
Profile-directed
restructuring of
operating system code

by W. J. Schmidt
R. R. Roediger
C. S. Mestad
6. Mendelson
I. Shavit-Lottem
V. Bortnikov-Sitnitsky

In this paper we describe how a profiling system
can be successfully used to restructure the
components of an operating system for improved
overall performance. We discuss our choice of a
profiling system and how it was agplied to the
AS1400 (Application System1400) operating
system for the purpose of reordering code.
Previous work in the industry has been mainly
useful only for application programs. Our work
demonstrates how such techniques can be
applied to operating system code, while
preserving maintainability of the operating
system in the customer’s environment.

I t is well-known that performance of processors is
increasing at a much faster rate than the perfor-

mance of their attached memory subsystems. Thus
it is increasingly difficult to input data to processors
rapidly enough to keep the processors utilized to
their maximum capacity. As a result, a great deal of
ingenuity has been expended on hardware solutions
to improve the access time and throughput of mem-
ory references, including caches, prefetch buffers,
branch prediction hardware, memory module inter-
leaving, very wide buses, and so forth. Also, software
must be optimized to take the best possible advan-
tage of this hardware.

For example, instruction caches are designed to ex-
ploit temporal and spatial locality in programs. Tern-
poral locality refers to the tendency of programs to
execute instructions repeatedly; thus the perfor-

mance of fetching instructions from main memory
can be improved by saving recently executed instruc-
tions in a small high-speed cache. Instructions in a
program are said to exhibit good spatial locality if
execution of an instruction tends to be followed
quickly by execution of instructions packaged nearby.
A program with poor spatial locality will cause un-
needed instructions to be fetched into the cache.
Thus the cache will not operate at its full potential.

Memory paging systems are likewise designed to ex-
ploit spatial and temporal locality. For these systems,
volatile memory may be thought of as a medium-
speed cache for low-speed persistent memory, such
as a disk. Recently used pages are kept in memory
to take advantage of temporal locality. Again, good
spatial locality is required to avoid bringing unneeded
instructions and data into memory. Poor spatial lo-
cality thus reduces the efficiency of memory paging.

Unfortunately, “naive” code generation often results
in programs that have poorer spatial locality than is
achievable. It is typical, for example, to generate code
that branches around infrequently executed error
paths. This results in poor utilization of the instruc-

Wopyright 1998 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

270 SCHMIDT ET AL. 0018-8670/98/5500 0 1998 IEM IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

tion cache, since some of the error path code will
usually be fetched into the cache along with the
branch that bypasses it. It is also typical for proce-
dures to be packaged without consideration for lo-
cality, so that although procedure A frequently calls
procedure B, A and B are located in different mem-
ory pages.

Across the industry, it is becoming more common
to use dynamic profiling to analyze program behav-
ior during execution. Dynamic profiling (henceforth
profiling) gathers data about the frequencies with
which different execution paths in a program are tra-
versed. These profile data can then be fed back into
the compiler to guide optimization of the code.

One of the proven uses of profile data is in deter-
mining the order in which instructions should be
packaged. By discovering the "hot traces" through
a procedure, the optimizer can pack the instructions
in those traces together tightly into cache lines, re-
sulting in greater cache utilization and fewer cache
misses. Similarly, profile data can help determine
which procedures call other procedures most fre-
quently, permitting the called procedures to be re-
ordered in memory to reduce page faults.

Related work. Research into reordering programs
for better performance dates to the introduction of
virtual in the 1960s. A number of early
researchers"' used static analysis to reduce page
faults by reordering procedures within a program,
while Hatfield and Gerald"' and Ferrari" used dy-
namic analysis for similar goals, using an instruction
trace collected from an execution of the program.
Hartleyl2 extended the static techniques through the
use of procedure duplication and in-line placement.
W U ' ~ experimented with a trace-based system for re-
positioning procedures based upon temporal local-
ity, with the goal of improving performance of
shared-memory multiprocessors.

With the introduction of instruction caches,I4 focus
began to shift to reordering code at a finer granu-
larity. To date, most successful approaches to im-
proving instruction cache performance have used
profile data to predict branch outcomes. In contrast
to most of the foregoing work on virtual memory per-
formance, these techniques were implemented
within the framework of optimizing compilers. Mc-
Farling'' showed how to use profile information to
reduce conflict misses in a direct-mapped instruc-
tion cache. Mendelson, Pinter, and Shtokhamer l h

also achieved a reduction in conflict misses while re-

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

quiring only static analysis of the program. Hwu and
Changt7 introduced the idea of using traces of basic
blocks to reduce the number of unexecuted instruc-
tions brought into the instruction cache (cachepol-
lution), thus reducing capacity misses. Pettis and
Hansen'' likewise used traces (or chains) to order
basic blocks, although their algorithms differ some-
what from those of Hwu and Chang; they also
pointed out that infrequently executed traces can be
separated entirely from the main procedure body.
Gupta and Chi '' produced two different methods of
reordering instructions, one based on the presence
of loops, split points, and join points in the control
flow graph, and one based directly on the control
dependence graph.2"

Within IBM, Heisch2',22 suggested that instruction
cache performance can be maximized by consider-
ing it as a whole-program optimization. Heisch's
methods differ from previous approaches by oper-
ating as a post-processor on executable program ob-
jects. An interesting effect of this method is that ba-
sic blocks are allowed to migrate without being
constrained by procedure boundaries. Heisch's orig-
inal algorithm appended the reordered code to the
original executable program objects, resulting in re-
ported growth in executable file size of between 5
percent and 41 percent,22 although this growth had
negligible impact on performance. Nahshon and
BernsteinZ3 later produced an improved algorithm
that required less code growth; their techniques, to-
gether with those of Heisch, were incorporated into
a tool called FDPR (jeedback-directedprogram restmc-
Luring), which has been used to improve performance
of executable objects on the AIX* (Advanced Inter-
active Executive) and OSD" (Operating System/2*)
operating systems.

Contributions of this paper. Aware of the perfor-
mance benefits achieved using FDPR on other plat-
forms within IBM, we began to consider how this tech-
nology could be used to improve performance on the
Application System/4OO* (~ s i 4 0 0 *) PowerPc AS*-based
computer systems. We also wanted to take things a
step further: Rather than just applying this technol-
ogy to applications, our goal was to improve the per-
formance of the ASI400 operating system.

We are not aware of any previous attempt to ship
an operating system that has been reordered in this
manner. (Experiments with reordering operatingsys-
tem kernels have been d e s ~ r i b e d , ~ ~ . ~ ~ but to our
knowledge these techniques have not been used in
products that have been shipped to customers.)

SCHMIDT ET AL. 271

There are a number of difficult issues that must be
addressed when restructuring an operating system:

It must be feasible to provide correction code
(fixes) to customers should errors be found in the
operating system code. An operating system is
much too large and complex to be rebuilt from
scratch and redelivered to customers. It is neces-
sary to be able to modify smaller amounts of the
operating system when fixing problems by replac-
ing a single module (compile unit) or even a sin-
gle procedure.
Providing fixes must not result in noticeably de-
graded performance in a customer environment.
If the operating system has been restructured to
improve instruction cache and memory paging per-
formance, applying fixes to restore functionality
should not undo all or a significant part of those
performance gains.
Special memory requirements of sensitive portions
of the operating system must be honored. Many
profiling systems (including ours) gather data by
“instrumenting” the code to be profiled-that is,
inserting snippets of code to record control flow
events-and then running the instrumented code
using representative inputs. These snippets typi-
cally access counters in memory. Some portions
of operating system code cannot make data ref-
erences that will cause a page fault (consider the
code whose job it is to handle a page fault), while
more sensitive code may not even be able to tol-
erate a miss in the hardware page table. Care must
be taken so that the added instrumentation does
not violate these requirements.
Unlike most application code, a single copy of the
operating system code may be executing simulta-
neously on behalf of many tasks. This means that
the instrumentation methodology must be sensi-
tive to concurrency issues.
The process of instrumenting, benchmarking, and
optimizing the operating system code must be kept
simple enough to avoid delaying product release
schedules.

Despite these obstacles, it is very important to be
able to improve instruction cache and memory pag-
ing performance for operating system code, perhaps
even more than for application code. Chen and Ber-
shadz5 have shown that operating system code typ-
ically has less instruction locality and is more sen-
sitive to instruction cache performance than is
application code. Measuring the performance of two
popular workstation operating systems running a
number of industry standard benchmarks, Chen and

272 SCHMIDT ET AL.

Bershad found that the percentage of instruction
cache misses attributable to the operating system ex-
ceeded 70 percent for over two-thirds of the bench-
marks. This assertion appears to hold independently
of application size and execution run time. They also
found that the instruction cache penalty, measured
as the number of instruction stall cycles divided by
the number of executed instructions, was higher in
system code than in user code for 20 of their 26
benchmark runs. For larger applications, however,
this effect was not always as pronounced.

The primary contribution of this paper is to explain
how we designed our profiling system to successfully
restructure an operating system that could be
shipped to customers and maintained in the customer
environment without significant loss of performance.
Although we describe our techniques with reference
to the ASI400 operating system, the problems we faced
are representative of those found on any operating
system. We also describe improvements to known
algorithms for restructuring code, and discuss how
we handle issues of concurrency and indeterminate
control flow. Although we use profile information
in many of our optimization phases, this paper con-
centrates on its use in reordering code.

The remainder of this paper is organized as follows.
We first provide background on the structure of the
ASI400 operating system, and describe some of the
special requirements it imposed upon our design. We
then describe various types of profiling systems that
have been developed in the past, and discuss why
we chose the one we did. Next follows a detailed de-
scription of the profiling process we used on the op-
erating system code, including the algorithms for in-
strumenting the code, the mechanisms used to collect
data, the feedback mechanism for bringing the pro-
file data into the compiler, and the instruction re-
ordering algorithms. We then describe the support
mechanism we use that allows us to maintain the
code, and the benchmarks on which we measured
the operating system. We conclude with some pre-
liminary performance measurements, and thoughts
for the future.

The environment

The environment of the ASI400 is next described, fol-
lowed by an introductory description of the sampling,
trace-based, and instrumented methods for gather-
ing data about the behavior of programs.

IEM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

Figure 1 The AS/400 operating system and the machine interface (MI) layer

The operating system for the AS/400. The ASI400 ar-
chitecture differs from that of most other computer
systems in the level of abstraction exposed to its ap-
plication software. Whereas software for other sys-
tems is targeted directly to the hardware, applica-
tions view the AS/400 through an abstract machine
layer known as the Technology-Independent Ma-
chine Interface (sometimes called TIMI, or just MI).
Since the actual hardware and much of the system
software are hidden beneath this layer of abstrac-
tion, it is possible to completely replace the under-
lying hardware and software without changing the
application software. This is exactly what happened
with the recent introduction of new ASI4OO systems
based on the PowerPC AS RISC (reduced instruction-
set computer) architecture: the existing CISC (com-
plex instruction-set computer) processors were re-
placed with RISC processors without requiring
customers to acquire updates for their applications.

