IBM’s Enterprise Server
for Java

IBM is exploiting Enterprise JavaBeans™ in a
family of compatible Java™ application servers
conforming to IBM’s Enterprise Server for Java
(ESJ) specification. The ESJ provides a common
set of dynamic, adaptive system services to
meet today’s (and tomorrow’s) middleware
requirements. ESJ will provide a standard
programming model and set of services across
major server platforms so that implementations
of ESJ are differentiated not by function but

by quality of service. Finally, ESJ increases
productivity by enabling programmers to focus
on business logic rather than on infrastructure
details. This paper introduces the design of
ESJ, including the attributes of the common
execution environment, its interaction with other
middleware, and its client/server capabilities. It
provides an appreciation of the value of ESJ to
application developers as a means of achieving
cross-platform consistency, lower costs, and
faster time to market. It also outlines the
features that make ESJ the server technology
base for wide-scale reuse through the “write
once, run anywhere” promise of Java.

he Enterprise Server for Java (ESJ) specification

is IBM’s roadmap for implementing JavaSoft’s
Java** for the Enterprise ' initiative, which was an-
nounced at the JavaOne developers’ conference in
April 1997. This initiative consists of a set of stan-
dardized application programming interfaces (APIs)
for accessing system services and a set of extensions
to the JavaBeans** architecture, called Enterprise
JavaBeans** (EJB) extensions, for quickly building
applications from components that can make use of
existing system services. IBM will make the IBM ESJ
available across major hardware platforms, thereby
bringing to IBM customers the advantages of Java
for the Enterprise.

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

0018-8670/98/$5.00 © 1998 IBM

by 1. F. Brackenbury
D. F. Ferguson
K. D. Gottschalk
R. A. Storey

ESJ servers are realizations of 1BM’s Network Com-
puting Framework (NCF) for e-business,” and they
build on existing, proven middleware technologies
to assure scalability and robustness. ESJ-compliant
systems are logical second-tier Java application serv-
ers supporting execution of Enterprise JavaBeans,
Javaservlets, and Java applications. Compliance with
the ESJ specification transforms the second-tier ap-
plication server running Java, discussed in the pa-
per by Gottschalk in this issue,” into an ESJ server.

ESJ consists of: a Java Virtual Machine (JvM) and
core classes, including Java interface definition lan-
guage (JIDL) and remote method invocation (RMI);
support for Enterprise JavaBeans and a sclection of
other Java standard extensions; and a common set
of IBM extensions called EJB connectors. These, in
combination, provide the function required for a
broad range of enterprise applications. The Java
standard extensions in ESJ are: Java Naming and Di-
rectory Interface (JNDI), Java Database Connectivity
(JDBC**) Version 2, Java Structured Query Lan-
guage (SOLJ), and the Java Message Service (JMS).*
The IBM EJB connectors are JavaBeans that connect
applications in an ESJ with third-tier resources such
as IBM’s Customer Information Control System
(CICS™), DATABASE 2* (DB2*), Information Manage-
ment System (IMS*), MQSeries*, and Lotus Notes™*
products.

©Copyright 1998 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

BRACKENBURY ET AL. 323

ESJ supports execution of Java programs written as
Enterprise JavaBeans, servlets, or Java applications.
Enterprise JavaBeans can also emulate servlets. En-
terprise JavaBeans are run under control of an ESJ
monitor that has the traditional strengths of trans-
action monitors in that large numbers of clients can
be serviced concurrently through efficient sharing of
server resources, and the client sessions and the ob-
jects they are accessing can be administered safely
and efficiently.

The Common Object Request Broker Architecture
(CORBA™*) forms the basis of the architecture for
distributed object communication for ESJ servers;
such servers are also all Web-enabled. For example,
every ESJ implementation supports client access
from: Java clients using RMI over CORBA’s Internet
Inter-Orb Protocol (110p), C and C+ + clients over
1toP, and Web browsers over HyperText Transfer
Protocol (HTTP). Each ESJ includes a CORBA object
request broker (ORB) and requires a companion Web
server, relational database, security service, and nam-
ing service; these elements are pluggable to allow
customer choice.’

In time, ESJ-compliant Web application servers will
be hosted on most important operating systems and
middleware environments, including transaction pro-
cessing monitors and database stored procedures.

The primary goals in implementations of ESJ are
fourfold:

1. The cross-platform goal is to reduce the cost of
developing and using enterprise applications that
require access to resources on multiple different
hardware, operating system, or middleware plat-
forms.

2. The simplify application development goal is to
halve the effort in developing second-tier enter-
prise applications by absorbing the effort of man-
aging transactions, security, resource-sharing, and
administration into the infrastructure of ESJ.

3. The widespread software component reuse goal is
to lay the foundations for wide reuse of software
components—the Java “write once, run any-
where” promise—initially by providing the Java
Virtual Machine environment together with sim-
ple ways to partition the portable and nonport-
able components of an application, reducing the
porting costs.

4. The integration goal is to enable easy integration
of enterprise Java applications into existing het-
erogeneous business middleware.

