analyze the  inter- 
modular  graph  as is used to  reorder  procedures 
within a  module. 

Unfortunately,  the  module packaging order  thus  pro- 
duced  cannot  be followed to  the  letter, since  each 
module is constrained to reside in a specific Rudest. 
If a  pageable  module  would  prefer to  be packaged 
next to a  module in the nucleus,  this  request  cannot 
be  granted.  At  the  moment, we do  not  take  Rudest 
constraints  into account  when  determining the sug- 
gested  module  order.  Instead,  the linklloader is given 
the  preferred  module  order,  and  loads modules into 
their  respective  Rudests in the  order they are  pre- 
sented.  An  alternative  method would be  to build a 
separate  intermodular call graph  for  each  Rudest, 
and  produce  separate optimized module  orders. This 
may or may not  produce  a  better ordering: our cur- 
rent  method can find traces that leave  a  Rudest  and 
immediately return  to it, while using separate  graphs 
for  each  Rudest would  lose  this  information.38 

Another advantage of the existing method is that it 
allows us to analyze placement of modules  within 
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Rudests; in some  cases,  for  example, it may pay to 
move a  pageable  module  into  the  nucleus if it  has 
strong affinity for  a  particular  nucleus  module. We 
can also analyze the overall SLIC call graph  to  de- 
termine which procedures in a  module  are  used 
rarely. Many  times  it is possible to move these low- 
use procedures  into  separate  modules  to improve the 
effectiveness of procedure  and  module  reordering. 

Field  maintenance of restructured code 

Clearly the tasks of instrumentation,  data collection, 
and  optimization are time-consuming,  particularly 
when  applied  to  a  software  product of this size. In 
designing our  methods, we  felt  that it  might not  be 
practical to  repeat  these tasks  whenever  a new fix 
needed  to  be shipped to customers. Therefore we 
concentrated  on ways to reuse existing profile data 
where possible when compiling fixes, attempting to 
minimize the  performance  degradation  that might 
otherwise  result. 

Profile data  for  each  module  are archived  together 
with the  source  code. As already  seen,  the  hierar- 
chical structure of the counter  areas allows existing 
data  to  be  found  for any procedure  during  the  pro- 
file feedback  phase.  This  means  that  procedures 
whose  control flow has  not  been modified by a fix 
can  continue  to  use  the existing profile data, while 
changed  procedures in the  same  module  are  opti- 
mized without profile data. This  raises the  question 
of how we can  detect  whether  a  procedure  has  been 
modified. 

A very simple  test that catches  most  control flow 
modifications is to check  whether  the  numbers of 
control flow and call flow counters in the PCA for  a 
procedure  are  equal  to  the  numbers of counters  that 
are expected. If there is a  mismatch, there have 
clearly been changes to  the  control flow of the  pro- 
cedure,  and  the profile data should  be  ignored.  The 
obvious drawback to this  method is that  on occasion 
a  control flow  will be  changed in such  a way that  the 
numbers of expected  counters  remain  identical,  but 
those  counters now apply to different  control flow 
arcs. Instead,  when  creating  the PCA during  instru- 
mentation,  and  when  reading  the  profile  data  dur- 
ing feedback,  the slicox computes  a  “signature”  from 
the CFG. This  signature consists of a  checksum of 
the block numbers on  either  end of each  control flow 
arc,  and is stored  in  the PCA during  instrumentation. 
If the  stored  and  computed signatures do  not match 
during profile feedback,  the profile data  are ignored. 
The likelihood of two  different  graphs having the 
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same signature is  extremely small, and ca 
counted. 

.n be  dis- 

Note  that with either of these methods, a simple fix 
that only alters the instructions within a basic  block, 
and does not change the control flow structure of 
the procedure, does not invalidate the profile data. 
Many PTFS satisfy  this description (consider fixing a 
failure to initialize a variable). Thus these methods 
are  better  than simply testing whether any source 
file  used to compile a  procedure has changed, since 
the latter would invalidate profile data unnecessar- 
ily for such simple fixes. 

