
The Websphere
Application Server
architecture and
programming model

This paper discusses the infrastructure that ISM
is providing to support the World Wide Web and
to facilitate Web applications and commerce.
This effort started as an architecture called the
Network Computing Framework (NCF), and is
now the foundation of the ISM Websphere
Application Server'". The WebSphere Application
Server is a product ISM first delivered in June
1998. In this paper we discuss this architecture
and programming model. We start with a brief
introduction and history of the NCF, then
examine the architecture of the Websphere
Application Server. We take a close look at the
core run time of the Websphere Application
Server, then delve into the Java" programming
model that supports this architecture. We also
present the reasons why Java is a prominent
part of this architecture, and see what relevant
technologies Java provides for this run time.

T he World Wide Web grew from a small network
to facilitate document sharing among a hand-

ful of physicists to a large network of networks, con-
necting thousands, perhaps millions, of computers
and computer users together. The most amazing fact
is that all this growth occurred in a very short period
of a few years. Today, the World Wide Web is not
only used to exchange documents, but also to run
business operations and handle finances. It is both
a huge repository of information and a marketplace
for commercial and financial transactions.

The Java* * programming language is taking on a new
role on the World Wide Web. Having started mainly
as a way of writing portable client applications (ap-
plets) that run on Web browsers, it is now being used

by E. Bayeh

to write stand-alone applications, as well as server-
side applications (servlets) that run on Web servers.
In a later section we discuss the reason for deploy-
ing Java on servers and stand-alone applications, and
the possible advantages of doing so.

The paradigm shift on the Web has been to change
the role of Web (HnP-HyperText Transfer Pro-
tocol) servers, from traditionally serving flat HTML
or HyperText Markup Language (static) files and
running a few programs and gateways using the
CGI-BIN interface (Common Gateway Interface as
set up in a UNIX** directory), to hosting Web ap-
plications, serving live (dynamic) content. It has
evolved from a basic static publishing model to an
interactive application model. In a sense, Web serv-
ers are now application servers. Clientherver com-
puting has a whole new life. Web browsers, the cli-
ent side of this paradigm, are low-cost and pervasive.
They are excellent as an application client, because
they are widely adopted (almost every computer user
has access to a browser) and allow the dynamic down-
load of application code from the server (Java ap-
plets). Browsers also provide peace of mind to the
user because of their built-in security model. The cli-
ent application (applet) cannot introduce a virus, is
discarded after use, and can be assumed to be trusted,

Wopyright 1998 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

336 BAYEH 0018-8670/98/$5.00 0 1998 IBM IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

if it is digitally “signed” by a trusted source. Deploy-
ment of clientherver applications in this paradigm
is very easy and cost-effective. The server applica-
tion (servlet) and the client part (applet) are hosted
on a “Java-compliant’’ Web server, and users are sim-
ply pointed to a uniform resource locator (URL).

The future is even more promising now that Inter-
net Inter-Orb Protocol (IIOP), an object-oriented common Object Request Broker Ar-
chitecture) communications protocol, is being in-
creasingly supported by Web servers and clients.
HTTP is a nonconversational protocol and is not re-
ally designed to be used as a clientherver protocol.
IIOP solves many of the current problems with HTTP
and makes applet-to-servlet communications more
efficient.

Even Web applications (applications designed for
use on the Web) are undergoing a metamorphosis.
The transition to dynamic content was initially done
through CGI programming and HTML forms. Every
server supported CGI-BIN, and every browser sup-
ported HTML forms, making this an easy choice for
developers. HTML forms allowed a browser user to
enter some data on a form and then post that form
to the Web server, which started a CGI program that
usually was a gateway to a third-tier application such
as a database. The CGI program fetched data from
the third tier, formatted the data into HTML, and sent
the data back to the client. Although this model was
successful, and most Web applications and gateways
today are still deployed that way, there are limita-
tions. CGI programs are slow and not portable. HTML
forms do not have the user interface (UI) that most
sophisticated users are used to. This model was great
for doing a simple database query and viewing the
results. But what about a banking application using
forms and CGI programs? The answer has been, in
some cases, to move the client-side UI into Java.