324 BRACKENBURY ET AL.

This high-level view of IBM’s ESJ specification is in-
tended for computing professionals who are famil-
iar with Java technology and have an understanding
of the requirements for creating and deploying server
software for business use. For more information on
the basics of Java, see Flanagan.®

In the remainder of this paper, we unpeel the ESJ
specification in five diagrams, beginning with the ab-
stract level of a generic three-tier system for pro-
grams written in Java, and finishing with a summary
of all key elements in Release 1 of ESJ.

In the diagrams throughout the paper, the light red
color (no shading) denotes components with indus-
try-standard interfaces, whereas blue (cross-
hatching) denotes components with [BM-defined
interfaces, dark red (horizontal stripes) denotes
components with enterprise Apls defined as part of
JavaSoft’s Java for the Enterprise initiative, and
green (vertical stripes) denotes pluggable compo-
nents.

The three-tier model

The ESJ specification defines a standard execution
environment for the second tier of a three-tier en-
terprise application. It uses CORBA and Internet cli-
ent technologies and deploys business logic written
as Java programs.

ESJ exploits the JavaSoft Enterprise JavaBeans (EJB)
APIs as the foundation for a transaction processing
monitor that optimizes resources and provides the
transactional, security, and administrative functions
needed to manage large numbers of concurrent cli-
ent accesses with limited server resources. Enterprise
JavaBeans extend the JavaBeans component archi-
tecture to the enterprise level, allowing enterprise
applications to be built from reusable JavaBeans
components that can participate in robust system ser-
vices, such as transaction services and database ser-
vices, that are already available on most major server
platforms. For more information, see Matena and
Hapner.”

Figure 1 illustrates the three-tier model assumed by
gsJ. This model includes a client tier (Tier 1), a Java
application server tier (Tier 2), and a data and re-
source manager subsystem tier (Tier 3).

Tier 1—The client. All Enterprise JavaBeans serv-

ers support a minimum of three types of Tier-1 cli-
ent. A client in this context is end-user equipment

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

Figure 1 The three-tier model

HOP TO OTHER
e
SERVERS

CONNECTORS
CICS
DB2
IMS
B
MQ
WEB
BROWSER < Sy,
TIER 1 LOGICAL TIER 2 TIER 3
such as a workstation or personal computer; a net- * By creating standard CORBA method calls, us-
work computer, laptop, or smaller networked device; ing Java IDL to develop the appropriate stubs
or a program in another server, acting like a client. and skeletons, which will then communicate
The three types of client are: over 1IOP
1. Clients that contain a Java environment. These 2. Clients supporting CORBA 1IOP, including pro-
clients can communicate with an ESI server using grams written in C and C+ +, using an IDL com-
any of the following three techniques: piler and tools to generate communications that
conform to the 1998 Java-to-IDL mapping men-
¢ By using GET/POST requests over HTTP to the tioned in the third technique of 1 above
Web server (HTTP daemon, or HTTPD) plugged
into every ESJ 3. Clients that include an industry standard Web
* By issuing Java RMI calls over CORBA IIOP to browser and can therefore use uniform resource
the ORB. There is an ORB in every ESJ server. locators (URLs) to communicate with the Web
RMI over 1IOP will be a standard part of every server embedded in every ESJ
Java Development Kit (JDK**); it is based on
the 1998 Java-to-IDL mapping recently stan- With guaranteed support for these three types of cli-
dardized by the Object Management Group ent, the ESJ is well-suited for applications accessed
(oMG).8 It includes the new “objects by value” from the Internet and from intranets and extranets;
ntop function. the 11OP support recognizes the growing importance

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998 BRACKENBURY ET AL. 325

of CORBA as the distributed object infrastructure
used by networked enterprises.

Tier 2—The application server. To become an ESJ,
an application server must support three major mod-
ules:

1. A user-interface (UI) logic module that is the in-
creasingly popular integration point for Internet
Ul technologies, combining information content,
multimedia, and the results of business compu-
tation. This module contains a pluggable Web
server, including an HTTPD and the facilities to
create dynamic Web pages. It also serves up Java
applets for downloading on demand and execu-
tion in the client.

2. An ESJ monitor where the emphasis is on high-
performance dispatching of business logic com-
ponents in response to verified client requests, in-
voking Enterprise JavaBeans methods, servlets,
or Java applications. This module includes the
ORB and distributes work to one or more concur-
rently executing Java Virtual Machines. It pro-
vides cluster management and supports multipro-
cessing where applicable.

The ESJ monitor also contains the Java Virtual
Machine (JVM) and its core classes. This JVM ex-
ecutes all Java bytecode programs in the ESI
server. The integration of ESJ with each operat-
ing system and hardware platform is largely a cus-
tomization of this module. In addition, specific
facilities to exploit symmetrical multiprocessing
and system clustering, and to enhance scalabil-
ity, are built into the appropriate JVMs.

3. A business logic module that provides the exe-
cution environments for Enterprise JavaBeans,
servlets, and Java applications. The ESJ monitor
provides resource sharing, transaction manage-
ment, object life-cycle management, security, sys-
tems management, and systems administration for
the business applications that reside here.

