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With the creation of computer networks in  the 
1970s came the  birth of distributed network 
applications. Since  then, there have  been  many 
applications that spanned multiple machines, but 
in  the last 20 years  no  one created a serviceable 
network middleware package for developing 
highly effective distributed applications, that is, 
until now.  This  paper  describes the design  and 
architecture of T Spaces, a project at  the ISM 
Almaden  Research  Center that fills the network 
middleware void. T Spaces  embodies the three 
main characteristics of a useful mechanism for 
network programs,  namely, data management, 
computation, and communication. Since it has 
the potential to connect any program to any 
other program on a computing network, T 
Spaces is an  ideal platform on which to build a 
global Computing  services platform where any 
program or system  service is available to any 
other program or service. In addition, its small 
footprint and Java" implementation make T 
Spaces an  ideal platform for writing distributed 
applications for embedded  and palm-top 
computers, thus forging a needed  gateway from 
the emerging  embedded  and palm-top 
computers to established desktop and  server 
computers. 

E ver since the  Intel 8080 microprocessor  chip  ap- 
peared in the  Altair  computer  in 1975,'  micro- 

processors have grown far  more powerful and  far less 
expensive. Gordon E. Moore,  co-founder of Intel 
Corporation,  postulated  that  the capacity and  capa- 
bility of computers  would  approximately  double ev- 
ery 18 months.  This 1965 prediction still holds  today 
for  most  types of computers.  However,  despite  the 
tremendous  strides  made by the  computing indus- 
try to make  computers  smaller,  faster,  cheaper,  eas- 
ier  to use, and  more plentiful, there is still a  glaring 
void in the  area of distributed  computing.  Programs 

running  on  one  platform, e.g., the  Apple Macin- 
tosh**, still do not  have easy access to programs or 
services that  are  resident  on  another  platform, e.g., 
the IBM Advanced  Interactive  Executive (AIX*) op- 
erating system. Although  aphysical  network  connec- 
tion does exist between  machines of these  disparate 
platforms,  a quality, high-function logical connection 
does  not.  The  reasons  for this  lie mostly in the dif- 
ficulties of writing software that  can  manage  the vast 
differences in computing  hardware  and  operating sys- 
tems.  Unfortunately, the diversity of computing  plat- 
forms is growing as  a  result of the  creation of a new 
segment of the  computer  market  that consists of a 
variety of tiny computers. 

There is an  interesting  side effect to Moore's Law. 
While the microprocessors  leading the technology 
race  become  more powerful, the microprocessors 
that  are two or  more  generations  old  become very 
inexpensive, which creates  an  opportunity for pro- 
ducing them in large volumes. Furthermore, we have 
reached  a  unique  position in the evolution of com- 
puting  where  the  computers  from two generations 
ago are still powerful  enough to  be useful for  gen- 
eral tasks. These microprocessors, embedded in a 
wide range of consumer appliances, are part of a  mar- 
ket known as  Tier4 devices. This  term  derives  from 
client/server/mainframe designs, where Tier3  ma- 
chines are mainframes, Tier-:! machines  are file serv- 
ers,  and  Tier-1  machines are  desktop machines. The 
name  Tier-0 device describes  any  computing device 
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that is smaller than a  desktop or  laptop  computer. 
Of course,  this  name  describes PDAs (personal dig- 
ital  assistants),  embedded  computers, or practically 
any electronic device, since  processor  chips are  be- 
coming cheap  enough  to  embed in practically every- 
thing. 

The emerging  market of smart  (Tier-0) devices is 
bringing forth a new era of network  computing. 
Growing  numbers of smart devices that  once  oper- 
ated in isolation are now being  connected to  net- 
works  where  they are  starting  to exchange  informa- 
tion with one  another  and with larger  network 
computers.  However,  there is a  problem.  Most of 
these devices, from  automobile  computers to atmo- 
spheric  controllers  for buildings to  personal digital 
assistants, like their  desktop  ancestors,  were  not  de- 
signed to communicate with platforms other  than 
their own. They do not  share a  common  data  for- 
mat,  a  common  data  schema,  or  even  a  common 
computing  platform.  Bob  Metcalf,  creator of Eth- 
ernet, is quoted  as saying that  the power of a  com- 
puter increases with the  square of the  number of 
computers  to which it is connected.  It is clear to  see 
that  for  information-sharing  purposes,  more  connec- 
tivity is better,  but  the main  challenge is building the 
connections. On  the surface,  connecting  computers 
seems  simple,  but  what  looks like a  simple  problem 
is actually an immense  one, all based around  one 
theme:  incompatibility.  Moreover, with a new gen- 
eration of even smaller computers  entering the scene, 
the incompatibility  problem is worsening. 

The challenge, as we see it, is to find a way to enable 
high-quality communication  between all computers, 
large  and  small.  The benefits of succeeding would 
be  enormous. By eliminating the  numerous isolated 
islands of information  and  creating  a single conti- 
nent of knowledge, we can significantly reduce  re- 
dundant tasks and overlapping systems. One exam- 
ple of an  archipelago of information  islands is a 
hospital. In many hospitals, even though  patients sign 
in at  the admissions  desk,  they  also typically sign in 
at every department they visit, restating  their vital 
information.  Then,  each  health-oriented machine 
runs in isolation,  generating either  paper  output  or 
computer  output generally incompatible with the rest 
of the hospital  computers or hardware. 

What is needed  to solve this  problem is network 
middleware-a software  communication  package 
that facilitates  communication  between  programs. 
However, how does  one  create such  a  general-pur- 
pose  solution?  In  the  past,  the  enabling software- 
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the system software-evolved one layer at a  time. 
In  the beginning there was no system software at all; 
in the very first computers, application programs  con- 
tained all the logic to drive the  bare (computing)  ma- 
chines.  Over  time,  operating systems evolved, and 
then  more system software  layers evolved as com- 
mon  components  were  factored  out of the applica- 
tions  and  were  made standard system components. 
What  common  elements,  then,  can we take  from ex- 
isting systems to  create a new common software layer 
that will enable  communication  between all comput- 
ers? 

Network  middleware  requirements. To demonstrate 
what  characteristics we might look  for in our  net- 
work  middleware  package, we take  the example of 
the local area network (LAN) in an  automobile. To- 
day, an automobile  has an average of  20, mostly in- 
dependent,  computers,  each having a  dedicated task. 
Although  these  computers  currently have commu- 
nication via ad hoc channels, they lack a unifying data 
management solution, such as  that provided to  Tier-2 
and  Tier-3  applications by relational  database sys- 
tems.  Over  time,  once  a unified communication net- 
work is available, the  automobile  computers will be 
able to easily incorporate new data  from  other com- 
puters  to  do  their  jobs  better.  In  addition,  the  au- 
tomobile  manufacturer  and  mechanic  can  operate 
more efficiently using information  generated by the 
automobile (e.g., brake  pad wear  readings,  counts 
of engine  redline  crossings).  Consider  the  task of 
building a unified communication  platform  for  these 
20 computers to communicate  their  operating  sta- 
tus to their  peers  and  to  the central  external  com- 
munication  module.  How would one  do this? There 
is a  whole  set of questions  to  answer: 

How  do  the  automobile  computers  obtain  the net- 
work  address of every other  computer in the  au- 
tomobile? 
What  common  data  format  do they  use? 
How do they resolve format differences, such  as 
big or little Endian  integers  and different string for- 
mats? 
How do they  establish data  transfer sessions? 
What  do they do if the receiving computer is busy? 
What  amount of information  does  each  computer 

How does  each  computer figure out what all the 
need  to save, and  for how long? 

other  computers want to  hear? 