Today almost every browser supports Java applets
and, more importantly, is moving the server-side of
the application to higher-function and higher-per-
formance Java servlets. Even newer technologies on
the horizon are providing more sophisticated func-
tion, namely, the newly announced Enterprise Java-
Beans** (EJBS) and the Internet Inter-Orb Protocol
(110P). EJBs form a server-side component architec-
ture that provides a transactional, persistent object
programming model, and IIOP is a protocol for ob-
ject communication that is more efficient and func-
tional than simple HTTP. IIOP allows objects to be
distributed and encapsulates the physical location of

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

the objects from the application. IIOP also allows the
interoperability between all CORBA-Compliant ob-
jects and sets the stage for true distributed object
programming. Note, however, that when this paper
was written, the use of IIOP and EJBS on the Web was
not yet prevalent. Their use has only just begun, but
before the end of 1998, IBM will provide the frame-
work necessary to start building and deploying EJB
applications.

The Websphere Application Server
architecture

The IBM Websphere Application Server* is the re-
sult of the evolution of what was traditionally the
“Web” server. The addition of “application” ac-
knowledges the fact that this server is no longer sim-
ply serving HTML but also industry-strength business
applications. In some ways it is also the gateway to
data and applications on back-end, third-tier systems.
A large number of applications on the Web server
are simply gateways to an existing back-end appli-
cation or server and use a set of “connectors” for
access to this back end. Figure 1 shows the three tiers
of the Websphere Application Server: the HTTP en-
gine, the servlet engine, and the Enterprise Java-
Beans engine (enterprise bean container). The server
is designed to be open in order to work with general
industry tools. The Websphere Application Server
as illustrated in Figure 1 is an implementation of
IBM’S Enterprise Server for Java specification. For
more information on Enterprise Server for Java, see
Brackenbury et al.’

The core HTTP engine depicted in Figure 1 handles
HTP Web requests: requests for static resources such
as GIF (Graphic Interchange Format) files, HTML
files, etc.; requests for CGI programs; and requests
for plug-in applications. Servlet requests are passed
on to the Java application engine (discussed below),
after undergoing the normal Web server authenti-
cation, authorization, and logging steps. This tier is
the first line of scalability and the easiest tier to scale,
since most requests handled here are static and non-
interactive. Although static requests are normally
short-lived, the core engine could quickly get over-
whelmed with hundreds or thousands of concurrent
requests. Scaling the core engine for static content
is simple; the prevalent solution is to use an HTTP
“sprayer” (a load balancer), where multiple servers
are run in a cluster, sharing the same static resources
via a shared file system. The most critical elements
of this engine are response time and throughput. Re-
sponse time is the turnaround time of handling a sin-

BAYEH 337

Figure 1 Logical tiers of the application server

Figure 2 Clustering the HTTP server subsystem

gle (simple) HTTP request; throughput is the total the Interactive Network Dispatcher (IND) as shown
number of these requests that the engine can han- in Figure 2. IND, an IBM product, is a front end to
dle, typically in one second. The engine is optimized a Web site that balances load and distributes HTTP
to meet these criteria, and where a single engine fails requests to a number of HTTP servers (typically via
the throughput demands of a Web site, multiple HTTP a round-robin method, but could also do intelligent
engines are used concurrently behind a sprayer called routing based on workloads).

338 BAYEH IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

Figure 3 Servlet engine run-time components

TO ITS OWN
PROCESS(ES)

BACK ENDS, NET.DATA, CICS, Ma, E7C. REPOStTORY @%3PERT’f

(SEE flOUFE 4)
RLES OR LDAF‘)

Figure 3 shows the run-time architecture of theJava
application (sewlet) engine. The run-time environ-
ment, shown as the sets of rectangles in blue-green,
plugs into major Web (H7TP) servers via proprietary
plug-in application programming interfaces (MIS)

such as Internet Server API (ISAPI) and Netscape
Server API (NSAPI), and then routes servlet requests
to the servlet manager which then takes care of han-
dling the request and passing the data back to the
client. This engine also handles requests for Java-
Server** pages (JSP) or server-side HTML scripting.
These dynamic requests are not normally as short-
lived as the static ones discussed previously. There-
fore, the limit of how many concurrent requests this
engine can handle is substantially smaller than the
above, and the response time is longer. This is to be
expected, since we are now running applications and
dynamic content, and not just sending static bytes
back to the client. Making this tier an “industry-
strength” solution requires the multiprocess support
discussed later (seen later in Figure 5) .

Figure 4 shows the architecture of the Enterprise
JavuBeuns engine run time. This engine handles run-

ning the business logic, ensuring transactional integ-
rity. It is basically a managed object framework and
deals with life-cycle and persistence issues of the en-
terprise beans it manages. It has identical scalability
issues as the servlet engine, perhaps compounded
further by the fact that this engine has to deal with
issues typical of a transaction monitor, and it also
accepts IIOP connections.

