
Lotus eSuite

by B. Briggs

The Javam programming language presents many
new opportunities for application developers and
users. Lotus eSuite“ uses Java to provide an
environment for the deployment and execution
of business applications from the corporate
intranet. Tools such as spreadsheet, calendar,
chart, e-mail, and database access, among
others, bring the benefits of network computing
to the end user. This paper discusses the eSuite
functions and the principles and goals that
guided their development.

T he Java* * programming language presents many
new opportunities for application developers

and users. Its reach, nearly ubiquitous given now-
widespread support for Java Virtual Machines and
the truly global connectivity provided by the Inter-
net and Java-enabled browsers, permits lightweight
pieces of software to be efficiently downloaded and
executed anywhere in the world.

In the summer of 1996, engineers at Lotus Devel-
opment Corporation began to design and create a
new class of application software designed to take
advantage of Java. This product line, initially code-
named Kona, and now officially named eSuite* *, was
announced formally in November 1997 and is now
generally available.

This paper presents a technical overview of eSuite.
It begins with a discussion of the principles and goals
motivating the creation of eSuite. Next an overview
of the architecture underlying each of the eSuite
components is presented, including an exposition of
the user interface frameworks and of the InfoBus,
a key Lotus innovation enabling easy data transfer
between software components. A brief overview of
the eSuite component applets is then presented in
order to illustrate these technologies in use. A n ex-
ample showing the components working together in
a customized application concludes the paper.

eSuite goal

The overarching goal of the eSuite effort was to pro-
vide the tools by which the corporate intranet, and
to some extent the broader Internet, could be trans-
formed into an environment for the deployment and
execution of business applications. With such tools
as spreadsheet, calendar, chart, e-mail, database ac-
cess, and others, we intend that the Internet-and
more specifically, the World Wide Web-evolve
from a medium hosting primarily statically published
documents to one featuring much more interactiv-
ity. In a sense the goal was to bring the benefits of
network computing to the end user.

However, to anyone attempting to create software
for the Internet, it quickly becomes apparent that
this “network-centric” environment differs in many
important ways from the traditional “desktop-cen-
tric” model of personal computing. We have ob-
served that simply porting existing desktop applica-
tions to Java without awareness of these differences
results in failure. Therefore a discussion of the as-
sumptions and conclusions that guided our devel-
opment is in order.

The network-centric environment

In the initial planning phases of the project, the
eSuite development team studied the nature of a net-
work-centric computing environment and, specifi-
cally, its implications for end-user business produc-
tivity applications.

Wopyright 1998 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

I 372 BRIGGS 0018-8670/98/$5.00 0 1998 IBM IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

Our initial observation concerned the locality of ap-
plication logic. In the present desktop computing
paradigm, applications are typically loaded from a
local hard disk (or a remote disk simulated to ap-
pear local), to which persistent application data are
also saved. Each workstation must thus have its own
physical copy of the applications, separately installed
and maintained.

A number of studies have indicated that deployment
and maintenance of such applications, particularly
in large organizations, comes at a high cost, ranging
from $8000 to $16000 per year, per workstation. This
concern has motivated the notion of relatively in-
expensive, stateless devices (Le., not possessing lo-
cal persistent storage) called “network computers.”

To achieve maximum economies, and to construct
devices specific to particular applications, network
computer hardware vendors are employing a wide
variety of cpus and system architectures. Java’s plat-
form independence, i.e., the ability of Java applica-
tions to run on any machine featuring a Java Virtual
Machine (JVM), makes it the tool of choice for soft-
ware on such devices.

Perhaps more importantly for our discussion, net-
work computers, as well as Web browser programs,
signal a shift away from workstation-resident appli-
cations and toward downloadable ones. Such appli-
cations reside on a server platform-not the work-
station-and are downloaded on demand. Since
there is then only one persistent copy of the appli-
cation, information technology professionals charged
with maintenance and upgrades find their tasks sim-
plified.