What characteristics should the network  middleware 
have to  meet  the  needs of this  application?  First, the 
communication  software  must have a  footprint small 
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enough  to fit  in each of the  embedded computing 
devices. Second,  it  must  be flexible enough  to  adapt 
to new data types. When a new message is added  to 
the device community,  it  must  be  accepted by the 
rest of the  group  (or  at least tolerated).  In  addition, 
it must  tolerate new devices being added  to  the sys- 
tem.  Third,  it  should  provide  a messaging service- 
“e-mail”  for  the  various devices and processes 
running on the  automobile LAN. In a  real-time envi- 
ronment, such as an automobile, it is crucial that mes- 
sages  can  be sent asynchronously, because  the in- 
tended recipient may be  too busy to answer or 
acknowledge them immediately. Fourth,  the  network 
middleware  must  support  anonymous  communica- 
tion. By design, an automotive device does  not  send 
a message to  another specific device, but  instead 
sends to  the  group, expecting  those  interested  de- 
vices to listen.  Thus,  communication is not  point-to- 
point,  but is closer to “multireceive”  (as  opposed to 
multicast), where devices register which types of mes- 
sages  they are  interested in. Finally, the network 
middleware  should have a data repository for  stor- 
age of simple data.  The main  controller  unit  must 
track all of the events in the  automobile  for  some 
period of time, which implies that  there must be  some 
storage  and  some  search  or  query capability to find 
records in the  stored  data. 

The automobile  scenario is just one example of a  set 
of devices that must share  information without  pre- 
defined  conventions, but  there  are many other sim- 
ilar examples in the  areas of home LANS, office equip- 
ment LANs, hospital LANs, and aircraft LANs. 

Previous attempts at networkmiddleware. Previous 
attempts  at solving the network  middleware  prob- 
lem have not  focused on  the whole  problem  but in- 
stead have addressed  some of the  parts, namely data 
representation  and  client  communication. The  data 
representation  problem  has  been  addressed by 
CORBA** (Common  Object  Request  Broker Archi- 
tecture),  a  standard  proposed by the OMG (Object 
Management  Group)  standards organization  and re- 
lational  database systems.’ The client  communica- 
tion  problem  has  been  addressed by Tuplespace 
systems. 

The data  representation problem. Building a  general 
point-to-point  solution  that  would allow programs 
in any language on any platform to communicate with 
any program on any other  platform is genuinely dif- 
ficult. The difficulty  of this  task  increases  for  each 
new type of programming  language,  operating sys- 
tem,  and  hardware  platform.  Instead,  a  more  real- 
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istic solution  would be  to  either  create a  common 
data language  that all programming language objects 
could  translate  to, or  create a  common  data  store 
that  contained all data  that  needed  to  be  shared.  The 
common  data language  solution is the  approach 
taken by CORBA. Programs map  their  data structures 
into  the CORBA IDL (interface  definition  language) 
and  then allow other  programs  to  reference  those 
data  structures remotely  through  a proxy, using re- 
mote  method calls. 

Whereas  the focus of CORBA was on creating  a sin- 
gle interface to programming  language  (object)  data, 
relational  database systems, such as IBM’s DB2* 
  DATABASE^*),"' O r a ~ l e * * , ~ . ~  and S y b a ~ e * * , ~ ’ ~  used 
a  different  approach, which was to  store  the  data in 
a  database-specific  format,  decomposing the  pro- 
gram  data  into  the primitive atomic types used by 
the  database system. The  database system offered 
associative (rather  than  direct) addressing, which had 
the effect of disconnecting the  data  from  the appli- 
cation.  Although  this effect had  some beneficial re- 
sults-programs and  data could evolve separately- 
the  database system often  could  not  adequately 
represent  the  program  data given its  restrictive  sets 
of datatypes  and its inability to express complex re- 
lationships  between  entities.  Although  object data- 
base systems, such  as Obje~tStore,’,’~ Versant,””’ 
and 02,13,14 offered a more programming-language- 
centric  form of storage  for  data  than  relational sys- 
tems, they  were too platform-specific in the  data  rep- 
resentation.  Thus,  they offered little  help in solving 
the cross-platform  communication  problem. Finally, 
although  there were  several  research  projects,  such 
as SMRC,’5,16 Quickstore, l7 and Postgres, l8 and  some 
products,  such  as IBM’s UDB (Universal  Database), 
Oracle V8**, and  INFORMIX**,  that  combined  no- 
tions of relational  and  object  databases, they also  did 
little to address  the cross-platform  communication 
problem. 

In all fairness, the  purpose of the  database  products 
and  research  projects was to expand the query power 
or the  data expressibility of the  database systems, not 
their ability to provide  mechanisms  for complex pro- 
gram  interactions  across  multiple  platforms. 

The  client  communication  problem. The problem of 
high-level distributed  communication in a  dynamic 
and  diverse  network  has received little  attention. Al- 
though not originally designed  for  this  purpose, Tu- 
plespace systems have been shown to provide many 
useful facilities for  client  communication. 
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Tuplespace systems evolved differently than  database 
systems. Operating  more like global communication 
buffers than  data repositories,  Tuplespace systems 
have always played the  role of traffic cop  for  data 
flowing from  one process to  another in parallel  and 
distributed systems. They have mostly functioned  as 
global communication buffers that  impose  no schema 
restrictions.  Thus,  Tuplespace systems are tailor- 
made for  distributed  programming  where  a  general 
data delivery mechanism is needed.  Most  research 
in Tuplespaces  has  been in the  parallel  programming 
community; however, in the early 1990s several sys- 
tems  used  Tuplespace  as the basis for  distributed 
communication  mechanisms. 

Laura’’ is a  language that provides  a  coordination 
mechanism  for  “open  distributed  computing,” which 
is defined to  be  those systems that  are “dynamically 
composed  from  nondedicated  hardware  and  soft- 
ware  components.”  They  use  Tuplespace  as  a  bro- 
kering  mechanism  for service providers and clients. 
Their system provides the basic  tools to  create dis- 
tributed systems; however, it  does  not  provide  fault 
tolerance,  a  data repository, or tools  for  large-scale 
systems such as access control. 

The ObjectSpace’” project  added C+ + object  ori- 
entation to  the  standard Linda  model. In  Ob- 
jectspace, any C+ + object can be  a  tuple.  They  aug- 
mented  the  standard  tuple matching  algorithm to 
allow a  template  and  a  tuple  to  match if the type of 
the  tuple is an instance of the type of the  tem- 
plate-in which case, the object in the  tuple can im- 
plement  the object in the  template.  Adding object 
orientation was a  good step toward  making  Linda 
more flexible for  distributed  applications; however, 
this is just  a  starting  point. 