Servlet queues. To overcome the limitation of run-
ning all servlets and Web applications in a single Java
process, a new servlet engine architecture was de-
veloped to allow multiple Java processes to be run
on the same machine. Requests coming to the Web
server are routed (based on policy) to one or more
queues, each serviced with one or more Java pro-
cesses. The benefits of having multiple processes are
discussed in the next subsection. The administrator
defines how many queues to set up (the default is
one), and then defines apolicy associated with that
queue.

The queuepolicy defines the URLS that are serviced
by the queue, the number of processes servicing the

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998 BAYEH 339

Figure 4 The enterprise JavaServer subsystem

queue (the default is one), and the Java and security
environment of the queue processes. Examples of
the Java environment that can be configured via pol-
icy are CLASSPATH, JVM (Java Virtual Machine) path,
and security.

In Figure 5, except for the policy information de-
fined earlier, all of the Websphere Application
Server instances are basically the same. For simplic-
ity, they all share the same configuration files.

Benefits of servlet queues. As was stated, multiple
process support is essential for a serious business
server. Even the low-end server requires a certain
amount of reliability, security, and throughput. The
most important goal of the multiprocess architec-
ture is to maintain simplicity and only provide sup-
port when needed, without sacrificing single process
efficiency and simplicity. The policy is designed to
allow running in a single process (with no queues)
and to easily add queues if needed. Following are
the benefits of having multiple Java processes.

Availability and reliability 24 hours a day, seven
days a week-One of the obvious drawbacks of
running a single-server process occurs when the
process crashes, hangs, or even temporarily stops.
As a result, the server is basically gone. Java has

340 BAYEH

not yet matured to the “crash-proof’ level required
for serious, heavy-duty application servers. Run-
ning multiple processes provides a way for unin-
terruptible operation of the server, even if a pro-
cess or an application occasionally crashes. Queues
can be configured for fail-over by specifying more
than one clone in the queue policy. This action al-
lows other processes to take over work when one
of the processes is not accepting any.

Load balancing, multiprocessor server utilization,
and performance-This group of benefits is only
achieved if a single-server process does not com-
pletely utilize all of the available CPU. There is ob-
viously no benefit to load balancing if a single pro-
cess overloads the CPU of the server. If the Java
process is not cpu-bound, there is a limit of classes
and requests that it can handle before bottlenecks
and thread deadlocks start causing performance
degradation. Load balancing across multiple pro-
cesses alleviates the occurrence of these perfor-
mance degradations and exploits multiprocessor
server hardware architecture. There is also the no-
torious garbage collection (GC) problem, which oc-
curs when the Java Virtual Machine chooses to
carry on housekeeping tasks such as GC, and the
entire virtual machine comes to a halt. Spreading
GC to multiple processes also alleviates this prob-

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

Figure 5 Application queues and multiple process support

lem, assuming that not all the processes perform
housekeeping tasks at the same time (very
unlikely).

Bottlenecking the HTTP server-The HTTP engine
is typically structured to have a finite number of
worker threads that process Web requests. For a
Java request, the HTTP worker thread typically
passes the request to the WebSphere Application
Server engine and waits for the request to finish

before returning to service a new request. Since
Java requests take longer than an average static
Web request, the throughput of the Web server
is reduced when the amount of Java requests it ser-
vices is increased. A simple benchmark shows that
on Windows NT* *, the Web server can handle 600
static requests per second compared to 100 Java
requests per second. The multiprocess architecture
includes a feature called connection passing. This
feature is not available on all Web servers, but

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998 BAYEH 341

when it is available, the HTTP thread will put the
request on the application queue and return (not
wait) to service new requests. The Java applica-
tion process will pull the request off the queue, pick
up the connection left open by the HTTP thread,
and take over that connection. This action requires
the Java process to then perform the HTTP func-
tions that the HTTP thread would have done, but
this is a small price to pay for improving the
throughput of the H ~ T P engine, while running Java
application requests.

Application confinement or isolation-Java today
allows applications running in the same virtual ma-
chine to intentionally, or unintentionally, interfere
with one another. One can argue that these ap-
plications should be trusted, since they were ad-
equately tested by the developers to ensure that
there are no problems, but that is not enough for
certain mission-critical applications. An adminis-
trator, for security reasons, can choose to confine
an NCF application (one or more servlets) to its
own virtual machine, thus preventing the possibil-
ity of other servlets interfering with it.

