270 SCHMIDT ET AL

Profile-directed
restructuring of
operating system code

In this paper we describe how a profiling system
can be successfully used to restructure the
components of an operating system for improved
overall performance. We discuss our choice of a
profiling system and how it was %pplied to the
AS/400~ (Application System/400~) operating
system for the purpose of reordering code.
Previous work in the industry has been mainly
useful only for application programs. Our work
demonstrates how such techniques can be
applied to operating system code, while
preserving maintainability of the operating
system in the customer’s environment.

It is well-known that performance of processors is
increasing at a much faster rate than the perfor-
mance of their attached memory subsystems.' Thus
it is increasingly difficult to input data to processors
rapidly enough to keep the processors utilized to
their maximum capacity. As a result, a great deal of
ingenuity has been expended on hardware solutions
to improve the access time and throughput of mem-
ory references, including caches, prefetch buffers,
branch prediction hardware, memory module inter-
leaving, very wide buses, and so forth. Also, software
must be optimized to take the best possible advan-
tage of this hardware.

For example, instruction caches are designed to ex-
ploit temporal and spatial locality in programs. Tem-
poral locality refers to the tendency of programs to
execute instructions repeatedly; thus the perfor-

0018-8670/98/$5.00 © 1998 IBM

by W. J. Schmidt
R. R. Roediger
C. S. Mestad
B. Mendelson
I. Shavit-Lottem
V. Bortnikov-Sitnitsky

mance of fetching instructions from main memory
can be improved by saving recently executed instruc-
tions in a small high-speed cache. Instructions in a
program are said to exhibit good spatial locality if
execution of an instruction tends to be followed
quickly by execution of instructions packaged nearby.
A program with poor spatial locality will cause un-
needed instructions to be fetched into the cache.
Thus the cache will not operate at its full potential.

Memory paging systems are likewise designed to ex-
ploit spatial and temporal locality. For these systems,
volatile memory may be thought of as a medium-
speed cache for low-speed persistent memory, such
as a disk. Recently used pages are kept in memory
to take advantage of temporal locality. Again, good
spatial locality is required to avoid bringing unneeded
instructions and data into memory. Poor spatial lo-
cality thus reduces the efficiency of memory paging.

Unfortunately, “naive” code generation often results
in programs that have poorer spatial locality than is
achievable. It is typical, for example, to generate code
that branches around infrequently executed error
paths. This results in poor utilization of the instruc-

©Copyright 1998 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

tion cache, since some of the error path code will
usually be fetched into the cache along with the
branch that bypasses it. It is also typical for proce-
dures to be packaged without consideration for lo-
cality, so that although procedure A frequently calls
procedure B, A and B are located in different mem-

ory pages.

Across the industry, it is becoming more common
to use dynamic profiling to analyze program behav-
ior during execution. Dynamic profiling (henceforth
profiling) gathers data about the frequencies with
which different execution paths in a program are tra-
versed. These profile data can then be fed back into
the compiler to guide optimization of the code.

One of the proven uses of profile data is in deter-
mining the order in which instructions should be
packaged. By discovering the “hot traces” through
a procedure, the optimizer can pack the instructions
in those traces together tightly into cache lines, re-
sulting in greater cache utilization and fewer cache
misses. Similarly, profile data can help determine
which procedures call other procedures most fre-
quently, permitting the called procedures to be re-
ordered in memory to reduce page faults.

Related work. Research into reordering programs
for better performance dates to the introduction of
virtual memory®* in the 1960s. A number of early
researchers®™® used static analysis to reduce page
faults by reordering procedures within a program,
while Hatfield and Gerald" and Ferrari'' used dy-
namic analysis for similar goals, using an instruction
trace collected from an execution of the program.
Hartley? extended the static techniques through the
use of procedure duplication and in-line placement.
Wu' experimented with a trace-based system for re-
positioning procedures based upon temporal local-
ity, with the goal of improving performance of
shared-memory multiprocessors.

With the introduction of instruction caches, * focus
began to shift to reordering code at a finer granu-
larity. To date, most successful approaches to im-
proving instruction cache performance have used
profile data to predict branch outcomes. In contrast
to most of the foregoing work on virtual memory per-
formance, these techniques were implemented
within the framework of optimizing compilers. Mc-
Farling"® showed how to use profile information to
reduce conflict misses in a direct-mapped instruc-
tion cache. Mendelson, Pinter, and Shtokhamer'®
also achieved a reduction in conflict misses while re-

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

quiring only static analysis of the program. Hwu and
Chang'” introduced the idea of using traces of basic
blocks to reduce the number of unexecuted instruc-
tions brought into the instruction cache (cache pol-
lution), thus reducing capacity misses. Pettis and
Hansen' likewise used traces (or chains) to order
basic blocks, although their algorithms differ some-
what from those of Hwu and Chang; they also
pointed out that infrequently executed traces can be
separated entirely from the main procedure body.
Gupta and Chi" produced two different methods of
reordering instructions, one based on the presence
of loops, split points, and join points in the control
flow graph, and one based directly on the control
dependence graph.®

Within 1BM, Heisch?'* suggested that instruction
cache performance can be maximized by consider-
ing it as a whole-program optimization. Heisch’s
methods differ from previous approaches by oper-
ating as a post-processor on executable program ob-
jects. An interesting effect of this method is that ba-
sic blocks are allowed to migrate without being
constrained by procedure boundaries. Heisch’s orig-
inal algorithm appended the reordered code to the
original executable program objects, resulting in re-
ported growth in executable file size of between 5
percent and 41 percent,* although this growth had
negligible impact on performance. Nahshon and
Bernstein? later produced an improved algorithm
that required less code growth; their techniques, to-
gether with those of Heisch, were incorporated into
atool called FDPR (feedback-directed program restruc-
turing), which has been used to improve performance
of executable objects on the AIX* (Advanced Inter-
active Executive) and 0S/2* (Operating System/2*)
operating systems.

Contributions of this paper. Aware of the perfor-
mance benefits achieved using FDPR on other plat-
forms within 1BM, we began to consider how this tech-
nology could be used to improve performance on the
Application System/400* (AS/400*) PowerPC AS*-based
computer systems. We also wanted to take things a
step further: Rather than just applying this technol-
ogy to applications, our goal was to improve the per-
formance of the AS/400 operating system.

We are not aware of any previous attempt to ship
an operating system that has been reordered in this
manner. (Experiments with reordering operating sys-
tem kernels have been described,?*? but to our
knowledge these techniques have not been used in
products that have been shipped to customers.)

SCHMIDT ET AL. 271

There are a number of difficult issues that must be
addressed when restructuring an operating system:

It must be feasible to provide correction code
(fixes) to customers should errors be found in the
operating system code. An operating system is
much too large and complex to be rebuilt from
scratch and redelivered to customers. It is neces-
sary to be able to modify smaller amounts of the
operating system when fixing problems by replac-
ing a single module (compile unit) or even a sin-
gle procedure.

* Providing fixes must not result in noticeably de-
graded performance in a customer environment.
If the operating system has been restructured to
improve instruction cache and memory paging per-
formance, applying fixes to restore functionality
should not undo all or a significant part of those
performance gains.

* Special memory requirements of sensitive portions
of the operating system must be honored. Many
profiling systems (including ours) gather data by
“instrumenting” the code to be profiled—that is,
inserting snippets of code to record control flow
events—and then running the instrumented code
using representative inputs. These snippets typi-
cally access counters in memory. Some portions
of operating system code cannot make data ref-
erences that will cause a page fault (consider the
code whose job it is to handle a page fault), while
more sensitive code may not even be able to tol-
erate a miss in the hardware page table. Care must
be taken so that the added instrumentation does
not violate these requirements.

 Unlike most application code, a single copy of the
operating system code may be executing simulta-
neously on behalf of many tasks. This means that
the instrumentation methodology must be sensi-
tive to concurrency issues.

* The process of instrumenting, benchmarking, and
optimizing the operating system code must be kept
simple enough to avoid delaying product release
schedules.

Despite these obstacles, it is very important to be
able to improve instruction cache and memory pag-
ing performance for operating system code, perhaps
even more than for application code. Chen and Ber-
shad® have shown that operating system code typ-
ically has less instruction locality and is more sen-
sitive to instruction cache performance than is
application code. Measuring the performance of two
popular workstation operating systems running a
number of industry standard benchmarks, Chen and

272 sSCHMIDT ET AL

Bershad found that the percentage of instruction
cache misses attributable to the operating system ex-
ceeded 70 percent for over two-thirds of the bench-
marks. This assertion appears to hold independently
of application size and execution run time. They also
found that the instruction cache penalty, measured
as the number of instruction stall cycles divided by
the number of executed instructions, was higher in
system code than in user code for 20 of their 26
benchmark runs. For larger applications, however,
this effect was not always as pronounced.

The primary contribution of this paper is to explain
how we designed our profiling system to successfully
restructure an operating system that could be
shipped to customers and maintained in the customer
environment without significant loss of performance.
Although we describe our techniques with reference
to the AS/400 operating system, the problems we faced
are representative of those found on any operating
system. We also describe improvements to known
algorithms for restructuring code, and discuss how
we handle issues of concurrency and indeterminate
control flow. Although we use profile information
in many of our optimization phases, this paper con-
centrates on its use in reordering code.

The remainder of this paper is organized as follows.
We first provide background on the structure of the
AS/400 operating system, and describe some of the
special requirements it imposed upon our design. We
then describe various types of profiling systems that
have been developed in the past, and discuss why
we chose the one we did. Next follows a detailed de-
scription of the profiling process we used on the op-
erating system code, including the algorithms for in-
strumenting the code, the mechanisms used to collect
data, the feedback mechanism for bringing the pro-
file data into the compiler, and the instruction re-
ordering algorithms. We then describe the support
mechanism we use that allows us to maintain the
code, and the benchmarks on which we measured
the operating system. We conclude with some pre-
liminary performance measurements, and thoughts
for the future.

The environment

The environment of the AS/400is next described, fol-
lowed by an introductory description of the sampling,
trace-based, and instrumented methods for gather-
ing data about the behavior of programs.