Recently, the  combination of Java* * and  Tuplespace 
has received renewed interest; projects such as Jada” 
and  JavaSpaces** 22 combine the two. Jada is a  Linda 
implementation  that is used to provide  basic  coor- 
dination  for PageSpa~e,’~ a high-level coordination 
system. JavaSpaces,  currently under  development  at 
Sun Microsystems, is designed to provide  “distrib- 
uted  persistence”  and aid in the  implementation of 
distributed  algorithms. The system allows arbitrary 
Java classes to  be communicated  as  tuples  and  made 
persistent  through  Tuplespace.  Transactions are pro- 
vided for  Tuplespace  integrity,  and  a facility for  no- 
tifying a  process  when  a  tuple is written  to a Tu- 
plespace is provided instead of the  standard blocking 
read  and  take  operations. JavaSpaces provides a sim- 
ple  transactional  data  repository  and  communica- 
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tion  mechanism. For simple  applications, the func- 
tionality  provided by Jada  and JavaSpaces is similar 
to  that of T  Spaces,  since  they all derive  from the 
same basic Tuplespace  ancestor.  However, T Spaces 
adds  more advanced operator  and  database function- 
ality so that it may support  more  complex  applica- 
tions. In  addition  to  these  projects, we have been in- 
formed  that  computer science departments  are now 
assigning programming  projects  that  feature Tu- 
plespace  implementations in Java. 24 

Although the similarity between  Tuplespace  and  da- 
tabases  has  long  been  recognized, surprisingly few 
projects have explored the  connections between the 
two subjects. Persistent Linda (PLinda)2’ was the first 
project to  add database functionality, including trans- 
actions  and  a simple query  and  join  engine, to Linda. 
The primary  goal of the  project was to provide  a  uni- 
fied environment  for  competitive  concurrency  con- 
trol  (shared  resource access) and  cooperative  par- 
allelism (processes  working on different  pieces of a 
large  problem). The system was used to provide dis- 
tributed  shared  memory  and  transactions  for  a  pro- 
gramming  language, Griffin; 26 however, the system 
was mainly targeted  for  parallel  applications. 

Tuplespace is a  good  starting  point  for  a  distributed 
communication system because  it  provides  commu- 
nication,  synchronization,  and  a  simple data repos- 
itory in one framework. Yet,  these systems did  not 
attract  much  interest.  Although they  provided  some 
heterogeneity,  portability,  and  interoperability,  they 
never were  able to provide  a  solution that  addressed 
all the issues well. 

The solution. In this paper, we describe IBM T Spaces, 
a new network  middleware system. It uses the  Tu- 
plespace of interaction  for  building  a glo- 
bally visible communication buffer. It  then  extends 
the power of Tuplespace with database  features  tra- 
ditionally found in large  (Tier-2  and  Tier-3) enter- 
prise  database systems. Furthermore, being  imple- 
mented in Java, it inherits  the ability both  to  run on 
virtually any  platform and  to download new data- 
types and new functionality dynamically. The com- 
bination of the  Tuplespace communication  model 
and sophisticated data  management  features with the 
flexibility, portability, and  strong typing of Java  re- 
sults in a  framework  that provides at once  a light- 
weight database, an extensible computation  environ- 
ment,  and  a  secure, yet easy-to-use  communication 
layer. As we will show, this  framework  can  manage 
exotic, free-format  data across  a  wide  range of de- 
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Table 1 Simple  tuple  examples 

vices, platforms, and tiers, all  in a network-accessi- 
ble manner. This paper is organized as follows: 

The next section introduces Linda, the original Tu- 
plespace system on which T Spaces is based. The 
third section presents an overview of T Spaces. Then 
a detailed description of the architecture of both the 
client and server portions of T Spaces is presented. 
The fifth section provides a developer’s view  of  how 
T Spaces might be used  in some applications. The 
last section concludes the  paper  and presents plans 
for  future work. 

Tuplespace 

A Tuplespace is a globally shared, associatively ad- 
dressed memory space that is organized as a bag of 
tuples (defined below). The Tuplespace concept was 
originally proposed by Gelernter in References 27 
and 29 as part of the Linda coordination language. 
The combination of a  standard sequential compu- 
tation language (such  as Cor FORTRAN) and  a small 
number of Tuplespace communication primitives 
produces a complete parallel programming  language 
(e.g., C-Linda or FORTRAN-Linda). 

The basic element of a Tuplespace system  is a tuple, 
which  is  simply a vector of typed values, or fields. 3o 

Templates are used to associatively address tuples via 
matching. A  template  (or anti-tuple) is  similar to a 
tuple, but some (zero or more) fields  in the vector 
may be replaced by typed placeholders (with no 
value) called formal fields. A formal field  in a tem- 
plate is said to match a tuple field if they have the 
same type. If the  template field  is not formal, both 
fields  must also have the same value. A template 
matches a tuple if they  have an equal number of fields 
and each template field matches the corresponding 
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tuple field. Table 1 shows some simple tuples and 
templates. 

A tuple is created by a process and placed in the  Tu- 
plespace via the write primitive. Tuples are  read  or 
removed  with read and take primitives,  which take 
a template and return  the first  matching tuple. (Note 
that, because the space is unstructured, the choice 
among multiple matching tuples is arbitrary and im- 
plementation-dependent.) Most Tuplespace imple- 
mentations provide both blocking and nonblocking 
versions of the tuple retrieval primitives. A blocking 
read, for example, waits until a matching tuple is 
found in the Tuplespace, whereas a nonblockingver- 
sion will return a “tuple not found” value if no match- 
ing tuple is immediately available. 

Distinguishing features. Tuplespace provides a sim- 
ple, yet powerful mechanism for interprocess com- 
munication and synchronization, which  is the crux 
of parallel and distributed programming. A process 
with data  to  share  “generates”  a tuple and places it 
into the Tuplespace. A process requiring data sim- 
ply requests a tuple from the space. Although not 
quite as efficient as message-passing  systems, Tu- 
plespace programs are typically easier to write and 
maintain, for the following reasons: 

Destination  uncoupling: Most  message-passing  sys- 
tems are partially anonymous: it  is not necessary 
for the receiver of a message to identify the sender, 
but the  sender must  always  specify the receiver. 
The creator of a tuple, however, requires no knowl- 
edge about the  future use of that tuple, or its des- 
tination, so Tuplespace communication is fully 
anonymous. 
Space  uncoupling: By using an associative address- 
ing scheme for tuples rather  than  a physical one, 
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Tuplespace is able  to provide a globally shared  data 
space  to all processes,  regardless of machine or 
platform  boundaries. 
Time uncoupling: Tuples have their own life span, 
independent of the processes  that  generated  them, 
or any processes that may read  them.  This  inde- 
pendence  enables  time-disjoint  processes  to  com- 
municate seamlessly. 

Tuplespace  extends message-passing systems with a 
simple data repository that  features associative ad- 
dressing.  Conceptually it ranks  above  a pure mes- 
sage-passing system in terms of function  but  far 
below relational  database systems, since most imple- 
mentations do not  include  transactions,  persistence, 
or any significant form of query facility. 

The fundamental  advantage of a  Tuplespace system 
is flexibility. Lacking a  schema,  a  Tuplespace  does 
not  restrict the  format of the  tuples it  stores  or  the 
types of data  that they contain.  Since  the  needs of 
modern  distributed systems primarily revolve around 
flexibility, Tuplespace is an obvious choice. The scal- 
ability of a  Tuplespace system is provided by the com- 
plete  anonymity of tuple  operations.  Neither  server 
nor  client  has to  keep  track of connected  processes. 
Time uncoupling is provided by the database-like 
character of the  Tuplespace,  whose  lifetime is inde- 
pendent of any client process. Furthermore,  the sim- 
plicity of a  Tuplespace system enables it to  run in 
a  limited  environment. Finally, the self-defining na- 
ture of tuple  communication allows a significant de- 
gree of interoperability  and extensibility. 

Clearly, Tuplespace  provides an interesting  starting 
point in our search  for  network  middleware for 
Tier-0 computing. However, a  traditional  Tuplespace 
implementation is not  enough. The matching algo- 
rithm will not work in a  heterogeneous  environment, 
where different platforms may be using different type 
systems. Furthermore,  although  Tuplespace loosely 
resembles  a  simple  database system, the  Tuplespace 
data  are  not necessarily made  persistent,  and  the as- 
sociative addressing is simply too primitive for many 
interesting  data  management problems. Finally, 
without any structure  imposed on the tuples in the 
space,  a  traditional  implementation will not easily 
scale to  support efficient queries on the large  num- 
bers of tuples  that may be  generated by a  network 
of Tier-0 devices. In the next section we describe how 
our  combination of Tuplespaces,  Java,  and advanced 
database technology produces  a lightweight, flexi- 
ble,  network  middleware  solution. 
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T Spaces overview 

T  Spaces is network  middleware for  the new age of 
ubiquitous  computing. It is implemented in the Java 
programming  language, and  thus it  automatically 
possesses network ubiquity through  platform  inde- 
pendence,  as well as a standard type  representation 
for all datatypes. It extends the basic  Linda Tu- 
plespace  framework with real  data  management  and 
the ability to download both new datatypes  and new 
semantic  functionality. 