Pluggability of JVMs-This architecture allows a
particular Java environment (including a virtual
machine) to be defined per application queue. This
action allows a particular site to run a mix of vir-
tual machines at the same time. Although this ac-
tion is not typically recommended because of bugs
and different Java implementations developed by
vendors, there are cases where it will be very de-
sirable and even required.

Debuggability-Debugging servlets is currently a
very difficult task, because the servlets are exten-
sions of the Web servers and usually need to be
debugged in the same environment in which they
run. There are many debugging techniques; the
technique being referred to here is the use of re-
mote debuggers. Remote debuggers require that
the virtual machine in which the application is run-
ning be started in a specific mode. The multipro-
cess architecture allows a particular queue to be
made debuggable, without affecting the entire site.

Use of Java on the server

Until Java Development Kit Version 1.1 (JDK* * 1.1)
became available, Java did not have the reliability
and performance required by heavy-duty server ap-
plications. Thus the use of Java on servers is new
and not pervasive. With Version 1.1, the reliability,

342 BAYEH

functionality, and performance of Java has improved
and actually shows promise of exceeding C+ +. Java
offers the standards discussed in this section to make
it a powerful candidate for NCF applications. The
building blocks of a server-side NCF application are
servlets, JSP files for scripted, dynamic HTML, and
session state for maintaining HTTP session informa-
tion. JavaBeans* *, and more recently, Enterprise
JavaBeans, are the component architecture for build-
ing Java applications.

JavaBeans. JavaBeans is an architecture that allows
the development and utilization of reusable software
components in Java. The application programming
interfaces (APIS) of JavaBeans were designed to be
simple, but powerful. The “official” JavaSoft defi-
nition of a JavaBean is the following: “A JavaBean
is a reusable software component that can be ma-
nipulated visually in a builder tool.”2

This definition is not exactly accurate, as we discuss
later. Beans can also be manipulated by the servlet
engine, which is not a builder tool and is certainly
not visual. However, this definition serves to indi-
cate that there is a contract between the JavaBean
and the tool, and this contract is the JavaBeans MI.
The consumer of the beans (visual builder tool, or
server run time) uses this contract to understand
what the bean does and how to set and retrieve its
properties or invoke its methods. The important fea-
tures of a JavaBean is its support for the following:

Introspection- how the consumer of the bean can
analyze and examine how the bean works
Customization and properties-used to custom-
ize the appearance and behavior of the bean
Events-a simple communication metaphor used
to connect beans together
Persistence-allows customized state of the beans
(consisting of its properties and local variables) to
be saved and reloaded later

Servlets. Servlets are Java programs that run on a
server. The basic form of servlets, called Generic-
Servlets, run on any generic server. To handle HTTP
requests, a subclass of servlets called HttpServlet is
available. The HttpServlet class is an abstract class
that simplifies writing HTTP servlets. It extends the
GenericServlet base class and provides a protocol-
handling framework. Because it is abstract, servlet
writers must subclass it and override at least one
method. The methods now described are normally
overridden.

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

The ini t () method is called when the servlet engine
first loads the servlet. It only executes once and is
not repeated throughout the life of the servlet in-
stance. A servlet is not required to override the init()
method; the default provided is usually adequate.
Typical things that could be done in this method are
to initialize database connections and load default
data.

The destroy() method is called when the engine is
getting ready to unload a servlet. Like the init()
method, it is also only called once. The default de-
stroy method is usually also adequate. Typical things
to do in the method are housecleaning operations
such as releasing used resources and closing active
connections.

The sewice() method is called for every client re-
quest. It is the heart of the servlet. It is called by the
Web server and is passed a request and response ob-
ject. When the server calls the HttpServlet service()
method, it determines whether the request is a GET,
PUT, or POST, and calls the appropriate doGet, doPut,
and doPost methods accordingly. Uses of the meth-
ods are as follows:

doGet, for a servlet to be invoked by an HTTP GET.
Where practical, the getlasthfodified method
should also be overridden to facilitate caching the
HTTP response data.
doPost, for a servlet to be invoked by an HTTP POST
request
doPut, for a servlet to be invoked by an H ~ P PUT
request
The life-cycle methods init and destroy, if the serv-
let writer needs to manage costly resources that
are held for the lifetime of the servlet. Servlets that
do not manage such resources do not need to spe-
cialize these methods.
getsewletlnfo, to provide descriptive information
through the administrative interfaces of a service

The HttpServlet class also provides methods for the
H’ITP 1.1 extensions: OPTIONS, DELETE, and TRACE.

