The evolution of Java
security

This paper provides a high-level overview of the
development and evolution of Java™ security.
Java is a maturing technology that has evolved
from its commercial origins as a browser-based
scripting tool. We review the various deployment
environments in which Java is being targeted,
some of its run-time characteristics, the securily
features in the current releases of the base
technology, the new Java Development Kit
(JDK™) 1.2 policy-based security model,
limitations of stack-based authorization security
models, general security requirements, and
future directions that Java security might take.
IBM initiatives in Java security take into account
our customers’ desire to deploy Java-based
enterprise solutions. Since JDK 1.2 was entering
beta test at the time this paper was written,
some operational changes and enhancements
may result from industry feedback by the time
JDK 1.2 becomes generally available.

he software industry is focused on providing sup-

port for developing and deploying mission-crit-
ical applications written in Java**. The Java envi-
ronment encompasses a broad spectrum from
enterprise servers to embedded devices. A range of
Java-based systems, including JavaOS**, Embedded-
Java**, and PersonalJava*®*, among others, will be-
come available, providing potentially different lev-
els of underlying services. This situation will result
in requirements for varying levels of security strength.

The initial focus of Java security has been in the sup-
port of downloaded applets (small programs) within
World Wide Web browsers. To a large extent, the
security features in Java reflect this heritage. As Java
matures, it will increasingly support additional se-

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

0018-8670/98/$5.00 © 1998 IBM

by L. Koved
A. J. Nadalin
D. Neal
T. Lawson

curity features to address the needs of the target ap-
plication environments. Included is the addition of
security features generally found in large-scale server
applications.

We have seen examples of how e-business (business
conducted electronically via the Web) increases a
customer’s reach by orders of magnitude. As the cus-
tomer base increases, the absolute magnitude of
losses from malicious behavior can become great
enough to warrant improved security products de-
ployed in information technology systems. However,
should a security exposure become widely publicized,
a customer’s reputation can become tarnished. IBM’s
customers demand systems implementations that are
nearly flawless and that address the needs of their
enterprise. They look to IBM to ensure that risks are
known and to respond quickly with action when ex-
posures are uncovered.

Gartner Group’s December, 1996, report, Java—
Good Start, but Not Yet Secure,' highlights several
areas of concern regarding Java security that are
based on earlier versions of the Java Development
Kit (JDK**). Realistic expectations are important:
no system is 100 percent secure. However, it is cru-
cial to recognize three things about Java security:

©Copyright 1998 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

KOVED ET AL. 349

1. Java enables a function that was never before
commercially deployed on a broad scale: dynamic
loading of code from a source outside the system.
This important feature aggravates a significant
“Trojan horse” security problem. However, it also
provides extremely valuable function.

2. Java security was not designed to solve the same
problems as the Resource Access Control Facil-
ity (RACF*) function in the Operating System/390
(0s/390*) Security Server addresses on Multiple
Virtual Storage (MVS*), or similar traditional en-
terprise security technologies. RACF is designed
to protect the enterprise and its resources against
hostile users. The security for Java is designed to
protect the user’s workstation and resources
against hostile code.

3. RACF and other traditional enterprise security
technologies work well because they assume—and
their environments provide—strong operating
system integrity as a foundation. Java also assumes
this integrity; however, the predominant desktop
operating systems do not provide it sufficiently.

Security technologies are needed to prevent or mit-
igate the following types of threats:

* Unauthorized resource usage, including theft of soft-
ware or CPU usage, corruption of data and soft-
ware, disclosure of information, and unaccount-
able action

» Abuse of privilege, including misrepresentation of
identity, affiliation, value of items exchanged, and
entitlement of services; impersonation; fraud; and
extortion

* Malicious code, including protection from viruses,
worms, Trojan horses, and logic bombs

» Wiretapping, including active and passive measures

¢ Denial of service, including destruction of resources,
saturation of services, and interruptions of com-
munications

Trojan horse and spoofing attacks have been the
most common Java security threats publicized to
date. Once identified, it has been relatively easy to
provide fixes as the majority of attacks have occurred
due to implementation errors in browsers or in Java
rather than fundamental design flaws.

Java security foundation and evolution. Since ini-
tial commercial deployments of Java were in Web
browsers, much of the focus of Java security hasbeen
in providing features for protecting against hostile
applets; that is, against hostile code downloaded from
Web sites on the Internet. Java security builds upon

350 KOveD ET AL

three fundamental aspects of the Java run-time envi-
ronment: the ByteCode Verifier, the Security Man-
ager, and the ClassLoader.

The ByteCode Verifier ensures that downloaded
code is properly formatted, that bytecodes (Java Vir-
tual Machine instructions) do not violate the safety
restrictions of the language or virtual machine (no
illegal data conversions), that pointer addressing is
not performed, that internal stacks cannot overflow
or underflow, and that bytecode instructions will have
the correct typed parameters.?

The Security Manager initiates run-time access con-
trols on attempts to perform file 1/0 and network 1/0,
create new ClassLoaders, manipulate threads or
thread groups, start processes on the underlying plat-
form (operating system), terminate the Java Virtual
Machine (JvM), load non-Java libraries (native code)
into the JvM, perform certain types of windowing sys-
tem operations, and load certain types of classes into
the JvM. For example, the Java applet sandbox? se-
verely constrains downloaded applets to a limited
set of functions that are considered to be relatively
safe.

The ClassLoader determines how and when applets
can load code and ensures that applets do not re-
place system-level components within the run-time
environment.

In addition, a number of features in the Java pro-
gramming language and run-time environment, in-
cluding automatic memory management and strong
data type safety, facilitate writing safe code.

Through the use of digital signature services provided
in JDK 1.1, trusted applets can be treated in a man-
ner similar to applications written in Java. That is,
these trusted applets have much greater access to
JvM resources than applets that run in the restricted
Java sandbox. Improved and much more flexible ac-
cess control features are the major security addition
in JDK 1.2 and are described in greater detail later
in this paper.