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

Figure 1

The AS/400 operating system and the machine interface (MI) layer

| SYSTEM LICENSED INTERNAL CODE (SLIC)

The operating system for the AS/400. The As/400 ar-
chitecture differs from that of most other computer
systems in the level of abstraction exposed to its ap-
plication software.? Whereas software for other sys-
tems is targeted directly to the hardware, applica-
tions view the AS/400 through an abstract machine
layer known as the Technology-Independent Ma-
chine Interface (sometimes called TIMI, or just MI).
Since the actual hardware and much of the system
software are hidden beneath this layer of abstrac-
tion, it is possible to completely replace the under-
lying hardware and software without changing the
application software. This is exactly what happened
with the recent introduction of new AS/400 systems
based on the PowerPC AS RISC (reduced instruction-
set computer) architecture: the existing CISC (com-
plex instruction-set computer) processors were re-
placed with RISC processors without requiring
customers to acquire updates for their applications.

As shown in Figure 1, the operating system for the
AS/400 consists of two parts. The portion known as
Operating System/400* (0$/400*) resides in a soft-
ware layer “above the ML.” “Below the MI1” is a layer
known as system licensed internal code (SLIC), which
is responsible for implementing the abstract Mt func-
tions for a specific hardware architecture.

When an application task runs on an AS/400, part of
its time will be spent executing in the application code

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

itself or in 0$/400 and the rest will be spent executing
within SLIC. Traditional transaction-based business
software tends to spend most of its time in the in-
tegrated database software below the M1, while more
computationally intensive applications spend most
of their time above the MI. Because most of our cus-
tomers primarily use traditional business applica-
tions, the performance of SLIC s crucial to the over-
all performance of the AS/400. SLIC modules, written
primarily in C++ and a dialect of PL/1, are compiled
through a state-of-the-art optimizing back end called
slicox (the SLIC optimizing translator).

As shown in Figure 2, SLIC is partitioned into code
that must be resident in main memory (the nucleus)
and code that need not be (pageable). Each of these
code sections is further subdivided into smaller con-
tiguous regions called replaceable unit destinations
(Rudests). A Rudest is composed of a number of
modules (i.e., compilation units) that share some
property requiring them to be kept together. The
SLIC link/loader, itself a pageable component of SLIC,
is responsible for positioning each module within its
assigned RUdest and resolving all external references
between modules.

After a release of the operating system has been
shipped, it is inevitable that problems will be discov-
ered in the field. Corrections for these problems are
packaged into Program Temporary Fixes (PTFs) and

SCHMIDT ET AL 273

Figure2 Organization of system licensed internal code (SLIC)

NUCLEUS

RUdest

MODULES

MODULES

MODULES

Rudest

MODULES

MODULES

Rudest

MODULES

MODULES

made available to customers. Each SLIC PTF consists
of one or more modules that will replace existing
faulty modules on customer systems. When custom-
ers apply a SLIC PTF to their AS/400, the SLIC
link/loader is again responsible for positioning the
new modules within the appropriate Rudests, and
adjusting all external references to the replaced mod-
ules to reference the new ones.

One of our goals was to reorder procedures within
SLIC so that their spatial packaging more closely
matched their temporal locality. However, the de-
sign of SLIC and the PTF process impose some con-
straints on allowable procedure order.

* Each procedure is required to remain within its
target RUdest; therefore two procedures in differ-
ent RUdests cannot be juxtaposed, even if one calls
the other very frequently.

* The process for applying PTFs was designed to re-
place entire modules. If procedures from a mod-
ule were not placed contiguously, the job of the
link/loader during PTF application would be greatly
complicated.

274 scHMIDT ET AL

Because of these considerations, we decided to re-
order procedures within module boundaries, and or-
der modules within each RUdest according to tem-
poral affinity.

In the future, it may be worthwhile to allow free re-
ordering of procedures across module boundaries.
An early study?’ of SLIC behavior while running an
internal workload approximating the Transaction
Processing Performance Council (TPC-C**) bench-
mark* indicated that about 75 percent of all dynamic
procedure calls occurred across module boundaries.
Unfortunately, the study did not determine how
many of these calls also occurred across Rudest
boundaries, which would forbid reordering. The data
also indicated a high affinity between pairs of pro-
cedures: On average, each procedure was called 83
percent of the time from a single caller, and each
procedure made 60 percent of its calls to a single
callee. This study, though preliminary, indicates that
full procedure ordering would provide some incre-
mental benefit over our current scheme that pre-
serves module boundaries.

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

Types of profilers. The term profiling, as used in this
paper, refers to using information collected about
the dynamic behavior of a program to improve op-
timization of that program. The program is measured
while running one or more benchmarks believed to
be representative of the way the program will be used
in practice. There are three typical models of pro-
filing, distinguished by the method of gathering data
about the behavior of programs.

» A sampling profiler operates using a hardware
timer, periodically waking up a process that re-
cords the address of the currently executing in-
struction. Although sampling profilers can be ad-
equate for recording which procedures are exe-
cuted frequently, they do not work well for
recording more granular information, such as how
frequently a given branch is taken, or which pro-
cedures often call which other procedures.

* A trace-based profiler collects a hardware execu-
tion trace of the instructions executed by the pro-
gram during the benchmark trials. It then reduces
this information to a manageable size to determine
branch and procedure call frequencies.

* Aninstrumenting profiler operates by recompiling
the program with special instrumentation “hooks”
placed at important branch points. As the instru-
mented program executes, these hooks cause data
counters to be updated, recording the branch fre-
quency information directly.

We considered the trace-based and instrumenting
profiler models as candidates on which to base our
design. We eventually decided upon an instrument-
ing profiler, because of the difficultics we perceived
in using a trace-based profiler. First, a full instruc-
tion trace for a nontrivial benchmark would be quite
large and time-consuming to process; in order to be
practical, we would require a real-time reduction tool
to compress the instruction traces into branch fre-
quencies. Second, it would not be easy to map in-
formation from the instruction traces into the com-
pilation process. Finally, we did not have a practical
way to make a full execution trace tool available to
our customers. Since our intent in subsequent re-
leases is to make this technology available for cus-
tomers to use on their own programs, this was a key
consideration in our decision.

In contrast to these problems, the only major draw-
back of using an instrumenting profiler is its inva-
sive nature: an extra compilation step is required to
insert the instrumentation hooks. Although this is
a nontrivial consideration because of the number of

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

SLIC modules requiring instrumentation, this only
needs to be done once per release of the operating
system, whereas the drawbacks of instruction traces
WETe more Serious.

Restructuring the operating system

We next discuss our process for gathering data and
using those data to reorder and improve portions of
the AS/400 operating system.

FDPR design overview, Our goal of feedback-di-
rected program restructuring (FDPR) was to improve
the performance of SLIC by more fully exploiting cer-
tain hardware characteristics of the AS/400 proces-
sors and memory hierarchies. By reordering instruc-
tions within a procedure so that they are likely to be
executed in sequence, we can improve performance
of the instruction cache by reducing cache pollution,
improve the efficiency of sequential instruction
prefetching, and reduce the penalty associated with
taken or mispredicted branches. By packaging pro-
cedures in an order that reflects their temporal lo-
cality, we can also reduce the SLIC working set size,
taking better advantage of the memory paging sys-
tem.

FDPR is a three-phase process: instrumentation,
benchmarking, and feedback-directed optimization.
The following is a brief overview of this process, as
illustrated in Figure 3.

Only those SLIC modules that are known to be cru-
cial to some aspect of system performance are con-
sidered candidates for profiling. First each of these
modules is instrumented by the slicox. The instru-
mentation process analyzes each procedure in the
module at a particular point during translation, and
inserts snippets of instrumentation code. Each snip-
pet (or “hook”) contains code that increments a
counter whenever a particular control flow event
(branch decision or procedure call) occurs. The
counters for each module are stored in a static data
object associated with the module, known as a mod-
ule counter area (MCA).

After all modules to be measured have been instru-
mented, they are loaded onto an AS/400 test system,
replacing the uninstrumented versions of those mod-
ules. As a result, space is also allocated for the MCAs
of the instrumented modules. Special tools are used
to clear all counters to zero, and to disable the in-
strumentation snippets from incrementing the
counters until representative benchmarks are ready

SCHMIDT ET AL. 275

Figure 3 Overview of feedback-directed program restructuring (FDPR)

SLIG SOURCE MODULE

INSTRUMENTED SLIG OBJEGT MODULE

to be executed. The snippets are enabled while the
benchmarks run, and then disabled again when the
benchmarks are finished, thus freezing the counters.
Another tool then “harvests” the profile data by lo-
cating all MCAs on the system, saving each as a file,
and transferring the files back to the development
system.

There is now one file of profile data for each per-
formance-critical module. Each module is once again
compiled, this time using the profile data to guide
optimizations. Each counter is read from the file and
associated with the control flow event that it was
monitoring. Based on these data, the slicox deter-
mines an optimized order for the instructions for
each procedure, favoring sequential flow of control
through heavily traversed paths. It also determines
an optimized packaging order for the procedures
within the module, based upon measured intramodu-
lar procedure calls. A separate tool then produces
a suggested module ordering within each Rudest,
based upon measured intermodular procedure calls.
The optimized modules are loaded according to the

276 SCHMIDT ET AL.

BENGHMARKS -

INSTRUMENTED SLIC -

module ordering to form a system image for distri-
bution to customers.

Module counter areas. Traditional profiling mech-
anisms typically do not require any sophisticated or-
ganization for the profile counters. They are designed
to optimize a single executable object, which is not
expected to be modified after profile data have been
applied, so a simple linear array of counters can suf-
fice. There are two considerations that render this
impractical for our purposes. First, fixes to SLIC are
made at the module level; an entire module must be
replaced for every change. If modules that have been
optimized using profile data are replaced by cor-
rected versions of those modules without such op-
timization, a noticeable loss of performance might
result over time. To reduce the potential for perfor-
mance loss, we designed our module counter areas
to segregate and identify the counters pertinent to
each procedure. Thus when a single procedure is
modified, or when procedures are added to or de-
leted from a module, the profile data for the un-

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

changed procedures can still be considered valid and
used to direct optimization.”

Second, much of the code in the nucleus is not per-
mitted to incur a page fault on any memory access,
so counters for nucleus code must reside in “pinned”
(unpageable) memory. Since pinned memory is a fi-
nite resource, however, it would not be prudent to
place counters for nonnucleus code in pinned mem-
ory. At a minimum, the nucleus and nonnucleus
counters must be kept separate.