As shown in Figure 1, the operating system for the
ASI400 consists of two parts. The portion known as
Operating System/400* (OS/400*) resides in a soft-
ware layer “above the MI.” “Below the MI” is a layer
known as system licensed internal code (SLIC), which
is responsible for implementing the abstract MI func-
tions for a specific hardware architecture.

When an application task runs on an AS/400, part of
its time will be spent executing in the application code

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

itself or in OSi400 and the rest will be spent executing
within SLIC. Traditional transaction-based business
software tends to spend most of its time in the in-
tegrated database software below the MI, while more
computationally intensive applications spend most
of their time above the MI. Because most of our cus-
tomers primarily use traditional business applica-
tions, the performance of SLIC is crucial to the over-
all performance of the ASI400. SLIC modules, written
primarily in C+ + and a dialect of PLII, are compiled
through a state-of-the-art optimizing back end called
slicox (the SLIC optimizing translator).

As shown in Figure 2, SLIC is partitioned into code
that must be resident in main memory (the nucleus)
and code that need not be (pageable). Each of these
code sections is further subdivided into smaller con-
tiguous regions called replaceable unit destinations
(RUdests). A Rudest is composed of a number of
modules (i.e., compilation units) that share some
property requiring them to be kept together. The
SLIC IinWloader, itself a pageable component of SLIC,
is responsible for positioning each module within its
assigned Rudest and resolving all external references
between modules.

After a release of the operating system has been
shipped, it is inevitable that problems will be discov-
ered in the field. Corrections for these problems are
packaged into Program Temporary Fixes (PTFS) and

SCHMIDT ET AL. 273

Figure 2 Organization of system licensed internal code (SLIC)
~~

Rudest I -

MODULES

MODULES

Rudest

MODULES

Rudest

MODULES

i

!

made available to customers. Each SLIC PTF consists
of one or more modules that will replace existing
faulty modules on customer systems. When custom-
ers apply a SLIC PTF to their ASI400, the SLIC
linldloader is again responsible for positioning the
new modules within the appropriate Rudests, and
adjusting all external references to the replaced mod-
ules to reference the new ones.

One of our goals was to reorder procedures within
SLIC so that their spatial packaging more closely
matched their temporal locality. However, the de-
sign of SLIC and the PTF process impose some con-
straints on allowable procedure order.

Each procedure is required to remain within its
target Rudest; therefore two procedures in differ-
ent Rudests cannot be juxtaposed, even if one calls
the other very frequently.
The process for applying PTFs was designed to re-
place entire modules. If procedures from a mod-
ule were not placed contiguously, the job of the
link/loader during PTF application would be greatly
complicated.

Because of these considerations, we decided to re-
order procedures within module boundaries, and or-
der modules within each Rudest according to tem-
poral affinity.

In the future, it may be worthwhile to allow free re-
ordering of procedures across module boundaries.
An early studyZ7 of SLIC behavior while running an
internal workload approximating the Transaction
Processing Performance Council (TPC-C* *) bench-
mark28 indicated that about 75 percent of all dynamic
procedure calls occurred across module boundaries.
Unfortunately, the study did not determine how
many of these calls also occurred across Rudest
boundaries, which would forbid reordering. The data
also indicated a high affinity between pairs of pro-
cedures: On average, each procedure was called 83
percent of the time from a single caller, and each
procedure made 60 percent of its calls to a single
callee. This study, though preliminary, indicates that
full procedure ordering would provide some incre-
mental benefit over our current scheme that pre-
serves module boundaries.

274 SCHMIDT ET AL. IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

Types of profilers. The termprofiling, as used in this
paper, refers to using information collected about
the dynamic behavior of a program to improve op-
timization of that program. The program is measured
while running one or more benchmarks believed to
be representative of the way the program will be used
in practice. There are three typical models of pro-
filing, distinguished by the method of gathering data
about the behavior of programs.

A sampling profiler operates using a hardware
timer, periodically waking up a process that re-
cords the address of the currently executing in-
struction. Although sampling profilers can be ad-
equate for recording which procedures are exe-
cuted frequently, they do not work well for
recording more granular information, such as how
frequently a given branch is taken, or which pro-
cedures often call which other procedures.
A truce-bused profiler collects a hardware execu-
tion trace of the instructions executed by the pro-
gram during the benchmark trials. It then reduces
this information to a manageable size to determine
branch and procedure call frequencies.
An instrumenting profiler operates by recompiling
the program with special instrumentation “hooks”
placed at important branch points. As the instru-
mented program executes, these hooks cause data
counters to be updated, recording the branch fre-
quency information directly.

We considered the trace-based and instrumenting
profiler models as candidates on which to base our
design. We eventually decided upon an instrument-
ing profiler, because of the difficulties we perceived
in using a trace-based profiler. First, a full instruc-
tion trace for a nontrivial benchmark would be quite
large and time-consuming to process; in order to be
practical, we would require a real-time reduction tool
to compress the instruction traces into branch fre-
quencies. Second, it would not be easy to map in-
formation from the instruction traces into the com-
pilation process. Finally, we did not have a practical
way to make a full execution trace tool available to
our customers. Since our intent in subsequent re-
leases is to make this technology available for cus-
tomers to use on their own programs, this was a key
consideration in our decision.

In contrast to these problems, the only major draw-
back of using an instrumenting profiler is its inva-
sive nature: an extra compilation step is required to
insert the instrumentation hooks. Although this is
a nontrivial consideration because of the number of

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

SLIC modules requiring instrumentation, this only
needs to be done once per release of the operating
system, whereas the drawbacks of instruction traces
were more serious.

Restructuring the operating system

We next discuss our process for gathering data and
using those data to reorder and improve portions of
the ASI400 operating system.

FDPR design overview. Our goal of feedback-di-
rected program restructuring (FDPR) was to improve
the performance of SLIC by more fully exploiting cer-
tain hardware characteristics of the ASI400 proces-
sors and memory hierarchies. By reordering instruc-
tions within a procedure so that they are likely to be
executed in sequence, we can improve performance
of the instruction cache by reducing cache pollution,
improve the efficiency of sequential instruction
prefetching, and reduce the penalty associated with
taken or mispredicted branches. By packaging pro-
cedures in an order that reflects their temporal lo-
cality, we can also reduce the SLIC working set size,
taking better advantage of the memory paging sys-
tem.

FDPR is a three-phase process: instrumentation,
benchmarking, and feedback-directed optimization.
The following is a brief overview of this process, as
illustrated in Figure 3.

Only those SLIC modules that are known to be cru-
cial to some aspect of system performance are con-
sidered candidates for profiling. First each of these
modules is instrumented by the slicox. The instru-
mentation process analyzes each procedure in the
module at a particular point during translation, and
inserts snippets of instrumentation code. Each snip-
pet (or “hook”) contains code that increments a
counter whenever a particular control flow event
(branch decision or procedure call) occurs. The
counters for each module are stored in a static data
object associated with the module, known as a mod-
ule counter area (MCA).

After all modules to be measured have been instru-
mented, they are loaded onto an AS/400 test system,
replacing the uninstrumented versions of those mod-
ules. As a result, space is also allocated for the MCAs
of the instrumented modules. Special tools are used
to clear all counters to zero, and to disable the in-
strumentation snippets from incrementing the
counters until representative benchmarks are ready

SCHMIDT ET AL. 275

Figure 3 Overview of feedback-directed program restructuring (FDPR)
_ _ _ ~ ~~~~ ~ ~ _ _ _ _ ~ . ~

to be executed. The snippets are enabled while the
benchmarks run, and then disabled again when the
benchmarks are finished, thus freezing the counters.
Another tool then “harvests” the profile data by lo-
cating all MCAs on the system, saving each as a file,
and transferring the files back to the development
system.

There is now one file of profile data for each per-
formance-critical module. Each module is once again
compiled, this time using the profile data to guide
optimizations. Each counter is read from the file and
associated with the control flow event that it was
monitoring. Based on these data, the slicox deter-
mines an optimized order for the instructions for
each procedure, favoring sequential flow of control
through heavily traversed paths. It also determines
an optimized packaging order for the procedures
within the module, based upon measured intramodu-
lar procedure calls. A separate tool then produces
a suggested module ordering within each Rudest,
based upon measured intermodular procedure calls.
The optimized modules are loaded according to the

module ordering to form a system image for distri-
bution to customers.

Module counter areas. Traditional profiling mech-
anisms typically do not require any sophisticated or-
ganization for the profile counters. They are designed
to optimize a single executable object, which is not
expected to be modified after profile data have been
applied, so a simple linear array of counters can suf-
fice. There are two considerations that render this
impractical for our purposes. First, fixes to SLIC are
made at the module level; an entire module must be
replaced for every change. If modules that have been
optimized using profile data are replaced by cor-
rected versions of those modules without such op-
timization, a noticeable loss of performance might
result over time. To reduce the potential for perfor-
mance loss, we designed our module counter areas
to segregate and identify the counters pertinent to
each procedure. Thus when a single procedure is
modified, or when procedures are added to or de-
leted from a module, the profile data for the un-

276 SCHMIDT ET AL IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

changed procedures can still be considered valid and
used to direct optimization.”

Second, much of the code in the nucleus is not per-
mitted to incur a page fault on any memory access,
so counters for nucleus code must reside in “pinned”
(unpageable) memory. Since pinned memory is a fi-
nite resource, however, it would not be prudent to
place counters for nonnucleus code in pinned mem-
ory. At a minimum, the nucleus and nonnucleus
counters must be kept separate.

A simple solution to this problem is to allocate the
counters inside a data object created by the compiler
in the static data space associated with the module.
In SLIC, static data for all nucleus code are allocated
in pinned memory, while static data for nonnucleus
code are allocated in pageable memory. Each mod-
ule then addresses its counters via offsets from the
base address of this module counter area. In addi-
tion to solving the forbidden page fault problem, this
allocation scheme also eliminates any dependency
on the compilation order; the counters for each mod-
ule are always at fixed positions from the beginning
of its own MCA.

The layout of a module counter area is shown in Fig-
ures 4 and 5. Each MCA consists of an initial header
area, followed by a procedure counter area (PCA)
for each procedure contained in the associated mod-
ule. The header area contains information used to
interpret the rest of the MCA, including the total size
of the MCA, and the number and location of the PCAs
within the MCA. Each PCA consists of a header and
several groups of counters, used to measure branch-
ing events within a procedure (control flow counters),
direct calls to known procedures (direct call flow
counters), pointer-based calls to possibly unknown
procedures (indirect call flow counters), and invo-
cations of the current procedure (prologue counter).

Instrumentation methodology. The purpose of in-
strumentation is to determine the number of times
particular control flow events occur during the ex-
ecution of a program. The data collected will later
be used to guide optimizations. Obviously, the com-
piler must view a procedure to be identical when it
inserts the instrumentation snippets and when it sub-
sequently reads the profile data back in. Since mod-
ern compilers perform many optimizations that can
alter the control flow of a procedure, i t is manda-
tory that the instrumentation and feedback phases
take place at the exact same point during compila-
tion, and that all prior phases of compilation pro-

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

Figure 4 Contents of a module counter area (MCA)
~~

Figure 5 Contents of a procedure counter area (PCA)

NUMBER OF CONTROL FLOW COUNTERS
NUMBER OF DIRECT C U FLOW ENTRIES
NUMBER OF INDIRECT GALL FLOW ENTRIES

duce precisely the same results when the instrumen-
tation and feedback options are selected.