Tier 3—Data and resource manager subsystems.
The industry has converged on the logical three-tier
configuration for creating enterprise applications.
The Internet has brought explosive growth in con-
nectivity and much reduced prices for related soft-
ware technologies. Customers now want to use in-
dustry and Internet standard componentry such as
CORBA and Java; they also need flexibility in apply-

326 BRACKENBURY ET AL.

ing security and administration policy distributed
across the three tiers; and they have to plan for sig-
nificant acceleration in the pace of application de-
velopment.

The third tier consists of the data stores and resource
manager subsystems holding the durable business
data that are the bedrock of enterprise computing.
1t is still subject to the most rigorous security and
the most careful and deliberate evolution. ESJ rec-
ognizes that these strategic resources need to be
treated differently. This huge existing corporate as-
set base is at the same time the most potent source
of new application value and the least easily altered
information system in the enterprise.

EsJ provides Enterprise JavaBeans connectors to in-
teroperate with the third tier. Every ESJ implemen-
tation has a standard way of accessing the following
IBM subsystems: CICS/ESA** (Customer Informa-
tion Control System/Enterprise Systems Architec-
ture), DB2 on 08/390* (Operating System/390), IMS,
MOQSeries, and Lotus Notes. Application develop-
ers are assured that all IBM second-tier servers pro-
vide access to corporate server data and applications.
Enterprise JavaBeans using connectors are porta-
ble across ESJ implementations.

Connectors can be used to access resources on the
same network node or on different nodes. ESJ is in-
tended for both physical three-tier implementation
and logical three-tier systems, where the second and
third tiers reside on a single processor complex.

An ESJ application using connectors can coordinate
transactions spanning multiple remote “back-end”
resource managers. The transaction, security, and
systems management services of the ESJ monitor use
CORBA and proprietary interfaces to ensure proper
interoperation.

As Java standards emerge for interoperation, these
APIs are included in ESJ. For example, data access
using JDBC and SQLI provides even broader porta-
bility, and JMS is a Java standard that supports re-
liable messaging and queuing.

RMI over IIOP is the ESJ standard way of interwork-
ing with other instances of ESJ servers. Context for
transactions, security, systems management, and re-
mote debug automatically flows with these remote
method calls between ESJ servers.

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

Figure 2 The Ul logic module

- BROWSER

/L

WEB SERVER

= PLUGGABLE

In the next several sections of this paper, we con-
sider the three major modules of the Java applica-
tion server (Tier 2).

The user interface logic module

The user interface (UI) logic module of ESJ exploits
the rapidly evolving capabilities being added to in-
dustry Web servers, mostly in support of producing
HyperText Markup Language (HTML) pages dynam-
ically, through a combination of HTML static boil-
erplate text and multimedia with algorithmically de-
termined data computed by server-side scripts or
serviets. Figure 2 illustrates the UI logic module.

The Web server. Every ESJ implementation requires
a Web server such as 1BM’s Domino Go**, Mi-
crosoft’s Internet Information Server (1IS**),
Netscape’s SuiteSpot™*, or the Apache Web server.
The Web server must support HTTP 1.1 and is re-

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

quired to provide independent storage, administra-
tion, and serving of HTML pages, multimedia files,
and Java applets.

Web servers that, like Domino Go, use ESJ interfaces
for tight integration with the UI logic module can
have systems administration integrated with the rest
of the ESJ server. In addition, multiple HTTP requests
and TIOP sessions can be carried on the same
EJs-client connection. Otherwise, the ESJ specifica-
tion is neutral on choice of Web server.

Secure sockets layer. The UI logic module provides
an integrated secure sockets layer (SSL) service for
both HTTP and IIOP connections. If the Web server
also provides SSL, it is an installation choice whether
to use the integrated service or the Web server. The
integrated SSL service uses common registration and
administration tools and is enabled for international
use.

BRACKENBURY ET AL. 327

Dynamic HTML and server-side scripting. Dynamic
HTML (DHTML) and server-side scripting using
JavaServer** pages (JSP) are standard capabilities
of ESJ servers. DHTML provides support for use of
Server-side HyperText Markup Language (SHTML)
pages that contain embedded programming frag-
ments, including function definitions and event
scripts. A choice of languages is provided: Java,
JavaScript** (ECMA 262 standard), and NetRexx.

The SHTML pages are compiled when they are in-
stalled on the UI logic module. The resulting Java
bytecode programs are executed upon demand, and
give high-performance, flexible, server-side script-
ing.

Typically, the actual script embedded within an
SHTML page is short and uncomplicated. Any signif-
icant processing is provided by a servlet or Enter-
prise JavaBeans invoked from the script.

ISP is a new technology supporting simple and pow-
erful scripting that allows dynamic HTML generation
on the server side. For more information on JSP, see
Bayeh.?

Extensible Markup Language support. Extensible
Markup Language (XML) is a standard, easy way to
describe and exchange data on the World Wide
Web.® ESJ provides full server-side XML support, in-
cluding support for the w3c Document Object Model
(DOM).