By subclassing HttpServlet and implementing the do-
Get method, a servlet automatically supports the
GET, HEAD, and conditional GET operations of HTTP.
Adding support for the getLastModified method en-
ables caching, thus improving Web server perfor-
mance. Servlets are typically singletons, meaning that
a single instance of the servlet is created to handle
multiple client requests. Since these requests could
be concurrent, servlets must be written to handle si-

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

multaneous requests and multithreading. Access to
shared resources such as class variables and in-mem-
ory data must be synchronized, or the servlet is not
“thread safe” and may not run properly.

When the HTTP subsystem calls the service() method
of a servlet, it passes what is commonly called the
request and response objects as parameters. The ob-
jects HttpServletRequest and HttpServletResponse
are the way in which the servlet communicates with
the server, and ultimately with the client. The meth-
ods of the request object obtain information about
the client environment, the server environment,
and any information provided by the client (for
example, form information set by GET or POST).
The methods used to retrieve this information
are: getParameterNames(), getparameter(), getPa-
rameter-Values(), and getQueryString().

The servlet invokes the methods of the response ob-
ject to send the response that it has prepared back
to the client. Its methods allow the response header
and the response body to be set. The response ob-
ject also has the getoutputstream() method to re-
turn a ServletOutputStream object. The print() and
println() methods of the ServletOutputStream ob-
ject are used to write the servlet response back to
the client.

Among many ways to invoke a servlet are the fol-
lowing:

1. The most typical way is to use a Web browser to
open the servlet either by codename, for exam-
ple, http://www.webserver.com/com.ibm.myapp.
myservlet.class, or by using a defined alias for the
servlet, for example, http://www.webserver.com/
myApp, assuming that the administrator has de-
fined the alias “myApp” as an instance of the serv-
let “com.ibm.myapp.myservlet.class.”

2. In HTML forms, the servlet on the ACTION at-
tribute of the <FORM> tag in an HTML file can
be specified.

3. In server-side includes, the servlet within the
<SERVLET> tag in an SHTML (Server-side HTML)
file can be specified.

4. In JavaServer pages (discussed later), the Java
coding for a servlet can be embedded or the
<BEAN> tag can be used to embed a JavaBeans
servlet.

5. A more advanced feature is servlet chaining and
filtering. A servlet filter or a servlet chain can be
specified. *

BAYEH 343

Servlet beans. Servlets that are themselves also Java-
Beans are referred to as “servlet beans.” There are
two distinct advantages to making servlets beans. The
persistent state of a bean, and its configuration in-
formation, can be stored in a serialized file. The con-
figuration can be updated dynamically and takes ef-
fect immediately. By default, the servlet engine
assumes that every servlet is a bean. Properties are
the initial arguments that are passed to the servlet
bean. There are three ways to install a servlet bean
into the servlet engine:

1. By using the class (myServlet.class) of the servlet
bean

2. By using a serialized instance of the servlet
(myServlet.ser). This can be thought of as one in-
stance of the servlet.

Servlets provide the infrastructure
to maintain session data across

multiple client requests and
multiple servlets.

3. By providing a JAR (Java archive) file (myServ-
1et.jar) with the class files or the serialized instance
file, or with both

These ways could be placed in the sewlet directory,
the sewlet beans directory, or any directory in the
CLASSPATH. However, automatic reloading of serv-
lets (if they change) does not occur for servlets that
reside in the CLASSPATH.

Maintaining state and session information. To over-
come the limitation of the “ n ~ n c ~ n ~ e r ~ a t i o n a l ~ ’ m,
servlets provide the infrastructure to maintain ses-
sion data across multiple client requests and mul-
tiple servlets. The APIS provided allow a servlet to
share user and application data across multiple cli-
ent requests and also across multiple servlet in-
stances. This infrastructure is called session trucking.
Session tracking gives servlets the ability to check
on the status of a user as the user moves through the
site. It is a flexible, lightweight mechanism that serves
as a basis for more sophisticated state models, such
as personalization and persistent user profiles, and
servlets can use this facility to track who is doing what

344 BAYEH

on the site. The official Sun Microsystems definition
of a session is: “A session is a series of requests from
the same user that occur during a time period.”’