A simple solution to this problem is to allocate the
counters inside a data object created by the compiler
in the static data space associated with the module.
In SLIC, static data for all nucleus code are allocated
in pinned memory, while static data for nonnucleus
code are allocated in pageable memory. Each mod-
ule then addresses its counters via offsets from the
base address of this module counter arca. In addi-
tion to solving the forbidden page fault problem, this
allocation scheme also eliminates any dependency
on the compilation order; the counters for each mod-
ule are always at fixed positions from the beginning
of its own MCA.

The layout of a module counter area is shown in Fig-
ures 4 and 5. Each MCA consists of an initial header
area, followed by a procedure counter area (PCA)
for each procedure contained in the associated mod-
ule. The header area contains information used to
interpret the rest of the MCA, including the total size
of the MCA, and the number and location of the PCAs
within the MCA. Each PCA consists of a header and
several groups of counters, used to measure branch-
ing events within a procedure (control flow counters),
direct calls to known procedures (direct call flow
counters), pointer-based calls to possibly unknown
procedures (indirect call flow counters), and invo-
cations of the current procedure (prologue counter).

Instrumentation methodology. The purpose of in-
strumentation is to determine the number of times
particular control flow events occur during the ex-
ecution of a program. The data collected will later
be used to guide optimizations. Obviously, the com-
piler must view a procedure to be identical when it
inserts the instrumentation snippets and when it sub-
sequently reads the profile data back in. Since mod-
ern compilers perform many optimizations that can
alter the control flow of a procedure, it is manda-
tory that the instrumentation and feedback phases
take place at the exact same point during compila-
tion, and that all prior phases of compilation pro-

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

Figure 4 Contents of a module counter area (MCA)

|

| MCA SIZE
| PROCEDURE COUNT
PCA INDEX

PCA #2

PCA #n

PCA = PROCEDURE COUNTER AREA

Figure 5 Contents of a procedure counter area (PCA)

[

PROCEDURE ADDRESS/LENGTH/ID
NUMBER OF CONTROL FLOW COUNTERS
NUMBER OF DIRECT CALL FLOW ENTRIES
NUMBER OF INDIRECT CALL FLOW ENTRIES

CONTROL FLOW COUNTERS

DIREGT CALL FLOW ENTRIES

INDIRECT CALL FLOW ENTRIES

PROLOGUE COUNTER

duce precisely the same results when the instrumen-
tation and feedback options are selected.

There are four types of instrumentation hooks that
match the four kinds of counters: control flow hooks,
direct call flow hooks, indirect call flow hooks, and
prologue hooks. Direct and indirect call flow hooks

SCHMIDT ET AL. 277

are placed just prior to the corresponding procedure
calls in the instruction stream. A prologue hook is
placed in the prologue code for each procedure
(compiler-generated code that sets up for each in-
vocation of a procedure). Control flow hooks are
placed along arcs in the control flow graph (CFG)
for the procedure.

A control flow graph for a procedure is an abstrac-
tion produced by a compiler to represent possible
flow of control through an instruction stream. It is
constructed as follows. First the compiler partitions
the instructions of the procedure into basic blocks.
A basic block is a contiguous sequence of instruc-
tions that will always be executed together. That is,
a branch into a basic block can only target the first
instruction of that block, and any branch appearing
in a basic block must be the last instruction in that
block. Each basic block is represented by a node in
the control flow graph. There is a directed arc from
block A to block B if and only if block B can be ex-
ecuted immediately after an execution of block A.
An example of a CFG appears in Figure 6A.

Note that Figure 6A contains two artificial nodes
marked Start and Exit, and an artificial arc from Exit
to Start. Any block representing an entry point into
the procedure is made a successor of the Start block.
Any block at which control may leave the procedure
(by returning or by an unhandled exception, for ex-
ample) is made a predecessor of the Exit block. The
use of the artificial blocks and arc ensures that, for
every node in the graph, there is a path from that
node to itself; that is, the graph is strongly connected.
This is a necessary property for use of the spanning
tree algorithm described in a later subsection on con-
trolling instrumentation cost.

Profile data indicating path frequencies can be rep-
resented in the CFG in one of two ways. Block weights
indicate the frequency with which each block is ex-
ccuted, while arc weights indicate the frequency with
which each arc is traversed. Block weights can al-
ways be derived from arc weights, but the converse
is not generally true. Since the frequency with which
a conditional branch is taken is important to the ba-
sic block reordering optimization, we directly instru-
ment the control flow arcs. This is done by inserting
new basic blocks containing instrumentation hooks
(diamond-shaped boxes in Figure 6C) along selected
control flow arcs.

Instrumentation hooks. In our implementation, a con-
trol flow hook typically consists of three instructions

278 scHMIDT ET AL.

to load, increment, and store a 64-bit counter. The
counter is addressed at a fixed offset from a base reg-
ister. Prologue code executed when the procedure
is invoked stores the address of the PCA for the pro-
cedure in the base register. The base address of a
PCA is determined by adding an offset to the static
address of the MCA for the containing module, de-
termined by the link/loader at load time. The pro-
logue code also increments a counter to record the
number of invocations of the procedure.

The code inserted prior to a direct procedure call
is identical to that for a control flow hook. The only
difference is where the counters are stored. Recall
that direct call flow counters are segregated from the
control flow counters. This is because each call flow
counter contains an additional field identifying the
procedure being called. This information is used later
to reconstruct the system-wide weighted call graph
for the benchmark.

The code for an indirect call site, however, is quite
different. In general, we cannot know which proce-
dures, or even how many different procedures, may
be called at an indirect call site. Previous re-
searchers'® have ignored indirect call sites because
of this difficulty. We chose to create a fixed-size ta-
ble of callees and counts for each indirect call site.
The management of the table is embodied in a sys-
tem-wide subroutine that takes, as parameters, the
address of the procedure to be called, and the table
in which counts are to be recorded for the call site.
Since the number of called procedures may exceed
the size of the table, a method is needed to ensure
that the most frequently executed procedures are
kept in the table. The management of the table is
beyond the scope of this paper.

The question of when during compilation to insert
instrumentation code is an interesting one. The an-
swer often depends on the intended use of the pro-
file data. Obviously profile data should be collected
prior to performing those optimizations that can ben-
efit from use of the data. In our case, the initial use
of profile data within the slicox was to reorder basic
blocks within each procedure; this is a very late op-
timization, so for its purposes profile data could be
collected just prior to final assembly of the instruc-
tion stream. However, we also had heuristic uses for
profile data in the register assignment and global in-
struction scheduling phases of the slicox, so we chose
to collect data prior to these phases.

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

Figure 6 Instrumenting a control flow graph (CFG). (A) CFG example. (B) CFG with spanning tree and potential places
for hooks identified (hash marks). (C) CFG enhanced with instrumentation blocks (diamond-shaped boxes)
along nonspanning-tree arcs.

.-

&
1
1
1
1
A |
1
1
1
]
1
=
]
1
1
1
I
1
3
| |
|]
|
]
|)

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998 SCHMIDT ET AL, 279

Since many optimization phases execute after instru-
mentation code has been inserted, the amount of
code that must be handled by those phases is in-
creased. To minimize this bloat, instrumentation
hooks are initially treated as single-instruction mac-
ros in the intermediate representation (IR), and are
only expanded into the form described above dur-
ing final instruction assembly. To provide for effi-
cient register utilization, each macro is annotated
with unique virtual registers to represent the regis-
ters needed when the macro is expanded. The reg-
ister allocator is free to select appropriate hardware
registers for these virtual registers according to the
usual methods.

Controlling instrumentation cost. Care must be taken
to minimize the cost of the instrumentation hooks,
since long-running benchmarks are required to pro-
vide useful profile data for an operating system. If
the instrumented version of the operating system
were too slow, profiling would be rendered imprac-
tical. Time spent executing instrumentation code can
also perturb timings, task queue lengths, and so forth.
This means that (1) each instrumentation hook must
be as efficient as possible, and (2) the number of
hooks must be kept to a minimum.

There is a well-known solution to the hook-minimi-
zation problem.*=* The idea is to identify a small
subset of the arcs in a control flow graph for a pro-
cedure such that, if we knew the weights of those
arcs, we could infer the weights of all remaining arcs
in the graph. The trick is to observe that the flow
into a block must equal the flow out of that block.
If a given arc is the only one with unknown weight
incident to a block, then the weight of that arc can
be inferred from the known weights of other arcs
incident to that block. We thus only need to instru-
ment this subset of the arcs from which the other
weights can be inferred.

Rather than looking for the arcs we want to instru-
ment, it is convenient to identify those that we do
not want instrumented. Suppose that we ignore the
directions of arcs in the CFG, and that we select some
subset of the arcs such that there is no path in the
subset from a block to itself; that is, the subset forms
one or more frees. Suppose further that we have
known weights for all arcs not in this subset. A prop-
erty of a tree is that there must be at least one arc
in the tree that touches a block touched by no other
arcin the tree. As just described, the weight of such
an arc can be inferred from the weights of other arcs
incident to the block, which are known since those

280 sSCHMIDT ET AL

arcs are not in the tree. Once that weight is known,
it can be removed from the subset of unknown-
weight arcs. The remaining unknown arcs will still
form one or more trees, so the process can be re-
peated until all weights are known. An example can
be found in a later subsection on feedback of profile
data.

To instrument the fewest arcs, we then need to se-
lect the largest possible tree of arcs not to be instru-
mented. In a connected graph having N nodes, the
largest possible tree will have N — 1 arcs. Such a
tree is called a spanning tree, since it touches every
block in the CFG. The arcs to be instrumented, then,
are the arcs not in the spanning tree. Many possible
spanning trees exist for a strongly connected graph,
any one of which can be arbitrarily selected, provided
that it includes the artificial arc from Exit to Start
(which cannot be directly instrumented).

Figure 6A shows an example control flow graph to
be instrumented. In Figure 6B, a spanning tree for
the CFG has been arbitrarily selected; the arcs in the
spanning tree appear as bold lines to identify them.
Those arcs not in the spanning tree are identified
with a hash mark, and are the ones to be instru-
mented. Figure 6C shows the modified CFG with the
instrumentation blocks inserted (shown as dia-
monds). Note that the number of instrumented arcs
is much smaller than the total number of arcs in the
original graph.

In most cases it is straightforward to add an instru-
mentation block along an arc in the control flow
graph. Suppose that the original arc originates at
some block X and targets some block Y. Then X will
either end with a conditional or unconditional branch
that targets Y, or X will fall through into Y. In the
case of fall-through, it is simple to add the instru-
mentation hook between blocks X and Y. If X ends
with a relative branch that targets Y, a new block I
is created to hold the instrumentation hook followed
by a branch to Y, and the branch in X is modified
to target I.