We further observed a reluctance of some organi-
zations to upgrade end users from so-called nonpro-
grammable terminals (NPTS, of which IBM 3720- and
5250-class terminals are the premier examples) to
graphical personal computers and workstations. Part
of the reason for this reluctance, as mentioned ear-
lier, stems from the high cost of deployment and
maintenance of applications on personal computers.
However, it is also the case that while such users covet
the ease of use of graphical user interfaces in prin-
ciple, in practice modern personal computer appli-
cations have grown enormously complex, and there-
fore intimidating. The Wall Street Journal’ counted
approximately 4500 separate commands in Mi-
crosoft’s Office 97** suite of applications, and Lo-
tus Smartsuite* * is in approximately the same cat-
egory.

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

We also noted the extraordinary growth of the In-
ternet, and of the World Wide Web in particular.
Early in its history the Hypertext Transfer Protocol
(HTTP) demonstrated its ability to serve as a back-
bone for application deployment. HTTP enabled
transmission of richly formatted data to client work-
stations and enabled user input, albeit via very prim-

Our components are 100 percent
Java in order to maximize the

“cost of ownership” benefit
to administrators and end users.

itive mechanisms. Indeed, many enterprises now rely
upon so-called internal “intranets” for mission-crit-
ical applications; yet the richness of these applica-
tions is today quite limited.

Finally, we wanted to provide software components
that could be assembled into larger applications cus-
tomized to a particular task. Seamless incorporation
of components into more inclusive, tailored appli-
cations permits users to focus on the task, rather than
the software tool (a portfolio manager rather than
a spreadsheet, for example), thus achieving increases
in productivity.

We recognized that these goals were in some cases
quite complementary. For example, we wanted to
build components so that designers could create
highly customized applications; by restricting the
functionality of the component to a highly focused
set of features we also achieved the goal of compact-
ness and thus efficient delivery over a network.

Design principles and goals

Based upon these observations, we adopted a series
of design goals, which are summarized below.

Goal Number 1: 100 percent Java. Our components
consist of 100 percent Java in order to maximize the
“cost of ownership” benefit to the administrator and
the end user. This goal allows the eSuite components
to run on any hardware platform featuring a JVM and
the requisite class libraries, without regard to pro-
cessor type or operating system.

BRIGGS 373

8661 'E ON 'LE 1 0 A '1VNHflOT SW32SAS WHI

be accurate enough to use as a base for design deci-
sions.)

Goal Number 4 Specific functionality. Each com-
ponent’s functionality is intentionally designed to be
focused and specific, rather than all-encompassing.
The spreadsheet, for example, consists only of a re-
calculating grid; the chart, normally included in a full
spreadsheet application, is in fact a separate com-
ponent. Given that an application developer might
want to link spreadsheet, or relational database, or
other arbitrary data to the chart or to another com-
ponent, we recognized that a simple data transfer
mechanism was required, and this led to the inven-
tion of the InfoBus, described later.

Further, the level of functionality was deliberately
limited, the intention being to provide only the most
commonly used functions within a component. For
example, the word processor supports multiple fonts,
colors, tables, and images, but not cross references
or footnotes.

Goal Number 5: Usability. We wanted the compo-
nents to be easy to use from a command and control
standpoint. Usability tests have shown certain lim-
itations with the overlapping-window user interface
model (naive users forget about obscured windows,
for example). Further, in some environments, such
as browsers, there is very little opportunity for user
interface “merging” as is possible in other compo-
nent architectures (for instance, Java applets hosted
by browsers generally cannot integrate with the
browser’s interface, e.g., its main menu). Finally, we
wanted a very high degree of customization capa-
bility for the user interface: for example, to allow the
user interface to be completely removed in a pre-
built application, as described later. These factors
motivated creation of the Infocenter, also described
later.

Goal Number 6 Standardization. Wherever rele-
vant, our components utilize protocols and formats
standardized by the relevant groups. This decision
had a number of useful implications: our client-side
components can run against any number of servers,
since they use standard protocols; and since most of
the applets use HTML as a standard file format, their
persistent data can be viewed, if in read-only mode,
by any browser regardless of whether it has access
to the component that created it.

Goal Number 7: Multiple usage models. Finally, we
realized that our components would be utilized in

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

a rather wide spectrum of usage models. In some
environments, primarily those in which ad hoc con-
tent creation is performed, users expect applications
to be launched and utilized in what might be termed
a “traditional” model-that is, the user runs a par-
ticular application (say a spreadsheet, or a word pro-
cessor), creates data, saves the data, and then exits
the application. However, we also recognized the
growing importance of more task-oriented environ-
ments. In these, software components are linked to-

The level of functionality was
deliberately limited, providing
only the most commonly used
functions within a component.

gether to construct a much more customized appli-
cation, such as a patient billing form, or portfolio
management application, or database reporting tool.
Clearly we had to accommodate both models.

