
T Spaces

by P. Wyckoff
S. W. McLaughry
T. J. Lehman
D. A. Ford

With the creation of computer networks in the
1970s came the birth of distributed network
applications. Since then, there have been many
applications that spanned multiple machines, but
in the last 20 years no one created a serviceable
network middleware package for developing
highly effective distributed applications, that is,
until now. This paper describes the design and
architecture of T Spaces, a project at the ISM
Almaden Research Center that fills the network
middleware void. T Spaces embodies the three
main characteristics of a useful mechanism for
network programs, namely, data management,
computation, and communication. Since it has
the potential to connect any program to any
other program on a computing network, T
Spaces is an ideal platform on which to build a
global Computing services platform where any
program or system service is available to any
other program or service. In addition, its small
footprint and Java" implementation make T
Spaces an ideal platform for writing distributed
applications for embedded and palm-top
computers, thus forging a needed gateway from
the emerging embedded and palm-top
computers to established desktop and server
computers.

E ver since the Intel 8080 microprocessor chip ap-
peared in the Altair computer in 1975,' micro-

processors have grown far more powerful and far less
expensive. Gordon E. Moore, co-founder of Intel
Corporation, postulated that the capacity and capa-
bility of computers would approximately double ev-
ery 18 months. This 1965 prediction still holds today
for most types of computers. However, despite the
tremendous strides made by the computing indus-
try to make computers smaller, faster, cheaper, eas-
ier to use, and more plentiful, there is still a glaring
void in the area of distributed computing. Programs

running on one platform, e.g., the Apple Macin-
tosh**, still do not have easy access to programs or
services that are resident on another platform, e.g.,
the IBM Advanced Interactive Executive (AIX*) op-
erating system. Although aphysical network connec-
tion does exist between machines of these disparate
platforms, a quality, high-function logical connection
does not. The reasons for this lie mostly in the dif-
ficulties of writing software that can manage the vast
differences in computing hardware and operating sys-
tems. Unfortunately, the diversity of computing plat-
forms is growing as a result of the creation of a new
segment of the computer market that consists of a
variety of tiny computers.

There is an interesting side effect to Moore's Law.
While the microprocessors leading the technology
race become more powerful, the microprocessors
that are two or more generations old become very
inexpensive, which creates an opportunity for pro-
ducing them in large volumes. Furthermore, we have
reached a unique position in the evolution of com-
puting where the computers from two generations
ago are still powerful enough to be useful for gen-
eral tasks. These microprocessors, embedded in a
wide range of consumer appliances, are part of a mar-
ket known as Tier4 devices. This term derives from
client/server/mainframe designs, where Tier3 ma-
chines are mainframes, Tier-:! machines are file serv-
ers, and Tier-1 machines are desktop machines. The
name Tier-0 device describes any computing device

Wopyright 1998 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

454 WYCKOFF ET AL. 0018-8670/98/55.00 D 1998 IBM IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

that is smaller than a desktop or laptop computer.
Of course, this name describes PDAs (personal dig-
ital assistants), embedded computers, or practically
any electronic device, since processor chips are be-
coming cheap enough to embed in practically every-
thing.

The emerging market of smart (Tier-0) devices is
bringing forth a new era of network computing.
Growing numbers of smart devices that once oper-
ated in isolation are now being connected to net-
works where they are starting to exchange informa-
tion with one another and with larger network
computers. However, there is a problem. Most of
these devices, from automobile computers to atmo-
spheric controllers for buildings to personal digital
assistants, like their desktop ancestors, were not de-
signed to communicate with platforms other than
their own. They do not share a common data for-
mat, a common data schema, or even a common
computing platform. Bob Metcalf, creator of Eth-
ernet, is quoted as saying that the power of a com-
puter increases with the square of the number of
computers to which it is connected. It is clear to see
that for information-sharing purposes, more connec-
tivity is better, but the main challenge is building the
connections. On the surface, connecting computers
seems simple, but what looks like a simple problem
is actually an immense one, all based around one
theme: incompatibility. Moreover, with a new gen-
eration of even smaller computers entering the scene,
the incompatibility problem is worsening.