The salient features of the T Spaces system are: 

Tuplespace operator superset: T Spaces  implements 
the  standard  set of Tuplespace  operators: read, in 
(take), and out  (write). In  addition,  it  includes  both 
blocking and  nonblocking  versions of take  and 
read,  set-oriented  operators such asscan and con- 
sumingscan, and  a novel rendezvous operator, 
rhonda, explained  later. 
Dynamically modifiable behavior: In addition to  the 
expanded  set of built-in  operators,  T  Spaces allows 
new operators  to  be defined dynamically. Appli- 
cations  can  define new datatypes  and new oper- 
ators  that  are downloaded  into  the T Spaces  server 
and used  immediately.  This is in contrast to rela- 
tional  database systems that have limited  datatype 
support  and limited  dynamic  function (usually in 
the  form of triggers). 
Persistent data repositoly: T Spaces  employs  a  real 
data  management layer, with functions similar to 
heavyweight relational  database systems, to  man- 
age its data.31  T  Spaces  operations  are  performed 
in a  transactional  context that  ensures  the integ- 
rity  of the  data. 
Database indexing and  quely capability: The T 
Spaces data  manager indexes all tagged data  for 
highly efficient retrieval. The  expanded query  ca- 
pability provides  applications with the tools to 
probe  the  data with detailed  queries, while still 
maintaining  a  simple,  easy-to-use  interface. 
Access controls: Users  can  establish  security pol- 
icies by setting  user and  group permissions on a 
Tuplespace basis. 
Event notification: Applications  can  register to  be 
notified of events  as they happen in the T Spaces 
server. 

T Spaces is appropriate  for any application that  has 
distribution or  data storage  requirements.  It can per- 
form many of the  duties of a  relational  database sys- 
tem without imposing an overly restrictive (and  prim- 
itive) type system, a rigid schema,  a bulky user API 
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Table 2 Tuple object matching  examples;  Person  is a subclass of SubclassableTuple  and  Employee is a subclass of 
Person. 

In  addition  to  these basic operators, we have  imple- 
mented  a new operator,  rhonda.  The  rhonda  oper- 
ator takes  a  tuple  and  a  template  as  arguments  and 
atomically swaps them with a  matching  template  and 
tuple  from  a  rhonda  executed by another process. 
If process 1 executes  rhonda((“A”),(String)),  for ex- 
ample, which writes the  tuple (“A’) and requests any 
tuple with a  string  value, and process 2 executes 
rhonda((“B”),(String)),  then  process 1 will receive 
the tuple  (“B”), while process 2 will receive (“A’). 
This is useful for  atomic  synchronization,  such as 
atomically  returning  a  “ticket” to check the  status 
of a service request when a client issues the  request. 

Tuple matching. An  extended Linda  tuple-matching 
algorithm is used to  determine  whether a  tuple in 
a  Tuplespace satisfies a  tuple  retrieval  request  (read, 
take,  etc.). In  the  standard  (Linda) case, the  tem- 
plate is simply a tuple, with one  or  more formal fields. 
(Recall  that a  formal field has  a type, but  no asso- 
ciated  value.)  A  tuple  matches  the  template  when 
all of the following conditions  hold: 

1. The  tuple  and  template have the  same  number 
of fields. 

2. Each of the fields of the  tuple is an instance of 
the type of the  corresponding field of the  tem- 
plate. 

3.  For  each  nonformal field of the  template,  the 
value of the field matches  the value of the  cor- 
responding  tuple field. 

Condition 2 simply extends the Linda  notion of ex- 
act type  equivalence to  an  object-oriented notion of 
type equivalence. 

Advanced tuple matching. The basic structural match- 
ing described  above is similar to  that used in most 
Tuplespace systems. However, in order  to provide 
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greater flexibility and  database-like  functionality,  T 
Spaces uses a more  object-oriented  approach  that 
offers more advanced  matching  options. These  op- 
tions are object  compatibility,  named field match- 
ing, and query  semantics. 

Object compatibility. For a  tuple to match an object 
compatibility  template  (known  as  a  Subclassable 
Tuple  template),  the type of the  tuple in the  space 
must be a subclass of the type of the  template. In 
this way, a  programmer  can  treat  tuples  as  objects, 
customizing  them to specific tasks. For simple  ap- 
plications  where only structural  equivalence  match- 
ing is needed,  the  Tuple class of the T Spaces  isfinal 
(i.e.,  it  cannot be subclassed),  and  thus,  when  it is 
used as  a  tuple or a  template,  it will only match other 
tuples or  templates of type  Tuple.  Table 2 shows 
some  sample  tuples  and  templates. 

Namedfields. One of the differentiating features of 
T Spaces that distinguishes it from  conventional Tu- 
plespace systems is that it  builds an index on each 
named field in a  tuple.  This  feature  enables clients 
to  request  tuples based solely on  values in fields with 
a given name,  regardless of the  structure of the rest 
of the  tuple  (or even the position of the  named field 
within the  tuple).  For example, an index  query of 
the  form  (“foo”,8) will select all tuples (of any for- 
mat)  containing a field named “foo” with the  inte- 
ger  value 8. It is also possible to specify a  range of 
values to be  found in the index. 

Queries:  Tying  it  all  together. The  current implemen- 
tation of T Spaces  provides four types of queries: 
Match,  Index, And, and Or queries.  A  Match  query 
performs  structural  or  object  compatibility  match- 
ing (depending  on  its  argument),  whereas  an  Index 
query  performs  a  named-field  query.  And  and Or 
queries  can  be used to combine  these other  queries 
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Figure 2 Data  for  the  query  examples 

Table 3 Query  examples 

and build  complex query trees. Examples of the in- 
serted  data  are shown  in Figure 2, and queries for 
those data  are shown  in Table 3. 

The explanation for the numbered queries in Table 
3 is as follows: 

2. 

1. Query 1 is a regular structure Match query, where 
the query values are fed directly into  the  read 

operator. In this example, the query will return 
the first tuple of the form (“Superman”, 75, 
Rock(“Kryptonite”)). 
The Match query’s functionality is  similar to  the 
regular structure Match  query, but it takes a query 
tuple as input. In this example, the query will re- 
turn all tuples of the form (“Superman”, 75, 
Rock), where the values for  the third parameter, 
Rock, can be any  valid Rock value. 
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3. The Index  query is either  an exact match or a 
range.  In  this  example, it is an exact  match  on 
the  value  “Spiderman.”  This  query will return 
all tuples of any  structure  that  have a Super- 
hero field of the String  type, with the  value  “Spi- 
derman.” 

4. The  fourth  one is an  example of an  Index  query 
using  a Range  predicate.  This  query will return 
all tuples of any structure  that  have a Super- 
hero  name in the  range of “ A ’  through “L.” 