User interface

The design of the user interface focused on simplic-
ity and ease of use. One of the key tenets of the de-
sign, therefore, was to eliminate as much as possible
the use of so-called “three-dimensionality,” that is,
data obscuring other data because of such constructs
as overlapping windows. In fact the eSuite user in-
terface is specifically not a windowed one, the goal
being to focus the user on the task rather than on
the interface.

This decision has implications for the applets’ func-
tionality as well. For example, the spreadsheet ap-
plet supports only one sheet, not a notebook of
sheets, as does its vastly more powerful SmartSuite
counterpart Lotus 1-2-3**.

Figure 2 shows a basic eSuite spreadsheet. The
spreadsheet, like all eSuite components, supports the
graphical manipulation expected of such an applet:
in this case, the ability to drag and resize a column
or row, to select a (single) range of cells, and so on.

At the bottom of the spreadsheet is the menu bar,
a command and control area we call the Infocenter.

BRIGGS 375

Figure 2 eSuite spreadsheet and Infocenter

The Infocenter was perhaps the most heavily tested and paste under the edit selection-are promoted
subsystem in our usability laboratories, and user in- and reside directly below the top-level menu selec-
put resulted in numerous improvements. For exam- tions. (This effectively replaces the function of a tool
ple, our observation that users’ eyes tend to grav- bar-single-click access to a function-in most
itate toward the top left motivated placement of the present-day applications for Microsoft Windows* * .)
Infocenter at the bottom-thus focusing the user Clicking on “Edit” will in fact bring up a menu that
on the task rather than on the interface. includes cut, copy, and paste, as well as other less-

frequently used functions.
Infocenter structure

Three primary constructs make up the Infocenter:
the action bar, panels, and QuickPicks.

The primary user interface component implemented
by the Infocenter is called the “action bar”; on it is
presented a set of menu choices that are context sen-
sitive, i.e., supplied by the applet. To reduce the num-
ber of gestures required by the user, the most com-
monly used submenu items-for example, cut, copy,

Selecting “Properties” (see Figure 3) shows a panel
enabling the user to modelessly change the charac-
teristics of the given selection, such as its font, color,
point size, and so on. By “modelessly” we mean that
the changes take place immediately; the user need
not bring up the panel, use it, and then dismiss it for
the changes to occur.

Further, the properties shown are relevant to the cur-
rent selection. As the selection changes, the applet

376 BRIGGS IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

Figure 3 Infocenter property panel

Figure 4 Infocenter QuickPick
~ ~~

I I Lodging 250 $260.0011
"a*-. n

ITotals $250.00

I
$250.00/.

notifies the Infocenter, and individual property pan-
els are added or removed as appropriate. For exam-
ple, if only text is selected, then the "Number For-
mat" panel is not relevant and therefore not
displayed. The internal architecture of this mecha-
nism is described later.

As a further shortcut, a user interface tool called a
"QuickPick," which is a simple pop-up, can be uti-
lized as a shortcut. A QuickPick requires a minimum
of mouse gestures from the user in order to accom-
plish some action. In Figure 4 the alignment tool is
depicted. The user clicks on the "Align" menu item,
which causes the tool to be displayed. The user then
selects the desired alignment, and the effect is im-
mediate.

Frameworks

To realize the user interface, and to accomplish the
desired goals, we created a set of frameworks in
which the applets execute. These frameworks pro-
vide the following common services: user interface
command and control (the Infocenter), rendering
enhancements, printing, persistence, international-
ization, resource management, and others. Figure 5
depicts a basic schematic of the three key compo-
nents of the frameworks: the AppletContainer, the
LFCApplet, and the Infocenter. (In developing
eSuite components and applications, it should be
noted that the AppletContainer and Infocenter are
both optional, thus allowing maximum control by the
developer of the interface presented to the user.)