The challenge, as we see it, is to find a way to enable
high-quality communication between all computers,
large and small. The benefits of succeeding would
be enormous. By eliminating the numerous isolated
islands of information and creating a single conti-
nent of knowledge, we can significantly reduce re-
dundant tasks and overlapping systems. One exam-
ple of an archipelago of information islands is a
hospital. In many hospitals, even though patients sign
in at the admissions desk, they also typically sign in
at every department they visit, restating their vital
information. Then, each health-oriented machine
runs in isolation, generating either paper output or
computer output generally incompatible with the rest
of the hospital computers or hardware.

What is needed to solve this problem is network
middleware-a software communication package
that facilitates communication between programs.
However, how does one create such a general-pur-
pose solution? In the past, the enabling software-

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

the system software-evolved one layer at a time.
In the beginning there was no system software at all;
in the very first computers, application programs con-
tained all the logic to drive the bare (computing) ma-
chines. Over time, operating systems evolved, and
then more system software layers evolved as com-
mon components were factored out of the applica-
tions and were made standard system components.
What common elements, then, can we take from ex-
isting systems to create a new common software layer
that will enable communication between all comput-
ers?

Network middleware requirements. To demonstrate
what characteristics we might look for in our net-
work middleware package, we take the example of
the local area network (LAN) in an automobile. To-
day, an automobile has an average of 20, mostly in-
dependent, computers, each having a dedicated task.
Although these computers currently have commu-
nication via ad hoc channels, they lack a unifying data
management solution, such as that provided to Tier-2
and Tier-3 applications by relational database sys-
tems. Over time, once a unified communication net-
work is available, the automobile computers will be
able to easily incorporate new data from other com-
puters to do their jobs better. In addition, the au-
tomobile manufacturer and mechanic can operate
more efficiently using information generated by the
automobile (e.g., brake pad wear readings, counts
of engine redline crossings). Consider the task of
building a unified communication platform for these
20 computers to communicate their operating sta-
tus to their peers and to the central external com-
munication module. How would one do this? There
is a whole set of questions to answer:

How do the automobile computers obtain the net-
work address of every other computer in the au-
tomobile?
What common data format do they use?
How do they resolve format differences, such as
big or little Endian integers and different string for-
mats?
How do they establish data transfer sessions?
What do they do if the receiving computer is busy?
What amount of information does each computer

How does each computer figure out what all the
need to save, and for how long?

other computers want to hear?

What characteristics should the network middleware
have to meet the needs of this application? First, the
communication software must have a footprint small

WYCKOFF ET AL. 455

enough to fit in each of the embedded computing
devices. Second, it must be flexible enough to adapt
to new data types. When a new message is added to
the device community, it must be accepted by the
rest of the group (or at least tolerated). In addition,
it must tolerate new devices being added to the sys-
tem. Third, it should provide a messaging service-
“e-mail” for the various devices and processes
running on the automobile LAN. In a real-time envi-
ronment, such as an automobile, it is crucial that mes-
sages can be sent asynchronously, because the in-
tended recipient may be too busy to answer or
acknowledge them immediately. Fourth, the network
middleware must support anonymous communica-
tion. By design, an automotive device does not send
a message to another specific device, but instead
sends to the group, expecting those interested de-
vices to listen. Thus, communication is not point-to-
point, but is closer to “multireceive” (as opposed to
multicast), where devices register which types of mes-
sages they are interested in. Finally, the network
middleware should have a data repository for stor-
age of simple data. The main controller unit must
track all of the events in the automobile for some
period of time, which implies that there must be some
storage and some search or query capability to find
records in the stored data.

The automobile scenario is just one example of a set
of devices that must share information without pre-
defined conventions, but there are many other sim-
ilar examples in the areas of home LANS, office equip-
ment LANs, hospital LANs, and aircraft LANs.