There are four types of instrumentation hooks that
match the four kinds of counters: control flow hooks,
direct call flow hooks, indirect call flow hooks, and
prologue hooks. Direct and indirect call flow hooks

SCHMIDT ET AL. 277

are placed just prior to the corresponding procedure
calls in the instruction stream. A prologue hook is
placed in the prologue code for each procedure
(compiler-generated code that sets up for each in-
vocation of a procedure). Control flow hooks are
placed along arcs in the control flow graph (CFG)
for the procedure.

A control flow graph for a procedure is an abstrac-
tion produced by a compiler to represent possible
flow of control through an instruction stream. It is
constructed as follows. First the compiler partitions
the instructions of the procedure into basic blocks.
A basic block is a contiguous sequence of instruc-
tions that will always be executed together. That is,
a branch into a basic block can only target the first
instruction of that block, and any branch appearing
in a basic block must be the last instruction in that
block. Each basic block is represented by a node in
the control flow graph. There is a directed arc from
block A to block B if and only if block B can be ex-
ecuted immediately after an execution of block A.
An example of a CFG appears in Figure 6A.

Note that Figure 6A contains two artificial nodes
marked Start and Exit, and an artificial arc from Exit
to Start. Any block representing an entry point into
the procedure is made a successor of the Start block.
Any block at which control may leave the procedure
(by returning or by an unhandled exception, for ex-
ample) is made a predecessor of the Exit block. The
use of the artificial blocks and arc ensures that, for
every node in the graph, there is a path from that
node to itself; that is, the graph is strongly connected.
This is a necessary property for use of the spanning
tree algorithm described in a later subsection on con-
trolling instrumentation cost.

Profile data indicating path frequencies can be rep-
resented in the CFG in one of two ways. Block weights
indicate the frequency with which each block is ex-
ccuted, while arc weights indicate the frequency with
which each arc is traversed. Block weights can al-
ways be derived from arc weights, but the converse
is not generally true. Since the frequency with which
a conditional branch is taken is important to the ba-
sic block reordering optimization, we directly instru-
ment the control flow arcs. This is done by inserting
new basic blocks containing instrumentation hooks
(diamond-shaped boxes in Figure 6C) along selected
control flow arcs.

Instrumentation hooks. In our implementation, a con-
trol flow hook typically consists of three instructions

278 SCHMIDT ET AL.

to load, increment, and store a 64-bit counter. The
counter is addressed at a fixed offset from a base reg-
ister. Prologue code executed when the procedure
is invoked stores the address of the PCA for the pro-
cedure in the base register. The base address of a
PCA is determined by adding an offset to the static
address of the MCA for the containing module, de-
termined by the IinWloader at load time. The pro-
logue code also increments a counter to record the
number of invocations of the procedure.

The code inserted prior to a direct procedure call
is identical to that for a control flow hook. The only
difference is where the counters are stored. Recall
that direct call flow counters are segregated from the
control flow counters. This is because each call flow
counter contains an additional field identifying the
procedure being called. This information is used later
to reconstruct the system-wide weighted call graph
for the benchmark.

The code for an indirect call site, however, is quite
different. In general, we cannot know which proce-
dures, or even how many different procedures, may
be called at an indirect call site. Previous re-
searchers '' have ignored indirect call sites because
of this difficulty. We chose to create a fixed-size ta-
ble of callees and counts for each indirect call site.
The management of the table is embodied in a sys-
tem-wide subroutine that takes, as parameters, the
address of the procedure to be called, and the table
in which counts are to be recorded for the call site.
Since the number of called procedures may exceed
the size of the table, a method is needed to ensure
that the most frequently executed procedures are
kept in the table. The management of the table is
beyond the scope of this paper.

The question of when during compilation to insert
instrumentation code is an interesting one. The an-
swer often depends on the intended use of the pro-
file data. Obviously profile data should be collected
prior to performing those optimizations that can ben-
efit from use of the data. In our case, the initial use
of profile data within the slicox was to reorder basic
blocks within each procedure; this is a very late op-
timization, so for its purposes profile data could be
collected just prior to final assembly of the instruc-
tion stream. However, we also had heuristic uses for
profile data in the register assignment and global in-
struction scheduling phases of the slicox, so we chose
to collect data prior to these phases.

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

Figure 6 Instrumenting a control flow graph (CFG). (A) CFG example. (B) CFG with spanning tree and potential places
for hooks identified (hash marks). (C) CFG enhanced with instrumentation blocks (diamond-shaped boxes)
along nonspanningtree arcs.

r

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998 SCHMIDT ET AL 279

Since many optimization phases execute after instru-
mentation code has been inserted, the amount of
code that must be handled by those phases is in-
creased. To minimize this bloat, instrumentation
hooks are initially treated as single-instruction mac-
ros in the intermediate representation (IR), and are
only expanded into the form described above dur-
ing final instruction assembly. To provide for effi-
cient register utilization, each macro is annotated
with unique virtual registers to represent the regis-
ters needed when the macro is expanded. The reg-
ister allocator is free to select appropriate hardware
registers for these virtual registers according to the
usual methods.

Controlling instrumentation cost. Care must be taken
to minimize the cost of the instrumentation hooks,
since long-running benchmarks are required to pro-
vide useful profile data for an operating system. If
the instrumented version of the operating system
were too slow, profiling would be rendered imprac-
tical. Time spent executing instrumentation code can
also perturb timings, task queue lengths, and so forth.
This means that (1) each instrumentation hook must
be as efficient as possible, and (2) the number of
hooks must be kept to a minimum.

There is a well-known solution to the hook-minimi-
zation problem.3"-33 The idea is to identify a small
subset of the arcs in a control flow graph for a pro-
cedure such that, if we knew the weights of those
arcs, we could infer the weights of all remaining arcs
in the graph. The trick is to observe that the flow
into a block must equal the flow out of that block.
If a given arc is the only one with unknown weight
incident to a block, then the weight of that arc can
be inferred from the known weights of other arcs
incident to that block. We thus only need to instru-
ment this subset of the arcs from which the other
weights can be inferred.

Rather than looking for the arcs we want to instru-
ment, it is convenient to identify those that we do
not want instrumented. Suppose that we ignore the
directions of arcs in the CFG, and that we select some
subset of the arcs such that there is no path in the
subset from a block to itself; that is, the subset forms
one or more trees. Suppose further that we have
known weights for all arcs not in this subset. A prop-
erty of a tree is that there must be at least one arc
in the tree that touches a block touched by no other
arc in the tree. As just described, the weight of such
an arc can be inferred from the weights of other arcs
incident to the block, which are known since those

280 SCHMIDT ET AL.

arcs are not in the tree. Once that weight is known,
it can be removed from the subset of unknown-
weight arcs. The remaining unknown arcs will still
form one or more trees, so the process can be re-
peated until all weights are known. An example can
be found in a later subsection on feedback of profile
data.

To instrument the fewest arcs, we then need to se-
lect the largest possible tree of arcs not to be instru-
mented. In a connected graph having N nodes, the
largest possible tree will have N - 1 arcs. Such a
tree is called a spanning tree, since it touches every
block in the CFG. The arcs to be instrumented, then,
are the arcs not in the spanning tree. Many possible
spanning trees exist for a strongly connected graph,
any one of which can be arbitrarily selected, provided
that it includes the artificial arc from Exit to Start
(which cannot be directly instrumented).

Figure 6A shows an example control flow graph to
be instrumented. In Figure 6B, a spanning tree for
the CFG has been arbitrarily selected; the arcs in the
spanning tree appear as bold lines to identify them.
Those arcs not in the spanning tree are identified
with a hash mark, and are the ones to be instru-
mented. Figure 6C shows the modified CFG with the
instrumentation blocks inserted (shown as dia-
monds). Note that the number of instrumented arcs
is much smaller than the total number of arcs in the
original graph.

In most cases it is straightforward to add an instru-
mentation block along an arc in the control flow
graph. Suppose that the original arc originates at
some blockX and targets some block Y. ThenXwill
either end with a conditional or unconditional branch
that targets Y, or X will fall through into Y. In the
case of fall-through, it is simple to add the instru-
mentation hook between blocks X and Y. If X ends
with a relative branch that targets Y , a new block I
is created to hold the instrumentation hook followed
by a branch to Y , and the branch in X is modified
to target I .

A problem not discussed in the literature occurs
whenX ends with a branch to an unknown code lo-
cation contained in a register (a nonrelative branch).
In some cases, the compiler may be able to statically
determine the location or locations that the branch
can target, and thus create arcs in the CFG to rep-
resent these paths; but in the general case, this is not
possible. It is necessary to add artificial arcs to the
cFG to ensure that the graph remains connected in

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

the presence of nonrelative branches, since some tar-
gets of such branches may not be reachable by any
other path. Since these artificial arcs cannot be ex-
ecuted, the spanning tree must be chosen so that
these arcs are not instrumented. In rare cases,
though, the complement of every spanning tree will
contain an artificial arc. When this occurs, the blocks
incident to the artificial arc must be instrumented
instead.

There are many possible spanning trees for a con-
trol flow graph. Selecting one that results in mini-
mal instrumentation cost is an NP-hard problem,34
so a heuristic approach is warranted. Ball and La-
rus3’ made use of static weight estimates to reduce
the expected cost of instrumentation hooks. We im-
plemented a very simple heuristic that reduces the
cost of instrumentation within loops by avoiding in-
strumenting back arcs (flow of control from within
a loop to the beginning of the loop). Figure 7 shows
an example loop from the flow graph of Figure 6.
The “natural” depth-first algorithm for finding a
spanning tree produces the results shown in Figure
7A, with arcs I + J and J + K in the spanning tree,
and arcs I + K and K -+ I in the complement of the
spanning tree; thus the back arc K + I will be in-
strumented (with diamonds in Figure 6C). Our al-
gorithm prefers to avoid instrumenting back arcs, so
it exchanges the back arc K --$ I with another arc
incident to K, in this case J -+ K. The result is shown
in Figure 7B. We only avoid instrumenting a back
arc in this manner when we believe the alternate arc
(e.g., J + K) will be executed less frequently than
the back arc, using static heuristics.

Concurrency issues. Another difference between an
operating system and most applications is the mul-
titasking nature of the operating system. It is quite
common for a single procedure in SLIC to be oper-
ating concurrently on behalf of several user pro-
cesses. This raises the possibility of data loss for any
given counter, as illustrated in Figure 8. If the load,
increment, and store are not treated as an atomic
operation, one process can be switched out after ex-
ecuting the load, another process can execute for a
time, possibly updating the counter many times, and
then the first process can regain control to execute
the increment and store. This means that increments
of this counter by the second process will be lost.