The servlet engine maintains a user state by creat-
ing a session object for each user that has used the
site. These session objects are stored and maintained
on the server for a defined length of time, after which
they are discarded (although there is a mechanism
to make them persistent). The user is assigned a new
session object and a unique session identifier when
first making a request to a site. The session identi-
fier matches the user with the session object in sub-
sequent requests. The session object is then passed
as part of the request to all servlets that handle the
request. Servlets can then add information to ses-
sion objects or read information from them.

Following is the list of APIS, as defined in the Java
interface “javax.serv1et.http.HttpSession”:

@Id()-Returns the identifier assigned to this ses-
sion. Different kinds of sessions use different iden-
tifiers, such as byte arrays, strings, and multicast
network addresses.
getSessionContext()-Returns the context in which
this session is bound.
getCreutionTime()-Returns the time at which this
session representation was created, in milliseconds
since the epoch. This may not correspond directly
to the time the session itself was created, since that
may not be reliably knowable for long-lived mul-
tiparty sessions.
getLastAccessedTime()-Returns the last time this
session representation was accessed by the session-
level infrastructure, in milliseconds since the ep-
och. Access indicates a session protocol level ac-
cess to the session, such as a new member joining,
an existing member leaving, a “keep alive” being
sent, or a new connection being established using
session data. Application-level operations, such as
getting or setting a value associated with the ses-
sion, are not reflected in this access time. This in-
formation is particularly useful in session manage-
ment policies. For example, a session manager
could leave all sessions that have not been used
in a long time in a given context, or the sessions
might be sorted according to age to optimize some
task.
invalidate()-Causes this representation of the ses-
sion to be invalidated and removed from its con-
text.
putValue()-Binds the specified object into the ap-
plication layer data of the session with the given

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

name. Any existing binding with the same name
is replaced. If the new (or existing) value imple-
ments the SessionBindingListener interface, it is
notified appropriately.
getValue()-Returns the object bound to the given
name in the application layer data of the session.
Returns null if there is no such binding.
removevalue()-Removes the object bound to the
given name in the application layer data of the
session. Does nothing if there is no object bound
to the given name. If the value implements the Ses-
sionBindingListener interface, it is notified appro-
priately.
getValueNumes()-Returns an array of the names
of all the application layer data objects bound into
the session. For example, if the request is to de-
lete all of the data objects bound into the session,
this method is used to obtain their names.
isNew()-Considers a session to be new if it has
been created by the server, but the client has not
yet acknowledged joining the session. For exam-
ple, if the server supported only cookie-based
sessions and the client had completely disabled
the use of cookies, then calls to HttpServletRe-
quest.getSession() would always return new ses-
sions.

JavaServer pages. JavaServer pages (JSP) provides
for a powerful scripting solution that allows dynamic
HTML generation on the server side. JavaServer pages
allows the Web developer to do simple scripting on
the server side that takes advantage of JavaBeans
and provides a powerful dynamic content genera-
tion facility on the server side, separation of dynamic
content generation, and the presentation of the con-
tent.

JSP allows the clear separation of presentation logic
(HTML) from the application logic (programmatic).
Web designers can design the presentation layout
of their pages using any one of the numerous HTML
creation tools available, and then the dynamic Web
logic is added with minimal programming.

JavaServer pages permit a scripting language to be
embedded in Web pages (HTML documents). Before
the page is served, the JavaServer pages syntax is
parsed and processed into a servlet on the server side.
The servlet so generated will output real dynamic
HTML content back to the client. The scripted HTML
file will have a .jsp extension to identify it as a
JavaServer pages file to the server.

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

JavaServer pages can be invoked in two ways:

Directly from the client-A request comes into a
JavaServer page. The page accesses reusable Java-
Beans components that perform particular well-
defined computations (such as accessing a data-
base) and store result sets as bean properties. The
page uses such beans to generate dynamic content
and presents it to the client. The contract that the
JavaServer pages developer cares about is the bean
interface.
From another servlet-A request comes in to a
servlet that generates the dynamic content that the
response would contain. The servlet invokes a
JavaServer page that will present the content gen-
erated from the servlet.

The following subsections provide a look at the JSP
syntax, taken from the JSP specification developed
jointly by IBM and JavaSoft.

JSPdirectives. Directives are declarative statements
that specify such things as the scripting language be-
ing used and the class and interfaces a servlet ex-
tends or implements. The general syntax of the
JavaServer pages directive is:

<%@(variable = "<value>"} + %>

where variable is one of the five types described
below.