The ESJ monitor

Among the marks of a high-performance, scalable
server are cfficient management of client sessions,
avoiding session creation and termination overheads
where possible, and reusing session resources
quickly. Client/server interactions are typically bursty,
with relatively large periods of inactivity interspersed
by flurries of activity. The server resources pinned
down during the idle time are effectively wasted, so
the ESJ monitor acts to reduce these to the absolute
minimum.

The ESJ monitor implements the Enterprise Java-
Beans APIs. It supports the Enterprise JavaBeans life
cycle for both session beans and entity beans, and
manages the Enterprise JavaBeans containers. The
ESJ monitor contains, or invokes the services of, a
transaction manager and a security manager. Much
of its function is support for optimizing use of re-
sources against large and erratically varying numbers

328 BRACKENBURY ET AL.

of client requests, and in providing for semiauto-
mated administration of the EJB run time.

The Java Transaction Service (JTS) is a Java form of
the CORBA Object Transaction Service (OTS). The
TS interface (or more likely a subset of it as defined
by EJB) may be used by some ESJ applications to de-
limit transaction boundaries and specify transaction
disposition. The actual transaction services that un-
derpin this interface will be provided either by a 100
percent Java implementation, or by mapping the in-
terface directly onto the existing transaction control
services that will be present in the underlying middle-
ware on which an EsJ is based.

Figure 3 illustrates the major components of the ESJ
monitor.

The IP session manager. The Internet Protocol
(1P) session manager administers and optimizes re-
use of client sessions over Transmission Control
Protocol/Internet Protocol (TCP/1P) links. It contains
instrumentation and calibration software for man-
ual and automatic configuration for optimal perfor-
mance; the administration tools are integrated with
the rest of the ESJ.

Workload balancing. In most large server complexes
the workload is managed at two levels. The outer-
most level selects a server or server cluster for each
incoming client request. The inner level operates
within an ESJ to optimize resource use and maintain
responsiveness. The ESJ specification addresses the
latter.

Workload balancing in the ES) monitor provides clus-
ter management for high availability and added per-
formance. It constantly monitors active JvMs and in-
dependent units of work inside each JvM, so as to
provide dynamic, adaptive system services. On high-
end configurations, the workload balancing not only
schedules new work to the most appropriate JVM,
but it can also suspend and move work between JVMs.

The JVM and core classes. The ESJ specification re-
quires JDK 1.2 security, RMI over 11OP, Java IDL, and
other function first made available in JDK Release
1.2 in 1998. It benefits from, but does not require,
JvM changes that provide for resource sharing in and
among concurrently executing JVMs, and changes to
garbage collection and object dispatch that make it
more suited to server workloads. JVMs optimized for
use with EST also include system management hooks

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

Figure 3 The ESJ monitor

JAVA

WEB
BROWSER

-

CONNEGTORS

} } = PLUGGABLE

for determining activity levels and resource consump-
tion.

The JDK security required for ESJ includes a policy-
based security model that grants code access to only
the set of resources (e.g., files, hosts, ports) that the
customer has specified in the appropriate security
policy.

The ORB. ESJ implementations contain an ORB that
supports use of CORBA IIOP, including implicit flows
for transaction and security context. Support is man-
datory for the IDL defined in the Java-to-IDL map-
ping; this is the only mapping that is assured for all
ESJ implementations. The ORB accepts client calls
from outside the ESJ and call-backs to clients from
programs in the ESJ; it also arbitrates calls between
Enterprise JavaBeans and other programs accessi-
ble using RMI over 110P, such as servlets, Java ap-
plications, and Enterprise JavaBeans in other ESJ
Servers.

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

High-end, scalable EsJ implementations include dis-
tributed ORBs that are able to coordinate their ac-
tivities across multiple active JVMs running on one
or more processors and across members of a fail-
over cluster.

The business logic module

The business logic module manages the life cycle of
programs in, and provides middleware services for,
three distinct execution environments for Java byte-
code programs. The business logic module, illus-
trated in Figure 4, provides the three environments
for Java code running in the server: Enterprise Java-
Beans, Java servlets, and Java EJB extensions for Java
applications.

ESJ environments for Java code. The newest envi-
ronment, Enterprise JavaBeans, is designed specif-
ically for high-volume transactional execution of
JavaBeans in the enterprise. Enterprise JavaBeans

BRACKENBURY ET AL. 329

Figure 4 Business logic module

T

i

'l = PLUGGABLE

LR T

SECUI{R[W‘(DIRECTORY

ITHHA LY

are, in essence, JavaBeans extended for use in serv-
ers. The life cycle of Enterprise JavaBeans and the
constraints placed on a bean’s use of Java are de-
signed to permit rigorous control of the run time.

The second environment is for servlets. Despite the
rapid and recent development of Java technologies,
there is already a legacy of Java servlet code that rep-
resents valuable investment. So, even though Enter-
prise JavaBeans provides a superior environment
for executing Java scripts (the Java equivalents of
CGI-BIN [Common Gateway Interface as stored in a
UNIX** directory] scripts), the ESJ specification also
supports the servlet environment in a first-class way.