IBM SYSTEMS JOURNAL, VOL 37, NO 3. 1998 BRIGGS 377

Figure 5 Frameworks schematic

An instance of the AppletContainer can physically
contain one or more LFCApplet instances; the in-
tent is that several components can be linked to cre-
ate the impression of a single application. Passed to
the applet container are HTML parameters (described
more fully later) that dictate the layout of the indi-
vidual applets-left-to-right, top-to-bottom, and so
on. (Internally, the AppletContainer employs the
Java AWT (Abstract Window Toolkit) GridBagLay-
out class to implement this feature.) Optionally the
AppletContainer can paint a background image
across all the contained applets, thus again provid-
ing a more unified, and esthetically pleasing, appear-
ance. The AppletContainer instance also creates the
InfoBus instance used to connect each contained ap-
plet to the Infocenter instance; the architecture of
the InfoBus and its use in the Infocenter will be de-
scribed later.

All eSuite applets are instances of the Lotus base
class LFCApplet, which is derived from the JDK**
(Java Development Kit) Applet class. LFCApplet
and its supporting classes provide a wide variety of
services with scope beyond that of this paper; briefly,
they consist of the following.

Zntemationalizationfunctions and resource manage-
ment. The LFCApplet base class provides function
that allows an instance to determine the locale in
which it is running. Based on this information it
loads the appropriate “resource bundle,” a file con-
taining localized strings, images, and other infor-
mation.

Persistence framework. The JDK’ provides two
mechanisms for object persistence. The first, a Java

378 BRIGGS

interface called serializable, automatically bundles
up all of an object’s public and private data in an
opaque format; when the object is reinstanced at
a later time the data are reinitialized. The serial-
izable mechanism has some advantages, chief of
which is its ease of implementation-virtually no
programming is required. The other mechanism
is a Java interface called extemalizable. The exter-
nalizable interface defines a number of methods
that must be implemented by the class. Its chief
advantage is that the format, type, and amount of
the data to be saved or retrieved is entirely under
the control of the class.

However, the externalizable mechanisms, while
closer to what we desired, were not deemed to be
flexible enough; in particular, they do not allow
the implementing class to distinguish between dif-
ferent file types, and this capability is important
for the eSuite applets. For example, we wanted the
spreadsheet to be able to read and write data in
HTML as its default format, but also in Lotus 1-2-3
worksheet format (WKI), given its widespread use
in the industry. Hence, we invented a new persis-
tence interface. The persistable interface permits
clients to advertise supported file types, and to read
and write documents of a selected type.

Finally, to support the particular requirements of
network computers (NCs) we created a swappable
interface. At this writing NCS typically have no disk
cache or local swap file; current NC operating sys-
tems do not provide a means to gracefully handle
out-of-memory situations. In addition, we did not
want the user to have to save all data when log-
ging off; we wanted the software to save its state
and restore it when the user logged on subse-
quently. The swappable interface consists of two
methods: savestate and restorestate. The caller
provides a data stream from which to read or write.

Conveniencefunctions. Such functions simplify ex-
isting functionality or ensure that applet usage of
a given function is consistent. Access to various
cursor shapes, which in the case of running as an
applet on a Web page requires recursively travers-
ing the containment hierarchy until a Frame ob-
ject can be retrieved, is an example of function sim-
plification; management of thread groups is an
example of consistency.

Context-sensitive help. eSuite uses HTML as its help
data format.

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

Control flow between applets and the
Infocenter

An LFCApplet base class method, assertSelection
(Selection s), provides a means by which applets co-
ordinate their functions with the Infocenter. Each
time a user selection changes-for example, the user
paints a new range in the spreadsheet-assertselec-
tion() is called. Passed to it is an object s that im-
plements the interface Selection. (A Java interface
is like a class, but with only declarations of its meth-
ods.)

From methods in the selection interface, the Info-
Center retrieves objects describing what commands,
panels, and QuickPicks can be enabled and how to
process them. These commands themselves are kept
in “action descriptors,” which are text strings kept
in the resource file to facilitate translation. The ac-
tion descriptor also names a class to be instantiated
when the command is actually invoked. For exam-
ple, here is the action descriptor for the “Cut” com-
mand:

IDA-CUT=direct, lotus.fc.ic.ClipboardCornrnander,
ID-CUT, IC-AD-STR-CUT, IC-AD-IMG-CUT,
null, ICL-AD-STR-CUT

Here the keyword direct specifies that executing this
command operates directly upon the applet (as op-
posed to invoking additional user-interface func-
tions), and that the class that will actually be
instantiated to handle the command is 1otus.fc.ic.
Clipboardcommander. (The remainder of the ar-
guments symbolically identify the command string-
“Cut”-so that it can be easily translated, the com-
mand identifier, and other parameters not relevant
for this discussion.)