Previous attempts at networkmiddleware. Previous
attempts at solving the network middleware prob-
lem have not focused on the whole problem but in-
stead have addressed some of the parts, namely data
representation and client communication. The data
representation problem has been addressed by
CORBA** (Common Object Request Broker Archi-
tecture), a standard proposed by the OMG (Object
Management Group) standards organization and re-
lational database systems.’ The client communica-
tion problem has been addressed by Tuplespace
systems.

The data representation problem. Building a general
point-to-point solution that would allow programs
in any language on any platform to communicate with
any program on any other platform is genuinely dif-
ficult. The difficulty of this task increases for each
new type of programming language, operating sys-
tem, and hardware platform. Instead, a more real-

456 WYCKOFF ET AL.

istic solution would be to either create a common
data language that all programming language objects
could translate to, or create a common data store
that contained all data that needed to be shared. The
common data language solution is the approach
taken by CORBA. Programs map their data structures
into the CORBA IDL (interface definition language)
and then allow other programs to reference those
data structures remotely through a proxy, using re-
mote method calls.

Whereas the focus of CORBA was on creating a sin-
gle interface to programming language (object) data,
relational database systems, such as IBM’s DB2*
 DATABASE^*),"' O r a ~ l e * * , ~ . ~ and S y b a ~ e * * , ~ ’ ~ used
a different approach, which was to store the data in
a database-specific format, decomposing the pro-
gram data into the primitive atomic types used by
the database system. The database system offered
associative (rather than direct) addressing, which had
the effect of disconnecting the data from the appli-
cation. Although this effect had some beneficial re-
sults-programs and data could evolve separately-
the database system often could not adequately
represent the program data given its restrictive sets
of datatypes and its inability to express complex re-
lationships between entities. Although object data-
base systems, such as Obje~tStore,’,’~ Versant,””’
and 02,13,14 offered a more programming-language-
centric form of storage for data than relational sys-
tems, they were too platform-specific in the data rep-
resentation. Thus, they offered little help in solving
the cross-platform communication problem. Finally,
although there were several research projects, such
as SMRC,’5,16 Quickstore, l7 and Postgres, l8 and some
products, such as IBM’s UDB (Universal Database),
Oracle V8**, and INFORMIX**, that combined no-
tions of relational and object databases, they also did
little to address the cross-platform communication
problem.

In all fairness, the purpose of the database products
and research projects was to expand the query power
or the data expressibility of the database systems, not
their ability to provide mechanisms for complex pro-
gram interactions across multiple platforms.

The client communication problem. The problem of
high-level distributed communication in a dynamic
and diverse network has received little attention. Al-
though not originally designed for this purpose, Tu-
plespace systems have been shown to provide many
useful facilities for client communication.

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

Tuplespace systems evolved differently than database
systems. Operating more like global communication
buffers than data repositories, Tuplespace systems
have always played the role of traffic cop for data
flowing from one process to another in parallel and
distributed systems. They have mostly functioned as
global communication buffers that impose no schema
restrictions. Thus, Tuplespace systems are tailor-
made for distributed programming where a general
data delivery mechanism is needed. Most research
in Tuplespaces has been in the parallel programming
community; however, in the early 1990s several sys-
tems used Tuplespace as the basis for distributed
communication mechanisms.

Laura’’ is a language that provides a coordination
mechanism for “open distributed computing,” which
is defined to be those systems that are “dynamically
composed from nondedicated hardware and soft-
ware components.” They use Tuplespace as a bro-
kering mechanism for service providers and clients.
Their system provides the basic tools to create dis-
tributed systems; however, it does not provide fault
tolerance, a data repository, or tools for large-scale
systems such as access control.

The ObjectSpace’” project added C+ + object ori-
entation to the standard Linda model. In Ob-
jectspace, any C+ + object can be a tuple. They aug-
mented the standard tuple matching algorithm to
allow a template and a tuple to match if the type of
the tuple is an instance of the type of the tem-
plate-in which case, the object in the tuple can im-
plement the object in the template. Adding object
orientation was a good step toward making Linda
more flexible for distributed applications; however,
this is just a starting point.