On the other hand, there are cases where profile data 
are no longer accurate even though the CFG for a 
procedure has not changed. For example, reversing 
the sense of a conditional branch will leave the CFG 
unchanged, but old  profile data will be inaccurate. 
Similarly, change in the behavior of callers or callees 
for a procedure may change the behavior of that pro- 
cedure. Of course, use of invalid profile data does 
not produce incorrect behavior, just reduced exploi- 
tation of performance opportunities. In any  case, pe- 
riodic reprofiling of all instrumented parts is impor- 
tant, and we do this at every release of the ASI4OO 
operating system. 

For the benchmarks we currently use to generate  a 
profile for SLIC, we  have found a practical way to up- 
date the profile information, so that little or no per- 
formance is lost. When a programmer provides a fix 
to  a module, a monitoring process checks to see if 
profile data were invalidated for any procedure in 
the module. If so, the changed module is automat- 
ically reinstrumented, loaded onto  a test machine 
with the most current version of SLIC, benchmarked, 
and reoptimized. For most modules, the identical 
benchmarks are run that were used to profile the 
original release. For modules that affect TPC-C per- 
formance, a simpler batch version of the TPC-C 
benchmark is used. (The standard benchmark re- 
quires extensive setup time, significant hardware re- 
sources, and human intervention.) Study of the MCAs 
has indicated that the long-running benchmark and 
the batch version produce very  similar results for 
most modules. 

Although  reprofiling has proved  practical for our cur- 
rent benchmark suite, the mechanisms to detect pro- 
file data  that have been invalidated, and  to optimize 
only those procedures that have not changed, are 
quite important. First, the detection of invalid pro- 
file data is used to determine whether a module 
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should be reprofiled; clearly the resources necessary 
to reprofile a module should not be consumed un- 
necessarily. Second, in our ongoing  efforts to profile 
other portions of OS~400, we have not always found 
practical means to  automate reprofiling of those 
modules. 

Both the original profiling of SLIC and the reprofil- 
ing of  fixes are completely transparent  to  the  pro- 
grammer. Developers need not even be aware that 
their modules were selected for profiling. 

Benchmark selection 

An operating system performs many different func- 
tions on behalf of different types of users and ap- 
plications, so  choosing representative benchmarks 
can  be a daunting task.  We naturally decided to look 
at benchmarks that  represent  areas of performance 
that  are critical to our customers. 

Most of our customers use  business applications 
characterized by a traditional transaction process- 
ing model. An industry standard benchmark used for 
measuring transaction processing performance is 
TPC-C, created by the Transaction Processing Per- 
formance Council.28 We created an internal work- 
load that parallels the functions measured by that 
benchmark, which for simplicity we refer to here as 
TPC-C. A benchmark called SPEED also measures 
transaction processing performance, using a 
clientherver environment. 

Another class of customer consists of those that de- 
velop applications for  the ASI4OO. For these, perfor- 
mance of program translation and binding within 
SLIC is  very important, so we collected a variety of 
programs written in different languages to form a 
Program Model benchmark. Other aspects of the sys- 
tem that were profiled include support for network 
protocols, such as TCpiIP and APPC (Transmission 
Control Protocol/Internet Protocol, and Advanced 
Program-to-Program Communications), primitives 
for the  Integrated File System (IFS),  and run-time 
support primitives for the C language.39 

These performance areas were also  used  in deter- 
mining  which modules within SLIC should be pro- 
filed. We took measurements using a sampling pro- 
filer to determine in  which modules the most time 
was spent when running these benchmarks. After 
sorting the modules by decreasing contribution, only 
those modules contributing to the  top 95 percent of 
the time spent in at least one benchmark were se- 
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lected for profiling. This cutoff eliminated many mod- 
ules  from  consideration  whose  contribution was too 
slight for significant payoff from  profile-based  op- 
timization. 

One problem with using multiple  benchmarks is the 
disparate  lengths of time  needed  to  run  each bench- 
mark. Many portions of the  operating system are ac- 
tive during more  than  one of these  benchmarks  (for 
example, the  task  management  and  storage  manage- 
ment  software),  and there may be differences in how 
they  act in these  different  settings. If we were to sim- 
ply add  the weights collected  from  each  benchmark 
together  and  use  the  result to guide  optimization, 
the longest-running  benchmark (TPC-c) would have 
a  disproportionate effect on the results. 