Unfortunately the code to perform an atomic up-
date on the ASi4OO is much more expensive than a
simple increment, requiring roughly three times as
much time to execute and over twice as many static

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

Figure 7 Avoiding instrumentation of back arcs.
(A) Usual spanning tree. (8) Revised spanning
tree. Note that J+K will be executed no more
frequently than K+I.

instructions. We therefore decided to allow occa-
sional data losses to occur, relying on the length and
repetitiveness of our benchmarks to smooth out the
losses. This proved to be a successful strategy, but
one with implications for the profile feedback step,
as discussed in a subsequent section.

More care was needed for the indirect call site in-
strumentation. In order to manage the policy deter-
mining which procedures will occupy the table for
a given call site, some static data are maintained
within the table. These data must be manipulated
atomically in order to avoid corruption of the table.
Since indirect calls are relatively infrequent, we im-
plemented a semaphore with each indirect call site
table to ensure atomic access. The overhead of the
semaphore is less important here, since its cost com-
pared to the time required to manage the table is
relatively small.

By implementing only simple increments instead of
atomic ones, and by using the spanning tree tech-
nique to minimize the number of counters, we were
able to limit the execution time overhead of instru-
mentation to a very acceptable level. For example,
for our internal version of the TPC-C benchmark, we
measured the number of simulated users required

SCHMIDT ET AL. 281

Figure 8 Loss of data due to concurrent counter access

to achieve CPU saturation. An instrumented version
of SLIC attained saturation with roughly 33 percent
fewer users compared with an uninstrumented ver-
sion. The average size of a module increased by
roughly 78 percent when adding instrumentation,
counting both the added instrumentation and the
module counter areas.

Controlling data collection. One way in which oper-
ating systems and other large multitasking applica-
tions differ from smaller executable objects is that
a significant amount of setup time may be required
before the benchmarks are ready to be run. An op-
erating system in particular must be active during
this setup phase. It is undesirable, though, for the
profile of the benchmark to be “polluted” by counts
that have accumulated during setup. One way to deal
with this problem is to provide a method to reset all
counters to zero when the setup phase is complete.
However, the number of counters used in an oper-
ating system can be very large, so that by the time
all counters have been cleared, some of them will
have again accumulated significant counts. Further-
more, accesses to the counters will cause memory
paging activity, which may distort the counts accu-
mulated on behalf of the page fault handling soft-
ware.

282 SCHMIDT ET AL.

To avoid these problems, we globally dedicated a bit
from the condition register of the processor for use
as aprofile enabling bit. This bit is tested within each
instrumentation hook to determine whether counts
should be accumulated. Although any processor reg-
ister bit could have been dedicated for this use, a bit
in the condition register was the ideal choice, since
condition register bits can be tested directly by con-
ditional branch instructions. With this bit available,
we were able to disable the instrumentation hooks,
set all counters to zero, perform setup for the bench-
marks, and then enable the hooks just prior to run-
ning the benchmarks. Since one bit is used to con-
trol all instrumentation hooks, the effect of enabling
or disabling profiling is instantaneous.

Data collection tools. After the high-use modules
have been compiled to insert instrumentation, they
are loaded onto an AS1400 system for the data col-
lection stage. A tool with four functions was created
on the ASI400 to facilitate data collection. Two of the
functions simply turn the profile enabling bit on and
off to determine whether the instrumentation code
should be executed. A third function finds all mod-
ule counter areas on the system and initializes their
counter fields to zero. The last function again finds
all module counter areas on the system, and extracts

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

them for transfer to the development machine for
use in optimization. Each module counter area is
stored in a separate file and given a name based on
the module with which it is associated.

Feedback of profile data. Once the profile data have
been transferred to the development platform, they
are ready to be used to guide optimization of the
code. Each profiled module is recompiled using a
special option indicating that profile data should be
read in and used. As each procedure in a module is
compiled, the slicox searches the MCA for each mod-
ule to find the PCA for that procedure. It then lo-
cates the control flow counters within the PCA (call
flow counters are ignored during compilation of a
procedure). Recall that each control flow counter
corresponds to one of the CFG arcs selected for in-
strumentation. The algorithm used to determine the
arcs to be instrumented is run again during the feed-
back phase to determine which arcs should be as-
signed the weights collected in the control flow
counters. Figure 9A shows a possible weighting as-
signed to the instrumented arcs from the example
in Figure 6, as modified in Figure 7.

The next step is to use the weights from the instru-
mented arcs to determine the number of times each
of the remaining arcs was traversed. As discussed by
K n ~ t h , ~ ' we can repeatedly select a node with only
one incident arc that has not yet been assigned a
weight, and determine the weight of that arc by
Kirchhoff s first law,35 which states that flow is con-
served at any point in a network. Since the uninstru-
mented arcs form a tree, there will always be such
a node to select, and this algorithm will succeed in
determining the weights for all uninstrumented arcs.
Figure 9B shows that node K can be selected first
in this example, and that the arc from node K to node
1 is determined to have weight 400 to satisfy con-
servation of flow. Figure 9C shows the full elabo-
ration of the arc weights for this CFG.

Once all arc weights have been determined, the
weights are recorded in the intermediate represen-
tation (IR) of the procedure. To facilitate subsequent
control flow optimizations, the arc weights are not
stored in the CFG, but directly in the IR instruction
stream. Each unconditional branch in the instruc-
tion stream is annotated with the weight of its cor-
responding arc. Each conditional branch is annotated
with two arc weights, indicating the frequencies with
which the branch was taken and not taken. For mul-
tiway branches (such as might be generated for a C

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

switch statement), we store the weights in a sepa-
rate branch table within the IR.

A useful side effect of branch annotation is that SLIC
programmers can see the branch frequencies in their
program listings. Since each instruction in the low-
level IR typically corresponds to a single PowerPc AS
machine instruction, we display both sets of instruc-
tions in our program listings. By careful examina-
tion of these listings, programmers can make infer-
ences about control flow patterns, such as the average
number of iterations executed per entrance to a loop.
This can be used, for example, to make informed
choices among alternative data structures.

Determination of all arc weights according to Kirch-
hoffs law is easily performed when all arcs can be
instrumented. Recall, however, that some arcs can-
not be directly instrumented due to the presence of
indirect branches. In such cases we inserted control
flow hooks directly within basic blocks incident to
the uninstrumentable arcs. We therefore needed
some place to store these block weights during feed-
back, since they could not be annotated on branches
like the rest. For this purpose we introduced a new
IR instruction called aprofweight. During feedback,
each directly instrumented block has a profweight
inserted at the beginning or end of the block, indi-
cating the number of times the block was entered
or exited (the distinction can be important in the
presence of exceptions). In almost all cases, this per-
mits us to infer the weight of each arc in the CFG.
In cases such as that shown in Figure 10 where we
cannot be certain of the exact weights of certain arcs,
we must arbitrarily assign weights to them that sat-
isfy conservation of flow.

A more serious concern arises from the possibility
of data loss due to concurrency. Suppose that the
counter for arc G + H in Figure 9A suffered a loss
in count of 60, as shown in Figure 11A. Then the
elaborated arc weights would appear as shown in Fig-
ure 11B. Note that the data loss has caused a change
in perception of the likely path of the branch at the
end of block B, and in the weights along paths from
B to H, but that this effect is localized and has not
changed the rest of the graph. Fortunately, we have
found the occurrences of data loss to be relatively
rare, and the amounts of data lost relatively low, so
that by using long-running benchmarks, the effects
of data loss are quite small in practice. (The ped-
agogical example of Figure 11 is extreme in that a
majority of the count for the affected arc was lost.)