Recently, the combination of Java* * and Tuplespace
has received renewed interest; projects such as Jada”
and JavaSpaces** 22 combine the two. Jada is a Linda
implementation that is used to provide basic coor-
dination for PageSpa~e,’~ a high-level coordination
system. JavaSpaces, currently under development at
Sun Microsystems, is designed to provide “distrib-
uted persistence” and aid in the implementation of
distributed algorithms. The system allows arbitrary
Java classes to be communicated as tuples and made
persistent through Tuplespace. Transactions are pro-
vided for Tuplespace integrity, and a facility for no-
tifying a process when a tuple is written to a Tu-
plespace is provided instead of the standard blocking
read and take operations. JavaSpaces provides a sim-
ple transactional data repository and communica-

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

tion mechanism. For simple applications, the func-
tionality provided by Jada and JavaSpaces is similar
to that of T Spaces, since they all derive from the
same basic Tuplespace ancestor. However, T Spaces
adds more advanced operator and database function-
ality so that it may support more complex applica-
tions. In addition to these projects, we have been in-
formed that computer science departments are now
assigning programming projects that feature Tu-
plespace implementations in Java. 24

Although the similarity between Tuplespace and da-
tabases has long been recognized, surprisingly few
projects have explored the connections between the
two subjects. Persistent Linda (PLinda)2’ was the first
project to add database functionality, including trans-
actions and a simple query and join engine, to Linda.
The primary goal of the project was to provide a uni-
fied environment for competitive concurrency con-
trol (shared resource access) and cooperative par-
allelism (processes working on different pieces of a
large problem). The system was used to provide dis-
tributed shared memory and transactions for a pro-
gramming language, Griffin; 26 however, the system
was mainly targeted for parallel applications.

Tuplespace is a good starting point for a distributed
communication system because it provides commu-
nication, synchronization, and a simple data repos-
itory in one framework. Yet, these systems did not
attract much interest. Although they provided some
heterogeneity, portability, and interoperability, they
never were able to provide a solution that addressed
all the issues well.

The solution. In this paper, we describe IBM T Spaces,
a new network middleware system. It uses the Tu-
plespace of interaction for building a glo-
bally visible communication buffer. It then extends
the power of Tuplespace with database features tra-
ditionally found in large (Tier-2 and Tier-3) enter-
prise database systems. Furthermore, being imple-
mented in Java, it inherits the ability both to run on
virtually any platform and to download new data-
types and new functionality dynamically. The com-
bination of the Tuplespace communication model
and sophisticated data management features with the
flexibility, portability, and strong typing of Java re-
sults in a framework that provides at once a light-
weight database, an extensible computation environ-
ment, and a secure, yet easy-to-use communication
layer. As we will show, this framework can manage
exotic, free-format data across a wide range of de-

WYCKOFF ET AL. 457

Table 1 Simple tuple examples

vices, platforms, and tiers, all in a network-accessi-
ble manner. This paper is organized as follows:

The next section introduces Linda, the original Tu-
plespace system on which T Spaces is based. The
third section presents an overview of T Spaces. Then
a detailed description of the architecture of both the
client and server portions of T Spaces is presented.
The fifth section provides a developer’s view of how
T Spaces might be used in some applications. The
last section concludes the paper and presents plans
for future work.

Tuplespace

A Tuplespace is a globally shared, associatively ad-
dressed memory space that is organized as a bag of
tuples (defined below). The Tuplespace concept was
originally proposed by Gelernter in References 27
and 29 as part of the Linda coordination language.
The combination of a standard sequential compu-
tation language (such as Cor FORTRAN) and a small
number of Tuplespace communication primitives
produces a complete parallel programming language
(e.g., C-Linda or FORTRAN-Linda).

The basic element of a Tuplespace system is a tuple,
which is simply a vector of typed values, or fields. 3o

Templates are used to associatively address tuples via
matching. A template (or anti-tuple) is similar to a
tuple, but some (zero or more) fields in the vector
may be replaced by typed placeholders (with no
value) called formal fields. A formal field in a tem-
plate is said to match a tuple field if they have the
same type. If the template field is not formal, both
fields must also have the same value. A template
matches a tuple if they have an equal number of fields
and each template field matches the corresponding

458 WYCKOFF ET AL.

tuple field. Table 1 shows some simple tuples and
templates.