Today’s computing environments have a number of
security weak points that are addressed by features
available in Java prior to JDK 1.2:

e Strong memory protection—Java removes the pos-
sibility of either maliciously or inadvertently read-
ing or corrupting memory locations outside bound-
aries of the program. As a result, Java applications

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

The evolution of Java has also significantly changed the
availability of security function from release to release.
Following is a summary of the major security functions
found in three of the Java releases.

® Applet resource access: resource access given to code
downloaded from the Web (i.e., applets).

» Application resource access: resource access given to
code that is local to the system running the JVM (i.e., an
application).

pplet resource access Constrained access given
to applets

{Java sandbox)

® | exical scoping of privilege modification: enforces the
“least privileged model”; that is, only the piece of code
that needs the privilege will be enabled.

* Cryptographic services for data confidentiality and
integrity: allows for the encryption and verification of data.

* Digital signature services for code signing: provides the
ability to have authentication of the origin of the code
(e.g., who signed it)

The table below summarizes the significant security
functionality found in the various major JDK releases.

Constrained actess given Policy-based access to
to unsigned applets resources

(Java sandbox)
Signed applets
unconstrained

Unconstrained access
given to applications

. ‘ Policy-based access to
given to applications - resources

Not available

Not avai|ab|e‘ Stack annotation based
-1 with beginPrivileged() and
endPrivileged()

Not available

Java Crypt‘ographicv:‘ - Java Cryptographic
Extensions 1.1 Extensions 1.2

DiQita! signature'sewicyes ' Not available
for code signing

or applets cannot gain unauthorized memory ac-
cess to read or change contents.

Encryption and digital signatures—Java supports
the use of powerful encryption technology to ver-
ify that an applet came from an identifiable source
and has not been modified.

Rules enforcement—1Java is completely object-
based. By using Java objects and classes to rep-
resent corporate information entities, it is possi-

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

Java Cryptogr phic S Java Cryptographic
Architecture DSA "1 Architecture DSA
signature +| signature

ble to explicitly state the rules governing the use
of such objects.

Java run-time environment. Java, as an object-ori-
ented language, can be used to develop applications
in much the same way as C and C+ + are used to
improve programmer productivity. In contrast to
many other programming languages, Java provides
a standard set of libraries, including a broad range

KOVED ET AL. 351

The improvements needed in Java security are aimed at
assuring that e-business applications are secure. The
following schematic highlights the needed movement from
an initial applet-only deployment scenario, with minimal
protection requirements, to an environment where any
program type (e.g., applet, servlet, etc.) has the same
protection primitives and a policy enforcement mechanism
capable of uniform policy enforcement available on all
platforms. In addition, the functionality improvements and
assurance quality from release to release will improve the

Note: The term “Secure Dynamically Bound Code”
in the following schematic refers to a collecton of
distributed applets assembled within a single HTML
page or a collection of JavaBeans or Enterprise
JavaBeans composed in an application builder, or
dynamically during run time, to construct an
application.

strength of protection provided.

STATICALLY BOUND

STRENGTH OF SECURITY

of communications and security capabilities, thus
simplifying construction and deployment of client/
server and distributed systems applications. It also
provides data type safety and performs bytecode ver-
ification when the code is loaded into the JVM run-
time environment. This catches bugs that arise from
programming errors, especially with pointer arith-
metic and array out-of-bounds indexing errors.

Additionally, Java-based support environments ex-
ist for the following:

352 KOVED ET AL

s Applets—downloadable code with restricted ac-
cess, usually coupled with a browser

» Aglets—code pushed to the end device rather than
the pull model of applets

s Servlets—Java code on the server

s Orblets—code utilizing object request broker com-
munication mechanisms

Any of these environments may utilize a component

model for reusability, such as JavaBeans*** and En-
terprise JavaBeans**.’

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

Java is evolving to support a multitude of system con-
figurations:

e Embedded systems destined to be found in many
consumer devices in the home and elsewhere

» Java-based smartcards

¢ Personal management devices such as pagers and
PDAs (personal digital assistants)

» Network computers—thin and flat clients

* Mobile systems

» Highly scalable enterprise servers

To support this range of configurations, a family of
products—including JavaOS, PersonalJava, Enter-
prise Java, and JvMs hosted in application builder
environments—is evolving to meet the unique needs
found in the respective environments.

Security requirements vary depending on the unique
characteristics of these substantially different envi-
ronments. Initial work indicates that a common se-
curity model is likely and that the environmental dif-
ferences can be supported by providing extensions,
rather than deploying significantly different security
models. The use of a common security model will
simplify and reduce the cost of application and li-
brary development and deployment.

JDK 1.2 permissions model

The discussion below is based on beta-level code;
some operational changes may result from industry
feedback prior to general availability.

JDK 1.2 introduces a number of new security features
that make it easier to enforce access control of pro-
tected resources.® In earlier versions of Java, JVM
resource access was enforced by the “sandbox” se-
curity model. Extensions were usually limited to fea-
tures implemented by the platform provider (e.g.,
browser, Web server). The new JDK 1.2 permission
model is much more flexible and even permits ap-
plication-defined resources to be added to the ac-
cess control system. Java programs now have the abil-
ity to define access restrictions on sensitive resources
without requiring the writing of a new Security Man-
ager or modifying the underlying platform. This
means that applets downloaded into a browser, or
servlets loaded into a Java server, can add resource
access controls to a JvM without having to modify
the underlying browser or server implementation.

One of the notable features of the new security model
is that most of the access control implementation is

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

contained in the Java security subsystem. Typically,
Java programs (e.g., applets, servlets) and compo-
nents or libraries (e.g., packages, beans) do not need
to contain any access control code. When a program
wants to add protected resources to the JVM, a
method call can be added that will check whether
the restricted operation is permissible. One general
technique employed in JDK 1.2 is to create a guarded
object, whereby access to an object or operations on
an object are restricted by an access control call. Ex-
amples of how to use the access control features are
shown later in this paper.