To avoid this, we built  a  tool to combine the  control 
flow weights from  separate  sets of collected data.  The 
tool  normalizes  the  control flow counters  for  each 
procedure  according to  the  number of times  the  pro- 
cedure was invoked for  each  benchmark.  Suppose 
that a  procedure was invoked Ni times  for  each of 
the i benchmarks,  and  let N,,, = maxi{N,} .  Then 
the combined  value k of a  control flow counter is 
computed  as k = Eikr (N, ,JNi ) ,  where k ,  is the 
value of the  control flow counter  for  the  ith  bench- 
mark.  This gives equal weight to all benchmarks in 
determining  the final combined  profile. 

Since not all benchmarks may be  considered equally 
representative of expected customer activity, the tool 
also  permits  a weighting factor to be  applied to each 
of the normalized weights in order  to adjust the over- 
all contribution of each  benchmark.  These weights 
were heuristically determined  as follows. First, area 
experts  were  consulted to  determine  a  desired 
weighting OW, for  each  benchmark w as a  whole. 
(For example, TPC-C was given a weight of 3, com- 
pared  to a weight of 2 for TCPIIP.) These  desired 
weights  must then  be normalized to account  for dif- 
ferences in run  time  and CPU utilization  among the 
benchmarks.  This was done by selecting a single pro- 
cedure P that was  highly used by all the benchmarks, 
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and  that was known by its designer to have a  similar 
expected  profile  for  all the  benchmarks.  Note  that 
the decision to use a single procedure P was a  heu- 
ristic one  that was believed to  meet  our  needs; al- 
ternatively,  a  set of such  procedures  might  be  cho- 
sen. The  formula  to  compute overall  benchmark 
weights is given below. 

Let CPU, be  the  amount of CPU time  spent  execut- 
ing procedure P during  workload w. Let I ,  be  the 
number of invocations of procedure P during work- 
load w ,  and  let I,,, = m a ,  { I , ) .  Let b denote a 
workload  such that I,, = I,,, and assign it an arbi- 
trary weight W b .  To  determine  the desired weight 
W ,  for  a  workload w, we first applied  the opinions 
of the  area experts, scaling W,, by the  ratio 
D W J D  W,,. We  then calculated the  amount of CPU 
time  spent in procedure P per  invocation of proce- 
dure P on  each workload w as T ,  = CPU,/I,, and 
scaled the previous  result by the  ratio TWIT,  to ac- 
count  for differences in usage of P. The complete 
heuristic  equation we used  for the normalized 
weights is 

Performance results 

For  purposes of this paper, we  measured  the effec- 
tiveness of feedback-directed  program  restructuring 
(FDPR) on a  pre-release version of OSi400 Version 4 
Release 1. (FDPR was first used on system licensed 
internal  code,  or SLIC, in Version 3 Release 7.) Pro- 
file data were  collected  for the  benchmarks previ- 
ously described,  and the combined data were  used 
to optimize the high-use SLIC modules. We  then mea- 
sured  the  performance  improvements of several 
benchmarks on a  number of different ASI400 mod- 
els. Table 1 shows a  comparison of the processors 
and caches  for the models we employed.  Because of 
constraints on machine availability, not all bench- 
marks  were  run on all  models. 
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Table 2 shows the reduction in CPU time fc )r  the  mea- 
sured  benchmarks.  (For  the IFS benchmark,  the  re- 
duction in response  times is reported.) All of the 
benchmarks  measured  are  the  same  ones used in 
gathering  the profile data.  The  Program  Model 
benchmark was measured  both when compiling 
workloads with minimal optimization and  when com- 
piling workloads with full  optimization (the profile 
data  contained information  gathered using both  op- 
timization levels). Improvements  for  the  Program 
Model  benchmark  were  measured in an uncon- 
strained  memory  environment (128 MB available) 
and in a more  constrained  environment (8 MB avail- 
able). 