A problem not discussed in the literature occurs
when X ends with a branch to an unknown code lo-
cation contained in a register (a nonrelative branch).
In some cases, the compiler may be able to statically
determine the location or locations that the branch
can target, and thus create arcs in the CFG to rep-
resent these paths; but in the general case, this is not
possible. It is necessary to add artificial arcs to the
CFG to ensure that the graph remains connected in

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

the presence of nonrelative branches, since some tar-
gets of such branches may not be reachable by any
other path. Since these artificial arcs cannot be ex-
ecuted, the spanning tree must be chosen so that
these arcs are not instrumented. In rare cases,
though, the complement of every spanning tree will
contain an artificial arc. When this occurs, the blocks
incident to the artificial arc must be instrumented
instead.

There are many possible spanning trees for a con-
trol flow graph. Selecting one that results in mini-
mal instrumentation cost is an Np-hard problem,
so a heuristic approach is warranted. Ball and La-
rus® made use of static weight estimates to reduce
the expected cost of instrumentation hooks. We im-
plemented a very simple heuristic that reduces the
cost of instrumentation within loops by avoiding in-
strumenting back arcs (flow of control from within
a loop to the beginning of the loop). Figure 7 shows
an example loop from the flow graph of Figure 6.
The “natural” depth-first algorithm for finding a
spanning tree produces the results shown in Figure
7A, with arcs I —J and J — K in the spanning tree,
and arcs I — K and K — I in the complement of the
spanning tree; thus the back arc K — I will be in-
strumented (with diamonds in Figure 6C). Our al-
gorithm prefers to avoid instrumenting back arcs, so
it exchanges the back arc K — I with another arc
incident to K, in this case J — K. The result is shown
in Figure 7B. We only avoid instrumenting a back
arc in this manner when we believe the alternate arc
(e.g., J = K) will be executed less frequently than
the back arc, using static heuristics.

Concurrency issues. Another difference between an
operating system and most applications is the mul-
titasking nature of the operating system. It is quite
common for a single procedure in SLIC to be oper-
ating concurrently on behalf of several user pro-
cesses. This raises the possibility of data loss for any
given counter, as illustrated in Figure 8. If the load,
increment, and store are not treated as an atomic
operation, one process can be switched out after ex-
ecuting the load, another process can execute for a
time, possibly updating the counter many times, and
then the first process can regain contro! to execute
the increment and store. This means that increments
of this counter by the second process will be lost.

Unfortunately the code to perform an atomic up-
date on the AS/400 is much more expensive than a
simple increment, requiring roughly three times as
much time to execute and over twice as many static

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

Figure 7 Avoiding instrumentation of back arcs.
{A) Usual spanning tree. (B) Revised spanning
tree. Note that J=»K will be executed no more
frequently than K- 1.

instructions. We therefore decided to allow occa-
sional data losses to occur, relying on the length and
repetitiveness of our benchmarks to smooth out the
losses. This proved to be a successful strategy, but
one with implications for the profile feedback step,
as discussed in a subsequent section.

More care was needed for the indirect call site in-
strumentation. In order to manage the policy deter-
mining which procedures will occupy the table for
a given call site, some static data are maintained
within the table. These data must be manipulated
atomically in order to avoid corruption of the table.
Since indirect calls are relatively infrequent, we im-
plemented a semaphore with each indirect call site
table to ensure atomic access. The overhead of the
semaphore is less important here, since its cost com-
pared to the time required to manage the table is
relatively small.

By implementing only simple increments instead of
atomic ones, and by using the spanning tree tech-
nique to minimize the number of counters, we were
able to limit the execution time overhead of instru-
mentation to a very acceptable level. For example,
for our internal version of the TPC-C benchmark, we
measured the number of simulated users required

SCHMIDT ET AL. 281

Figure 8 Loss of data due to concurrent counter access

to achieve CPU saturation. An instrumented version
of SLIC attained saturation with roughly 33 percent
fewer users compared with an uninstrumented ver-
sion. The average size of a module increased by
roughly 78 percent when adding instrumentation,
counting both the added instrumentation and the
module counter areas.

Controlling data collection. One way in which oper-
ating systems and other large multitasking applica-
tions differ from smaller executable objects is that
a significant amount of setup time may be required
before the benchmarks are ready to be run. An op-
erating system in particular must be active during
this setup phase. It is undesirable, though, for the
profile of the benchmark to be “polluted” by counts
that have accumulated during setup. One way to deal
with this problem is to provide a method to reset all
counters to zero when the setup phase is complete.
However, the number of counters used in an oper-
ating system can be very large, so that by the time
all counters have been cleared, some of them will
have again accumulated significant counts. Further-
more, accesses to the counters will cause memory
paging activity, which may distort the counts accu-
mulated on behalf of the page fault handling soft-
ware.

282 scHMIDT ET AL

PROCESS 2

LOAD GOUNTER

INCREMENT COUNTER - -
STORE GOUNTER
»

ENDLOOP

To avoid these problems, we globally dedicated a bit
from the condition register of the processor for use
as a profile enabling bit. This bit is tested within each
instrumentation hook to determine whether counts
should be accumulated. Although any processor reg-
ister bit could have been dedicated for this use, a bit
in the condition register was the ideal choice, since
condition register bits can be tested directly by con-
ditional branch instructions. With this bit available,
we were able to disable the instrumentation hooks,
set all counters to zero, perform setup for the bench-
marks, and then enable the hooks just prior to run-
ning the benchmarks. Since one bit is used to con-
trol all instrumentation hooks, the effect of enabling
or disabling profiling is instantaneous.

Data collection tools. After the high-use modules
have been compiled to insert instrumentation, they
are loaded onto an AS/400 system for the data col-
lection stage. A tool with four functions was created
on the AS$/400 to facilitate data collection. Two of the
functions simply turn the profile enabling bit on and
off to determine whether the instrumentation code
should be executed. A third function finds all mod-
ule counter areas on the system and initializes their
counter fields to zero. The last function again finds
all module counter areas on the system, and extracts

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

them for transfer to the development machine for
use in optimization. Each module counter area is
stored in a separate file and given a name based on
the module with which it is associated.

Feedback of profile data. Once the profile data have
been transferred to the development platform, they
are ready to be used to guide optimization of the
code. Each profiled module is recompiled using a
special option indicating that profile data should be
read in and used. As each procedure in a module is
compiled, the slicox searches the MCA for each mod-
ule to find the PCA for that procedure. It then lo-
cates the control flow counters within the PCA (call
flow counters are ignored during compilation of a
procedure). Recall that each control flow counter
corresponds to one of the CFG arcs selected for in-
strumentation. The algorithm used to determine the
arcs to be instrumented is run again during the feed-
back phase to determine which arcs should be as-
signed the weights collected in the control flow
counters. Figure 9A shows a possible weighting as-
signed to the instrumented arcs from the example
in Figure 6, as modified in Figure 7.

The next step is to use the weights from the instru-
mented arcs to determine the number of times each
of the remaining arcs was traversed. As discussed by
Knuth,* we can repeatedly select a node with only
one incident arc that has not yet been assigned a
weight, and determine the weight of that arc by
Kirchhoff’s first law,* which states that flow is con-
served at any point in a network. Since the uninstru-
mented arcs form a tree, there will always be such
a node to select, and this algorithm will succeed in
determining the weights for all uninstrumented arcs.
Figure 9B shows that node K can be selected first
in this example, and that the arc from node K to node
I is determined to have weight 400 to satisfy con-
servation of flow. Figure 9C shows the full elabo-
ration of the arc weights for this CFG.

Once all arc weights have been determined, the
weights are recorded in the intermediate represen-
tation (IR) of the procedure. To facilitate subsequent
control flow optimizations, the arc weights are not
stored in the CFG, but directly in the IR instruction
stream. Each unconditional branch in the instruc-
tion stream is annotated with the weight of its cor-
responding arc. Each conditional branch is annotated
with two arc weights, indicating the frequencies with
which the branch was taken and not taken. For mul-
tiway branches (such as might be generated fora C

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

switch statement), we store the weights in a sepa-
rate branch table within the IR.

A useful side effect of branch annotation is that SLIC
programmers can see the branch frequencies in their
program listings. Since each instruction in the low-
level IR typically corresponds to a single PowerPC AS
machine instruction, we display both sets of instruc-
tions in our program listings. By careful examina-
tion of these listings, programmers can make infer-
ences about control flow patterns, such as the average
number of iterations executed per entrance to a loop.
This can be used, for example, to make informed
choices among alternative data structures.

Determination of all arc weights according to Kirch-
hoff’s law is easily performed when all arcs can be
instrumented. Recall, however, that some arcs can-
not be directly instrumented due to the presence of
indirect branches. In such cases we inserted control
flow hooks directly within basic blocks incident to
the uninstrumentable arcs. We therefore needed
some place to store these block weights during feed-
back, since they could not be annotated on branches
like the rest. For this purpose we introduced a new
IR instruction called a profweight. During feedback,
each directly instrumented block has a profweight
inserted at the beginning or end of the block, indi-
cating the number of times the block was entered
or exited (the distinction can be important in the
presence of exceptions). In almost all cases, this per-
mits us to infer the weight of each arc in the CFG.
In cases such as that shown in Figure 10 where we
cannot be certain of the exact weights of certain arcs,
we must arbitrarily assign weights to them that sat-
isty conservation of flow.

A more serious concern arises from the possibility
of data loss due to concurrency. Suppose that the
counter for arc G — H in Figure 9A suffered a loss
in count of 60, as shown in Figure 11A. Then the
elaborated arc weights would appear as shown in Fig-
ure 11B. Note that the data loss has caused a change
in perception of the likely path of the branch at the
end of block B, and in the weights along paths from
B to H, but that this effect is localized and has not
changed the rest of the graph. Fortunately, we have
found the occurrences of data loss to be relatively
rare, and the amounts of data lost relatively low, so
that by using {ong-running benchmarks, the effects
of data loss are quite small in practice. (The ped-
agogical example of Figure 11 is extreme in that a
majority of the count for the affected arc was lost.)

SCHMIDT ET AL. 283

Figure 9 Inference of control flow graph (CFG) weights from a subset. (A) Weights assigned to the complement of a
spanning tree. (B) Calculating conservation of flow at node K. (C) Fully weighted CFG.