The JDK 1.2 access control subsystem introduces new
concepts. The first is CodeSource, which is the com-
bination of a set of signers (digital certificates) and
a codebase URL (uniform resource locator). The
CodeSource is the basis for many permission and ac-
cess control decisions. The second concept is the se-
curity policy. The policy contains a number of grant
entries that describe the permissions granted to a
particular CodeSource (see the “Policy Database”
sidebar, later). A grant entry may contain one or
more Permissions, which is the right to access or use
a protected resource or guarded object. Lastly, a Pro-
tectionDomain is an aggregation of a CodeSource and
the Permissions granted for the CodeSource as spec-
ified in the policy database. Each class file loaded
into the JvM via a ClassLoader is assigned to a
ProtectionDomain, as determined by the CodeSource
of the class.

Loading Java programs. The three legs of JVM se-
curity are the ByteCode Verifier, the Security Man-
ager, and the ClassLoader. Prior to JDK 1.2, each
application had to write its own subclasses of
SecurityManager and ClassLoader. JDK 1.2 simplified
the development process by creating a subclass of
Classloader called SecureClassLoader. SecurityMan-
ager no longer is abstract and can be instantiated or
subclassed. Most of its methods now make calls to
methods in class AccessController, which provides the
access control function in the JDK 1.2. Since most of
the SecurityManager methods call AccessControlier,
this greatly simplifies the writing of new SecurityMan-
ager subclasses.

To automatically invoke the new security subsystem,
a Java application is started from the command line
of a native operating system. The Java run time cre-
ates an instance of SecureClassLoader, which in turn
is used to locate and load the class file of the ap-
plication. A subclass of SecurityManager is created
and installed in the Java run time. The main() method

KOVED ET AL. 353

of the application is then called with the command
line arguments.

The purpose of the change in the Java run time for
starting Java applications is twofold. First, a simple
SecurityManager is installed in the system that uses
the new Java security access control subsystem. Sec-
ond, a SecureClassLoader is used to safely and cor-
rectly load classes into the Java run time.

SecureClassloader has several important purposes.
The first is to make sure that searching for classes
is done in the correct order. When the JvM needs
a class, SecureClasslLoader first looks for files refer-
enced by the classpath of the JvM to see whether it
is available. Files in the classpath are intended to be
the completely trusted classes that are part of the
Java run time. For example, all of the code shipped
with the JVM is included in the classpath, and is there-
fore considered trusted code. If not found in the
classpath, an application-defined location can be
searched (e.g., a Web server via a URL request). Fi-
nally, code may be part of Java Standard Extensions,
which is a set of classes that are available in the host
file system but are not part of the JVM classpath.
Classes in the Standard Extensions are typically lo-
cated on the disk drive of the host system (e.g., the
workstation or personal computer), but the classes
are not part of the fully trusted run-time classes of
the yvm.

The second important purpose of SecureClassLoader
is to create and set the ProtectionDomain informa-
tion for classes loaded into the JvM. When the Se-
cureClassLoader loads a class into the JvM, the
codebase URL and the digital certificate used to sign
the class file (if present) are used to create a Code-
Source. The CodeSource is used to locate (or instan-
tiate) the ProtectionDomain for the class. The Pro-
tectionDomain contains the Permissions that have
been granted to the class. Once the class file hasbeen
loaded into the JVM, SecureClassLoader assigns the
appropriate ProtectionDomain to the class. This Pro-
tectionDomain information, and, in particular, the
Permissions in the ProtectionDomain, is used in de-
.termining access control during run time.

Once a Java program starts to run, the SecureClass-
Loader assists the JVvM in loading other classes re-
quired to run the program. These classes are also
assigned the appropriate ProtectionDomains based on
their CodeSource.

354 KOVED ET AL

Run-time access controls. At various points during
the execution of a Java program, access to protected
resources is requested. Such access includes, but is
not limited to, network /0 attempts, local file 10,
or attempts to create a new ClassLoader or to access
a program-defined resource. To verify whether the run-
ning program is allowed to perform the operation, the
library routine makes a call to the SecurityManager’s
checkPermission(permissionToCheck) method, which
subsequently calls AccessController.checkPermission
(permissionToCheck). These method calls are respon-
sible for determining whether the current thread has
sufficient permissions. checkPermission() takes a Per-
mission object as an argument. The AccessController
method checkPermission() walks back through the
stack frames of the current thread, obtaining the Pro-
tectionDomain for each of the classes on the thread’s
stack (see the section on “Thread stack frames™). As
each ProtectionDomain in the thread stack is located,
the permissionToCheck is compared to the Permis-
sions contained in ProtectionDomain. For each stack
frame, if permissionToCheck matches one of the Per-
missions in the ProtectionDomain, testing of the Per-
missions continues with the ProtectionDomain of the
next stack frame (class) on the stack. This testing re-
peats until the end of the stack is reached. That is,
all of the classes in the thread have permission to
perform the operation. Thus, the access control
check succeeds, typically meaning that the requested
operation is able to proceed. If permissionToCheck
is not granted to all classes on the stack (there is no
appropriate Permission in all of the ProtectionDo-
mains of the classes), then a SecurityException is
thrown, and access to the resource is denied.

A flaw in the above scenario is when a class has a
set of Permissions and does not care who its callers
may be, as for example, a JavaBean installed on a
desktop computer needing to read files from the lo-
cal disk drive. The ProtectionDomain of the bean’s
class has a Permission to read these local files. How-
ever, the program loaded from a Web server that
calls the bean has a ProtectionDomain that does not
have local file read permission. Normally, if the bean
were called by the program loaded from the Web
server, the bean would be denied access to the files
on the local disk drive because the program from
the Web server does not have a local file read Per-
mission. However, if the bean calls AccessControlier.
beginPrivileged(), an annotation is made on the stack
frame of the thread, indicating that when Ac-
cessController.checkPermission{permissionToCheck)
searches for ProtectionDomains, the search stops at
this stack frame. The bean may make any number

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

of method calls, but when AccessController.checkPer-
mission(anotherPermissionToCheck) is called, the
search back through the stack frames to find Pro-
tectionDomains stops at this stack frame. Based on
the above scenario, the ProtectionDomains for the
bean will be checked, but the ProtectionDomains for
the program from the Web server are not checked
since the search stopped at the stack frame for the
bean. Therefore, the file read operation will succeed.
To turn off this privileged mode of operation, a call
to AccessController.endPrivileged() removes the stack
annotation. If the application were to forget to call
AccessController.endPrivileged(), the JvM gracefully
recovers because the beginPrivileged() and endPrivi-
leged() call are associated with the stack frames. That
is, once the method that called beginPrivileged() ex-
its, the privileged mode is antomatically turned off.