5.  The fifth one is an example of an  And query. And 
and Or queries can be arbitrarily  nested  and  used 
in any combination with other query types. This 
q u e 4  will return all tuples of any structure  that 
have a name in the  range of “A”  through “L” and 

- ” 

an age in the  range of 10 through 30. 

as  an exercise to the  reader. 
6. Query 6 is an example of an  Or query  and is left 

Currently  queries  are  restricted  to single spaces. 
However,  since  tuples of any shape or size are al- 
lowed to  coexist in a single space,  this is not overly 
limiting. In  addition, having multiple  tuple types in 
the  same  Tuplespace  provides  interesting  parallels 
with relational  database systems. For example, an 
Index  query  over  a single column is similar to a  se- 
lect  predicate  applied to  the result of a  join of N ta- 
bles  (where N is the  number of distinct  tuple types 
taking part in the query). 

Note  that a  common  operation in relational  data- 
base systems is a join. In T Spaces  terminology, the 
join is a  user-defined,  not  a built-in, operator (scan 
the tuples with the specified column  names,  perform 
a  “query”  operation,  and  a  merge)  that directly 
matches existing tuples. Other  relational  database 
operators, such as aggregation,  group by, union, etc., 
could easily be  added as well. 

Client implementation. For  ease of exposition, we de- 
scribe the client  implementation in terms of the cli- 
ent being  connected  to  a single T Spaces  server. The 
implementation, however, allows the client to con- 
currently issue requests to multiple  T  Spaces serv- 
ers. 

All communication  between the client and  T  Spaces 
server is completely  nonblocking. If a  client thread 
issues a blocking request,  it is blocked in the client- 
side library after  sending the  request  and is awak- 
ened when the response  arrives.  In  this way, mul- 
tiple threads in the  same Java  Virtual  Machine  can 
share  a Transmission Control  Protocol/Internet  Pro- 
tocol (TCPIIP) connection to  the T Spaces  server. The 

IBM SYSTEMS JOURNAL, VOL 37, NO 3,  1998 

Figure 3 Client  architecture 

design allows multiple connections; however, the  cur- 
rent system creates only one  connection. 

The client-side T Spaces  implementation  comprises 
the  Tuplespace class, a low-level communication li- 
brary  for  sending  requests to  the T Spaces  server, 
and  a ResponseProcessor thread  that demultiplexes 
responses  from the server,  routing  them to  the  ap- 
propriate  client  thread.  Figure 3 depicts  a  client vir- 
tual  machine with two application  threads. The  ap- 
plication threads  manipulate instances of the 
Tuplespace class that use the  communication library 
to send  requests  to  the  server. 

The communication library assigns each  request  a 
unique identifier, which is used to implement  a  table- 
based  demultiplexing3* of the response  stream  from 
the server. The identifier is used as a key to  store a 
request-response  synchronization  object,  the Call- 
buck, into  the demultiplexing  table, the Outstand- 
ingRequestTuble. The Callback  object  has two meth- 
ods:  a waitForResponse method  that  decrements a 
semaphore, blocking the  requesting  thread until the 
response  arrives; and a call method  that  increments 
the  semaphore,  thus, unblocking the  requesting 
thread.  Figure 4 illustrates  the  use of the Callback 
object  for  synchronization  between the  requesting 
thread  and  the  ResponseProcessor. 
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Figure 4 Client  communication  architecture bundled, sent to  the server, and unbundled on the 
server by the client and server communication lay- 

Using the Callback object as a wrapper for the  re- 
sponse-handling code allows  all server responses to 
be handled uniformly. Event-handling code (for reg- 
istered events), exception-handling services, and poll 
services (e.g., “are you alive”) are all implemented 
through the Callback object and  an OutstandingRe- 
questTable entry. 

T Spaces server design. We begin the description of 
the T Spaces server implementation by presenting 
a high-level  overview of the lifetime of a client Tu- 
plespace operation. In the  current model, all client 
operations act on a single Tuplespace. Reference to 
or creation of a Tuplespace is made by instantiating 
a Tuplespace object. Once an instance of a  Tu- 
plespace object has been created,  the client may  ex- 
ecute  operations on that Tuplespace. In the  current 
design, a  T Spaces server is centralized, and as a  re- 
sult, it does not share  data and does not implement 
multiserver transactions. 

Figure 5 illustrates the architecture and shows the 
layers  involved  in processing an  operation.  The  op- 
eration originates as a method invocation on the Tu- 
plespace object in the client’s virtual machine. All 
the information needed to process the  operation is 

ers. On the server, the Tuplespace that  the  opera- 
tion references is found by the Tuplespace lookup 
machinery. As we show  in the next subsection, this 
machinery is implemented by simply  executing 
the operation Processoperation on the Galaxy Tu- 
plespace that contains tuples representing all the 
existing Tuplespaces. Processoperation finds the 
correct Tuplespace and passes the  operation and 
tuple operand to that Tuplespace to process. 

The server representation of a Tuplespace is the TS 
class. The TS class encapsulates the tuples in a  Tu- 
plespace (the database) and the set of operations that 
act on  the tuples (the factories). The  separation of 
data  and  the  operations  that act on the  data was a 
central design  goal of the  T Spaces architecture; op- 
erations  are  added or changed without affecting the 
database, and  the  database is changed without af- 
fecting the operations. We  discuss the benefits of this 
design decision in a  later subsection. 

A “stack” of factories manages the set of operations 
that act on the Tuplespace. Each factory in the stack 
maintains a set of handlers that implement specific 
operations. Given an  operation name, a tuple, and 
a client identifier, a factory returns an implementa- 
tion of the  operation. This provides maximum  flex- 
ibility  since the factory may custom-tailor the  oper- 
ation implementation to  the types of operands and 
the issuer of the  operation. If a factory does not im- 
plement an  operation, it may request the implemen- 
tation from the factory immediately below it in the 
factory stack. 

The Tuplespace in Figure 5 has two associated fac- 
tories. The SimpleDBase factory contains the join 
and project (projection) handlers, and  the Basic fac- 
tory contains the handlers for the  T Spaces API. The 
SimpleDBase factory maps all join operation strings 
to its join handler and all project operation strings 
to its project handler. For  other  operation strings, 
it requests the implementation from the Basic fac- 
tory. 

As shown  in Figure 5, all operations pass through 
the TS object that locates the  appropriate handler 
for the  operation (from the factory structure), ver- 
ifies that  the issuer of the  operation has the correct 
access control privileges, and, if so, executes the  op- 
eration using the handler. 
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Handlers act on a single Tuplespace through the  da- 
tabase API of the  T Spaces, called the TSDB (Tu- 
plespace database) interface. T Spaces  provides both 
a main  memory and  a DB2 wrapper implementation 
of the API via JDBC. The main  memory database man- 
ages the tuples directly, whereas the DB2 wrapper 
simply  calls DB2 to manage the tuples. Because both 
types of databases implement the TSDB interface, the 
same handlers may be  used for both. More sophis- 
ticated handlers may exploit properties of a specific 
database type  using API calls  specific to that  data- 
base. The  database backend provides the  core func- 
tionality of T Spaces; however, the  separation of the 
operations  that  operate on the  data from the  data- 
base backend and the layered approach to  the  de- 
sign of the overall system provides the flexibility and 
extensibility of the system. 

The  current  T Spaces server is implemented using 
four types of threads: ConnectionListener, IOHan- 
dler, TSDispatch, and CheckpointManager. The Con- 
nectionListener thread listens for new connections 
on the connection port number of the server. For 
each new connection, it creates an IOHandler thread. 
The  IOHandler thread manages all 110 for the newly 
created client connection. It dispatches incoming  cli- 
ent requests by creating a TSDispatch thread to ex- 
ecute the request. Responses are sent by a monitor- 
protected method in the  IOHandler object, which 
the TSDispatch threads invoke once an  operation 
has been processed. Each Tuplespace has an asso- 
ciated CheckpointManager thread  that periodically 
checkpoints a transaction-consistent state of the  Tu- 
plespace. In the following subsections, we describe 
the individual  pieces of the server  design of T Spaces. 