Finally, the Java applications environment is for Java
applications and applications that are combinations
of Java and native C code, which can be used to pro-
vide additional system function. Such function would
be disallowed under the stricter rules of Enterprise

330 BRACKENBURY ET AL.

JavaBeans, or would not fit naturally into the “beans
and containers” constructs of Enterprise JavaBeans.
The Java programs that run in this environment are
Java applications, with free access to all the capa-
bilities of the standard Java APIs and virtual machine.
(Of course, if the Java applications make use of non-
Java code via such techniques as the Java Native In-
terface [JNI], they lose the “write once, run anywhere”
capability. The programmer must decide whether
this trade-off is worthwhile).

A single ESJ monitor manages the three execution
environments: Enterprise JavaBeans, servlets, and
Java applications, thus allowing efficient, integrated
administration across the three environments. Even
$0, it cannot provide servlets with the scalability and
robustness designed into Enterprise JavaBeans, so
programmers are encouraged to write new servlet
functions as Enterprise JavaBeans. The business

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

logic module includes helper classes to make this task
easier,

The extended development kit. The extended devel-
opment kit (EDK) is the set of JavaSoft standard ex-
tensions that are assured to be in every implemen-
tation of ESJ. The EDK APIs include the JVM and core
class APIs. The EDK standard extensions are:

* JNDI: Java Naming and Directory Interface. This
standard API is mapped to a naming or directory
service such as the Lightweight Directory Access
Protocol (LDAP) or CORBA Common Object Ser-
vices (COS) naming service.

« JDBC Version 2: Java Database Connectivity. This
is a way of accessing relational databases and is-
suing dynamic SQL (Structured Query Language)
requests. In its basic form it is part of the core
classes that come with the JvM. However, the ES)
servers can exploit the extended version, which in-
cludes XA interfaces, so that the databases accessed
by Enterprise JavaBeans can be used automatically
within a distributed transaction.

& SQLJ: Java SQL. A high-performance static SQL API,

this Ap1 is preferred for serious high-performance

access to existing relational databases such as
1BM’s DB2 Universal Database* (UDB).

JMS: Java Message Service. This JavaSoft standard

API provides access to a messaging and a reliable

queue service. For ESJ the IMS will be mapped onto

the API for 1BM’s MQSeries.

The Enterprise JavaBeans run time

The Enterprise JavaBeans run time is the carefully
controlled environment designed to support high
numbers of concurrent object activations, securely
and robustly. The robustness comes from the ESJ
monitor, which catches misbehaving Enterprise Java-
Beans, avoiding denial of service (for example, abean
that goes into a never-ending loop), and ensuring
that the failure of one object does not impact the
running of the entire server.

Enterprise JavaBeans are objects that come in two
kinds: session beans, which are software represen-
tations of activities or tasks in a business process,
and entity beans, which represent things such as em-
ployees, vehicles, pigs, diamonds, or hospital beds.
A client uses session beans to obtain a service. The
life cycle is: a private instance of the service is cre-
ated, the service is used, and it is discarded. Con-
trast that with the life cycle of an entity bean. Here

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

the bean is created, kept around for a long time, and,
maybe, years later, destroyed.

Sometimes clients create entity beans, and some-
times they destroy them, but usually what the client
does is to locate one of these beans, call some of its
methods, and then let it go. Often those methods
change the state of the bean—the data that make
that bean unique. Entity beans are durable; once
changed they stay changed, and next time a client
accesses that entity bean, the changed state will be
seen, EJB uses a transaction manager to ensure that
the entity objects change in a predictable way, even
if many clients want to access them at the same time.
The data values that are the defining state of an en-
tity bean are stored in a database or object store,
and it is usually that database which is used to ar-
bitrate the sharing among multiple clients, so entity
objects do not receive haphazard partial updates.

Session beans, in contrast, execute on behalf of a sin-
gle client. Session beans are private resources used
only by the client running them and are usually rel-
atively short-lived, with no guarantee of surviving sys-
tem crashes and restarts (nonpersistent).

The EJB run time consists of EJB containers. A con-
tainer is the principal organizing factor for Enter-
prise JavaBeans. All beans live inside containers. The
user chooses to create different containers in order
to group beans in a way convenient to the applica-
tion; and the user can nest containers so that all the
assets of an application, even if spread across mul-
tiple containers, can be linked back to a super con-
tainer that effectively holds the entire application.

The container hierarchy within an ESJ server com-
prises containers that contain other containers, and
containers that contain beans. Beans only live in the
leaf nodes of the container tree. Containers have
bean factories and finders that are used to create
beans, and to find beans that were “prepared ear-
lier.”

New beans are created from a prototype. Each dif-
ferent type of bean has its own prototype that is as-
sociated with all containers permitted to create in-
stances of that bean type. Because, in the real world,
most interesting beans will be “beanified” versions
of rows of data that already exist in a relational da-
tabase, many beans are created as part of creating
their container—the container comes full of entity
beans.