A subtle aspect of the above beginPrivileged()/endPriv-
ileged() operations is that programs creating new
threads would lose ProtectionDomain information
when a new thread is created. That is, each new
thread creates a new run-time stack. The classes on
the stack of the parent thread are not present in the
new thread. Important ProtectionDomain information
is no longer available when a checkPermission() op-
eration is performed. This would give new threads
more permissions than the threads that created them.
To get around this apparent loss of security infor-
mation, the ProtectionDomains of the parent thread
are attached to (inherited by) a child thread when
it is created. So, unless a beginPrivileged() operation
is performed in the child thread, the ProtectionDo-
mains of the parent thread are also checked during
a checkPermission() operation.

POLICY DATABASE

The default JDK 1.2 access control subsystem
implementation uses a policy database

(e.g., a fiat file) to describe access control
policies. Each grant entry contains two parts:
a CodeSource and a list of Permissions.

The CodeSource is also comprised of two parts:

oCode base URL—indicating where the

To gain an appreciation of these capabilities, a few examples are given.

Example 1: Applets from www.NominallyWidgets.com, signed by a
digital certificate called LarrysCertificate can read files in directory

fimp and write files in directory fimp/koved on the local disk drive.

Note the wild card “*” as the last character of the first quoted argument
Many permissions support the wild card as the last character of the
first argument.

classes are residing. If omitted, the code
can be from any source.

oDigital certificate used to sign the
classes/JAR file. If omitted,
AccessController will not check whether
the code is signed or not.

The Permissions consist of one or more entries,
each of which is comprised of four parts:

Exémple 2: Serviets from any ocanon,wdlgntally signed or unsigned,
are allowed to read some additional system properties java.version
and java.vendor.

o The fully qualified name of the permission
class (includes the package name),
e.g., java.util.PropertyPermission.

® The first quoted argument for the
permission constructor, e.g., “java.version”.

®The second quoted argument is an optional
modifier, e.g., “read”.

o The last argument is an optional name that

Example 3: Programs signed by LarrysCertificate are allowed to
execute a program called LocalStatus on the local operating system,
regardiess of where the. class files originated.

has been assigned to a digital certificate for
the permission class; e.g., the permission
class (see the first bullet above) was loaded }
over the network and was signed with a

digital certificate.

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

KOVED ET AL. 355

Thread stack frames

Each thread in the JvM contains a number of stack
“frames.” Simply stated, these frames contain the
method instance variables for each method called
in the current thread. If a program debugger were
used, the debugger would be able to show the in-
stance variables for each of the methods on the stack.
For further clarification, a couple of examples are
oftered.

Example 1: Simple check of the current thread. Fig-
ure 1 shows a snapshot of a program, called MyPro-
gram, with a codebase URL of http://www.Nominal-
lyWidgets.com. After the security subsystem has been
initialized, the program tries to get a system prop-
erty by calling System.getProperty(“java.nome”). The
getProperty method calls the Security Manager
method, checkProperty(), to see whether the current
thread is allowed to read a system property. In turn,
the Security Manager calls the method AccessCon-
troller.checkPermission with an argument of Proper-
tyPermission(“java.home”, “read”) to see whether all
of the classes on the stack have the appropriate per-
missions.

Note that as of the writing of this paper, classes
loaded via the JVM classpath are not assigned to a
ProtectionDomain. These classes logically are assigned
to the system domain, which has unrestricted access
to all Java and application-defined resources. That
is, when the AccessController does its checking, it as-
sumes system domain classes have all permissions.

The access control in this example works as follows:

« Class java.security.AccessController is in the system
domain. By default, the system domain has implicit
permission to read the properties; checking is al-
lowed to proceed to the next stack frame.

» The class java.lang.SecurityManager is in the sys-
tem domain. By default, the system domain has
implicit permission to read the properties; check-
ing is allowed to proceed to the next stack frame.

s Class java.lang.System is in the system domain. By
default, the system domain has implicit permission
to read the properties; checking is allowed to pro-
ceed to the next stack frame.

s MyProgram has a ProtectionDomain with a code-
base of http://www.NominallyWidgets.com. The
permissions for this ProtectionDomain are checked.
If the permission is not granted, a security excep-
tion would be thrown, and the getProperty() method
call would fail. If the permission is granted, check-

356 KOVED ET AL.

ing is allowed to proceed to the next stack frame.
In this example, the permission is granted, so
checking is allowed to proceed to the next stack
frame.

s MyProgram has a ProtectionDomain with a code-
base of http://www.NominallyWidgets.com. The
permissions for this ProtectionDomain are checked.
The permission is granted; checking is allowed to
proceed to the next stack frame.

» The class java.lang.Thread is in the system domain.
Since system domain has the implicit permission
to read the properties, checking is allowed to pro-
ceed to the next stack frame.

In this example, the operation is permitted since the
checks succeeded for all stack frames.

If this thread had been created by another thread
with ProtectionDomains in any of its stack frames, the
inherited ProtectionDomains from the parent thread
would also be checked.

Obviously, there is room for optimization because
many of the ProtectionDomains on the thread’s stack
are not unique. In practice the Permissions in each
unique ProtectionDomain are checked only once per
call to checkPermission().

Example 2: beginPrivileged () was called. In this ex-
ample, a thread was created, and a program calls a
bean (MyBean) containing a protected resource. My-
Bean calls AccessController.beginPrivileged() and then
calls a method in MyBeanProtected that will check
to see whether the thread has the appropriate per-
missions.