Server  system Tuplespaces. The two  system Tu- 
plespaces, Galaxy and Admin, form the catalog of 
the T Spaces  server. The Galaxy  space  contains  tuples 
describing each Tuplespace that exists on a  T Spaces 
server. Each of these tuples contains the name of 
the Tuplespace, its  type (i.e., main memory or DB2), 
and a pointer to  the internal Tuplespace wrapper 
object, TS. 

The Galaxy Tuplespace is where all operations  be- 
gin. The ProcessOperation handler of the Galaxy 
Tuplespace executes an operation on another  Tu- 
plespace by looking up the associated Tuplespace 
in the Galaxy and invoking the  operation method of 
the TS wrapper of that Tuplespace. The Galaxy Tu- 
plespace also implements the CreateTuplespace, 
Destroy Tuplespace, and TuplespaceExists operations. 

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998 

Figure 5 Design  overview 

The Admin Tuplespace contains the access control 
permissions for each Tuplespace, the groups that 
each client belongs to,  and  the user name and pass- 
word of each client. It is primarily used by the  Tu- 
plespace wrapper object, TS, to check whether the 
submitter of each operation has the  proper access 
control privileges. 

TSpaces wrapper  object TS. A TS object encapsulates 
the concept of a collection of tuples and the ability 
to manipulate that collection. A TS has a name and 
references to  both  a  database instance (TSDB) and 
the top-level factory (TSFactory) in  its factory stack 
(recall that the factories map operation names to op- 
eration implementations, Le., handlers). 

All operations  are processed by the  operation 
method of the TS object. It finds the appropriate han- 
dler (the implementation of the  operation) for the 
operation from its factory stack, checks that  the cli- 
ent has the access control privileges to execute the 
handler, and, if so, executes the  operation method 
of the handler object. 
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Figure 6 The basic structure of the TSMMDB design 

The  TSpaces  sewerdata manager. For flexibility (and 
scalability) reasons, the  T Spaces server allows a dif- 
ferent  database implementation to be used for each 
Tuplespace. It is accomplished by associating an in- 
stance of a server database with a Tuplespace (as 
mentioned above) and by allowing different imple- 
mentations of the abstract interface TSDB. Currently, 
there  are  three implementations of  TSDB: TSSim- 
pleDB, a simple array-based tuple manager (with 
simple hash indexes), TSMMDB, a memory-resident 
data manager  (with  associated linear hash  and T Tree 
indexes,33 and TSLargeDB, a wrapper and interface 
for IBM’s DB2 system  (which provides nearly unlim- 
ited storage capacity). We expect that most appli- 
cations will utilize the lightweight, high-speed main- 
memory unit, TSMMDB, so we describe it here. 

The TSMMDB system  evolved from the memory-res- 
ident storage management component of the  Star- 
burst Relational Database Management System 
project.34 As shown  in Figure 6, a  T Space is man- 
aged  as a collection of fixed-size partitions, each con- 
taining a set of tuple references. All references to 
tuples are kept as data structure addresses rather than 
real Java language references, which reduces con- 
fusion during checkpoints and serialization. 

The  entire  T Spaces server is managed as a “space 
of spaces” since the Galaxy space contains references 
to all of the  other spaces (including itself) in the 
server. 

T  Tree indexes  currently come in  two  types: the Mod- 
ified Linear Hash index (for exact match only) and 
the  T  Tree index (for range and  ordered matches). 
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The Modified Linear Hash index35 is a simple main- 
memory variation upon Withold Litwin’s Linear 
Hash algorithm36 and is not described here. Simi- 
larly, the T  Tree index structure is a fairly  simple data 
structure, which  we  briefly describe here. 

The  T  Tree  data  structure combines the efficient 
lookup characteristics of an AVL tree (named from 
the initials of its three developers) with the space 
efficiency  of a B tree.33,35 It is  relatively  easy to im- 
plement, and because it  is a memory-resident data 
structure, it  allows a wide  variety of items to be in- 
dexed  in a variety of  ways. Since the items in the  T 
Tree  are references, and not actual data,  the  T  Tree 
does not need to manage variable-size data. Also, 
since the references can point to virtually anything, 
the  T  Tree function is  really determined by the com- 
pare routine, which can perform any  type of com- 
pare  that  an implementer creates. These include 
multiattribute indexes,  multidimensional  indexes,  in- 
verted text  indexes, and, of course, “regular” single- 
attribute indexes. 

Figure 7 shows an instance of a  T  Tree node (a close- 
up)  and  a  T  Tree. A T  Tree is a multi-item node AVL 
tree, with  some  special  tree-balancing operations that 
are needed to deal with the multi-item nodes. A T 
Tree  node contains an array of data references, a 
parent  pointer, two  child pointers, and some con- 
trol information. 

Factories and handlers: Customizing operations. Us- 
ing the object-oriented design pattern of factories 
and handlers,37 T Spaces employs factories to track 
and manipulate handlers, the implementations of all 
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Figure 7 The  T Tree  structure 

T Spaces  operations.  The  factory-handler  approach 
allows the  databases of T Spaces to be dynamically 
customized. New operations may be  added  to in- 
crease  functionality, existing operation implemen- 
tations may be changed  without  halting the system, 
and  operation  implementations may be  customized 
for  their  operands  or  for  the client issuing the  op- 
eration,  or  both. Given an  operation string,  a  tuple 
operand,  and  the client  identifier  for the issuer of 
the  operation, a  factory  selects an  implementation 
(a  handler) to execute the  operation. 

A T Spaces  operator is associated with a  particular 
operator family. For example, in the  current imple- 
mentation of T Spaces there  are  three families:  Tu- 
plespace  operations,  Administrative  operations,  and 
Galaxy operations.  For  each  operator family, there 
is a  stack of one  or more  factories  that  map  the  op- 
erators  to handlers. If a  factory  does  not map a given 
operation string, operand,  and client  identifier to a 
handler, it may query  the factory below it in the stack 
for  a  handler  for  the  operation.  A  factory may block 
an  implementation of an  operation by simply throw- 
ing a HandlerNotFound exception  when  it is que- 
ried  for  the  operation. Only the top-level factory  on 
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the stack is directly accessible; it uses the lower-level 
factories  when  it  does  not  implement or block an  op- 
eration  string, operand,  and client identifier  triple. 
A  factory  must  implement the TSFactory  interface, 
which has  methods  for allowing or disallowing the 
stacking of other  factories on top of it, and  for  re- 
turning  a  handler given an  operation  string,  tuple 
operand,  and client  identifier  triple. 

Although  it is not  a trivial exercise, educated  users 
can write sophisticated  handlers  and  download  them 
into  the T Spaces  server  for  execution. All handlers 
must  implement the  TSHandler interface, which has 
a  method  for executing an  operation, given the  tuple 
operand of the  operation.  Handler  implementers 
have available to them  the  Database API of T Spaces, 
which allows them  to move tuples  into  and  out of 
storage  and  to  perform  data-related  operations on 
them. New factories  and  handlers may be down- 
loaded  to  the server using the addFactoly and 
addHundler methods, respectively. Of course, ex- 
treme  care must be  taken when writing new facto- 
ries  and  handlers,  and only trusted  users  should  be 
allowed to download them  to  the server. In the  cur- 
rent T Spaces  prototype, only designated system ad- 
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Figure 8 Logical  view of access  control 

ministrators have the access control privileges re- 
quired to add new factories and handlers to a 
Tuplespace. 