SCHMIDT ET AL. 283

Figure 9 Inference of control flow graph (CFG) weights from a subset. (A) Weights assigned to the complement of a
spanning tree. (B) Calculating conservation of flow at node K. (C) Fully weighted CFG.

~~~ __________ 

284 SCHMIDT ET AL. IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998 



Figure 10 Indeterminate  arc  weights.  The  five  node  weights are given,  but  the  exact  arc  weights  cannot be determined. 

After branch and profweight annotations have been 
inserted, subsequent optimizations such as register 
allocation and instruction scheduling take advantage 
of the weights. Any optimization that changes the 
CFG must maintain the branch annotations correctly. 

Reordering basic blocks. After most other optimi- 
zation phases have completed, the slicox analyzes the 
weighted CFG to determine an optimized order for 
basic  blocks that  attempts  to maximize sequential 
control flow. That is,  blocks are positioned so that, 
insofar as possible, conditional branches will  usually 
not be taken.  Our algorithm is  largely based on the 
greedy algorithm identified as algol by Pettis and 
Hansen. l8 

Use of thegreedy algorithm. The greedy algorithm op- 
erates by constructing a new  basic  block order from 
the current order, in  which  it attempts to find long 
traces of basic  blocks that  are likely to be executed 
in sequence. It begins by selecting the procedure pro- 
logue (entry point) block  as the seed block for the 
first trace. For each trace, the algorithm  first attempts 
to extend the trace backwards by searching for a  pre- 
decessor of the seed block that has not yet been re- 
ordered; if multiple candidates are  found,  the  pre- 
decessor whose arc to the seed block has highest 
weight is selected. This block is placed prior to  the 
seed block  in the new order, and the process repeats 
for the newly selected block. This phase terminates 
when no unreordered predecessor can be found. 

IBM SYSTEMS JOURNAL, VOL 37, NO 2 ,  1998 

Note that this backward extension of the trace will 
be  vacuous for the first trace, since the prologue block 
for a  procedure will not have  any control flow pre- 
decessors. 

The  trace is then extended forward from the seed 
block in a similar manner. Candidates to follow the 
seed block are those of its control flow  successors 
that have not yet been reordered. If multiple can- 
didates are available, the  one with highest weight 
along the  arc from the seed block to the candidate 
is selected, and the process repeats for the newly se- 
lected block. The  trace terminates when no unre- 
ordered successor can be found. 

Each time a  trace has been terminated, a new seed 
block  must be determined for the next trace. Since 
we want to place code together  that is  likely to ex- 
ecute closely together in time, we consider only those 
blocks that are successors or predecessors of blocks 
that have already been placed in a trace. Each such 
block  is  assigned a priority value, computed as the 
sum of weights of all arcs incident to  the candidate 
block and to some previously reordered block. The 
block  with  highest  priority  is selected as the new seed 
block,  and the trace selection  algorithm repeats. Each 
trace is  placed  contiguously  following the previously 
generated trace. 

Figure 12A shows the traces selected for a sample 
CFG, with the new  block order shown  in Figure 12C. 

SCHMIDT ET AL. 285 



Figure 11 Effect of data loss on  weight  inference. (A) A count  of 60 is  lost  from  arc G+H. (B) Resulting  inferred  weights 
(compare  with  Figure 9C). 

1 

0 

286 SCHMIDT ET AL. IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998 



Figure 12 Trace  selection  in  a  weighted  CFG. (A) Selecting  a  trace. (B) Mapping to cache  lines  for  naive  code 
generation  order.  (C)  Mapping to cache  lines  after  profile-based  reordering. 

Compare this to the naive code  generation  order of 
Figure 12B. Note  that  the blue-shaded blocks rep- 
resent  the  “hottest”  trace  through  the  procedure. The 
dashed  lines in these figures show how the basic 
blocks might  be  mapped to instruction  cache lines. 
Note  that executing the  hot  trace when  placed in 
naive order  requires touching five cache lines, while 
the optimized order  requires only three. 

Modifications  to  the greedy algorithm. We chose to 
limit the greediness of the  Pettis  and  Hansen algo- 
rithm by sometimes  terminating  traces  even  when 
there  are  candidate successors  for the last block in 
the  trace.  One  reason  for  truncating a  trace is if the 
best  candidate successor is executed  much less fre- 
quently  than the last block in the  trace.  This  can oc- 
cur  when the  preferred successor of the last block 
has  already  been reordered.  It is sometimes the case 
that it would be  better  to begin a new trace  to pick 
up blocks that  are executed much more frequently. 
Figure 13 shows an example of this. Suppose  that 
the  current  trace has been  extended to include blocks 

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998 

Figure 13 Limiting  the  greedy  algorithm 

r- 

SCHMIDT ET AL. 287 



Figure 14 Limiting  the  greedy  algorithm  using  the 
perfect  partner  heuristic 

Figure 15 The  isolated  block  optimization 

X and Z. Note that  the preference X has for Z over 
Y is statistically insignificant, and that block W was 
executed much  less frequently than  either Y or Z. 
Once block Z has been  reordered, it  will  usually be 
preferable to  start  a new trace with  block Y rather 
than continuing on with  block  W, so that  the  hotter 
trace beginning at Y is packaged close to its prede- 
cessor X. 

288 SCHMIDT ET AL. 

Another reason to  truncate  a trace is to avoid re- 
ordering a successor of a block  when that successor 
would  actually “prefer”  to  be  reordered after a dif- 
ferent block that has not yet been reordered.  The 
greedy algorithm always looks at candidates in  only 
one direction; when scanning backwards to extend 
a trace, it determines which predecessor a given  block 
prefers, and when scanning forward, it determines 
which  successor a given  block prefers. No consid- 
eration is  given to preferences of the candidate 
blocks. Figure 14  shows an example of this. Assume 
that blocks V and Z have already been placed in a 
previous trace, block X has just been added to the 
current  trace, and blocks W and Y have not yet been 
reordered.  The greedy algorithm would reorder 
block Y after block X, regardless of the preference 
of block Y to follow  block W. Our modified algo- 
rithm will  only extend a trace when the candidate 
block  is ape~ectpartner-that is, if the current block 
prefers the candidate block, and the candidate block 
also prefers the  current block. 

Another modification to  the greedy algorithm was 
implemented to improve performance for cases  such 
as the  one shown  in Figure 15. The greedy algorithm 
will select a trace containing blocks A, C, and D, and 
possibly  many more blocks, before reordering block 
B, even though arc A + B is executed almost as fre- 
quently as arc A + C. If block B is reasonably small, 
placing  block B a long distance away from blocks A 
and C would  clearly not make the most  efficient  use 
of the instruction cache. A more efficient ordering 
would be ACBD. Our algorithm detects isolated 
blocks  such as B as  follows. Whenever we consider 
adding a successor  block D to  a trace, we check to 
see if (1) D has an unreordered predecessor B, (2) 
B is isolated (has no unreordered predecessors and 
no  successors other than D), (3) B contains relatively 
few statements, and (4) the execution frequency for 
B is not negligible relative to  the frequency of the 
predecessor for D in the trace (C in our example). 
If all  of these conditions hold, the  current  trace is 
ended without adding D, and a new trace is started 
with B as the seed 

Sometimes it is important  to  keep two blocks to- 
gether in their original textual order. We introduced 
a ShouldFollow flag to indicate that  a relationship of 
a blockwith its textual predecessor is important. For 
example, the instruction prefetching mechanism  im- 
plemented in the PowerPC AS A30 processor is con- 
strained (due  to limited resources) when branch in- 
structions are executed on two consecutive cycles. 
One way that this  can happen is  if a  return from a 

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998 



called procedure is immediately followed by a 
branch.-To reduce such occurrences, we detect when 
a block B ends with a  procedure call and mark its 
textual successor S with the ShouldFollow flag,  since 
if any other block  were  placed after B, we  would  have 
to add an unconditional branch to S following the 
procedure call. 

The ShouldFollow flag should only be  honored when 
the block containing the call  is executed relatively 
frequently. Consider the example  in Figure 16. Even 
though ordering block C after block A would cause 
a branch to be added after the procedure call in  block 
B, this  is  still preferable to  the  order ABC, which 
would require keeping the branch at the end of block 
A, because the  arc from A to  C is taken much more 
frequently than the arc from B to C. That is, the pen- 
alty of the back-to-back branch occurs rarely, and is 
therefore not important, whereas the presence of the 
extra branch in A may be costly. 

Whenever a block marked as ShouldFollow is about 
to  be added to  a trace, we check whether its textual 
predecessor was the last block added to the trace. 
If not, we  only add it to  the trace if the weight of the 
arc from its textual predecessor is  negligible  in  com- 
parison with the weight of the arc being followed  in 
the trace. The requirements for negligibility  can be 
tuned heuristically; we currently use a ratio of ten 
to  one. 

Although much of SLIC was rewritten in C+ + for 
the PowerPC AS  processor^,^^ quite a bit of legacy 
code dating back to  the System/38* (the predeces- 
sor to AWOO) still remains. Much of this code is  writ- 
ten in a variant of PL/I that is  very different from lan- 
guages  in common use today. One of the  features 
of this PL~I variant language is the ability to specify 
that  an exception handler should be enabled over a 
given textual range of the source code. The internal 
implementation of this  exception  model requires that 
the machine code covered by such an exception han- 
dler must  also remain contiguous. This places severe 
limitations on block reordering. We were forced to 
modify the trace selection algorithm to  treat each 
textual exception range within a procedure sepa- 
rately. The algorithm considers as candidates for  a 
trace only those blocks  in the CFG that reside in the 
current textual  exception range. Only after all  blocks 
in one range have been placed into traces can blocks 
in the next textual range be considered. This clearly 
reduces the opportunity for performance improve- 
ments due  to code reordering. 

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998 

Figure 16 Example  motivating  the  ShouldFollow flag 

Reordering procedures within a module. After com- 
piling  all procedures for a module, the slicox deter- 
mines a packaging order  for those procedures such 
that their spatial affinity reflects their temporal af- 
finity. This is done by examining the call  flow entries 
for each procedure and using them  to construct a 
weighted intramodular callgraph. This graph contains 
one  node  for each procedure in the module. There 
is a directed arc from procedure A to  procedure B 
if there is at least one (direct or indirect) call  flow 
entry in A  that targets B. The weight of this arc is 
the sum of the weights of all such call flow entries. 
Calls to procedures outside the module being com- 
piled are ignored; these will be considered when re- 
ordering modules, as discussed  below. 

Pettis and Hansen’s algorithm to construct a pro- 
cedure  orderIs is based on coalescing  high-weight 
arcs in an undirected call graph. Our intuition was 
that this method successfully places together pairs 
of procedures that have  high  affinity for one  another, 
but that this limited view of temporal affinity  may 
not do so well for larger groups of procedures ex- 
ecuted close together in time. We chose to imple- 
ment an algorithm for selecting  call traces that is  very 
similar to  our algorithm for selecting basic  block 
traces. As in the basic  block case, it proves useful to 