284 SCHMIDT ET AL.

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

Figure 10 Indeterminate arc weights. The five node weights are given, but the exact arc weights cannot be determined.

After branch and profweight annotations have been
inserted, subsequent optimizations such as register
allocation and instruction scheduling take advantage
of the weights. Any optimization that changes the
CFG must maintain the branch annotations correctly.

Reordering basic blocks. After most other optimi-
zation phases have completed, the slicox analyzes the
weighted CFG to determine an optimized order for
basic blocks that attempts to maximize sequential
control flow. That is, blocks are positioned so that,
insofar as possible, conditional branches will usually
not be taken. Our algorithm is largely based on the
greedy algorithm identified as algo1 by Pettis and
Hansen. ™

Use of the greedy algorithm. The greedy algorithm op-
erates by constructing a new basic block order from
the current order, in which it attempts to find long
traces of basic blocks that are likely to be executed
insequence. It begins by selecting the procedure pro-
logue (entry point) block as the seed block for the
first trace. For each trace, the algorithm first attempts
to extend the trace backwards by searching for a pre-
decessor of the seed block that has not yet been re-
ordered; if multiple candidates are found, the pre-
decessor whose arc to the seed block has highest
weight is selected. This block is placed prior to the
seed block in the new order, and the process repeats
for the newly selected block. This phase terminates
when no unreordered predecessor can be found.

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

Note that this backward extension of the trace will
be vacuous for the first trace, since the prologue block
for a procedure will not have any control flow pre-
decessors.

The trace is then extended forward from the seed
block in a similar manner. Candidates to follow the
seed block are those of its control flow successors
that have not yet been reordered. If multiple can-
didates are available, the one with highest weight
along the arc from the seed block to the candidate
is selected, and the process repeats for the newly se-
lected block. The trace terminates when no unre-
ordered successor can be found.

Each time a trace has been terminated, a new seed
block must be determined for the next trace. Since
we want to place code together that is likely to ex-
ecute closely together in time, we consider only those
blocks that are successors or predecessors of blocks
that have already been placed in a trace. Each such
block is assigned a priority value, computed as the
sum of weights of all arcs incident to the candidate
block and to some previously reordered block. The
block with highest priority is selected as the new seed
block, and the trace selection algorithm repeats. Each
trace is placed contiguously following the previously
generated trace.

Figure 12A shows the traces selected for a sample
CFG, with the new block order shown in Figure 12C.

SCHMIDT ET AL. 285

Figure 11 Effect of data loss on weight inference. (A) A count of 60 is lost from arc G H. (B) Resulting inferred weights
(compare with Figure 9C).

“u

L P P R TR R R R LR R T
.
n -

o

. -i’-itn--n-qqninﬁ-'
. . -t
- A :

L]
1]
x
]
L]
L]
n
L]
L]
1
[}
[
»
2
3
L]
3
L]
L]
¥
t
L]
L]
[
.
L
*
1
*
*
+
*
+

286 scHMIDT ET AL IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

Figure 12 Trace selection in a weighted CFG. (A) Selecting a trace. (B) Mapping to cache lines for naive code
generation order. (C) Mapping to cache lines after profile-based reordering.

*HOTTEST" TRAGE THROUG

CACHE LINES

Compare this to the naive code generation order of Figure 13 Limiting the greedy algorithm
Figure 12B. Note that the blue-shaded blocks rep-
resent the “hottest” trace through the procedure. The
dashed lines in these figures show how the basic
blocks might be mapped to instruction cache lines.
Note that executing the hot trace when placed in
naive order requires touching five cache lines, while
the optimized order requires only three.

Modifications to the greedy algorithm. We chose to
limit the greediness of the Pettis and Hansen algo-
rithm by sometimes terminating traces even when
there are candidate successors for the last block in
the trace. One reason for truncating a trace is if the
best candidate successor is executed much less fre-
quently than the last block in the trace. This can oc-
cur when the preferred successor of the last block
has already been reordered. It is sometimes the case
that it would be better to begin a new trace to pick
up blocks that are executed much more frequently.
Figure 13 shows an example of this. Suppose that
the current trace has been extended to include blocks

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998 SCHMIDT ET AL.

287

Figure 14 Limiting the greedy algorithm using the
perfect partner heuristic

Figure 15 The isolated block optimization

X and Z. Note that the preference X has for Z over
Y is statistically insignificant, and that block W was
executed much less frequently than either Y or Z.
Once block Z has been reordered, it will usually be
preferable to start a new trace with block Y rather
than continuing on with block W, so that the hotter
trace beginning at Y is packaged close to its prede-
cessor X.

288 scHMIDT ET AL

Another reason to truncate a trace is to avoid re-
ordering a successor of a block when that successor
would actually “prefer” to be reordered after a dif-
ferent block that has not yet been reordered. The
greedy algorithm always looks at candidates in only
one direction; when scanning backwards to extend
a trace, it determines which predecessor a given block
prefers, and when scanning forward, it determines
which successor a given block prefers. No consid-
eration is given to preferences of the candidate
blocks. Figure 14 shows an example of this. Assume
that blocks V and Z have already been placed in a
previous trace, block X has just been added to the
current trace, and blocks W and Y have not yet been
reordered. The greedy algorithm would reorder
block Y after block X, regardless of the preference
of block Y to follow block W. Our modified algo-
rithm will only extend a trace when the candidate
block is a perfect partner—that is, if the current block
prefers the candidate block, and the candidate block
also prefers the current block.

Another modification to the greedy algorithm was
implemented to improve performance for cases such
as the one shown in Figure 15. The greedy algorithm
will select a trace containing blocks A, C, and D, and
possibly many more blocks, before reordering block
B, even though arc A — B is executed almost as fre-
quently as arc A — C. If block B is reasonably small,
placing block B a long distance away from blocks A
and Cwould clearly not make the most efficient use
of the instruction cache. A more efficient ordering
would be ACBD. Our algorithm detects isolated
blocks such as B as follows. Whenever we consider
adding a successor block D to a trace, we check to
see if (1) D has an unreordered predecessor B, (2)
Bis isolated (has no unreordered predecessors and
no successors other than D), (3) B contains relatively
few statements, and (4) the execution frequency for
B is not negligible relative to the frequency of the
predecessor for D in the trace (C in our example).
If all of these conditions hold, the current trace is
ended without adding D, and a new trace is started
with B as the seed block.*

Sometimes it is important to keep two blocks to-
gether in their original textual order. We introduced
a ShouldFollow flag to indicate that a relationship of
a block with its textual predecessor is important. For
example, the instruction prefetching mechanism im-
plemented in the PowerPC As A30 processor is con-
strained (due to limited resources) when branch in-
structions are executed on two consecutive cycles.
One way that this can happen is if a return from a

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

called procedure is immediately followed by a
branch. To reduce such occurrences, we detect when
a block B ends with a procedure call and mark its
textual successor S with the ShouldFollow flag, since
if any other block were placed after B, we would have
to add an unconditional branch to S following the
procedure call.

The ShouldFollow flag should only be honored when
the block containing the call is executed relatively
frequently. Consider the example in Figure 16. Even
though ordering block C after block A would cause
abranch to be added after the procedure call in block
B, this is still preferable to the order ABC, which
would require keeping the branch at the end of block
A, because the arc from A to Cis taken much more
frequently than the arc from B to C. That is, the pen-
alty of the back-to-back branch occurs rarely, and is
therefore not important, whereas the presence of the
extra branch in A may be costly.

Whenever a block marked as ShouldFollow is about
to be added to a trace, we check whether its textual
predecessor was the last block added to the trace.
If not, we only add it to the trace if the weight of the
arc from its textual predecessor is negligible in com-
parison with the weight of the arc being followed in
the trace. The requirements for negligibility can be
tuned heuristically; we currently use a ratio of ten
to one.

Although much of SLIC was rewritten in C+ + for
the PowerPC AS processors,” quite a bit of legacy
code dating back to the System/38* (the predeces-
sor to AS/400) still remains. Much of this code is writ-
ten in a variant of PLI that is very different from lan-
guages in common use today. One of the features
of this PL/I variant language is the ability to specify
that an exception handler should be enabled over a
given textual range of the source code. The internal
implementation of this exception model requires that
the machine code covered by such an exception han-
dler must also remain contiguous. This places severe
limitations on block reordering. We were forced to
modify the trace selection algorithm to treat each
textual exception range within a procedure sepa-
rately. The algorithm considers as candidates for a
trace only those blocks in the CFG that reside in the
current textual exception range. Only after all blocks
in one range have been placed into traces can blocks
in the next textual range be considered. This clearly
reduces the opportunity for performance improve-
ments due to code reordering.

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

Figure 16 Example motivating the ShouldFollow flag

" BENDSWITHA

Reordering procedures within a module. After com-
piling all procedures for a module, the slicox deter-
mines a packaging order for those procedures such
that their spatial affinity reflects their temporal af-
finity. This is done by examining the call flow entries
for each procedure and using them to construct a
weighted intramodular call graph. This graph contains
one node for each procedure in the module. There
is a directed arc from procedure A to procedure B
if there is at least one (direct or indirect) call flow
entry in A that targets B. The weight of this arc is
the sum of the weights of all such call flow entries.
Calls to procedures outside the module being com-
piled are ignored; these will be considered when re-
ordering modules, as discussed below.

Pettis and Hansen’s algorithm to construct a pro-
cedure order!® is based on coalescing high-weight
arcs in an undirected call graph. Our intuition was
that this method successfully places together pairs
of procedures that have high affinity for one another,
but that this limited view of temporal affinity may
not do so well for larger groups of procedures ex-
ecuted close together in time. We chose to imple-
ment an algorithm for selecting call traces that is very
similar to our algorithm for selecting basic block
traces. As in the basic block case, it proves useful to
extend traces only when perfect partners are found.
When seeding a new trace, we also limit our choice
of seed procedure to those procedures adjacent to
procedures that have already been reordered, when
such procedures exist. The result is that all proce-

SCHMIDT ET AL. 289

dures in each connected component of the call graph
are packaged together. This is particularly impor-
tant for modules (such as dynamic link libraries) that
provide several independent services, each of which
is implemented using several procedures. More work
is needed to compare the effectiveness of our algo-
rithm with that of Pettis and Hansen.