The InfoBus

The InfoBus component was designed to provide a
lightweight, yet powerful, means of data transfer be-
tween other components. As the name suggests, its
implementation is reminiscent of a hardware bus, in
that data are placed on the bus by one component
and are immediately available to all attached com-
ponents. Applets implementing InfoBus functional-
ity can easily and without programming be linked
together; Figure 6, a screen shot of a functioning ap-
plication, depicts the eSuite spreadsheet and chart
applets. The chart of course graphically reflects the
numerical data in the spreadsheet; it is important to

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

note that the chart contains no spreadsheet-specific
code.

The basic philosophy behind the InfoBus distin-
guishes applets as being data producers, data con-
sumers, or both. Applets that produce data publish
the data to the bus in a canonical format; consum-
ers can then retrieve the data using any of a number
of access methods. This common encoding is defined
by the DataItem class. When one component has
data to share with one or more other components,
it publishes a DataItem instance.

Two fundamental mechanisms must exist for success-
ful data exchange between two (or more) compo-
nents. First, the components must be able to rendez-
vous on the data. The InfoBus uses events and named
data items to accomplish this. When a data consumer
wishes to receive InfoBus data, it adds an InfoBus-
Dataconsumer listener, which is a Java event han-
dler. Then the consumer waits for a named data item.
Conversely, a data producer creates a data item and
fires an event with the name as an argument (the
complete specification of the InfoBus is available
from the Web3). The origin and use of these names
is entirely the responsibility of the applet.

Consider the example of the spreadsheet and chart
shown in Figure 6. In spreadsheets, a traditional and
commonly used naming scheme is that of the named
range. This implementation of the spreadsheet pub-
lishes the names of its named ranges on the bus; one
of them is called “Sales.” The chart component has
been programmed, in this case via a parameter
passed through HTML, to render the information in
the “Sales” named range. In short, the spreadsheet
publishes the existence of a data item named “Sales”;
the chart subscribes to it. Changes made to the un-
derlying data in the spreadsheet result in an instance
of the DataChangedEvent being fired, and the chart
is updated.

The second requirement for successful data exchange
is a set of one or more agreed-upon access mech-
anisms. The InfoBus specifies a broad range of these,
expressed as Java interfaces, not all of which must
be implemented by every InfoBus data producer. (A
data consumer can use Java’s instanceof operator to
query the available access methods on the data item.)

The InfoBus specification describes the following ac-
cess mechanisms:

Immediate Access. This is the simplest of the ac-
cess mechanisms. A consumer can retrieve the con-

BRIGGS 379

Figure 6 Spreadsheet and chart

tents of the data item either as a Java string or as
a Java object. For reinterpretation of the Java ob-
ject, the data item may return a Transferable in-
stance via an optional method. This exposes the
object in its various “data flavors” (the JavaBeans
equivalent to clipboard formats4).
Collection Access. The Collection Access interface
is the base interface of the other access mecha-
nisms. A getcursor() method returns a DataCur-
sor instance, allowing the consumer to traverse or
enumerate the data within a Collection instance.
Array Access. Using the Array Access interface,
the consumer can query the data for their dimen-
sionality. (The array can be n-dimensional.) Hav-
ing determined the bounds, the consumer can sub-
divide the data further into additional arrays. An
example usage might be for a chart component to
subdivide a single data item into several, each rep-
resenting a different renderable data series. Each

subdivided data item can have its own data cur-
sor.
Keyed Access. This interface allows a consumer
to retrieve a data value by a key.
Rowset Access. The Rowset Access mechanism is
generally for use by InfoBus data producers to pub-
lish data retrieved from relational databases. The
Rowset Access interface allows consumers to de-
termine meta-data, that is, the number of columns
and their names and data types, as well as to han-
dle insertion and deletion.
Database Access. The DbAccess interface provides
a mechanism by which a data consumer can closely
control retrievals from and updates to a relational
database through the InfoBus. Using DbAccess,
a consumer can pass a Structured Query Language
(SQL) command to a DBMS (database management
system) InfoBus data producer. The result set is
normally returned as a Rowset Access data item,

380 BRIGGS IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

Figure 7 InfoBus sample operation

and it can optionally be made generally available
to all consumers on the InfoBus.