More  detailed  hardware  performance  information 
is provided in Tables 3 and 4 for many of the bench- 
marks. These  data were  recorded using hardware 
counters  aboard  the ASI400 processors. Each entry 
in the  table reflects the  percentage change of a given 
measured  quantity;  for  example, the first row shows 
the  percentage  decrease in cycles per instruction 
(CPI)  when using a version of SLIC optimized with 
FDPR as  compared  to  a version of SLIC without FDPR. 
The column  labeled Average gives the  harmonic 
mean of the  data in the  other columns. 

Note  that  the  performance  improvements  from  Ta- 
ble 2 are largely explained by changes in CPI.  This 
seems  to  indicate  that,  for most of the benchmarks, 
the effects of basic block reordering  dominate  those 
of procedure  reordering. By far  the largest  contrib- 
utor  to  the reduction in CPI is the  reduction in in- 
struction  cache miss rates.  This reflects the success 
of FDPR in reordering basic blocks within procedures 
to increase  sequential  control flow. The miss ratios 
for the  translation lookaside buffer (a hardware cache 
for  the SLIC memory  page  table) appear  to  be af- 
fected largely randomly.  This is probably explained 
by the  reordering of procedures in memory, which 
may increase or decrease  the  number of hash col- 
lisions that occur  during  memory paging. 

Table 4 indicates  the effect of FDPR on dynamically 
executed branches in SLIC. In all cases, the  total  num- 
ber of branches  executed is slightly reduced,  as ex- 
pected. The percentage of these  branches  that  are 
unconditional  branches is sharply  reduced,  as is the 
percentage of conditional  branches that  are  taken. 
Both of these  statistics  indicate that basic block re- 
ordering is successful in generating  long  traces of 
blocks that can execute  sequentially. 

Table 2 CPU time reduction from applying  FDPR to SLIC 

*Kcspon% time reduction 

Table 5 summarizes the effect of FDPR on branch 
penalties. The first group of statistics  indicates the 
percentage of instruction  cache miss cycles that  are 
attributable  to  taken  branches,  demonstrating  that 
FDPR significantly reduces  this  component of the in- 
struction  cache  (icache) miss cost by ensuring that 
more  branches  are  not  taken.  The second group 
shows the  percentage of  all  cycles that were  spent 
waiting on an icache miss due  to any branch.  This 
figure was reduced by an average of 20 percent across 
all workloads; again this is due  to  the increased  se- 
quentiality of the  code.  The final group is similar, 
but  here we are  interested only in the miss cycles 
attributable to mispredicted  branches. The average 
reduction of 31 percent  indicates that  “straighten- 
ing” the  code is important  for  improving  the effec- 
tiveness of the branch  prediction  hardware. 

Some  additional data  were  captured  from  the  op- 
timized SLIC by a  sampling profiler; these  data ap- 
pear in Table 6. The first row indicates how often 
the  sampler  recorded  that SLIC was executing  code 
from an FDPR-optimized module.  Note  that  these fig- 
ures  are much  smaller  than the 95 percent cutoff 
point that was used in determining which modules 
to profile. The  reason  for this is that many of the 
high-use modules are currently  not  compiled by the 
slicox. Much of the SLIC legacy code is written in a 
language that is compiled directly into machine in- 
structions,  instead of into  an  intermediate  represen- 
tation  that can be processed by the slicox. Clearly 
this code  represents  an unexploited opportunity. The 
second row of Table 6 indicates an  upper  bound on 
the  estimated  performance improvement by FDPR if 
all code  were  processed  through  the slicox and  pro- 
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Table 3 Changes  in  performance  measurements  due  to FDPR 

Note 1 The average has been omitted, since the harmonic mean is undefined for ratlos of differing signs, and the arithmetic mean is not meaningful 
Note 2 Run on a Model 500 that has no L2 cache. 

Table 4 Changes  in  dynamic  branch  measurements  due  to  FDPR 

Table 5 Reduction  in  branch  penalty  due  to FDPR 

Table 6 Profiled  module  data  for  optimized  SLlC 
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filed, using linear  extrapolation  from  the  data in Ta- 
ble 2. 