extend traces only  when perfect partners  are found. 
When seeding a new trace, we also  limit our choice 
of seed procedure  to those procedures adjacent to 
procedures that have already been reordered, when 
such procedures exist. The result is that all proce- 

SCHMIDT ET AL. 289 



dures in each  connected  component of the call graph 
are packaged  together.  This is particularly  impor- 
tant for  modules (such as dynamic link libraries)  that 
provide  several  independent services, each of which 
is implemented using several procedures.  More work 
is needed  to  compare  the effectiveness of our algo- 
rithm with that of Pettis  and  Hansen. 

Reordering modules. As previously mentioned, we 
were  constrained by our software  maintenance  pro- 
cesses to permit  reordering of procedures only within 
module  boundaries. To reduce  this  lost  performance 
opportunity, we decided to also order modules so 
that  those modules  containing  procedures that  tend 
to be  executed  together in time would have spatial 
affinity. We developed two tools to produce this pack- 
aging order. 

The first tool analyzes the call flow entries  from all 
MCAs within SLIC and  produces  a full weighted call 
graph  for all SLIC procedures.  The second  tool  reads 
the call graph  and  reduces it to  an internodular call 
graph. This call graph  contains  one  node  for  each 
profiled  module in SLIC, with an  arc  from  module 
A to module B if there is at least one procedure 
within A that calls at least one  procedure within B. 
The weight of this arc is the  sum of the weights of 
the (direct  and  indirect) call flow entries  from  A  to 
B. The tool then analyzes the  intermodular call graph 
and  determines an optimized  module  packaging  or- 
der, using the  same algorithm to analyze the  inter- 
modular  graph  as is used to  reorder  procedures 
within a  module. 

Unfortunately,  the  module packaging order  thus  pro- 
duced  cannot  be followed to  the  letter, since  each 
module is constrained to reside in a specific Rudest. 
If a  pageable  module  would  prefer to  be packaged 
next to a  module in the nucleus,  this  request  cannot 
be  granted.  At  the  moment, we do  not  take  Rudest 
constraints  into account  when  determining the sug- 
gested  module  order.  Instead,  the linklloader is given 
the  preferred  module  order,  and  loads modules into 
their  respective  Rudests in the  order they are  pre- 
sented.  An  alternative  method would be  to build a 
separate  intermodular call graph  for  each  Rudest, 
and  produce  separate optimized module  orders. This 
may or may not  produce  a  better ordering: our cur- 
rent  method can find traces that leave  a  Rudest  and 
immediately return  to it, while using separate  graphs 
for  each  Rudest would  lose  this  information.38 

Another advantage of the existing method is that it 
allows us to analyze placement of modules  within 

290 SCHMIDT ET AL. 

Rudests; in some  cases,  for  example, it may pay to 
move a  pageable  module  into  the  nucleus if it  has 
strong affinity for  a  particular  nucleus  module. We 
can also analyze the overall SLIC call graph  to  de- 
termine which procedures in a  module  are  used 
rarely. Many  times  it is possible to move these low- 
use procedures  into  separate  modules  to improve the 
effectiveness of procedure  and  module  reordering. 

Field  maintenance of restructured code 

Clearly the tasks of instrumentation,  data collection, 
and  optimization are time-consuming,  particularly 
when  applied  to  a  software  product of this size. In 
designing our  methods, we  felt  that it  might not  be 
practical to  repeat  these tasks  whenever  a new fix 
needed  to  be shipped to customers. Therefore we 
concentrated  on ways to reuse existing profile data 
where possible when compiling fixes, attempting to 
minimize the  performance  degradation  that might 
otherwise  result. 

Profile data  for  each  module  are archived  together 
with the  source  code. As already  seen,  the  hierar- 
chical structure of the counter  areas allows existing 
data  to  be  found  for any procedure  during  the  pro- 
file feedback  phase.  This  means  that  procedures 
whose  control flow has  not  been modified by a fix 
can  continue  to  use  the existing profile data, while 
changed  procedures in the  same  module  are  opti- 
mized without profile data. This  raises the  question 
of how we can  detect  whether  a  procedure  has  been 
modified. 

A very simple  test that catches  most  control flow 
modifications is to check  whether  the  numbers of 
control flow and call flow counters in the PCA for  a 
procedure  are  equal  to  the  numbers of counters  that 
are expected. If there is a  mismatch, there have 
clearly been changes to  the  control flow of the  pro- 
cedure,  and  the profile data should  be  ignored.  The 
obvious drawback to this  method is that  on occasion 
a  control flow  will be  changed in such  a way that  the 
numbers of expected  counters  remain  identical,  but 
those  counters now apply to different  control flow 
arcs. Instead,  when  creating  the PCA during  instru- 
mentation,  and  when  reading  the  profile  data  dur- 
ing feedback,  the slicox computes  a  “signature”  from 
the CFG. This  signature consists of a  checksum of 
the block numbers on  either  end of each  control flow 
arc,  and is stored  in  the PCA during  instrumentation. 
If the  stored  and  computed signatures do  not match 
during profile feedback,  the profile data  are ignored. 
The likelihood of two  different  graphs having the 

IBM SYSTEMS  JOURNAL, VOL 37, NO 2, 1998 



same signature is  extremely small, and ca 
counted. 

.n be  dis- 

Note  that with either of these methods, a simple fix 
that only alters the instructions within a basic  block, 
and does not change the control flow structure of 
the procedure, does not invalidate the profile data. 
Many PTFS satisfy  this description (consider fixing a 
failure to initialize a variable). Thus these methods 
are  better  than simply testing whether any source 
file  used to compile a  procedure has changed, since 
the latter would invalidate profile data unnecessar- 
ily for such simple fixes. 

On the other hand, there are cases where profile data 
are no longer accurate even though the CFG for a 
procedure has not changed. For example, reversing 
the sense of a conditional branch will leave the CFG 
unchanged, but old  profile data will be inaccurate. 
Similarly, change in the behavior of callers or callees 
for a procedure may change the behavior of that pro- 
cedure. Of course, use of invalid profile data does 
not produce incorrect behavior, just reduced exploi- 
tation of performance opportunities. In any  case, pe- 
riodic reprofiling of all instrumented parts is impor- 
tant, and we do this at every release of the ASI4OO 
operating system. 

For the benchmarks we currently use to generate  a 
profile for SLIC, we  have found a practical way to up- 
date the profile information, so that little or no per- 
formance is lost. When a programmer provides a fix 
to  a module, a monitoring process checks to see if 
profile data were invalidated for any procedure in 
the module. If so, the changed module is automat- 
ically reinstrumented, loaded onto  a test machine 
with the most current version of SLIC, benchmarked, 
and reoptimized. For most modules, the identical 
benchmarks are run that were used to profile the 
original release. For modules that affect TPC-C per- 
formance, a simpler batch version of the TPC-C 
benchmark is used. (The standard benchmark re- 
quires extensive setup time, significant hardware re- 
sources, and human intervention.) Study of the MCAs 
has indicated that the long-running benchmark and 
the batch version produce very  similar results for 
most modules. 

Although  reprofiling has proved  practical for our cur- 
rent benchmark suite, the mechanisms to detect pro- 
file data  that have been invalidated, and  to optimize 
only those procedures that have not changed, are 
quite important. First, the detection of invalid pro- 
file data is used to determine whether a module 

IBM SYSTEMS JOURNAL, VOL 37, NO 2. 1998 

should be reprofiled; clearly the resources necessary 
to reprofile a module should not be consumed un- 
necessarily. Second, in our ongoing  efforts to profile 
other portions of OS~400, we have not always found 
practical means to  automate reprofiling of those 
modules. 

Both the original profiling of SLIC and the reprofil- 
ing of  fixes are completely transparent  to  the  pro- 
grammer. Developers need not even be aware that 
their modules were selected for profiling. 

Benchmark selection 

An operating system performs many different func- 
tions on behalf of different types of users and ap- 
plications, so  choosing representative benchmarks 
can  be a daunting task.  We naturally decided to look 
at benchmarks that  represent  areas of performance 
that  are critical to our customers. 

Most of our customers use  business applications 
characterized by a traditional transaction process- 
ing model. An industry standard benchmark used for 
measuring transaction processing performance is 
TPC-C, created by the Transaction Processing Per- 
formance Council.28 We created an internal work- 
load that parallels the functions measured by that 
benchmark, which for simplicity we refer to here as 
TPC-C. A benchmark called SPEED also measures 
transaction processing performance, using a 
clientherver environment. 

Another class of customer consists of those that de- 
velop applications for  the ASI4OO. For these, perfor- 
mance of program translation and binding within 
SLIC is  very important, so we collected a variety of 
programs written in different languages to form a 
Program Model benchmark. Other aspects of the sys- 
tem that were profiled include support for network 
protocols, such as TCpiIP and APPC (Transmission 
Control Protocol/Internet Protocol, and Advanced 
Program-to-Program Communications), primitives 
for the  Integrated File System (IFS),  and run-time 
support primitives for the C language.39 

These performance areas were also  used  in deter- 
mining  which modules within SLIC should be pro- 
filed. We took measurements using a sampling pro- 
filer to determine in  which modules the most time 
was spent when running these benchmarks. After 
sorting the modules by decreasing contribution, only 
those modules contributing to the  top 95 percent of 
the time spent in at least one benchmark were se- 

SCHMIDT ET AL. 291 



lected for profiling. This cutoff eliminated many mod- 
ules  from  consideration  whose  contribution was too 
slight for significant payoff from  profile-based  op- 
timization. 

One problem with using multiple  benchmarks is the 
disparate  lengths of time  needed  to  run  each bench- 
mark. Many portions of the  operating system are ac- 
tive during more  than  one of these  benchmarks  (for 
example, the  task  management  and  storage  manage- 
ment  software),  and there may be differences in how 
they  act in these  different  settings. If we were to sim- 
ply add  the weights collected  from  each  benchmark 
together  and  use  the  result to guide  optimization, 
the longest-running  benchmark (TPC-c) would have 
a  disproportionate effect on the results. 

To avoid this, we built  a  tool to combine the  control 
flow weights from  separate  sets of collected data.  The 
tool  normalizes  the  control flow counters  for  each 
procedure  according to  the  number of times  the  pro- 
cedure was invoked for  each  benchmark.  Suppose 
that a  procedure was invoked Ni times  for  each of 
the i benchmarks,  and  let N,,, = maxi{N,} .  Then 
the combined  value k of a  control flow counter is 
computed  as k = Eikr (N, ,JNi ) ,  where k ,  is the 
value of the  control flow counter  for  the  ith  bench- 
mark.  This gives equal weight to all benchmarks in 
determining  the final combined  profile. 

Since not all benchmarks may be  considered equally 
representative of expected customer activity, the tool 
also  permits  a weighting factor to be  applied to each 
of the normalized weights in order  to adjust the over- 
all contribution of each  benchmark.  These weights 
were heuristically determined  as follows. First, area 
experts  were  consulted to  determine  a  desired 
weighting OW, for  each  benchmark w as a  whole. 
(For example, TPC-C was given a weight of 3, com- 
pared  to a weight of 2 for TCPIIP.) These  desired 
weights  must then  be normalized to account  for dif- 