For the present, the InfoBus is strictly a single-ma-
chine (or more specifically, single-JvM) architecture;
in its current form it is not distributable. To make
distributed data (such as those from a relational da-
tabase on a server) available to InfoBus members
requires a local applet to communicate with the
DBMS-typically through a Java Database Connec-
tivity (JDBC**) driver-and to then present those
data to the InfoBus. Figure 7 shows this configura-
tion, which can be used as a model for other forms
of distributed data manipulation. For example, we
have written an applet to take a named data item
from the InfoBus and post it to an HTTP server using
the Common Gateway Interface (CGI) mechanism.

We have found the InfoBus to be extraordinarily use-
ful, occasionally in ways not originally anticipated.

For example, the InfoBus is the conduit for passing
selection information from the applet to the Info-
Center; when the user’s selection changes, a Data-
Itemchanged event is signaled to the Infocenter.
Similarly, once InfoBus functionality has been added
to an applet-a task that is relatively straightfor-
ward-the InfoBus becomes a convenient commu-
nications portal. For example, we have written an-
other very small applet that takes information from
a JavaScript** user interface “widget” (e.g., a button-
click event) and posts it to the InfoBus.

Programmability

Each applet can be driven by external programming
mechanisms, and as such presents a public applica-
tion programming interface (API). The architecture
of the API was inspired by the “facade” model de-
scribed by Gamma et al. in the seminal workDesign
putt ern^,^ the idea being to present a unified set of

IBM SYSTEMS JOURNAL, VOL 37. NO 3, 1998 BRIGGS 381

method calls on the applet. The alternative was to
expose the internal APT of the applet itself and thus
its object hierarchy and internal structure generally.
This was felt to be not only confusing for the devel-
oper but also unnecessarily restrictive for us as we
evolve the eSuite products. Having an API layer in-
sulates the applet and thus allows the underlying
structure to change or to be completely replaced.

The API itself is simply a set of documented Java pub-
lic methods. In accordance with the JavaBeans com-
ponent specification,6 properties are retrieved and
updated via “getlset” methods. Hence they can be
introspectively viewed in Java-builder programs.

The API can be invoked from Java itself, or from any
language capable of calling Java public methods, such
as JavaScript, Object REXX (Restructured Extended
Executor), VBScript (Microsoft Visual Basic* *
Scripting Edition), and others. Hence a JavaScript
program on an HTML page can retrieve a handle to
a given eSuite component and programmatically
drive it, for example.

Applet overview

In this section the first set of eSuite applets is de-
scribed at a functional level. The intent is less to pro-
vide a product description than to show how the
eSuite applets incorporate the designs and technol-
ogies outlined in previous sections.

Spreadsheet. The eSuite spreadsheet component is
a lightweight, two-dimensional spreadsheet support-
ing up to 256 columns by 8192 rows. It offers a re-
duced set of Lotus 1-2-3 internal functions (called
“@functions”). It publishes named ranges of data
to the InfoBus for consumption by other compo-
nents, and it can read data produced by any InfoBus
data provider. Persistent (file) data are saved in HTML
format, and thus spreadsheet data can be read as
HTML tables by browsers.

Word processor. With the word processor applet,
users can construct simple documents that may in-
clude graphics. Basic, commonly used functionality
is implemented: word wrap, multiple fonts and col-
ors, tables, images, etc.

Chart. The chart component retrieves its data from
the InfoBus as described earlier and renders a fully
three-dimensional chart in a variety of formats.

E-mail. The electronic mail client is highly modular;
it can support either the Internet Mail Access Pro-

382 BRIGGS

tocol (IMAP) or the Post Office Protocol (POP), and
its messaging transport layer is described formally
by a set of Java interfaces; thus new or additional
messaging transports can be created.

Calendar. The calendar component supports user ap-
pointments and utilizes the e-mail client to perform
group scheduling. Communication between the cal-
endar and the e-mail client is via the InfoBus.