The language variable defines the scripting language
used in the file. The scope of this tag spans the en-
tire file. When used more than once, only the first
tag is significant. If omitted entirely, the default
scripting language used is JavaScript* * (for the Java
programming language). This value is the only one
that the language variable can accept at this time.

The methodvariable defines the name of the method
that will contain the body of generated code from
the script. By default, the method defined in the gen-
erated servlet is service. When a specific method
name is used, the generated code becomes the body
of the specified method name.

The import variable defines the list of packages that
will be imported by the servlet. This list consists of
comma-separated Java language package names or
class names that the servlet imports.

BAYEH 345

The implements variable defines the list of interfaces
that the generated servlets implement. The value for
this variable is a comma-separated list of Java lan-
guage interface names.

The extends variable defines the super class of the
generated servlet. The value is the name of the Java
language class from which the servlet extends.

Sample directive: <%@method = "doGet"%>

JSPdeclarations. Declarations define class-wide var-
iables for the servlet class and are defined within a
SCRIPT tag.

<SCRIPT runat=server >
. . .

</SCRIPT>

Sample declaration:

<SCRIPT runat=server>
int i = 0;
String foo= "Hello";
</SCRIPT>

JSP scriptlets. The body of the scriptlet is the heart
of the body of the method (doGet, doPost, etc.) of
the generated servlet. The script can rely upon a set
of predefined variables. These variables are: request
(the request object as defined by javaxservlet. Serv-
letRequest), response (the response object as defined
by javax.servlet.ServletRequest), out (the servlet out-
put writer class as defined by java.io.PrintWriter),
and in (the servlet input reader class as defined by
java.io.BufferedReader).

The code itself is embedded between <% and %>
tags. For example:

<%

response.getPrintWriter().print("Hello");

%>

<%

foo = request.getParameter("Name");
out.println(foo);
%>

346 BAYEH

JSP expressions. JSP expressions is syntax that defines
an expression that will be evaluated. The value of
the expression will be substituted in place of where
the expression occurs. For example,

<% = foobar %>

will substitute the value of foobar in place of the tag.

JSP beans. One of the most powerful features of
JavaServer pages is that JavaBeans, and soon En-
terprise JavaBeans, can be accessed from within a
JavaServer pages file. Any of the following actions
can be performed on the bean. The bean can be: cre-
ated from a serialized file or a class file, referred to
from an HTTP session, or passed to the page from
a servlet.

The syntax for the bean tag is:

<BEAN name=" <value>"
varname=" <value>"
class=" <name> ' I introspect="{yeslno}"

serializedjile=" <value>" create="{yeslno}"
scope="{requestlsession}">

</BEAN> (The close tag is optional.)

JDBC. Although JDBC* * is not an acronym, it is gen-
erally thought to mean Java Database Connectivity.
It is a set of APIs, modeled after Open Database Con-
nectivity (ODBC), that provide Java programs with
the ability to access all relational databases and ex-
ecute Structured Query Language (SQL) statements.
It is a way for Java applications, and more specif-
ically in this case, servlets, to talk to a variety of dif-
ferent databases without being dependent on a spe-
cificvendor. Taking this a step further, IBM provides
a "JDBC connection manager" as part of the servlet
run time. This connection manager provides a beans
interface and maintains a pool of active JDBC con-
nections to a database, hence improving performance
and throughput.

Enterprise JavaBeans. Enterprise JavaBeans (EJBS)
take Java to the next level. They provide a compo-
nent architecture for multitier, distributed Java ap-
plications. In one sense, EJBs extend normal Java-
Beans components to support server components.
The EJB infrastructure provides transactional and sys-
tem services for the application components, mak-
ing distributed, clientlserver applications easier than

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

ever to develop, deploy, manage, and maintain. The
multitier approach increases the performance, scal-
ability, and reliability of an application. EJBs also in-
crease flexibility, since they can be quickly modified
to meet changing business rules. The distributed ap-
proach makes them location-independent, so a sys-
tem administrator can move them around to recon-
figure system load.

On the horizon

As Java picks up momentum and a greater mind-
share, it will become more and more accepted as “en-
terprise-ready.’’ Looming on the horizon are Enter-
prise JavaBeans. EJBS are transaction-ready, scalable
JavaBeans, paving the way for doing heavy-duty en-
terprise applications in the NCF. JDK 1.2 promises to
add performance as well as a slew of additional APIS.