ferences in run  time  and CPU utilization  among the 
benchmarks.  This was done by selecting a single pro- 
cedure P that was  highly used by all the benchmarks, 

292 SCHMIDT ET AL. 

and  that was known by its designer to have a  similar 
expected  profile  for  all the  benchmarks.  Note  that 
the decision to use a single procedure P was a  heu- 
ristic one  that was believed to  meet  our  needs; al- 
ternatively,  a  set of such  procedures  might  be  cho- 
sen. The  formula  to  compute overall  benchmark 
weights is given below. 

Let CPU, be  the  amount of CPU time  spent  execut- 
ing procedure P during  workload w. Let I ,  be  the 
number of invocations of procedure P during work- 
load w ,  and  let I,,, = m a ,  { I , ) .  Let b denote a 
workload  such that I,, = I,,, and assign it an arbi- 
trary weight W b .  To  determine  the desired weight 
W ,  for  a  workload w, we first applied  the opinions 
of the  area experts, scaling W,, by the  ratio 
D W J D  W,,. We  then calculated the  amount of CPU 
time  spent in procedure P per  invocation of proce- 
dure P on  each workload w as T ,  = CPU,/I,, and 
scaled the previous  result by the  ratio TWIT,  to ac- 
count  for differences in usage of P. The complete 
heuristic  equation we used  for the normalized 
weights is 

Performance results 

For  purposes of this paper, we  measured  the effec- 
tiveness of feedback-directed  program  restructuring 
(FDPR) on a  pre-release version of OSi400 Version 4 
Release 1. (FDPR was first used on system licensed 
internal  code,  or SLIC, in Version 3 Release 7.) Pro- 
file data were  collected  for the  benchmarks previ- 
ously described,  and the combined data were  used 
to optimize the high-use SLIC modules. We  then mea- 
sured  the  performance  improvements of several 
benchmarks on a  number of different ASI400 mod- 
els. Table 1 shows a  comparison of the processors 
and caches  for the models we employed.  Because of 
constraints on machine availability, not all bench- 
marks  were  run on all  models. 

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998 



Table 2 shows the reduction in CPU time fc )r  the  mea- 
sured  benchmarks.  (For  the IFS benchmark,  the  re- 
duction in response  times is reported.) All of the 
benchmarks  measured  are  the  same  ones used in 
gathering  the profile data.  The  Program  Model 
benchmark was measured  both when compiling 
workloads with minimal optimization and  when com- 
piling workloads with full  optimization (the profile 
data  contained information  gathered using both  op- 
timization levels). Improvements  for  the  Program 
Model  benchmark  were  measured in an uncon- 
strained  memory  environment (128 MB available) 
and in a more  constrained  environment (8 MB avail- 
able). 

More  detailed  hardware  performance  information 
is provided in Tables 3 and 4 for many of the bench- 
marks. These  data were  recorded using hardware 
counters  aboard  the ASI400 processors. Each entry 
in the  table reflects the  percentage change of a given 
measured  quantity;  for  example, the first row shows 
the  percentage  decrease in cycles per instruction 
(CPI)  when using a version of SLIC optimized with 
FDPR as  compared  to  a version of SLIC without FDPR. 
The column  labeled Average gives the  harmonic 
mean of the  data in the  other columns. 

Note  that  the  performance  improvements  from  Ta- 
ble 2 are largely explained by changes in CPI.  This 
seems  to  indicate  that,  for most of the benchmarks, 
the effects of basic block reordering  dominate  those 
of procedure  reordering. By far  the largest  contrib- 
utor  to  the reduction in CPI is the  reduction in in- 
struction  cache miss rates.  This reflects the success 
of FDPR in reordering basic blocks within procedures 
to increase  sequential  control flow. The miss ratios 
for the  translation lookaside buffer (a hardware cache 
for  the SLIC memory  page  table) appear  to  be af- 
fected largely randomly.  This is probably explained 
by the  reordering of procedures in memory, which 
may increase or decrease  the  number of hash col- 
lisions that occur  during  memory paging. 

Table 4 indicates  the effect of FDPR on dynamically 
executed branches in SLIC. In all cases, the  total  num- 
ber of branches  executed is slightly reduced,  as ex- 
pected. The percentage of these  branches  that  are 
unconditional  branches is sharply  reduced,  as is the 
percentage of conditional  branches that  are  taken. 
Both of these  statistics  indicate that basic block re- 
ordering is successful in generating  long  traces of 
blocks that can execute  sequentially. 

Table 2 CPU time reduction from applying  FDPR to SLIC 

*Kcspon% time reduction 

Table 5 summarizes the effect of FDPR on branch 
penalties. The first group of statistics  indicates the 
percentage of instruction  cache miss cycles that  are 
attributable  to  taken  branches,  demonstrating  that 
FDPR significantly reduces  this  component of the in- 
struction  cache  (icache) miss cost by ensuring that 
more  branches  are  not  taken.  The second group 
shows the  percentage of  all  cycles that were  spent 
waiting on an icache miss due  to any branch.  This 
figure was reduced by an average of 20 percent across 
all workloads; again this is due  to  the increased  se- 
quentiality of the  code.  The final group is similar, 
but  here we are  interested only in the miss cycles 
attributable to mispredicted  branches. The average 
reduction of 31 percent  indicates that  “straighten- 
ing” the  code is important  for  improving  the effec- 
tiveness of the branch  prediction  hardware. 

Some  additional data  were  captured  from  the  op- 
timized SLIC by a  sampling profiler; these  data ap- 
pear in Table 6. The first row indicates how often 
the  sampler  recorded  that SLIC was executing  code 
from an FDPR-optimized module.  Note  that  these fig- 
ures  are much  smaller  than the 95 percent cutoff 
point that was used in determining which modules 
to profile. The  reason  for this is that many of the 
high-use modules are currently  not  compiled by the 
slicox. Much of the SLIC legacy code is written in a 
language that is compiled directly into machine in- 
structions,  instead of into  an  intermediate  represen- 
tation  that can be processed by the slicox. Clearly 
this code  represents  an unexploited opportunity. The 
second row of Table 6 indicates an  upper  bound on 
the  estimated  performance improvement by FDPR if 
all code  were  processed  through  the slicox and  pro- 

IBM SYSTEMS JOURNAL, VOL 37, NO  2, 1998 SCHMIDT ET AL. 293 



Table 3 Changes  in  performance  measurements  due  to FDPR 

Note 1 The average has been omitted, since the harmonic mean is undefined for ratlos of differing signs, and the arithmetic mean is not meaningful 
Note 2 Run on a Model 500 that has no L2 cache. 

Table 4 Changes  in  dynamic  branch  measurements  due  to  FDPR 

Table 5 Reduction  in  branch  penalty  due  to FDPR 

Table 6 Profiled  module  data  for  optimized  SLlC 

294 SCHMIDT ET AL. IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998 



filed, using linear  extrapolation  from  the  data in Ta- 
ble 2. 

We were initially concerned  that optimizing  for  cer- 
tain  workloads might contribute to degradations in 
environments  not  represented by those  workloads. 
In  the early  stages of development, we used only the 
TPC-c and  Program  Model  workloads  as  our profile 
inputs.  We  then  measured  the  performance of a 
number of other workloads. The results, shown in 
Table 7, demonstrate  that most of these  benchmarks 
were improved, and  none showed any degradati~n.~'  
It  appears  that  the behavior of much of the  oper- 
ating system is predictable  across  a  wide  range of 
workloads. 

An  important point about  these  performance  num- 
bers is that they show improvements to code that  had 
already been heavily hand-tuned.  Prior  to  the  intro- 
duction of  FDPR, a  good  deal of human effort had 
gone  into analyzing and  improving  hot  spots in the 
code,  manually  splitting low-use procedures  out of 
high-use  modules,  inserting  compiler  directives  into 
code  to identify infrequently used code  paths,  and 
manually ordering  modules in their  Rudests  accord- 
ing to sampled profiles. That is, a great  deal of the 
opportunity  for  performance  improvements  due  to 
FDPR had  already  been  addressed  laboriously by 
hand;  the  improvements  summarized in Tables 2 
through 6 are  additional gains beyond these  manual 
improvements. One of the  anticipated  benefits of 
FDPR is that most of  this hand-tuning activitywill now 
be avoided on  subsequent releases. 

Concluding remarks 

In this paper we have demonstrated  the feasibility 
of applying profile-based  optimizations,  particularly 
those involving code  reordering,  to  operating system 
code, in such  a manner  that  the resulting  code  can 
be easily supported in the field with a  minimum of 
performance  degradation.  Although we have con- 
centrated in this paper  on  the use of profile data  for 
code  restructuring, the  data  are also used today to 
guide the instruction  scheduler  and  register alloca- 
tor,  and will be used for  more  optimizations in fu- 
ture releases. Note  that  the difficulty  in applying 
code-restructuring  techniques to operating system 
code  does  not apply to many other profile-based  op- 
timizations,  provided  they do not operate across 
module  boundaries. 

In  an upcoming release, we are providing similar pro- 
filing support  above  the MI for use by our custom- 

IBM SYSTEMS JOURNAL, VOL 37, NO 2. 1998 

Table 7 Performance  improvements  for  unprofiled 
workloads (SLIC version 3 release 7) 

ers,  integrating  profile-based  optimization  into  the 
AS/400 native  translator  and  program  binder. We an- 
ticipate that this will improve  performance  for many 
ASI400 applications.  Since many applications exhibit 
better locality than  operating system code,  improve- 
ments  for  those  applications may be less than  the 
results  reported  here. However, many large business 
applications suffer from locality problems  similar  to 
the  operating system; these  applications may see  re- 
sults  comparable to those  measured  for SLIC. Even 
programs with good  temporal locality will benefit 
from  code  rearrangement  to  improve  their  spatial 
locality, and  from  the improved efficiency  of sequen- 
tial instruction  prefetching that we can  provide. 

We also  plan to expand our uses of profiling within 
SLIC. For example, we may decide  to also profile the 
initial  program  loading (IPL) path  executed  when an 
ASI400 is rebooted in order  to  reduce  the  time  that 
requires.  More ambitious would be modifying the 
link/loader to permit  procedures  to  be  reordered 
across module  boundaries while still supporting PTFS 
in the field. Finally, we might choose to implement 
Pettis  and  Hansen's  idea of  moving infrequently used 
basic blocks out of a  procedure body altogether, al- 
though  currently too many  components in SLIC as- 
sume  that a  procedure body is contiguous. 

The  Program  Model  test  team (IBM ASI400 Division, 
Rochester,  Minnesota)  has  found  another  use  for 
profile  data.  They have constructed  a  code  coverage 
tool  for analyzing the effectiveness of test  suites in 
covering the  code they are intended to test.  Although 
this  tool is not  capable of determining  whether all 
possible paths  through  a  procedure  have  been ex- 
ercised, it is able  to  indicate  those  procedures  and 
basic blocks that have not  been exercised at all. This 
tool is proving very useful in improving the quality 
of testing. 

SCHMIDT ET AL. 295 



Acknowledgments 

Many outstanding individuals contributed to the suc- 
cess of this project. Itai Nahshon provided substan- 
tial guidance and assistance, sharing his experience 
with developing FDPR for AIX. Mark Novick, Dave 
Lambert, Scott Hanson, and Jim Holmes developed 
substantial portions of the slicox and  the benchmark 
and feedback tools. David Sandifer and Bob Petrillo 
provided support for FDPR in other SLIC components, 
and Bill Seurer  and Pat Haugen provided support 
in the compiler front ends. Brent Hoegh, Dale Peter- 
son, and Mark Sloneker spent many hours planning 
and implementing methods to add profiling to our 
product build and test processes. Blair Wyman  was 
key to running the first  profiled  version of SLIC. Sandy 