Reordering modules. As previously mentioned, we
were constrained by our software maintenance pro-
cesses to permit reordering of procedures only within
module boundaries. To reduce this lost performance
opportunity, we decided to also order modules so
that those modules containing procedures that tend
to be executed together in time would have spatial
affinity. We developed two tools to produce this pack-
aging order.

The first tool analyzes the call flow entries from all
MCAs within SLIC and produces a full weighted call
graph for all SLIC procedures. The second tool reads
the call graph and reduces it to an intermodular call
graph. This call graph contains one node for each
profiled module in SLIC, with an arc from module
A to module B if there is at least one procedure
within A that calls at least one procedure within B.
The weight of this arc is the sum of the weights of
the (direct and indirect) call flow entries from A to
B. The tool then analyzes the intermodular call graph
and determines an optimized module packaging or-
der, using the same algorithm to analyze the inter-
modular graph as is used to reorder procedures
within a module.

Unfortunately, the module packaging order thus pro-
duced cannot be followed to the letter, since each
module is constrained to reside in a specific RUdest.
If a pageable module would prefer to be packaged
next to a module in the nucleus, this request cannot
be granted. At the moment, we do not take RUdest
constraints into account when determining the sug-
gested module order. Instead, the link/loader is given
the preferred module order, and loads modules into
their respective RUdests in the order they are pre-
sented. An alternative method would be to build a
separate intermodular call graph for each RUdest,
and produce separate optimized module orders. This
may or may not produce a better ordering: our cur-
rent method can find traces that leave a RUdest and
immediately return to it, while using separate graphs
for each Rudest would lose this information.®

Another advantage of the existing method is that it
allows us to analyze placement of modules within

290 scHMIDT ET AL

RUdests; in some cases, for example, it may pay to
move a pageable module into the nucleus if it has
strong affinity for a particular nucleus module. We
can also analyze the overall SLIC call graph to de-
termine which procedures in a module are used
rarely. Many times it is possible to move these low-
use procedures into separate modules to improve the
effectiveness of procedure and module reordering.

Field maintenance of restructured code

Clearly the tasks of instrumentation, data collection,
and optimization are time-consuming, particularly
when applied to a software product of this size. In
designing our methods, we felt that it might not be
practical to repeat these tasks whenever a new fix
needed to be shipped to customers. Therefore we
concentrated on ways to reuse existing profile data
where possible when compiling fixes, attempting to
minimize the performance degradation that might
otherwise result.

Profile data for each module are archived together
with the source code. As already seen, the hierar-
chical structure of the counter areas allows existing
data to be found for any procedure during the pro-
file feedback phase. This means that procedures
whose control flow has not been modified by a fix
can continue to use the existing profile data, while
changed procedures in the same module are opti-
mized without profile data. This raises the question
of how we can detect whether a procedure has been
modified.

A very simple test that catches most control flow
modifications is to check whether the numbers of
control flow and call flow counters in the PCA for a
procedure are equal to the numbers of counters that
are expected. If there is a mismatch, there have
clearly been changes to the control flow of the pro-
cedure, and the profile data should be ignored. The
obvious drawback to this method is that on occasion
a control flow will be changed in such a way that the
numbers of expected counters remain identical, but
those counters now apply to different control flow
arcs. Instead, when creating the PCA during instru-
mentation, and when reading the profile data dur-
ing feedback, the slicox computes a “signature” from
the CFG. This signature consists of a checksum of
the block numbers on either end of each control flow
arc, and is stored in the PCA during instrumentation.
If the stored and computed signatures do not match
during profile feedback, the profile data are ignored.
The likelihood of two different graphs having the

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

same signature is extremely small, and can be dis-
counted.

Note that with either of these methods, a simple fix
that only alters the instructions within a basic block,
and does not change the control flow structure of
the procedure, does not invalidate the profile data.
Many PTFs satisfy this description (consider fixing a
failure to initialize a variable). Thus these methods
are better than simply testing whether any source
file used to compile a procedure has changed, since
the latter would invalidate profile data unnecessar-
ily for such simple fixes.

On the other hand, there are cases where profile data
are no longer accurate even though the CFG for a
procedure has not changed. For example, reversing
the sense of a conditional branch will leave the CFG
unchanged, but old profile data will be inaccurate.
Similarly, change in the behavior of callers or cailees
for a procedure may change the behavior of that pro-
cedure. Of course, use of invalid profile data does
not produce incorrect behavior, just reduced exploi-
tation of performance opportunities. In any case, pe-
riodic reprofiling of all instrumented parts is impor-
tant, and we do this at every release of the AS/400
operating system.

For the benchmarks we currently use to generate a
profile for SLIC, we have found a practical way to up-
date the profile information, so that little or no per-
formance is lost. When a programmer provides a fix
to a module, a monitoring process checks to see if
profile data were invalidated for any procedure in
the module. If so, the changed module is automat-
ically reinstrumented, loaded onto a test machine
with the most current version of SLIC, benchmarked,
and reoptimized. For most modules, the identical
benchmarks are run that were used to profile the
original release. For modules that affect TPC-C per-
formance, a simpler batch version of the TPC-C
benchmark is used. (The standard benchmark re-
quires extensive setup time, significant hardware re-
sources, and human intervention.) Study of the MCAs
has indicated that the long-running benchmark and
the batch version produce very similar results for
most modules.

Although reprofiling has proved practical for our cur-
rent benchmark suite, the mechanisms to detect pro-
file data that have been invalidated, and to optimize
only those procedures that have not changed, are
quite important. First, the detection of invalid pro-
file data is used to determine whether a module

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

should be reprofiled; clearly the resources necessary
to reprofile a module should not be consumed un-
necessarily. Second, in our ongoing efforts to profile
other portions of 08/400, we have not always found
practical means to automate reprofiling of those
modules.

Both the original profiling of SLIC and the reprofil-
ing of fixes are completely transparent to the pro-
grammer. Developers need not even be aware that
their modules were selected for profiling.

Benchmark selection

An operating system performs many different func-
tions on behalf of different types of users and ap-
plications, so choosing representative benchmarks
can be a daunting task. We naturally decided to look
at benchmarks that represent areas of performance
that are critical to our customers.

Most of our customers use business applications
characterized by a traditional transaction process-
ing model. An industry standard benchmark used for
measuring transaction processing performance is
TPC-C, created by the Transaction Processing Per-
formance Council.® We created an internal work-
load that parallels the functions measured by that
benchmark, which for simplicity we refer to here as
TPC-C. A benchmark called SPEED also measures
transaction processing performance, using a
client/server environment.

Another class of customer consists of those that de-
velop applications for the As/400. For these, perfor-
mance of program translation and binding within
SLIC is very important, so we collected a variety of
programs written in different languages to form a
Program Model benchmark. Other aspects of the sys-
tem that were profiled include support for network
protocols, such as TCP/IP and APPC (Transmission
Control Protocol/Internet Protocol, and Advanced
Program-to-Program Communications), primitives
for the Integrated File System (IFS), and run-time
support primitives for the C language.®

These performance areas were also used in deter-
mining which modules within SLIC should be pro-
filed. We took measurements using a sampling pro-
filer to determine in which modules the most time
was spent when running these benchmarks. After
sorting the modules by decreasing contribution, only
those modules contributing to the top 95 percent of
the time spent in at least one benchmark were se-

SCHMIDT ET AL. 201

]

Table 1 AS/400 hardware models used in testing

apped
64 byte line size

lected for profiling. This cutoff eliminated many mod-
ules from consideration whose contribution was too
slight for significant payoff from profile-based op-
timization.

One problem with using multiple benchmarks is the
disparate lengths of time needed to run each bench-
mark. Many portions of the operating system are ac-
tive during more than one of these benchmarks (for
example, the task management and storage manage-
ment software), and there may be differences in how
they act in these different settings. If we were to sim-
ply add the weights collected from each benchmark
together and use the result to guide optimization,
the longest-running benchmark (TPC-C) would have
a disproportionate effect on the results.

To avoid this, we built a tool to combine the control
flow weights from separate sets of collected data. The
tool normalizes the control flow counters for each
procedure according to the number of times the pro-
cedure was invoked for each benchmark. Suppose
that a procedure was invoked N, times for each of
the i benchmarks, and let N, = max,{N,}. Then
the combined value k of a control flow counter is
computed as k = 2;k;(N,.../N;), where k; is the
value of the control flow counter for the ith bench-
mark. This gives equal weight to all benchmarks in
determining the final combined profile.

Since not all benchmarks may be considered equally
representative of expected customer activity, the tool
also permits a weighting factor to be applied to each
of the normalized weights in order to adjust the over-
all contribution of each benchmark. These weights
were heuristically determined as follows. First, area
experts were consulted to determine a desired
weighting DW,, for each benchmark w as a whole.
(For example, TPC-C was given a weight of 3, com-
pared to a weight of 2 for TCP/IP.) These desired
weights must then be normalized to account for dif-
ferences in run time and CPU utilization among the
benchmarks. This was done by selecting a single pro-
cedure P that was highly used by all the benchmarks,

292 SCHMIDT ET AL.

and that was known by its designer to have a similar
expected profile for all the benchmarks. Note that
the decision to use a single procedure P was a heu-
ristic one that was believed to meet our needs; al-
ternatively, a set of such procedures might be cho-
sen. The formula to compute overall benchmark
weights is given below.

Let CPU,, be the amount of CPU time spent execut-
ing procedure P during workload w. Let I,, be the
number of invocations of procedure P during work-
load w, and let I,,,, = max,{[,}. Let b denote a
workload such that I, = [, and assign it an arbi-
trary weight W,. To determine the desired weight
W, for a workload w, we first applied the opinions
of the area experts, scaling W, by the ratio
DWW, /DW,. We then calculated the amount of CPU
time spent in procedure P per invocation of proce-
dure P on each workloadw as T, = CPU ,/I,,, and
scaled the previous result by the ratio 7,,/T, to ac-
count for differences in usage of P. The complete
heuristic equation we used for the normalized
weights is

W T,DW, _— CPU, I, DW, w
"~ T,DW, ' CPU,I,DW, "

Performance resulits

For purposes of this paper, we measured the effec-
tiveness of feedback-directed program restructuring
(FDPR) on a pre-release version of 08400 Version 4
Release 1. (FDPR was first used on system licensed
internal code, or SLIC, in Version 3 Release 7.) Pro-
file data were collected for the benchmarks previ-
ously described, and the combined data were used
to optimize the high-use SLIC modules. We then mea-
sured the performance improvements of several
benchmarks on a number of different AS/400 mod-
els. Table 1 shows a comparison of the processors
and caches for the models we employed. Because of
constraints on machine availability, not all bench-
marks were run on all models.