Durability. The T Spaces server must ensure  that 
the effects of committed transactions are durable. 
All of the  operations of a transaction are recorded 
in a  redo log3* on stable storage before the trans- 
action commits. In  the event of a server failure, the 
log  is used to replay the  operations of committed 
transactions. Periodically, each Tuplespace database 
is written to stable storage, and its log is truncated. 
In addition to making tuple values durable, the T 
Spaces server must  also make uploaded types du- 
rable. 

New  types arrive at  the server in the form of tuple 
fields or as  subclasses of SubclassableTuple. In both 
cases, the type needs to be saved on stable storage 
before the transaction that uploaded it commits. 
Java remote method invocation (RMI), used by 
JavaSpaces, provides a  transparent mechanism for 
loading types from client to server and server to cli- 
ent; however,  it does not make those types persis- 
tent. Because we needed to create  our own mech- 
anisms to make uploaded types persistent and 
because transmitting data with Java RMI is  slower 
than with Java sockets,39 we chose to build our own 

uploading mechanism using Java sockets and Class- 
Loaders.40 

For each new client connection, a ClassLoader is cre- 
ated  (the ClientClassLoader) and is used to  create 
the IOHandler for the connection. The Java run-time 
system then uses the ClientClassLoader to load any 
classes needed during the execution of that instance 
of the  IOHandler class.  Specifically,  when a tuple 
that contains new  types  is uploaded from a client, 
the ClientClassLoader for that client connection is 
used to upload the bytecode for the new  type. The 
server tags these types  with the URL (uniform re- 
source locator) of the client that uploaded them so 
that if they reference other types, the server can up- 
load those types,  provided the client is still connected. 
On  the client side, a ClassLoader for each server  con- 
nection is  used to download types from the servers. 

Access control. In the spirit of the Andrew File Sys- 
tem (AFS),41 the  T Spaces access control architec- 
ture is hierarchical. Each Tuplespace in the  hierar- 
chy defines a group-based set of access control 
permissions that govern the creation and deletion 
of “children” Tuplespaces, reading and writing of 
tuples, and event registration. In this way access con- 
trol can be enforced on  the Tuplespace level; finer 
granularity is not supported. This architecture allows 
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Figure 9 Access  control  components 

T Spaces  users to create  their own “domains”  that 
they  can  administer  themselves.  Figure 8 depicts an 
access control  hierarchy (note  that this logical hier- 
archy applies to access control only; in particular,  it 
does  not apply to the  storage  and  retrieval of tuples 
in Tuplespaces  themselves).  In the figure, the  Tu- 
plespace  “grand  central” is a child of the “IBM” Tu- 
plespace.  Its  administrator  has  created  a local user 
“John”  and a local group “GCS” to which “John”  has 
been  added. The user “John”  and  group “GCS” are 
visible to  the  “grand  central”  and “cyber-soda” Tu- 
plespaces  but  not to  the “IBM” or “garlic” Tu- 
plespaces. As  demonstrated by AFS, providing a hi- 
erarchy of access control  administration allows a 
system to  be scalable with respect  to  both admin- 
istration and  implementation.  Even  for  our  current 
single-server architecture, allowing users to create 
their own “domains” of access control is useful, and 
for  larger-scale  deployment,  it is a necessity. 

The access control  architecture is composed of the 
user  and  group  administration,  handler permissions, 
and  Tuplespace access control  administration  com- 
ponents.  Figure 9 shows how these  three  components 
determine  the access permissions for  each  operation 
defined on a  Tuplespace. As the figure shows, the 
handlers  publish  a  set of “AccessAttributes”  such  as 
“READ” that define  their access control  require- 
ments.  The  Tuplespace access control  component 
defines on a  per-Tuplespace basis which groups have 
permission for which “AccessAttribute,” and  the user 
and  group  component  manages  user  names, pass- 
words, and  group  information. Caching of access per- 
missions is stored in the  IOHandler object on a  per- 
connection basis. 
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The access control  mechanism may also be  attached 
to any existing system so that users  can  merge the 
T Spaces access control  mechanism with that of a 
file system or database system. The T Spaces  server 
allows system administrators to overload the user and 
group  lookup  routines so that they call the existing 
system rather  than  the  internal T Spaces  routines. 

T Spaces events. In T Spaces, an event is defined  as 
the execution of an  operation  on a  T  Space  (excep- 
tional  conditions  are not  events). Any event may be 
registered for using the eventRegister method. Besides 
the T  Spaces, and  the  operation  and  tuple  template 
that specify the event of interest, the client also  spec- 
ifies an object that  implements  the Callback  inter- 
face. When  the event  occurs, the system automat- 
ically calls the call method of that object. In  the 
logical implementation of events,  when an event  for 
which there  are clients  registered  occurs,  “event  no- 
tification tuples”  are  created  for  each registration. 
These  tuples  are  created in the  transaction  that  cre- 
ated  the event of interest,  and  thus,  their  creation 
will be  atomic with the commit of the  operation  that 
is the  event. 

Application  examples 

Potential applications for T Spaces come in  all shapes 
and sizes, partly  because T Spaces  serve  a very gen- 
eral service and partly because  they  can be used in 
several  different ways. We have already  mentioned 
the two main uses, namely, as a  communication 
buffer or as  a  database  manager.  However,  it is also 
useful as a synchronization mechanism  (either by cli- 
ents registering  for  events or just waiting for signal 
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tuples to arrive) and for central control of real-time 
events, such as communication (chat rooms) or mul- 
tiplayer game controllers. 

In this section, we present three different sample ap- 
plications. The first  two, the distributed clipboard 
and the shared whiteboard, we implemented easily. 
The third application presented  here is an exercise 
in  how  we might  apply T Spaces to a real-world prob- 
lem. 

The Global Cut and Paste Buffer. In its simplest 
form, a  T Space acts as a “global whiteboard” for 
communication among a group of distributed pro- 
cesses. A process with data to share with the group 
simply writes a tuple into  a Tuplespace. A process 
looking for data reads a tuple by providing a match- 
ing template. In this section, we demonstrate this ba- 
sic  use  with the Global Cut and Paste Buffer. This 
application allows a user to “publish” the contents 
of his or her local clipboard for viewing by any other 
user on  the network. Publishing enables easy and 
flexible sharing of any data recognized by Java. 

This application demonstrates the ease with  which 
distributed applications can be written using T 
Spaces. Once  a Local Cut  and Paste Buffer has been 
written, changing it into  a Global Cut and Paste 
Buffer  is  trivial. We implemented our own Global 
Cut and Paste Buffer, the GCS Clipboard Viewer, in 
which each user’s  “buffer space” contains four text 
buffers and is stored in a Tuplespace corresponding 
to  that user’s name. Buffer i is represented as the 
tuple ( i , buffer value). To view a buffer space, the 
user enters  the name of the space, and the applica- 
tion simply creates  an instance of that user’s Tu- 
plespace (i.e., Tuplespace ts = new Tuplespace (user 
name)),  and reads each buffer tuple (e.g., Tuple 
buffer = ts.read( 1 , field.makeFormal(“String”)) ). 
To publish a buffer space, the application performs 
takes on the old buffer tuples and replaces them with 
new  buffer tuples using the write operation. Only 
users  with the proper access control permissions may 
read and write these Tuplespaces. 

Figure 10 shows a snapshot of our clipboard viewer. 
In this  figure, the content of buffer one indicates that 
one of the  authors, Toby Lehman, is  publishing the 
URL for a San Jose Merculy News story; in  buffer  two 
he is  publishing an e-mail snippet that he wants to 
copy onto another machine in  his  office; and in  buffer 
three he is exporting a  letter written in support of 
a Harvey Mudd College student. Once Toby’s buffer 
space has been published on the T Spaces server, 
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other users can use their T Spaces clipboard viewers 
(assuming the  proper security privileges) to view the 
contents. This example  shows that T Spaces  provides 
a simple, easy-to-use mechanism for building  sim- 
ple distributed applications. 