The thread’s stack is presented in Figure 2.
The access control works as follows:

s java.lang.SecurityManager is part of the system do-
main, so it has implicit permission to access the
resource. Proceed to the next stack frame.

s MyBeanProtected is part of the ProtectionDomain
that has access to the resource. Proceed to the next
stack frame.

s MyBean is part of the ProtectionDomain that has
access to the resource. Since AccessController.be-
ginPrivileged() was called from this stack frame, stop
here; do not check any more stack frames.

The following two-stage algorithm describes how Ac-
cessController computes permissions.

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

Figure 1 Simple check of the current thread Figure 2 beginPrivileged() was called

jav::iang.Threafi.run java.lang. Thread.run

xyyprrggrz.mam i - SomePackage.NewThread.run
ram.parseArgument) Bean.init

java.lang.System.getProperty ; maeanpmtected.amess

!ava.lang.s.ewmyMagoag;r.:he::Pr:geﬂv. : | javalang.SecurityManager.checkPermission

Java.security. AccessControlier.chackPermission java:security.AccessController.checkPermission

Figure 3 AccessController algorithm stage one

For each ciass on the stack,
Get the class’s ProtectionDomain.
if the stack frame has been marked with a beginPrivileged annotation,
exit the loop.
If the last stack frame checked was not marked with beginPrivileged,
add the ProtectionDomains inherited by the current Thread when the current
Thread was created,

Figure 4 AccessController algorithm stage two

If no ProtectionDomains from step 1, refurn (only fully trusted code s running).
For each unigue ProtectionDomain P obtained in step 1,
Call P’s implies() method:
Find the appropriate PermissionCoilection associated with the permission being
checked.
Find the appropriate Permission in the PermissionCollection found in this

step.
Does the Permission found in the previous step approve of the permission being
checked?

i no, throw an exception.

Else, continue.

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998 KOVED ET AL. 357

Figure5 JDK 1.2 Permissions model relationships

vm.e
getStackAccessControlContext(

| count ProtectionDomains
on the stack to be returned

v

is system
code {null
contextj?,

allocate array to hold
ProtectionDomains

copy ProtectionDomain

AccessControlContext.checkPermission() references 1o the arrays

NO

is system
code (null
context)?

AccessControlContext.checkPermission() |-

ProtectionDomaln implies(p) -

get PermissionCollection '

is system for each ProtectionDomain,

code (null calt implies() associated with
context)? P permission being
' checked'’s class

jvm.c
getinheritedAccessControlContext()

issue implies(permission)
on the
PermissionCollection

getinheritedControlContext()

find relevant Permission
object(s) in the coliection

return array of
/| ProtectionDomains

does the
Permission
approve of
the permission
being

checked?

AccessControlContext.checkPermission()

is system
code (nult
™, context)?

AccessControlContext.checkPermission()

for each ProtectionDomain,
call implies()

358 KOVED ET AL. IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

Figure 6 JDK 1.2 Permissions model relationships (continued)

AccessControlier.beginPrivileged()

mark stack
frameprivileged

The first step is to obtain a list of ProtectionDomains
used by the second step as shown in Figure 3.

The second step is to check with each of the Pro-
tectionDomains to see whether it contains the per-
mission being checked (Figure 4).

If an exception is not thrown, the requested oper-
ation is permitted.

The flowcharts in Figure 5 and Figure 6 graphically
indicate how the new functions just described relate.

Tools

There are three important security tools and two data
repositories in JDK 1.2. These tools are primarily ori-
ented for users of the JDK rather than for end users
of applications that incorporate Java. They are de-
scribed below.

The Java archive (JAR) utility tool (here represented

as jar) was designed mainly to facilitate the pack-
aging of Java object files and resources into a single

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

AcsessController.endPrivileged()

unmark stack frame

file, or archive. When Java components (class, im-
age, audio, etc.) are placed in an archive, they can
be downloaded via a single HTTP (HyperText Trans-
fer Protocol) transaction with a server rather than
requiring a separate HTTP connection for each down-
loaded component. Network download performance
is generally improved, especially since the jar tool
can compress the contents of the archive.

Cryptographic key management, keytool, is a cryp-
tographic key and certificate management utility. It,
along with jarsigner (see below), replaces the JDK
1.1 javakey tool. The keytool utility allows develop-
ers to administer their own public or private cryp-
tographic key pairs and associated certificates for use
in client authentication, or for data integrity and au-
thentication services, requiring digital signatures.
This utility also allows the caching of the public key
of a communicating peer (e.g., a Web server).

Keytool manages a keystore (repository) of private
keys and the associated X.509 certificate chains au-
thenticating the corresponding public keys. The key-
store may be protected with a passphrase (as in the

KOVED ET AL. 359

default implementation from JavaSoft) or by a stron-
ger protection mechanism (e.g., cryptography). There
are two basic entries in the keystore:

s Key or certificate entries—consist of a private key
and a certificate chain

s Trusted certificate entries—multiple single certif-
icates with public key entries

Keytool can create a keystore, clone or delete en-
tries in a keystore, import certificates (trusted and
nontrusted), export certificates, display the contents
of the keystore, and generate self-signed certificates
(including public or private key pairs).

Both Java 1.1 and 1.2 implementations of keytool
only support the DsA (Digital Signature Algorithm)
key and the DSA/SHA-1 (Secure Hash Algorithm) sig-
nature algorithms. The key size is limited to a max-
imum of 1024 bits.

For backwards compatibility, it is expected that
JDK 1.2 will be able to parse or process the JDK 1.1
keystore format.

The utility for signing JAR files digitally, jarsigner, has
two major functions: sign jar files, and verify the sig-
nature(s) and integrity of signed jar files.

The certificate(s) contained in a jar file are used by
jarsigner to verify the digital signature(s) and to ver-
ify whether or not the public key of the certificate(s)
is contained within the specified keystore. Also, jar-
signer verifies that the jar file has not been tampered
with in any way. Currently jarsigner can only sign jar
files that were created with the jar utility.