Presentation graphics. This applet allows users to cre-
ate and view simple presentations, and includes tem-
plates and drawing tools. It can also be used to build
graphical navigators and be used on HTML pages to
“jump” to a different slide in the presentation or to
an address specified by a URL (uniform resource lo-
cator).

Database access. The database access component,
possessing no user interface, is an interface between
the InfoBus and a JDBC-Compliant database. Its op-
eration, somewhat simplified, is shown in Figure 7.

Sample

To illustrate the usage of the InfoBus and the ap-
plets, a brief example application will be described
in this section. Consider the HTML page shown in
Figure 8. Four eSuite applets are used to create this
application: the spreadsheet, the chart, the database
query applet, and a small applet used to transfer a
JavdScript event (the button click) to the InfoBus.
When the user presses the “Submit Query” button,
the data query applet is activated to perform a query
of the relevant data. The query applet has been pro-
grammed via an HTML parameter to post the results
in an InfoBus data item named “ShoeQueryResult.”
Completion of this query results in an event,
DataItemChanged, signaled on the InfoBus.

The spreadsheet applet possesses a named range
called “ShoeQueryResult,” which by the coincidence
in names receives the data from the InfoBus. An-
other named range, “Shoechart,” holds the infor-
mation to be charted. This is the name parameter
passed to the Chart applet.

The appendix contains an excerpt from the HTML
code used to set this up. Note not only the tags used
to control the InfoBus but also those that control
the appearance of the applets; in this case the In-
foCenter has not been enabled, nor has the tradi-
tional inverted “L” of most spreadsheet programs.

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

Figure 8 Kathy's Shoes: InfoBus example

This then provides a much more seamless integra-
tion of the applets with the host Web page.

This application also illustrates the modularity of the
eSuite components. Notice that because this appli-
cation is not intended for content creation, but rather
for data entry and analysis, the Infocenter has not
been enabled. The result therefore is that the end
user's focus is on the task at hand, and not on the
format of the data or the usage of the tool.

Conclusions

Lotus eSuite represents not just a use of the Java
programming language in applications software; in
fact we developed eSuite to respond to a shift in how
computing is approached by individuals. We have
provided basic functionality in packages reduced in
size and simpler to use; we have made our compo-
nents easy to "stitch" together into highly custom-

ized and tailored applications; we have engineered
them so that they run well in a variety of environ-
ments and on a wide spectrum of hardware plat-
forms. Thus eSuite is in fact the first incarnation of
true "network-centric'' computing.

Acknowledgments

The author wishes to acknowledge the contributions
of the members of the eSuite team; in particular,
Douglas Wilson, the inventor of the InfoBus; Noah
Mendelsohn, a primary contributor to the JavaBeans
specification; Jeff Buxton, architect and leader of the
frameworks team; Jonathan Booth, senior overall ar-
chitect; Howard Kirsten, lead user-interface design-
er; and Peter Masters, designer of the persistence
architecture. Additionally the author wishes to rec-
ognize the extraordinary contributions of the entire
eSuite team in delivering this seminal set of tech-
nologies and products to market.

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998 BRIGGS 383

Appendix

<!-- Include an instance of the Sheet applet, which gets the results of the query. The applet is programmed to load
a template file that has all range names, formats, and formulas defined for presenting the results of the query. It is
also programmed to disable column and row headers, the edit line, and the status line and to enable the horizontal
and vertical scroll bars.

Note: The template file has two range names defined: "shoeQueryResult" where the results of the query are placed
and "shoeChart" where the inputs to the Chart applet reside. -->

<APPLET NAME="shoeSheet" CODEBASE="..\ ..\ ..I' CODE="lotus.sheet.Sheet" WIDTH=281
HEIGHT=352>
<PARAM NAME="filename" VALUE="PQueryTemplate.html">
<PARAM NAME="invertedL" VALUE="false">
<PARAM NAME="hScroll" VALUE="true">
<PARAM NAME="vScroll" VALUE="true">
<PARAM NAME="editLine" VALUE="false">
<PARAM NAME="statusLine" VALUE="false">