BRACKENBURY ET AL. 331

We offer one final note on entity object persistence.
EJB provides two ways of storing the defining state
for an entity bean. Either the bean contains Java code
to store itself and reinstate itself when needed, or
that is done by the ESF monitor through what is called
“container-managed persistence.”

A more complete description of Enterprise Java-
Beans would describe the full development, deploy-
ment, and execution life of a bean. Extensions to the

The Java application run-time
environment supports execution
of Java applications.

development tools for building JavaBeans will as-
sistin the creation of Enterprise JavaBeans, and spe-
cial tools are used to deploy new prototypes—for im-
porting a new bean type into the server. Here perhaps
the most important characteristic of Enterprise Java-
Beans is that about half the effort of producing Java
enterprise applications, and a very similar propor-
tion of C and C++ programs, is in the nitty-gritty
development of the code to make the application be-
have transactionally, and to integrate it with the se-
curity and system management services on each plat-
form. Enterprise JavaBeans performs most of that
chore. The required transactional and security at-
tributes are declared as deployment descriptors, not
programmed into the application. That saves work,
and also makes the individual beans more likely to
be reusable.

The EJIB run time is implemented by an underlying
server subsystem such as 1BM’s Component Broker,
CICS/ESA, TXSeries*, and WebSphere products. The
underlying subsystem provides services for monitor-
ing, security, reliability and serviceability, etc. EJB
run-time implementations by various subsystems will
provide the same set of services but will be differ-
entiated on the basis of cost and class of service.

Most transactional attributes of Enterprise Java-
Beans are described using declarative markers, stat-
ing, for example, whether all methods in a bean need
to be executed under control of a transaction, or
whether each time a method is called on a bean, a
new transaction should be started. There are some

332 BRACKENBURY ET AL.

methods for describing where transactions begin and
end procedurally; these can be used when a bean is
acting as a nontransactional client obtaining services
from other beans. All procedural transaction con-
trol methods in EST are copied precisely from a sub-
set of the ITS API definitions.

The Java application run time
(EJB extensions)

The Java application run-time environment supports
execution of Java applications. Unlike the Enterprise
JavaBeans environment, no constraints are placed
onwhat features can be used from the basic JvM and
core classes. This freedom, which is necessary when
the Java code is extending the middleware function
of the ESJ, perhaps using JNI access to C code, comes
with a downside. The EST monitor knows very little
about what these Java applications are doing and,
hence, is less able to detect misbehavior or to pro-
tect the server from harm. This is particularly true
of programs that call C code; in this case, the ESJ
monitor has very little likelihood of knowing what
is happening outside the Java environments.

Helper Java classes are provided to make it easy to
have Java application programs appear in the En-
terprise JavaBeans environment as if they were En-
terprise JavaBeans. In this way the Enterprise Java-
Beans programs can be completely portable,
dependent only on functionally equivalent EJB ex-
tensions underpinning the same Enterprise Java-
Beans interfaces on each target ESJ server.

IBM supplies some EJB extension programs that are
part of the ESJ standard. These programs are the En-
terprise JavaBeans connectors for accessing the fol-
lowing:

* CICS/ESA and distributed CICS applications and data

* DB2 UDB systems, where IBM’s proprietary APIs are
the appropriate way to access the database. The
JDBC and SQLJ APIs are recommended for broader
portability.

s IMS transactions

* MQSeries servers, using the IBM message queu-
ing proprietary interfaces. The IMS APIs are rec-
ommended for broader portability.

* | otus Notes servers

Other Java application run-time programs can be in-
stalled on ESJ systems, for example, a loan applica-
tion providing server-side administration and sup-

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

port for network computers, or a DirectTalk*
telephony server.

The serviet run time

The servlet run time provides the JavaSoft APIs for
the Java servlet environment, including the servlet
life cycle: init, service, destroy. Servlets can be pre-
loaded, so that when a client request comes in, a serv-
let is loaded and waiting to act on it."

Servlets send and receive most of their data through
output and input streams. These streams are sup-
plied each time a servlet is invoked using the service
callback. A popular specialization of servlets provides
function designed to make it easy to read parame-
ters from a URL and send HTTP output in response
to that URL request.

Enterprise JavaBeans can emulate the function of
most servlets using classes provided by extensions
to the Enterprise JavaBeans environment. So, if the
servlet logic can stay within the constraints imposed
by the Enterprise JavaBeans environment, servlets
can, in fact, be built as Enterprise JavaBeans. The
advantage is that the servlet programs then benefit
from the scalability, robustness, and administrabil-
ity of Enterprise JavaBeans.

The pluggable corequisite servers

An ESJ server has dependencies on five pluggable
services or servers:

1. A Web server; the default here is to use IBM’s
Domino Go.

. A database; the default here is IBM’s DB2 UDB.
A security service; usually the platform has a se-
curity service, and the Java security APIs have been
mapped to that, but ESJ does not legislate a spe-
cific security service. It does require an implemen-
tation of Java security and SSL. The permanent
repository of security identity can be on a remote
server.

4. Anaming and directory service; this service could
be on a remote server. The JNDI APIs are used by
ESJ and by application code; this service is the im-
plementation underpinning the INDI APIs. Imple-
mentations include, but are not limited to, LDAP
and COS naming.