Ryan and Kim Greene helped with performance 
analysis. Keith Cooper, Jeff DeKelver, Mark Gibbs, 
and Joe  Zoght developed the profile-based test cov- 
erage tool. Finally,  very special thanks go to Clint 
Laschkewitsch, Ed Gomez, and Mike Tomashek for 
their support  and encouragement throughout the 
project. 

*Trademark or registered trademark of International Business 
Machines Corporation. 

**Trademark or registered trademark of the Transaction  Pro- 
cessing Performance Council. 

Cited  references  and  notes 

1. K. Roland and A. Dollas, “Predicting and Precluding Prob- 
lems with Memory Latency,” IEEE Micro 14, No. 4, 59-67 
(1994). 

2. L. A. Belady, “A Study of Replacement Algorithms for a Vir- 
tual-Storage  Computer,” ZBM Systems  Journal 5, No. 2,78- 
101 (1966). 

3. P. J. Denning, “The Working Set Model for Programming 
Behavior,” Communications of the ACM 11, No. 5, 323-333 
(1968). 

4. P. J. Denning,  “Virtual Memory,” Computing Surveys 2, No. 
3,  153-189 (September 1970). 

5. C. V. Ramamoorthy, “The Analytic Design of a Dynamic Look 
Ahead and Program Segmenting System for Multiprogrammed 
Computers,”Roceedings of theACMNationa1 Conference, ACM 
Pub. P-66, ACM, New York (1966),  pp. 229-239. 

6. T. C. Lowe, “Automatic  Segmentation of  Cyclic Program 
Structures Based on Connectivity and Processor Timing,” 
Communications of the ACM 13, No. 1,3-9  (January 1970). 

7. E. W. Ver Hoef,  “Automatic  Program  Segmentation Based 
on Boolean Connectivity,” Proceedings ofAFZPS 1971 SJCC, 
AFIPS Press, Montvale, NJ (1971), pp. 491-495. 

8. J.-L. Baer and  R. Caughey, “Segmentation and Optimiza- 
tion of Programs  from Cyclic Structure Analysis,” Proceed- 
ings ofAFZPS 1972 SJCC, AFIPS Press, Montvale, NJ (1972), 

9. R. Snyder, “On the Application of apriori Knowledge of Pro- 
gram Structure to the Performance of Virtual Memory Com- 
puter Systems,” Ph.D. thesis, University of Washington, Se- 
attle, WA 98195 (November 1978). 

pp. 23-36. 

296 SCHMIDT ET AL. 

10. D. J. Hatfield and J. Gerald,  “Program  Restructuring  for Vir- 
tual Memory,” ZBM Systems  Journal 3, 168-192 (1971). 

11. D. Ferrari, “Improving Locality by Critical Working Sets,” 
Communications of the ACM 17, No. 11,614-620 (Novem- 
ber 1974). 

12. S. J. Hartley, “Compile-Time Program Restructuring in Mul- 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

tiprogrammed Virtual Memory Systems,”ZEEE Transactions 
on Sofhyare  Engineering 14, No. 11, 1640-1644 (November 
1988). 
Y. Wu, “Ordering  Functions  for Improving Memory Refer- 
ence Locality in a Shared Memory Multiprocessor System,” 
Proceedings of the 25th International Symposium on Microar- 
chitecture, Portland, OR (December 1992), pp. 218-221. 
A. J. Smith, “Cache  Memories,” Computing Surveys 14, No. 
3. 473-530 (1982). 
S. McFarling, “Program  Optimization  for  Instruction Cach- 
es,” Proceedings of the Third International Conference on Ar- 
chitectural Support for Programming Languages and  Operat- 
ing Systems, Boston, MA (April 1989), pp. 183-191. 
A. Mendelson, S.  S. Pinter, and  R. Shtokhamer,  “Compile 
Time  Instruction  Cache Optimizations,”ACMComputerAr- 
chitecture  News 22, No. 1, 44-51 (March 1994). 
W.-M. Hwu and  P. P. Chang, “Achieving High Instruction 
Cache  Performance with an Optimizing Compiler,” Proceed- 
ings  of the 16th AnnualZntemational Symposium on Computer 
Architecture, Jerusalem, Israel (May-June  1989), pp. 242-251. 
K. Pettis and  R. C.  Hansen, “Profile Guided Code Position- 
ing,” Proceedings  of the ACM  SZGPUN Conference on Pro- 
grammingLanguage  Design andZmplementation, White Plains, 
NY (June 1990), pp. 16-27. 
R.  Gupta  and C.-H. Chi, “Improving Instruction  Cache Be- 
havior by Reducing  Cache  Pollution,” Proceedings of Super- 
computing ’90, New York (November 1990), pp. 82-91. 
J. Ferrante, K. J. Ottenstein, and J. D. Warren,  “The  Pro- 
gram Dependence Graph  and Its  Use in Optimization,”ACM 

\ I  

Transactions on Prograkming Languages and Systems 9, No. 
3,  319-349 (July 1987). 
R. R. Heisch, “FDPR’for AIX Executables,” AIXpert, No. 

R. R. Heisch, “Trace-Directed  Program  Restructuring  for 
AIX Executables,” IBMJournal of Research  and Development 
38, No. 5, 595-603 (September 1994). 
I. Nahshon  and D. Bernstein, “FDPR-A Post-Pass Object 
Code Optimization Tool,” Proceedings of the Poster  Session 
of CC ’96-Znternational  Conference on Compiler Construc- 
tion, Sweden (April 1996), pp. 97-104. 
S. E. Speer, R. Kumar, and C. Partridge, “Improving UNIX 
Kernel Performance Using Profile Based Optimization,” 1994 
H4nter USENZX, San Francisco, CA (January 1994), pp. 181- 
188. 
J. B. Chen  and B. N. Bershad, “The Impact of Operating Sys- 
tem Structure on Memory System Performance,” Proceed- 
ings of the Fourteenth ACM Symposium on Operating  Systems 
Principles, Asheville, NC (December 1993), pp. 120-133. 
F. G. Soltis, Inside the AS/400, Duke Press, Loveland, CO 
(1996). 
M. H. Lipasti, IBM Rochester, MN, personal communica- 
tion (August 1995). 

4 (August 1994), pp. 16-20. 

28. Transaction Processing Performance Council, “TPC Bench- 
mark C: Standard Specification,” Revision 3.2 (August 1996). 
Available at http://www.tpc.orgicspec.html. 

29. Note  that  the  data may not be completely valid, since chang- 
ing the callers or callees for a procedure  can change the be- 
havior of the procedure; in practice, however, treating the 
data as valid gives good results. 

IBM SYSTEMS  JOURNAL, VOL 37, NO 2, 1998 



30. 

31. 

32. 

33. 

34. 

35. 

36. 

37. 

38. 

39. 

40. 

D.  E. Knuth, The Art of Computer Programming, Volume I :  
FundamentalAIgonthms, second edition, section 2.3.4.1, Ad- 
dison-Wesley Publishing Co., Reading,  MA (1973). 
T. Ball and J. R. Larus, “Optimally Profiling and Tracing Pro- 
grams,” ACM Transactions on Programming  Languages  and 
Systems 16, No. 4,  1319-1360 (July 1994). 
A.  Goldberg,  “Reducing  Overhead in Counter-Based  Exe- 
cution Profiling,” Technical Report CSL-TR-91-495, Com- 
puter Systems Laboratory, Stanford University, Stanford, CA 
(October 1991). 
A. D. Samples,ProjiZe-Driven Compilation, Ph.D. thesis (Rep. 
UCBICSD 91/627), Computer Science Department, Univer- 
sity of California, Berkeley, CA (April 1991). 
M. R. Garey and D. S. Johnson, Computers  and  Intractabilify: 
A Guide  to  the  Theoly ofNP-Completeness, W.  H. Freeman and 
Company,  New York (1979). 
G. Kirchhoff, Annalen der  Physik  und Chemie 12, 497-508 
(1847). 
In some cases, this transformation  interacts badly with the 
instruction prefetching hardware scheme. The actual  pred- 
icate we use to determine  whether to restart  a  trace with an 
isolated block is therefore more complicated than described 
here. 
W. Berg, M. Cline, and M. Girou, “Lessons Learned from 
the OSI400 00 Project,” Communications of the ACM 38, 
No. 10, 54-64 (October 1995). 
This  same criticism might be leveled at  our decision to only 
consider intramodular arcs when determining  procedure  or- 
der within modules. This was a pragmatic decision based on 
the availability of intramodular call How data within the MCA 
for the module being translated. Alternatively, the full SLIC 
call graph could be analyzed for each module, at the cost of 
additional compile time and  a shared-resource bottleneck (the 
SLIC call graph file) during  distributed compiles. 
For  more detailed information on ASI400 internals, see  Ref- 
erence 26. 
This experiment was performed  on  a very early pre-release 
version of OSi400 Version 3  Release 7, at which time fewer 
critical modules were eligible to be compiled through  the sli- 
cox. The improvement to  TPC-C was roughly 4  percent, and 
the improvements to Program Model were between 5 per- 
cent and 12  percent in various configurations. The numbers 
in Table  7 should be analyzed in light of these lower perfor- 
mance figures. 

Accepted for publication December 3, 1997. 

for  the ASI400, working on compiler optimizations for the ASI400 
optimizing translator. He has previously worked on various sys- 
tem and  computer architecture projects, as well  as compiler 
projects for  both the ASI400 and  the Systemi38. Dr. Roediger is 
a  member of the ACM. He received a B.S. degree  and MS. de- 
gree in applied mathematics and computer science from Wash- 
ington University, St. Louis, Missouri, in 1972, and  a D.Sc.  in com- 
puter science from Washington University in 1980. He holds 16 
filed patent applications. 

Cynthia  S. Mestad IBMASI400 Division,  3605  Highway 52North, 
Rochester,  Minnesota  55901  (electronic  mail:  Cindy Mesiad/ 
Rochester/lBM@IBMUS). Ms. Mestad is currently a staff software 
engineer doing performance analysis on  the AS/400 at IBM in 
Rochester, Minnesota. Upon completion of a  computer program- 
ming course at Brown Institute in Minneapolis, Minnesota,  she 
joined IBM in  1980  as a computer operator  on  the IBM Systemi38. 
She has held various testing, programming, and project manage- 
ment positions within IBM throughout her career.  She has fo- 
cused on  the Systemi36, SystemI38, and ASI400. 

Bilha Mendelson IBM Research  Division,  Haifa  Research Lab- 
oratory,  Matam-Advanced  Technology  Center,  Haifa  31905, Is- 
rael (electronic  mail: bilha@vnet.ibm.com). Dr. Mendelson has 
been  a  member of the Haifa  Research  Laboratory in Israel  for 
several years. She worked on avionic real-time systems at Elbit 
Ltd. before attending graduate school. In 1990 she joined the Haifa 
Research  Laboratory,  where she is  now the manager of the  code 
optimization and performance improvements group.  She holds 
a BSc.  and M.Sc.  in computer science from the Technion-Israel 
Institute of Technology, Haifa, and a  Ph.D. in electrical engineer- 
ing from the University of Massachusetts at Amherst. Her  areas 
of interest include code optimization algorithms, compiler tech- 
nology, computer  architecture, and data-flow systems. 

lnbal Shavit-Lottem IBM  Research  Division,  Haifa  Research 
Laboratory,  Matam-Advanced  Technology  Center,  Haifa  31905, 
Israel  (electronic  mail: ishavit@vnet.ibm.com). Mrs. Shavit-Lot- 
tern  is currently a  member of the code optimizations and per- 
formance improvements group in the Haifa Research  Labora- 
tory, where  she  has  been working since 1992. She works on 
machine-dependent  (back-end) compiler improvements and  op- 
timizations. She received her B.Sc. degree in computer science 
from the Technion-Israel Institute of Technology in Haifa. She 
has four filed patent applications in the area of code optimiza- 
tions. Her  areas of interest include code optimization algorithms, 
compiler technology, and graphical user interfaces. 

William J. Schmidt ZBM AS1400  Division,  3605  Highway 52 
North, Rochester,  Minnesota  55901  (electronic  mail:  wjs@vnet. 
ibrn.com). Dr. Schmidt is an advisory software engineer with the 
SLIC Program Model  group for the ASI400. He has been devel- 
oping compiler optimizations for the ASI400 optimizing trans- 
lator since joining IBM in 1992. He received a B.A. in mathe- 
matics and music from  Bethel College, North Newton, Kansas 
in 1984, and MS. and Ph.D. degrees from Iowa State University, 
Ames, Iowa  in 1991 and 1992, respectively. He holds 19 filed 
patent applications and two issued US .  patents, primarily in the 
area of compiler optimizations. His  current  interests include pro- 
file-based optimizations  for Java classes. 

Robert R. Roediger IBM AS1400  Division,  3605  Highway 52 
North,  Rochester,  Minnesota  55901  (electronic  mail:  roediger@vnet. 
ibm.com). Dr. Roediger  joined IBM in 1980. He is presently a 
senior software engineer with the  SLIC  Program Model group 

Vita  Bortnikov-Sitnitsky IBMResearch Division,  Haifa  Research 
Laboratoly, Matam-Advanced  Technology  Center,  Haifa  31905, 
Israel  (electronic  mail: vita@haifasc3.vnet.ibm.com). Mrs. Bort- 
nikov  is currently with the code optimizations and performance 
improvements group in the  Haifa  Research  Laboratory,  where 
she  has  been working since 1994. She works on  machine-depen- 
dent (back-end) compiler improvements and optimizations. She 
received her B.Sc. degree (cum laude) in computer science in  1996 
from the Technion-Israel Institute of Technology in Haifa. She 
has four filed patent applications in the  area of code optimiza- 
tions. Her areas of interest include code optimization algorithms, 
compiler technology, distributed computing, and advanced algo- 
rithms and  data structures. 

Reprint  Order No. G321-5677. 

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998 