We were initially concerned  that optimizing  for  cer- 
tain  workloads might contribute to degradations in 
environments  not  represented by those  workloads. 
In  the early  stages of development, we used only the 
TPC-c and  Program  Model  workloads  as  our profile 
inputs.  We  then  measured  the  performance of a 
number of other workloads. The results, shown in 
Table 7, demonstrate  that most of these  benchmarks 
were improved, and  none showed any degradati~n.~'  
It  appears  that  the behavior of much of the  oper- 
ating system is predictable  across  a  wide  range of 
workloads. 

An  important point about  these  performance  num- 
bers is that they show improvements to code that  had 
already been heavily hand-tuned.  Prior  to  the  intro- 
duction of  FDPR, a  good  deal of human effort had 
gone  into analyzing and  improving  hot  spots in the 
code,  manually  splitting low-use procedures  out of 
high-use  modules,  inserting  compiler  directives  into 
code  to identify infrequently used code  paths,  and 
manually ordering  modules in their  Rudests  accord- 
ing to sampled profiles. That is, a great  deal of the 
opportunity  for  performance  improvements  due  to 
FDPR had  already  been  addressed  laboriously by 
hand;  the  improvements  summarized in Tables 2 
through 6 are  additional gains beyond these  manual 
improvements. One of the  anticipated  benefits of 
FDPR is that most of  this hand-tuning activitywill now 
be avoided on  subsequent releases. 

Concluding remarks 

In this paper we have demonstrated  the feasibility 
of applying profile-based  optimizations,  particularly 
those involving code  reordering,  to  operating system 
code, in such  a manner  that  the resulting  code  can 
be easily supported in the field with a  minimum of 
performance  degradation.  Although we have con- 
centrated in this paper  on  the use of profile data  for 
code  restructuring, the  data  are also used today to 
guide the instruction  scheduler  and  register alloca- 
tor,  and will be used for  more  optimizations in fu- 
ture releases. Note  that  the difficulty  in applying 
code-restructuring  techniques to operating system 
code  does  not apply to many other profile-based  op- 
timizations,  provided  they do not operate across 
module  boundaries. 

In  an upcoming release, we are providing similar pro- 
filing support  above  the MI for use by our custom- 
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Table 7 Performance  improvements  for  unprofiled 
workloads (SLIC version 3 release 7) 

ers,  integrating  profile-based  optimization  into  the 
AS/400 native  translator  and  program  binder. We an- 
ticipate that this will improve  performance  for many 
ASI400 applications.  Since many applications exhibit 
better locality than  operating system code,  improve- 
ments  for  those  applications may be less than  the 
results  reported  here. However, many large business 
applications suffer from locality problems  similar  to 
the  operating system; these  applications may see  re- 
sults  comparable to those  measured  for SLIC. Even 
programs with good  temporal locality will benefit 
from  code  rearrangement  to  improve  their  spatial 
locality, and  from  the improved efficiency  of sequen- 
tial instruction  prefetching that we can  provide. 

We also  plan to expand our uses of profiling within 
SLIC. For example, we may decide  to also profile the 
initial  program  loading (IPL) path  executed  when an 
ASI400 is rebooted in order  to  reduce  the  time  that 
requires.  More ambitious would be modifying the 
link/loader to permit  procedures  to  be  reordered 
across module  boundaries while still supporting PTFS 
in the field. Finally, we might choose to implement 
Pettis  and  Hansen's  idea of  moving infrequently used 
basic blocks out of a  procedure body altogether, al- 
though  currently too many  components in SLIC as- 
sume  that a  procedure body is contiguous. 

The  Program  Model  test  team (IBM ASI400 Division, 
Rochester,  Minnesota)  has  found  another  use  for 
profile  data.  They have constructed  a  code  coverage 
tool  for analyzing the effectiveness of test  suites in 
covering the  code they are intended to test.  Although 
this  tool is not  capable of determining  whether all 
possible paths  through  a  procedure  have  been ex- 
ercised, it is able  to  indicate  those  procedures  and 
basic blocks that have not  been exercised at all. This 
tool is proving very useful in improving the quality 
of testing. 
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