5. CORBA ORB; the ESJ service will supply a default
ORB that matches the scalability of the platform
used.

W

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

Bringing it all together: a summation

Figure 5 illustrates all of the modules that turn a
Tier-2 Java application server into an IBM ESI.

In Figure 5, the UI logic module comprises a plug-
gable Web server; server-side scripting support, and
XML support for production of dynamic HTML.

The ESJ monitor consists of the IP session manager,
Java JVM and core classes, an ORB, and the ESI mon-
itor functionality required to support the three ex-
ecution environments of the business logic module.

The business logic module comprises the JavaSoft
standard extensions selected for Enterprise JDK Re-
lease 1, and three execution environments: Enter-
prise JavaBeans (Enterprise JavaBeans in their con-
tainers), Java applications (EJB extensions), and
servlet run time.

The extended development kit consists of the fol-
lowing APIs:

s Access to the Java JvM and its core classes at level
1.2 or higher; the JvM and core classes are part of
the ESJ monitor.

« Java IDL and RMI over IIOP with INDI Release 1,
for naming services

~ JDBC, including XA enhancements for transactional
IDBC

& SQLIJ, static SQL

» JMs for messaging and reliable queues

s EJB, both mandatory (session) and optional (en-
tity) objects

In addition to the ORB, which is a standard but plug-
gable component of every ESJ, another four plug-
gable corequisite servers are required by ES¥, and
these are not themselves included in the ESJ spec-
ification:

s A Web server, such as Domino Go

& A relational database, such as DB2 UDB

~ A security service, either local or accessible re-
motely by the ESJ

» A naming and directory service, either on a local
server or remotely accessible

Clients can connect to ESJ servers if they use any of
the following:

& RMI over IIOP, for Java clients
» IDL language-neutral access over 110P, including
C and C++ client access

BRACKENBURY ET AL. 333

Figure 5 The complete picture

JAVA RMI

W: OVER

HOP

WEB SERVER

HOP TO OTHER
B
SERVERS

_CONNEGTORS .
cics

R

DATABA)SE

IR

= PLUGGABLE

T

R‘ITY DIRECTORY

AT

e HTTP, for accessing HTML, SHTML, applets, serv-
lets, and Enterprise JavaBeans emulating servlets

Connections to Tier-3 services are via Enterprise
JavaBeans connectors, including connectors for:

* CICS/ESA (External CICS Interface), distributed CICS
(External Call Interface and External Presentation
Interface)

e DB2 and UDB (Enterprise JavaBeans implementa-
tions of JDBC and SQLJ access)

e IMS

* MQSeries (Enterprise JavaBeans implementation
of JMS reliable queues)

* Lotus Notes

Candidate IBM implementations of ESJ. To put the
ESIIBM standard in perspective, ESI implementations
are being considered for the following platforms and
IBM enterprise middleware:

334 BRACKENBURY ET AL.

¢ AIX* (Advanced Interactive Executive*), 0S/400*,
08/390, Windows NT**, and selected UNIX operat-
ing systems

* CICS/ESA, TXSeries/A1X, TXSeries/NT, and TXSe-
ries/UNIX

* Component Broker

* DB2 UDB stored procedures

* MQSeries

* IMS

WebSphere Application Server

Implementations will range from entry level to ad-
vanced. By providing this assured set of APIs and
functions on a wide range of host operating systems,
hardware, and middieware platforms, IBM addresses
the customer and developer need for:

« Solid cross-platform interoperability and portabil-
ity of code and skills

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

¢ Dramatic reduction in time and effort to develop
new enterprise applications

¢ Foundation for future widespread reuse of com-
ponent enterprise software

¢ Scalability to meet the broadest possible range of
business requirements

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Sun Microsystems, Inc.,
Lotus Development Corporation, Object Management Group,
Microsoft Corporation, Netscape Communications Corporation,
or The Open Group.

References and notes

1. A brief description of JavaSoft’s Java for the Enterprise is
given in Reference 3 and is also available on the Java for the
Enterprise website at http://java.sun.com/enterprise.

2. E.Bayeh, “The WebSphere Application Server Architecture
and Programming Model,” IBM Systems Journal 37, No. 3,
336-348 (1998, this issue).

3. K. D. Gottschalk, “Technical Overview of IBM’s Java Ini-
tiatives,” IBM Systems Journal 37, No. 3, 308-322 (1998, this
issue).

4. For abrief description of these APIs and of JavaSoft’s Java for
the Enterprise initiative, see Reference 3. See also the Java
for the Enterprise website at http://java.sun.com/enterprise.

5. CORBA is a set of distributed computing specifications put
out by the Object Management Group (OMG). For a good
discussion of CORBA and its relationship to Java, see R. Or-
fali and D. Harkey, Client/Server Programming with Java and
CORBA, ISBN 0-471-16351-1, John Wiley & Sons, Inc., New
York (1998).