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

Table 2 shows the reduction in CPU time for the mea-
sured benchmarks. (For the IFS benchmark, the re-
duction in response times is reported.) All of the
benchmarks measured are the same ones used in
gathering the profile data. The Program Model
benchmark was measured both when compiling
workloads with minimal optimization and when com-
piling workloads with full optimization (the profile
data contained information gathered using both op-
timization levels). Improvements for the Program
Model benchmark were measured in an uncon-
strained memory environment (128 MB available)
and in a more constrained environment (8 MB avail-
able).

More detailed hardware performance information
is provided in Tables 3 and 4 for many of the bench-
marks. These data were recorded using hardware
counters aboard the AS/400 processors. Each entry
in the table reflects the percentage change of a given
measured quantity; for example, the first row shows
the percentage decrease in cycles per instruction
(cp1) when using a version of SLIC optimized with
FDPR as compared to a version of SLIC without FDPR.
The column labeled Average gives the harmonic
mean of the data in the other columns.

Note that the performance improvements from Ta-
ble 2 are largely explained by changes in CPI. This
seems to indicate that, for most of the benchmarks,
the effects of basic block reordering dominate those
of procedure reordering. By far the largest contrib-
utor to the reduction in CPI is the reduction in in-
struction cache miss rates. This reflects the success
of FDPR in reordering basic blocks within procedures
to increase sequential control flow. The miss ratios
for the translation lookaside buffer (a hardware cache
for the SLIC memory page table) appear to be af-
fected largely randomly. This is probably explained
by the reordering of procedures in memory, which
may increase or decrease the number of hash col-
lisions that occur during memory paging.

Table 4 indicates the effect of FDPR on dynamically
executed branches in SLIC. In all cases, the total num-
ber of branches executed is slightly reduced, as ex-
pected. The percentage of these branches that are
unconditional branches is sharply reduced, as is the
percentage of conditional branches that are taken.
Both of these statistics indicate that basic block re-
ordering is successful in generating long traces of
blocks that can execute sequentially.

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

Table 2 CPU time reduction from applying FDPR to SLIC

*Response time reduction

Table 5 summarizes the effect of FDPR on branch
penalties. The first group of statistics indicates the
percentage of instruction cache miss cycles that are
attributable to taken branches, demonstrating that
FDPR significantly reduces this component of the in-
struction cache (icache) miss cost by ensuring that
more branches are not taken. The second group
shows the percentage of all cycles that were spent
waiting on an icache miss due to any branch. This
figure was reduced by an average of 20 percent across
all workloads; again this is due to the increased se-
quentiality of the code. The final group is similar,
but here we are interested only in the miss cycles
attributable to mispredicted branches. The average
reduction of 31 percent indicates that “straighten-
ing” the code is important for improving the effec-
tiveness of the branch prediction hardware.

Some additional data were captured from the op-
timized SLIC by a sampling profiler; these data ap-
pear in Table 6. The first row indicates how often
the sampler recorded that SLIC was executing code
from an FDPR-optimized module. Note that these fig-
ures are much smaller than the 95 percent cutoff
point that was used in determining which modules
to profile. The reason for this is that many of the
high-use modules are currently not compiled by the
slicox. Much of the SLIC legacy code is written in a
language that is compiled directly into machine in-
structions, instead of into an intermediate represen-
tation that can be processed by the slicox. Clearly
this code represents an unexploited opportunity. The
second row of Table 6 indicates an upper bound on
the estimated performance improvement by FDPR if
all code were processed through the slicox and pro-

SCHMIDT ET AL. 293

Table 3 Changes in performance measurements due to FDPR

Note 1 The average has been omitted, since the harmonic mean is undefined for ratios of differing signs, and the arithmetic mean is not meaningful.
Note 2 Run on a Model 500 that has no L2 cache.

Table 4 Changes in dynamic branch measurements due to FDPR

Table 5 Reduction in branch penalty due to FDPR

Table 6 Profiled module data for optimized SLIC

294 SCHMIDT ET AL. IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

filed, using linear extrapolation from the data in Ta-
ble 2.

We were initially concerned that optimizing for cer-
tain workloads might contribute to degradations in
environments not represented by those workloads.
In the early stages of development, we used only the
TPC-C and Program Model workloads as our profile
inputs. We then measured the performance of a
number of other workloads. The results, shown in
Table 7, demonstrate that most of these benchmarks
were improved, and none showed any degradation. **
It appears that the behavior of much of the oper-
ating system is predictable across a wide range of
workloads.

An important point about these performance num-
bers is that they show improvements to code that had
already been heavily hand-tuned. Prior to the intro-
duction of FDPR, a good deal of human effort had
gone into analyzing and improving hot spots in the
code, manually splitting low-use procedures out of
high-use modules, inserting compiler directives into
code to identify infrequently used code paths, and
manually ordering modules in their RUdests accord-
ing to sampled profiles. That is, a great deal of the
opportunity for performance improvements due to
FDPR had already been addressed laboriously by
hand; the improvements summarized in Tables 2
through 6 are additional gains beyond these manual
improvements. One of the anticipated benefits of
FDPR is that most of this hand-tuning activity will now
be avoided on subsequent releases.

Concluding remarks

In this paper we have demonstrated the feasibility
of applying profile-based optimizations, particularly
those involving code reordering, to operating system
code, in such a manner that the resulting code can
be easily supported in the field with a minimum of
performance degradation. Although we have con-
centrated in this paper on the use of profile data for
code restructuring, the data are also used today to
guide the instruction scheduler and register alloca-
tor, and will be used for more optimizations in fu-
ture releases. Note that the difficulty in applying
code-restructuring techniques to operating system
code does not apply to many other profile-based op-
timizations, provided they do not operate across
module boundaries.

In an upcoming release, we are providing similar pro-
filing support above the MI for use by our custom-

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

Table 7 Performance improvements for unprofiled
workloads (SLIC version 3 release 7)

ers, integrating profile-based optimization into the
AS/400 native translator and program binder. We an-
ticipate that this will improve performance for many
AS/400 applications. Since many applications exhibit
better locality than operating system code, improve-
ments for those applications may be less than the
results reported here. However, many large business
applications suffer from locality problems similar to
the operating system; these applications may see re-
sults comparable to those measured for SLIC. Even
programs with good temporal locality will benefit
from code rearrangement to improve their spatial
locality, and from the improved efficiency of sequen-
tial instruction prefetching that we can provide.

We also plan to expand our uses of profiling within
SLIC. For example, we may decide to also profile the
initial program loading (IPL) path executed when an
AS/400 is rebooted in order to reduce the time that
requires. More ambitious would be modifying the
link/loader to permit procedures to be reordered
across module boundaries while still supporting PTFs
in the field. Finally, we might choose to implement
Pettis and Hansen’s idea of moving infrequently used
basic blocks out of a procedure body altogether, al-
though currently too many components in SLIC as-
sume that a procedure body is contiguous.

The Program Model test team (IBM AS/400 Division,
Rochester, Minnesota) has found another use for
profile data. They have constructed a code coverage
tool for analyzing the effectiveness of test suites in
covering the code they are intended to test. Although
this tool is not capable of determining whether ali
possible paths through a procedure have been ex-
ercised, it is able to indicate those procedures and
basic blocks that have not been exercised at all. This
tool is proving very useful in improving the quality
of testing.

SCHMIDT ET AL. 235

Acknowledgments

Many outstanding individuals contributed to the suc-
cess of this project. Itai Nahshon provided substan-
tial guidance and assistance, sharing his experience
with developing FDPR for AIX. Mark Novick, Dave
Lambert, Scott Hanson, and Jim Holmes developed
substantial portions of the slicox and the benchmark
and feedback tools. David Sandifer and Bob Petrillo
provided support for FDPR in other SLIC components,
and Bill Seurer and Pat Haugen provided support
in the compiler front ends. Brent Hoegh, Dale Peter-
son, and Mark Sloneker spent many hours planning
and implementing methods to add profiling to our
product build and test processes. Blair Wyman was
key to running the first profiled version of SLIC. Sandy
Ryan and Kim Greene helped with performance
analysis. Keith Cooper, Jeff DeKelver, Mark Gibbs,
and Joe Zoght developed the profile-based test cov-
erage tool. Finally, very special thanks go to Clint
Laschkewitsch, Ed Gomez, and Mike Tomashek for
their support and encouragement throughout the
project.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of the Transaction Pro-
cessing Performance Council.

Cited references and notes

1. K. Roland and A. Dollas, “Predicting and Precluding Prob-
lems with Memory Latency,” IEEE Micro 14, No. 4, 59-67
(1994).

2. L. A. Belady, “A Study of Replacement Algorithms for a Vir-
tual-Storage Computer,” IBM Systems Journal 5, No. 2, 78—
101 (1966).

3. P. J. Denning, “The Working Set Model for Programming
Behavior,” Communications of the ACM 11, No. 5, 323-333
(1968).

4. P.J. Denning, “Virtual Memory,” Computing Surveys 2, No.
3, 153-189 (September 1970).

5. C.V.Ramamoorthy, “The Analytic Design of a Dynamic Look
Ahead and Program Segmenting System for Multiprogrammed
Computers,” Proceedings of the ACM National Conference, ACM
Pub. P-66, ACM, New York (1966), pp. 229-239.

6. T. C. Lowe, “Automatic Segmentation of Cyclic Program
Structures Based on Connectivity and Processor Timing,”
Commupnications of the ACM 13, No. 1, 3-9 (January 1970).

7. E. W. Ver Hoef, “Automatic Program Segmentation Based
on Boolean Connectivity,” Proceedings of AFIPS 1971 SICC,
AFIPS Press, Montvale, NJ (1971), pp. 491-495.

8. J.-L. Baer and R. Caughey, “Segmentation and Optimiza-
tion of Programs from Cyclic Structure Analysis,” Proceed-
ings of AFIPS 1972 SICC, AFIPS Press, Montvale, NJ (1972),
pp. 23-36.

9. R. Snyder, “On the Application of g priori Knowledge of Pro-
gram Structure to the Performance of Virtual Memory Com-
puter Systems,” Ph.D. thesis, University of Washington, Se-
attle, WA 98195 (November 1978).

296 SCHMIDT ET AL.

11.