Jarsigner can sign jar files using either the DSA key
algorithm, with the SHA-1 digest algorithm (the de-
fault cryptographic engine provider supplies the
DSA/SHA-1 algorithms) or the RSA** (derived from
the original founders: Rivest, Shamir, and Adleman)
key algorithm with the MD5 (modification detection)
digest algorithm. That is, if the signer’s public and
private keys are DSA, jarsigner uses the DSA/SHA-1
algorithms. If RSA keys are provided, the RSA/MD5
algorithms are used.

A jar file may be signed more than once by simply
running jarsigner more than once, specifying a dif-
ferent signer each time.

Access control policy database management is han-
dled by policytool, a graphical user interface that as-

360 «oveD ET AL

sists a user, such as a system administrator, in spec-
ifying, generating, editing, exporting, or importing
a security access control policy for the JvM. The tool
creates a policyfile as described below.

As described above, the keystore, cryptographic key
storage, is a repository of private keys and the as-
sociated X.509 certificate chains authenticating the
corresponding public keys. The keystore is a concrete
implementation of the keystore class provided in the
java.security package. Al three utility programs de-
scribed above use the keystore.

The policy for a Java run time, specifying which per-
missions are available for code from various code
sources, is represented by a Policy (access control
policy database) object. More specifically, it is rep-
resented by a Policy subclass providing an implemen-
tation of the abstract methods in the Policy class
(which is defined in the java.security package). A de-
fault implementation of Policy, called PolicyFile,
reads the policy information from flat Ascll files. The
policy framework allows policy information to be
stored on the local system or anywhere in the net-
work.

The policy configuration file(s) for Java 1.2 instal-
lation specify what permissions (which types of sys-
tem resource accesses) are allowed by code from
specified code sources. The information stored in the
policy database is described in the “Policy Database”
sidebar.

Java and browser-based security models

Browsers and other Internet technologies were in
the marketplace prior to the broad introduction of
Java; consequently, it is not surprising that mis-
matches exist in the security models provided by the
rapidly evolving Java related technologies. Major
progress toward synchronization can occur if agree-
ment can be reached on selected parts of the mod-
els in an orderly fashion. The mismatches result pri-
marily from the early limitations of Java security and
the desire to fill these voids to meet customer re-
quirements. One such area where there is a con-
certed effort in model alignment is in the access con-
trol model.

This section provides a high-level view of the capa-
bility classes of a representative browser with com-
parable features found in the Java 1.2 security ar-
chitecture. Both use a stack-based approach to
authorization. However, they employ significantly

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

different access control models and authorization
mechanisms. The browser’s proposal is more ambi-
tious, but the added functionality may be more dif-
ficult to manage.

It should be recognized that mismatches also exist
among browser security models as they expand sup-
port to cover the hosting of HyperText Markup Lan-
guage (HTML) pages, scripts, and applets. In some
environments, signed Java applets will have reduced
access to some Java elements because the contain-
ing page or script calling the applet is not signed.
Only the Java access control mechanisms of the
browser will be highlighted in the following discus-
sion.

Alternative access control model. A commercially
available Web browser’s Java Virtual Machine im-
plementation that uses an alternative access control
model based on targets and explicit activation or de-
activation of permissions was examined.”® A target
is a mapping of a principal to an operation on an
object (i.e., roughly a traditional permission repre-
sentation). Whether a permission can be enabled or
not depends on a three-valued logic for “enabling”
policy. Essentially, if at least one principal (user, sys-
tems administrator, target class definer) permits the
target and no principal forbids the target, the target
can be enabled. Java developers can enable such tar-
gets at run time. Also, developers can disable (for-
bid) or revert (undo enabling of) targets at run time.
This model enables the policy of multiple principals
to be combined and less than maximal rights to be
granted to an applet. It is up to the applet code to
manage this subset of enabled permissions.

At run time, targets are activated by enablePrivilege(),
prohibited by disablePrivilege(), and deactivated by
revertPrivilege(). Reverting only affects the calling
stack frame, so targets enabled in previous stack
frames are still active and supersede the reversion.
Therefore, it is not possible for a descendant method
to remove a privilege, possibly enabling security ex-
posures.

The browser authorization mechanism checks the
stack for an enabled privilege for the request. If one
is found, the operation is permitted regardless of the
trust of the classes in the thread’s stack (the meth-
od’s callers). Therefore, explicit prohibition or
proper permission reversion of rights is necessary to
prevent an unauthorized principal from using anoth-
er’s “enabled” privilege. Note that there may be other

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

methods that enabled the permission higher in the
thread stack.

If a method in the Java core classes (the basic Java
run time) requires the addition of access controls to
close a security hole, the browser model described
in this section will cause trouble for existing code.
It is straightforward to add a permission to allow the
code to enable the permission. However, the code

The browser model provides
more functionality than
the Java model.

does not already contain code to enable the permis-
sion since the permission was not required when the
code was originally written. The same would be true
for library and bean writers who discover in subse-
quent versions of their software that they need to
add access controls. The implication is that appli-
cation writers would have to update their code to
support (i.c., enable) any new permissions added to
the base Java classes or libraries and beans they em-
ploy. This results in severe version management
problems. This problem does not exist with the JDK
1.2 access control model. In JDK 1.2, only an update
to the policy database is required.

In summary, the browser model provides more func-
tionality than the Java model, but this functionality
places more responsibility on programmers to track
granted and retracted rights and to be aware of
browser, JvM, or library/bean version differences.

Stack-based authorization

The current access control mechanisms in Java are
based on “stack introspection,” or logically walking
the stack frames of the thread to see whether the
calling methods or classes have sufficient permissions
to perform a requested operation. Given the coarse
granularity of the current permission structure, the
performance of stack-based authorization appears
to be acceptable. However, since all security issues
cannot be reduced to stack introspection, it is pos-
sible for one object to pass rights to another object
and obtain information that it could not otherwise
directly obtain. For example, it may be possible to

KOVED ET AL. 361

induce another object to pass a right (e.g., a file de-
scriptor) to an unauthorized object. The unautho-
rized object was not on the stack when the file de-
scriptor was created, yet it still received the object
reference (“off-the-stack” spoofing). This style of se-
curity attack is inherent to stack-based authorization
techniques because the technique does not track all
unsafe interactions between objects.