6. D.Flanagan,Java in a Nutshell: A Desktop Quick Reference, 2nd
Edition, 1ISBN 1-56592-262-X, O'Reilly & Associates, Sebas-
topol, CA (1997).

7. V. Matena and M. Hapner, Enterprise JavaBeans, Specifica-
tion Version 1.0, Sun Microsystems, Inc., Palo Alto, CA
(1997). Available from the JavaSoft website at http://java.sun.
com/products/ejb/docs.html.

8. See the OMG Java to IDL Request for Proposal, OMG Doc-
ument ORBOS/97-03-08, and submissions to this RFP, avail-
able from the OMG website at http://www.omg.org/library.

9. T. Bray, J. Paoli, and C. M. Sperberg-McQueen, Extensible
Markup Language (XML) 1.0 (1998). Available as a Recom-
mendation from the World Wide Web Consortium website
at http://www.w3.org.

10. For a good discussion of Java servlets, see the white paper
titled The Java Serviet API, available from the Sun Java web-
site at http://java.sun.com/marketing/collateral/servlets.html.
See also Reference 2.

Accepted for publication April 27, 1998.

lan F. Brackenbury IBM United Kingdom Laboratories Ltd.,
Hursley Park, Winchester, Hants SO21 2JN, United Kingdom (elec-
tronic mail: lan. Brackenbury@acm.org). Mr. Brackenbury is Chief
Technologist at the IBM Hursley Development Laboratory in En-
gland and an IBM Distinguished Engineer. He is a member of
the British Computer Society, a member of IEEE and ACM, and
a member of the IBM Academy. He has a B.Sc. in experimental
psychology and computer science from the Victoria University
of Wellington, New Zealand. He joined IBM at Hursley in 1974,

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

working on advanced computer languages, image systems, work-
flow, and high-function graphics. In 1983 he was assigned to the
staff of the IBM Corporate Technical Committee in Armonk, New
York, returning to the United Kingdom a year later to run the
IBM United Kingdom Scientific Centre. Mr. Brackenbury has
been responsible for a wide range of software advanced devel-
opment including prototypes for: Object Rexx; desktop hyper-
text and multimedia; person-to-person conferencing; and OMG’s
transactional service, OTS. Since its inception in 1995, he has been
leading the IBM Centre for Java Technology, responsible for port-
ing Java to over a dozen platforms.

Donald F. Ferguson IBM Software Group, Thomas J. Watson Re-
search Center, 30 Saw Mill River Road, Hawthorme, New York 10532
(electronic mail: dff@us.ibm.com). Dr. Ferguson joined IBM as
a research staff member in 1987 and is currently a Distinguished
Engineer in the IBM Software Group. He is also Chief Architect
and Technical Leader for IBM’s Component Broker product and
Enterprise JavaBeans implementations. During his career in IBM,
he has contributed to IBM cache management, operating system
and transaction processing workload management, multimedia
content server, system management, and distributed object-ori-
ented products. He is an author of seven current or pending pat-
ents and over two dozen technical publications. Dr. Ferguson has
received two IBM Outstanding Innovation Awards, four Research
Division Technical Awards, two IBM Invention Platecau Awards,
an IEEE best paper award, and was elected to the IBM Academy
of Technology in 1997.

Karl D. Gottschalk IBM Network Computing Software Division,
P.O. Box 12195, Research Triangle Park, North Carolina 27709
(electronic mail: karigott@us.ibm.com). Mr. Gottschalk is a sen-
ior software engineer focusing on IBM’s technical strategy for
Java. He has been heavily involved in the definition and use of
IBM Java tools and components for building and running enter-
prise applications. Prior to working on Java, he worked for many
years on IBM’s systems and network management products; he
was the chief designer for several releases of IBM’s NetView prod-
uct. Mr. Gottschalk joined IBM in 1968 and has held positions
in the areas of program design, program development, program
maintenance, and information development. He received a Mas-
ter of Arts degree in English literature from the University of
Mississippi in 1965, a Master of Science in computer science from
the University of North Carolina at Chapel Hill in 1976, a Master
of Business Administration from Duke University in 1983, and
a Master of Arts in liberal studies from Duke University in 1988.

R. A. (Tony) Storey /BM Uhnited Kingdom Laboratories Ltd., Hurs-
ley Park, Winchester, Hants SO21 2JN, United Kingdom (electron-
ic mail: Tony_Storey@uk.ibm.com). Dr. Storey is an IBM Distin-
guished Engineer focusing on IBM’s transaction processing
products and direction, working in the Transaction Systems or-
ganization in the IBM UK Laboratory. He joined the UK lab-
oratory in 1980, working on transaction processing systems and
has been heavily involved in the direction of one of IBM’s pre-
mier transaction processing products, CICS, over a number of
years. He was also very much involved with the original concept
and definition of IBM’s MQSeries. More recently his focus has
been on transaction processing and its relationship with Java, and
object technologies generally. He joined IBM at the United King-
dom Scientific Centre in 1974, working in the area of relational
database research. He received a Ph.D. from the University of
Durham, England, in 1967.

Reprint Order No. G321-5679.

BRACKENBURY ET AL. 335