12.

13.

14,

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

. D.J. Hatfield and J. Gerald, “Program Restructuring for Vir-
tual Memory,” IBM Systems Journal 3, 168-192 (1971).

D. Ferrari, “Improving Locality by Critical Working Sets,”
Communications of the ACM 17, No. 11, 614-620 (Novem-
ber 1974).

S.J. Hartley, “Compile-Time Program Restructuring in Mul-
tiprogrammed Virtual Memory Systems,” IEEE Transactions
on Software Engineering 14, No. 11, 1640-1644 (November
1988).

Y. Wu, “Ordering Functions for Improving Memory Refer-
ence Locality in a Shared Memory Multiprocessor System,”
Proceedings of the 25th International Symposium on Microar-
chitecture, Portland, OR (December 1992), pp. 218-221.
A. J. Smith, “Cache Memories,” Computing Surveys 14, No.
3, 473-530 (1982).

S. McFarling, “Program Optimization for Instruction Cach-
es,” Proceedings of the Third International Conference on Ar-
chitectural Support for Programming Languages and Operat-
ing Systems, Boston, MA (April 1989), pp. 183-191.

A. Mendelson, S. S. Pinter, and R. Shtokhamer, “Compile
Time Instruction Cache Optimizations,” ACM Computer Ar-
chitecture News 22, No. 1, 44-51 (March 1994).

W.-M. Hwu and P. P. Chang, “Achieving High Instruction
Cache Performance with an Optimizing Compiler,” Proceed-
ings of the 16th Annual International Symposium on Computer
Architecture, Jerusalem, Israel (May—June 1989), pp. 242-251.
K. Pettis and R. C. Hansen, “Profile Guided Code Position-
ing,” Proceedings of the ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, White Plains,
NY (June 1990), pp. 16-27.

R. Gupta and C.-H. Chi, “Improving Instruction Cache Be-
havior by Reducing Cache Pollution,” Proceedings of Super-
computing 90, New York (November 1990), pp. 82-91.

J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The Pro-
gram Dependence Graph and Its Use in Optimization,” ACM
Transactions on Programming Languages and Systems 9, No.
3, 319-349 (July 1987).

R. R. Heisch, “FDPR for AIX Executables,” AIXpert, No.
4 (August 1994), pp. 16-20.

R. R. Heisch, “Trace-Directed Program Restructuring for
AIX Executables,” IBM Journal of Research and Development
38, No. 5, 595-603 (September 1994).

I. Nahshon and D. Bernstein, “FDPR—A Post-Pass Object
Code Optimization Tool,” Proceedings of the Poster Session
of CC ’96—International Conference on Compiler Construc-
tion, Sweden (April 1996), pp. 97-104.

S. E. Speer, R. Kumar, and C. Partridge, “Improving UNIX
Kernel Performance Using Profile Based Optimization,” 1994
Winter USENIX, San Francisco, CA (January 1994), pp. 181-
188.

J.B. Chen and B. N. Bershad, “The Impact of Operating Sys-
tem Structure on Memory System Performance,” Proceed-
ings of the Fourteenth ACM Symposium on Operating Systems
Principles, Asheville, NC (December 1993), pp. 120-133.
F. G. Soltis, Inside the AS/400, Duke Press, Loveland, CO
(1996).

M. H. Lipasti, IBM Rochester, MN, personal communica-
tion (August 1995).

Transaction Processing Performance Council, “TPC Bench-
mark C: Standard Specification,” Revision 3.2 (August 1996).
Auvailable at http://www.tpc.org/cspec.html.

Note that the data may not be completely valid, since chang-
ing the callers or callees for a procedure can change the be-
havior of the procedure; in practice, however, treating the
data as valid gives good results.

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

30. D. E. Knuth, The Art of Computer Programming, Volume 1:
Fundamental Algorithms, second edition, section 2.3.4.1, Ad-
dison-Wesley Publishing Co., Reading, MA (1973).

31. T.BallandJ. R. Larus, “Optimally Profiling and Tracing Pro-
grams,” ACM Transactions on Programming Languages and
Systems 16, No. 4, 1319-1360 (July 1994).

32. A. Goldberg, “Reducing Overhead in Counter-Based Exe-
cution Profiling,” Technical Report CSI.-TR-91-495, Com-
puter Systems Laboratory, Stanford University, Stanford, CA
(October 1991).

33. A.D.Samples, Profile-Driven Compilation, Ph.D. thesis (Rep.
UCB/CSD 91/627), Computer Science Department, Univer-
sity of California, Berkeley, CA (April 1991).

34. M. R. Garey and D. 8. Johnson, Computers and Intractability:
A Guide to the Theory of NP-Completeness, W. H. Freeman and
Company, New York (1979).

35. G. Kirchhoff, Annalen der Physik und Chemie 72, 497-508
(1847).

36. In some cases, this transformation interacts badly with the
instruction prefetching hardware scheme. The actual pred-
icate we use to determine whether to restart a trace with an
isolated block is therefore more complicated than described
here.

37. W. Berg, M. Cline, and M. Girou, “Lessons Learned from
the O8/400 OO Project,” Communications of the ACM 38,
No. 10, 54—64 (October 1995).

38. This same criticism might be leveled at our decision to only
consider intramodular arcs when determining procedure or-
der within modules. This was a pragmatic decision based on
the availability of intramodular call flow data within the MCA
for the module being translated. Alternatively, the full SLIC
call graph could be analyzed for each module, at the cost of
additional compile time and a shared-resource bottleneck (the
SLIC call graph file) during distributed compiles.

39. Formore detailed information on AS/400 internals, see Ref-
erence 26.

40. This experiment was performed on a very early pre-release
version of OS/400 Version 3 Release 7, at which time fewer
critical modules were eligible to be compiled through the sfi-
cox. The improvement to TPC-C was roughly 4 percent, and
the improvements to Program Model were between 5 per-
cent and 12 percent in various configurations. The numbers
in Table 7 should be analyzed in light of these lower perfor-
mance figures.

Accepted for publication December 3, 1997

William J. Schmidt IBM AS/400 Division, 3605 Highway 52
North, Rochester, Minnesota 55901 (electronic mail: wjs@vnet.
ibm.com). Dr. Schmidt is an advisory software engineer with the
SLIC Program Model group for the AS/400. He has been devel-
oping compiler optimizations for the AS/400 optimizing trans-
lator since joining IBM in 1992. He received a B.A. in mathe-
matics and music from Bethel College, North Newton, Kansas
in 1984, and M.S. and Ph.D. degrees from lowa State University,
Ames, lowa in 1991 and 1992, respectively. He holds 19 filed
patent applications and two issued U.S. patents, primarily in the
area of compiler optimizations. His current interests include pro-
file-based optimizations for Java classes.

Robert R. Roediger [BM AS/400 Division, 3605 Highway 52
North, Rochester, Minnesota 55901 (electronic mail: roediger@vnet.
ibm.com). Dr. Roediger joined IBM in 1980. He is presently a
senior software engineer with the SLIC Program Model group

IBM SYSTEMS JOURNAL, VOL 37, NO 2, 1998

for the AS/400, working on compiler optimizations for the AS/400
optimizing translator. He has previously worked on various sys-
tem and computer architecture projects, as well as compiler
projects for both the AS/400 and the System/38. Dr. Roediger is
a member of the ACM. He received a B.S. degree and M.S. de-
gree in applied mathematics and computer science from Wash-
ington University, St. Louis, Missouri, in 1972, and a D.Sc. in com-
puter science from Washington University in 1980. He holds 16
filed patent applications.

Cynthia S. Mestad IBM AS/400 Division, 3605 Highway 52 North,
Rochester, Minnesota 55901 (electronic mail: Cindy Mestad/
Rochester/IBM@IBMUS). Ms. Mestad is currently a staff software
engineer doing performance analysis on the AS/400 at IBM in
Rochester, Minnesota. Upon completion of a computer program-
ming course at Brown Institute in Minneapolis, Minnesota, she
joined IBM in 1980 as a computer operator on the IBM System/38.
She has held various testing, programming, and project manage-
ment positions within IBM throughout her career. She has fo-
cused on the System/36, System/38, and AS/400.

Bilha Mendelson IBM Research Division, Haifa Research Lab-
oratory, Matam—Advanced Technology Center, Haifa 31905, Is-
rael (electronic mail: bilha@vnet.ibm.com). Dr. Mendelson has
been a member of the Haifa Research Laboratory in Israel for
several years. She worked on avionic real-time systems at Elbit
Ltd. before attending graduate school. In 1990 she joined the Haifa
Research Laboratory, where she is now the manager of the code
optimization and performance improvements group. She holds
aB.Sc. and M.Sc. in computer science from the Technion-Israel
Institute of Technology, Haifa, and a Ph.D. in electrical engineer-
ing from the University of Massachusetts at Amherst. Her areas
of interest include code optimization algorithms, compiler tech-
nology, computer architecture, and data-flow systems.

Inbal Shavit-Lottem IBM Research Division, Haifa Research
Laboratory, Matam—Advanced Technology Center, Haifa 31905,
Israel (electronic mail: ishavit@vnet.ibm.com). Mrs. Shavit-Lot-
tem is currently a member of the code optimizations and per-
formance improvements group in the Haifa Research Labora-
tory, where she has been working since 1992. She works on
machine-dependent (back-end) compiler improvements and op-
timizations. She received her B.Sc. degree in computer science
from the Technion-Israel Institute of Technology in Haifa. She
has four filed patent applications in the area of code optimiza-
tions. Her areas of interest include code optimization algorithms,
compiler technology, and graphical user interfaces.

Vita Bortnikov-Sitnitsky /BM Research Division, Haifa Research
Laboratory, Matam—Advanced Technology Center, Haifa 31905,
Israel (electronic mail: vita@haifasc3.vnet.ibm.com). Mrs. Bort-
nikov is currently with the code optimizations and performance
improvements group in the Haifa Research Laboratory, where
she has been working since 1994. She works on machine-depen-
dent (back-end) compiler improvements and optimizations. She
received her B.Sc. degree (cum laude) in computer science in 1996
from the Technion—Israel Institute of Technology in Haifa. She
has four filed patent applications in the area of code optimiza-
tions. Her areas of interest include code optimization algorithms,
compiler technology, distributed computing, and advanced algo-
rithms and data structures.

Reprint Order No. G321-5677.

SCHMIDT ET AL.

297