In environments such as those with stringent com-
munication requirements (e.g., requiring hierarchi-
cal, lattice-like, communication protocols regarding
information flow) the Java security model may not
be adequate. However, for most of the envisioned
uses of Java, stack introspection-based access con-
trol features are adequate for implementing mission-
critical applications.

Security requirements—a high-level view

The following requirements address needs identified
beyond the level of function currently planned to be
delivered in JDK 1.2; discussions are underway with
JavaSoft on many of them, and some may be ad-
dressed by the time of JDK 1.2 or in follow-on JDK
releases. These are representative categories and ex-
amples of requirements within each category, not
necessarily a complete compilation of known re-
quirements within each category.

~ Java Virtual Machine high-integrity computing envi-
ronment: The requirement is to support concur-
rent applet or servlet execution with multiple sets
of security credentials. Because authentication and
credentials requirements vary between systems,
and sometimes between subsystems, it is necessary
for the applets or servlets within a JvM to support
handling multiple sets of security credentials. Sim-
plified APIs (application programming interfaces)
will make it easier for application writers to ex-
ploit these security features.

Satisfaction of this requirement should enable se-
cure interactions between clients and servers and
between server subsystems as is needed for e-com-
merce applications.

s Policy-driven Java security model and security ser-
vices: Customers should be able to define and de-
ploy a security policy. The underlying systems (e.g.,
Java) should have sufficient mechanisms to imple-
ment and enforce that policy. Mechanisms for en-
forcing policy need to include support for: access
control, cryptographic and quality of protection,

362 KOVED ET AL

trust, secure delivery of policy statements to the
JVM, policy administration, and JVvM support of a
policy engine.

Satisfaction of this requirement may reduce the
total cost of ownership through simpler configura-
tion and policy administration by making the yjvM
a single point of policy enforcement for all Java
applications.

~ Simple security programming models: Require sim-
ple high-level APIs for quality of protection (pri-
vacy, integrity, and nonrepudiation) to allow se-
curity-unaware applications to obtain default
security protection for such functions as secure
communications, secure documents or mail, secure
streams, and secure remote method invocation
(RMI) and Internet Inter-Orb Protocol (110P).°

This requirement may simplify the programming
model, making security permissions readily avail-
able to any application and reducing potential mis-
takes made by security-naive programmers.

~ Standards for secure deployment of applications: A
manifest format and single signature standards
(such as w3C) for applet and application delivery
are needed.

This requirement should establish a single and low-
cost way of ensuring the delivery of applications
both to the server and client systems.

s Standardized programming models: Create stan-
dards for establishing trust and integrity of appli-
cations consisting of multiple applets embedded
in HTML or XML (Extensible Markup Language)
documents.

This requirement may provide a single model for
the allocation of access control or other policy to
an application that may consist of a number of
componentized elements.

~ Native security services support: Utilize the security
features of the underlying platform.

This requirement should maximize platform secur-
ity functionality, improve performance, and allow
for consistency.

 Standards for development and deployment of (cryp-
tographic) service providers: Cryptographic service

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

providers should be signed and provide enumer-
ated descriptions of the services within the pro-
vider.

This requirement should ensure that international
deployment requirements are met and needed in-
formation is accessible to applications requiring
these services. Cryptographic services can be de-
ployed internationally with control of the strength
of cryptographic operations (e.g., key length, sig-
nature length, algorithm strengths, etc.).

* Maintainability, scalability, and interoperability: Pro-
vide centralized administration and the ability to
react to changes, the ability to interoperate and
utilize non-Java security capabilities, and the abil-
ity to support full security functionality in a dis-
tributed manner as needed between clients and
Servers.

This requirement should allow for the controlled
deployment of Java and improves performance and
migration.

* Removal of security as an impediment to perfor-
mance: Allow hardware-supported or native-sup-
ported implementations of algorithms to be used
during validation of class files, and allow policy to
define where a combination of trusted signer and
usage of a trusted compiler will permit the over-
ride of dynamic bytecode verification at class load
time.

Many security functions are highly performance-
intensive (e.g., hashing, key generation); improve-
ments are needed to approach performance found
in non-Java environments.

It should be noted that Java does not run in isola-
tion; it runs in the context of the operating system
platform on top of which it has been implemented.
In addition, Java is frequently embedded inside an-
other application, such as a Web browser or Web
server. Each of these operating systems and sub-
systems has an impact on the JvM and Java run-time
vulnerability to security attacks.'** When deploy-
ing Java programs, care should be taken in config-
uring the JVM and application files to minimize vul-
nerability to security attacks; this discussion is outside
the scope of this paper.

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

Future directions

With continued strong support from the software in-
dustry, many enhancements required to bring the
Java environment in line with the most stringent
needs generally provided in the non-Java environ-
ment today are possible. These features include
strong encryption, sophisticated access control, and
the ability to provide centralized security policy man-
agement. Some of these capabilities are likely to be-
come available beginning in mid-1998 and through-
out 1999. Much work is also underway to provide
Java extensions for accessing existing industrial-
strength security mechanisms, thus improving sys-
tem integrity, performance, and functionality. In the
future, we will also see high-level e-commerce and
other types of applications migrate from individu-
ally provided security capabilities to utilize the ca-
pabilities in the latest release of the JDK. By late 1998
or early 1999, significant initial security functional-
ity should be expected in all Java environments.

IBM, Lotus, and Tivoli are working vigorously with
the Java software industry to bring the business-crit-
ical enterprise security requirements forward and en-
sure that they are met. IBM’s Java initiative is acutely
aware of the need to focus on securing the Java envi-
ronment.

Acknowledgments

The authors would like to thank Li Gong, the Java
security architect at Sun Microsystems, for in-depth
reviews of JDK 1.2 security, as well as reviewing this
paper. We would also like to thank the following peo-
ple from IBM who are actively involved in improving
the Java security environment and to whom much
insight and original thinking influenced ideas in this
paper: Bob Blakley III, Trent Jaeger, Paul Karger,
Peter Thull, and anonymous reviewers.