The Java Servlet Development Kit (JSDK) will be a
standard extension of 1.2 as well as JIDL, the Java
interface definition language, for supporting CORBA
objects, JMAPI, the Java Management API, and JNDI,
the Java Naming and Directory Interface.

Benefits of Java for the server-side programming
model. Reasons for choosing Java as the basis of the
NCF programming model are very concrete. There
is definitely goodness in the fact that Java has a lot
of mindshare in the Internet space, but in addition
to that, many technical reasons make Java a com-
pelling choice for NCF applications. These reasons
are given in the following subsections.

Portabiliv. Although the Java promise of “write once,
run anywhere” is not yet completely fulfilled, Java
is by far the most portable language yet. There are
still differences in the Java Virtual Machines on dif-
ferent platforms and by different vendors, but these
differences are slowly going away. Sun’s “100 per-
cent pure Java” initiative and set of comprehensive
test suites are making the bridge between platforms
and vendors smaller and smaller. Although some
have suggested that the Java promise is “write once,
test everywhere,” that is still much more productive
than the porting nightmares associated with C and
C+ + applications.

Functionality. Java is not only a language, but more
and more a programming environment. Java is build-
ing in such powerful function as JDBC, JavaBeans,
and JTS, making it a very functional and powerful
development platform.

Per$ormance. Because servlets are persistent, reduc-
ing startup and destroying overhead, and because

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

of the fact that they run in the same process as the
Web server, they typically run several times faster
than CGI programs.

Security and reliability. The Java Virtual Machine re-
stricts servlets from accessing server resources, and
through the use of a Security Manager, an admin-
istrator can impose restrictions on running servlets,
making the Web server more secure and reliable.
Current Web server APIS such as Internet Server API
(ISAPI) and Netscape Server API (NSAPI) could crash
and corrupt the hosting Web server. The built-in se-
curity mechanism of Java is now considerably re-
vamped with the introduction of the JDK 1.2 secur-
ity model.

Consistency. One of the primary goals of the NCF was
to follow consistent industry standards. The “Web
revolution’’ was spurred by interoperability, based
on a simple standard (HTML and HTTP). Java has
shown great promise as a consistent standard; the
100 percent Java program ensures interoperability
on all platforms; and comprehensive test suites ex-
ist to ensure that vendor implementations of the vir-
tual machine adhere to the JavaSoft specification.

Concluding remarks

The use of Java on the server is gaining momentum.
It is proving to be very convenient, portable, and pro-
ductive. Server-side Java APIS such as servlets and
Enterprise JavaBeans are increasingly prevalent and
becoming common building blocks of serious bus-
iness applications. IBM is investing in this vision by
basing its Websphere Application Server on this
technology, and partnering with JavaSoft to build the
best servlets engine. This paper touched on the most
critical components of this architecture, the major
pieces of this server-side programming model-serv-
lets, JSP files, session state, JavaBeans, and Enter-
prise JavaBeans. The paper has provided an over-
view of this subject area.

Acknowledgment

I would like to thank Mark Fisher, Tricia York, and
the rest of the NCF architecture team for their help
in editing the draft of this paper.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Sun Microsystems, Inc.,
The Open Group, Object Management Group, or Microsoft Cor-
poration.

BAYEH 347

Cited references

1. I. F. Brackenbury, D. F. Ferguson, K. D. Gottschalk, and
R. A. Storey, “IBM’s Enterprise Server for Java,” IBM Sys-
tems Journal 37, No. 3, 323-335 (1998, this issue).

2. JuvaSoft Java Server, JuvaDocs (http://jserv.javasoft.com/
productsijava-server/documentation/index.html), Sun Micro-
systems, Inc.

Accepted for publication April 30, 1998.

Elias Bayeh ZBM Software Solutions Division, P.O. Box 12195,
Research Triungle Park, North Carolina 27709 (electronic mail:
ebayeh@us.ibm.com). Mr. Bayeh joined IBM in 1995, working as
the technical lead on the IBM (now Lotus Domino Go) Web
Server. He is now the technical and design lead on the WebSphere
Application Server and the NCF programming model. Currently
a senior engineer, Mr. Bayeh received a B.S. in computer science
from Truman University in 1984 and completed all requirements
for a B.S. in business administration in 1990, also from Truman
University. He has filed numerous patents pertaining to the use
of Java on the server, and led the authoring of the NCF Archi-
tecture Workbook.

Reprint Order No. G321-5680.

348 BAYEH IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