<IAPPLET>
<lTD>

<TD>

<!-- Include an instance of the Chart applet that graphs a range of data on the Sheet applet. The charted data are
calculated from the results of the database query. The name of the applet (shoechart) determines the name of the
data item that is charted so it is important (in the context of this example) that the Sheet applet defines a range with
this name. -->

<APPLET NAME="shoeChart" CODEBASE="..\ ..\ ..I' CODE="lotus.chart.ChartApplet" WIDTH=472
HEIGHT=352>
<PARAM NAME="bgimage" VALUE="KS-chartbg.gif">
<PARAM NAME="parseDirection" VALUE="column">
<PARAM NAME="plotLayout" VALUE="Pie">
<PARAM NAME="rendering" VALUE="3D">
<PARAM NAME="viewPoint" VALUE="1000,1000,1000,-90.25">

<IAPPLET>
<lTD>

<lTR>
<ITABLE>

<!-- Include an instance of the JdbcSource applet to perform a specific database query. We make the applet in-
visible on the Web page by using a minimal WIDTH and HEIGHT setting in the APPLET tag and setting the "allowUI"
parameter to false.

The "database," "ID," and "password" parameters specify the database to use for the query and the identifier and
password to use when accessing it.

The "autoConnect" parameter is set so that the applet connects to the database once it is started.

The "retrievals" parameter specifies a list of query names to process; in this case the list contains only one query
name: shoeQueryResult.

The "shoeQueryResult" parameter specifies the actual query to execute. Note that the query contains a parameter.

384 BRIGGS IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

You can specify the format of each resulting data set by specifying a parameter whose name is the name of the
query with "-resultStyle" appended. In this case, "shoeQueryResult-resultStyle" specifies that only the data are to
be returned in the data set.

Note that a query in the list of query names is not processed until its query trigger is set on the InfoBus. The query
trigger is a Boolean value. Its name is the name of the query with '"trigger" appended. -->

<APPLET NAME="shoeQuery" CODEBASE="..\ ..\ ..I' CODE="lotus.jdbc.JdbcSource" WlDTH=I
HEIGHT=l>
<PARAM NAME ="database"

<PARAM NAME="ID" VALUE="dba">
<PARAM NAME="password" VALUE="sql">
<PARAM NAME="allowUI" VALUE="false">
<PARAM NAME="autoConnect" VALUE="true">
<PARAM NAME="retrievals" VALUE="shoeQueryResult">
<PARAM NAME="shoeQueryResuIt" VALUE="select Price,Quantity,Description from SalesData where

<PARAM NAME="shoeQueryResult-resultStyle" VALUE="Data">

VALUE="jdbc:dbaw://kona-dpp:8889/Sybase_SQLANYIPQueryDat~PQueryData"~

State= ' %state% ' ">

<IAPPLET>

* *Trademark or registered trademark of Sun Microsystems, Inc.,
Lotus Development Corporation, or Microsoft Corporation.

Cited references

1. D. Clark and D. Bank, "Microsoft May Face a Backlash Against
'Bloatware,' " Wall Street Journal (November 18, 1996).

2. JDK 1.1.4 Object Serialization Specification, available from
Sun Microsystems, or see http://java.sun.com/products/jdW
l.l/docs/guide/serialization/spec/serialTOC.doc.html.

3. M. Colan, InfoBus Specification, available from http://
java.sun.com/beans/infobus/ibspec.html.

4. JavaBeans, G. Hamilton, Editor, available from Sun Micro-
systems (1997).

5. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Put-
terns, Addison-Wesley Publishing Company, Reading, MA
(1995).

6. See http://java.sun.com/products/jdWl.l/docs/apilPackage-java.
ava.awt.html.

Accepted for publication March 16, 1998.

Barry Briggs Lotus Development Corporation, 55 Cambridge
Parkway, Cambridge, Massachusetts 02142 (electronic mail:
Barrv_Bn~Js@crd.lotus.com). Mr. Briggs is a Lotus Fellow in the
Internet Applications Division of Lotus, an IBM subsidiary. He
has been with Lotus for ten years and served as chief software
architect of Lotus 1-2-3 and other products, including Lotus
Notes". He holds B.A. and M.A. degrees from the University
of Massachusetts, Amherst. Currently he works on a variety of
software initiatives; his primary interest is in the area of client-
side computing.

Reprint Order No. G321-5683.

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998 BRIGGS 385