Thanks also to JavaSoft’s security group for devel-
opment insights for JDK 1.2 and for the ongoing re-
lationship between IBM/Lotus and JavaSoft in evolv-
ing the Java functionality to meet enterprise class
security needs.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Sun Microsystems, Inc.
or RSA Data Security, Inc.

KOVED ET AL. 363

Cited references

1. M. Zboray, Java—Good Start, but Not Yet Secure, Gartner
Group, Information Security Strategies (ISS) (December
1996).

2. T. Lindholm and F. Yellin, The Java Virtual Machine Spec-
ification, Addison-Wesley Publishing Co., Reading, MA
(1997).

3. D. Flanagan, Java in a Nutshell: A Desktop Quick Reference,
O’Reilly & Associates, Sebastopol, CA (1997).

4. “JavaBeans (1.0),” http://www javasoft.com, Sun Microsys-
tems (1996).

5. V. Matena and M. Hapner, “Java Enterprise Beans (0.79),”
http://www.javasoft.com, Sun Microsystems (1997).

6. S.Oaks,Java Security, O'Reilly & Associates, Sebastopol, CA
(1998).

7. 1. Roskind, “Evolving the Security Model for Java from Nav-
igator 2x to Navigator 3.x: setScopePermission,” http://
developer.netscape.conylibrary/documentation/security/sectn].
html (1997).

8. J. Roskind, “Security Tech Note #2: Activating Codebase Prin-
cipals,” http://developer.netscape.com/library/documentation/
security/sectn2.html (1997).

9. The Common Object Request Broker: Architecture and Spec-
ification, Version 2.2, Chapter 13, OMG, Object Management
Group (February 1998).

10. J.S. Rothfuss and J. W. Parrett, “Go Ahead, Visit Those Web
Sites, You Can’t Get Hurt . . . Can You?,” 20th National In-
formation Systems Security Conference, sponsored by NIST and
the National Computer Security Center, Baltimore, MD (Oc-
tober 7-10, 1997), pp. 80-94.

11. E. W. Felten, D. Balfanz, D. Dean, and D. S. Wallach, “Web
Spoofing: An Internet Con Game,” 20th National Informa-
tion Systems Security Conference, sponsored by NIST and the
National Computer Security Center, Baltimore, MD (Octo-
ber 7-10, 1997), pp. 95-103.

12. W. Cooke, “Stupid JavaScript Security Tricks,” 20th National
Information Systems Security Conference, sponsored by NIST
and the National Computer Security Center, Baltimore, MD
(October 7-10, 1997), pp. 116-127.

13. R. Kemmerer, F, De Paoli, and A. L. Dos Santos, “Vulner-
ability of ‘Secure’ Web Browsers,” 20th National Information
Systems Security Conference, sponsored by NIST and the Na-
tional Computer Security Center, Baltimore, MD (October
7-10, 1997), pp. 488-497.

Accepted for publication March 20, 1998.

Larry Koved /BM Research Division, T. J. Watson Research Cen-
ter, P.O. Box 218, Yorktown Heights, New York 10598 (electronic
mail: koved@us.ibm.com). Mr. Koved joined the Research Cen-
ter in 1982 and has worked in a number of areas that involve net-
work computing. He has built multiuser collaborative systems,
including multiuser virtual reality systems incorporating visual-
izations of numerical simulations. He has also worked on a num-
ber of mobile computing projects, including user interfaces for
mobile computing and algorithms for data replication. His cur-
rent work is in component-based software, including security is-
sues that arise with the deployment of mobile, or downloadable,
software.

Anthony J. Nadalin /BM Network Computing Software Division,
11400 Burnet Road, Austin, Texas 78758 (electronic mail:
drsecure@us.ibm.com). Mr. Nadalin joined the former IBM Fed-

364 Kovep ET AL.

eral Systems Division in 1983, where he worked on secure projects
for the government. In 1987 he began working on secure oper-
ating systems design. The work included evaluations of MVS™
and VM (virtual machine) operating systems, in support of IBM
development laboratories, with the goal of producing commer-
cial “off-the-shelf” secure operating systems. In 1992 he trans-
ferred to the Application Systems/400 Division to complete an
evaluation of secure operating systems and databases. While on
special assignment to the Personal Software Products (PSP) Di-
vision, he worked on the specification and prototype Object Se-
curity Services (OSS). In 1995 Mr. Nadalin joined the PSP di-
vision where he was part of the security design team for base
operating system and distributed computing. He assisted in the
transfer of the OSS prototype to the SOMobjects™ group for use
in Component Broker. In 1996 he joined the Internet Division
and continued to work on distributed object security.

Don Neal IBM Network Computing Software Division, 4205 S. Mi-
ami Boulevard, Research Triangle Park, North Carolina 27709 (elec-
tronic mail: dhneal@us.ibm.com). Mr. Neal, a Senior Technical
Staff Member, joined IBM in 1973, and has worked on a number
of technical assignments in the areas of the telecommunications
environment, networking architecture and network design, high-
speed communications, multivendor interoperability, and systems
management. He joined the I/T Security Programs area in 1997
with responsibilities for security strategy and architecture, with
a particular focus on Java security.

Tim Lawson Lotus Development Corporation, I Rogers Street,
Cambridge, Massachusetts 02142. Mr. Lawson joined Lotus in 1984
and has worked on the testing and development of Lotus 1-2-37,
Symphony , SmartSuite ", and other business applications for the
worldwide market. He is currently the development manager for
the eSuite™ Infrastructure—a Java-based abstraction layer for
the eSuite Devpack applets. The eSuite Infrastructure provides
platform- and browser-independent persistence services and the
user interface for the applets. Immediately prior to this, Mr. Law-
son worked as architect for eSuite security technologies in col-
laboration with IBM and JavaSoft.

Reprint Order Number G321-5681.

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