The distributed whiteboard. T Spaces may also pro- 
vide a distributed whiteboard for communication 
among a group of distributed processes. A process 
that wants to modify part of the whiteboard simply 
updates tuples in the whiteboard space. A process 
wishing to see the whiteboard may read  the tuples 
in the whiteboard space. We implemented a simple 
line drawing whiteboard using T Spaces. Each cli- 
ent runs a Java applet  that continuously refreshes 
its view  of the whiteboard either by reading the tuples 
in the bulletin board space or registering for update 
events on the whiteboard space. Each line in the 
whiteboard is represented as a tuple. The user may 
delete existing lines or add new lines. When the user 
adds lines, the application simply creates  a tuple for 
each new line and sends it to the  T Spaces server. 
To  delete lines, the application creates templates for 
the lines to be deleted and simply performs a  take 
with those templates. The changes are immediately 
available to  other users. Figure 11 shows  what a user 
sees while editing a figure  using the GCS whiteboard. 
Once the user is  finished editing, the application will 
create tuples for newly created lines, send those to 
the  T Spaces server, create  template tuples for each 
destroyed line, and send take requests for the  de- 
stroyed  line  tuples to the  T Spaces server. These small 
example applications show that  T Spaces is simple 
and easy to use and  thus well-suited for simple ap- 
plications. In  the next subsection, we describe how 
T Spaces could be used for  a  more complex appli- 
cation. 

The ubiquitous computing environment. Since T 
Spaces connects all programs to all programs, it also 
connects all programs to all  services that  are sup- 
ported by programs. For example, a collection of 
printers attached to  a UNIX** LAN (local area net- 
work) would be visible to any program running on 
any client, without any prior printer definition. Sim- 
ilarly, scan, fax, e-mail and pager services  would be 
available to arbitrary clients via T Spaces, as well as 
any general program service, such as a search en- 
gine or image translation program. 

In the  T Spaces world, a common computing envi- 
ronment with  access to all  possible network services 
is surprisingly  easy to build. A set of applications, 
written in Java, map the system-specific  service (e.g., 
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Figure 10 The  Clipboard Viewer: a  simple  distributed  application  using T Spaces 

printing  service) or application (e.g., Web  search) 
to a standard  tuple  representation. Any client  from 
any platform  can generate a  tuple  and  send  it  to  a 
T Spaces  server.  Applications,  listening  for specific 
tuples, pick up jobs  when  they see  them  and execute 
them. In building  this  environment, one would write 
the service application to run on  the platforms  where 
they  could do  the most  good. At  the IBM Almaden 
Research  Center, most  network  printers are visible 
to AIX systems. Therefore,  one AIX printer service 
application  would  listen  for  tuples  posted to  the 
“printing  space,” pick them  up,  and  send  them  to  an 
AIX queue. Similarly, queries about  queues  and print 
status  could  also  be  done. On every other local 
printer  that should  be attached  to  the  common plat- 
form,  a  user simply runs the local print  application 

(although, in practice, the local application can prob- 
ably handle  a  number of services). We  anticipate lit- 
tle system interruption  when deploying this  scheme, 
since the T Spaces global environment is only ad- 
ditive, not  disruptive.  Thus, to  an existing comput- 
ing environment,  T  Spaces simply adds connectivity. 

One of the  more advanced  aspects of the T Spaces 
global environment is that it allows the  introduction 
of a  smart  middleman  into  the  equation.  Therefore, 
as  mentioned  above,  one  can build a useful indepen- 
dent  print service that provides access to any printer 
in the building, which is beneficial, as  long as  the 
whereabouts of all the  printers is known.  However, 
a  smart  middleman  can  add  intelligence.  A PDAwith 
a  location  sensor gives the  current location to  the 
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Figure 11 GCS Whiteboard  snapshot 

smart  middleman, which then in turn selects the most 
appropriate  printer,  based  on location, availability, 
speed,  resolution,  etc. In addition,  after having cho- 
sen  a  printer,  the  middleman  can  also display a  map 
to  the PDA user showing the  path  from  the user’s cur- 
rent location to  the  printer. 

Just  as  a  printing service can be  made generally avail- 
able  through T Spaces, so can any other service. But 
the  real power of the  environment is shown by how 
new computers,  such  as  the  Tier-0 devices, are  en- 
abled with any network service and  are  connected 
to any other network computer  through  the simple 
T  Spaces  interface. Data  from a  smart cell phone 
can easily be  made available to a PDA, an  automo- 

bile computer,  a  home security computer,  a  personal 
computer, or even a  corporate  mainframe  computer. 

Conclusion, project status, and future work 

It is interesting  that  people  often  accept limitations 
without  question  when no alternatives exist but  then 
will not  tolerate  anything  but  the  best  solution  when 
better alternatives are known. Currently,  the  model 
for  distributed programming is synchronous, directed 
point-to-point  communication, and  the  program- 
ming community appears  to accept this without ques- 
tion.  Although  the  Tuplespace  model of communi- 
cation  has  numerous  benefits  for the distributed 
application  programmer,  most  Tuplespace efforts of 
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the  past  remain unknown to  the  general  population, 
having been known only to  the relatively obscure  area 
of parallel  programming.  However, with T Spaces 
and Sun Microsystems’ JavaSpaces  pushing  into the 
mainstream of computing,  this is about  to change. 
The usefulness of the  Tuplespace  model is simply 
too promising to ignore, and, with the  added diver- 
sity of the  emerging  Tier-0 devices breaking  the ex- 
isting point-to-point  communication  model, the tim- 
ing could  not be  more  perfect. 

T  Spaces  embodies the convenience of the  Tu- 
plespace  communication  model, the  robust reliabil- 
ity and trustworthiness of a  database system, and  the 
platform  independence of the Java  programming 
language.  It  contains  most of the  features  that to- 
day’s Tier-0 devices need in a  network  middleware 
package. Furthermore, it not only serves  as the in- 
terface  to  other  programs  and  distributed  compo- 
nents, it is a fully functional data repository that can 
act  as the primary data  store  or a  caching  front end 
to a corporate  data  warehouse. 

The T Spaces  project  released version 1.02 to  the 
public via the IBM Alphaworks*  channel  (the URL 
for  Alphaworks is http://www.alphaworks.ibm.com) 
on March  16, 1998. The  release  contained most of 
the  features described in this  paper,  except  for  the 
recovery features, which, at  that time,  were still in 
development.  As  part of the next release,  version 2, 
we  will be  adding  function  and  support  for  additional 
interfaces to  the T Spaces  server. The T Spaces en- 
gine itself will be  improved with features like XML 
(Extensible Markup Language)  support so that XML 
data can  be indexed and  searched,  a  distributed  beans 
interface so that  JavaBeans* * can listen  for,  and  re- 
ceive, events on distributed  machines,  a CORBA in- 
terface so that T Spaces  can  communicate directly 
with non-Java  platforms,  and  a  mobile  interface so 
that T Spaces  can  function  as  a  replication  server to 
the mobile  clients. 

We have not yet run any formal  performance  tests 
on T Spaces, only small-scale informal  ones. We  are 
optimistic with results so far in terms of search, in- 
sert,  and  delete  performance.  However,  a  true mul- 
tiuser  experiment  that  tests  T  Spaces  performance 
and scalability under significant user  load will pro- 
vide truly useful results. 
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