A tuple is created by a process and placed in the Tu-
plespace via the write primitive. Tuples are read or
removed with read and take primitives, which take
a template and return the first matching tuple. (Note
that, because the space is unstructured, the choice
among multiple matching tuples is arbitrary and im-
plementation-dependent.) Most Tuplespace imple-
mentations provide both blocking and nonblocking
versions of the tuple retrieval primitives. A blocking
read, for example, waits until a matching tuple is
found in the Tuplespace, whereas a nonblockingver-
sion will return a “tuple not found” value if no match-
ing tuple is immediately available.

Distinguishing features. Tuplespace provides a sim-
ple, yet powerful mechanism for interprocess com-
munication and synchronization, which is the crux
of parallel and distributed programming. A process
with data to share “generates” a tuple and places it
into the Tuplespace. A process requiring data sim-
ply requests a tuple from the space. Although not
quite as efficient as message-passing systems, Tu-
plespace programs are typically easier to write and
maintain, for the following reasons:

Destination uncoupling: Most message-passing sys-
tems are partially anonymous: it is not necessary
for the receiver of a message to identify the sender,
but the sender must always specify the receiver.
The creator of a tuple, however, requires no knowl-
edge about the future use of that tuple, or its des-
tination, so Tuplespace communication is fully
anonymous.
Space uncoupling: By using an associative address-
ing scheme for tuples rather than a physical one,

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

Tuplespace is able to provide a globally shared data
space to all processes, regardless of machine or
platform boundaries.
Time uncoupling: Tuples have their own life span,
independent of the processes that generated them,
or any processes that may read them. This inde-
pendence enables time-disjoint processes to com-
municate seamlessly.

Tuplespace extends message-passing systems with a
simple data repository that features associative ad-
dressing. Conceptually it ranks above a pure mes-
sage-passing system in terms of function but far
below relational database systems, since most imple-
mentations do not include transactions, persistence,
or any significant form of query facility.

The fundamental advantage of a Tuplespace system
is flexibility. Lacking a schema, a Tuplespace does
not restrict the format of the tuples it stores or the
types of data that they contain. Since the needs of
modern distributed systems primarily revolve around
flexibility, Tuplespace is an obvious choice. The scal-
ability of a Tuplespace system is provided by the com-
plete anonymity of tuple operations. Neither server
nor client has to keep track of connected processes.
Time uncoupling is provided by the database-like
character of the Tuplespace, whose lifetime is inde-
pendent of any client process. Furthermore, the sim-
plicity of a Tuplespace system enables it to run in
a limited environment. Finally, the self-defining na-
ture of tuple communication allows a significant de-
gree of interoperability and extensibility.

Clearly, Tuplespace provides an interesting starting
point in our search for network middleware for
Tier-0 computing. However, a traditional Tuplespace
implementation is not enough. The matching algo-
rithm will not work in a heterogeneous environment,
where different platforms may be using different type
systems. Furthermore, although Tuplespace loosely
resembles a simple database system, the Tuplespace
data are not necessarily made persistent, and the as-
sociative addressing is simply too primitive for many
interesting data management problems. Finally,
without any structure imposed on the tuples in the
space, a traditional implementation will not easily
scale to support efficient queries on the large num-
bers of tuples that may be generated by a network
of Tier-0 devices. In the next section we describe how
our combination of Tuplespaces, Java, and advanced
database technology produces a lightweight, flexi-
ble, network middleware solution.

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

T Spaces overview

T Spaces is network middleware for the new age of
ubiquitous computing. It is implemented in the Java
programming language, and thus it automatically
possesses network ubiquity through platform inde-
pendence, as well as a standard type representation
for all datatypes. It extends the basic Linda Tu-
plespace framework with real data management and
the ability to download both new datatypes and new
semantic functionality.

The salient features of the T Spaces system are:

Tuplespace operator superset: T Spaces implements
the standard set of Tuplespace operators: read, in
(take), and out (write). In addition, it includes both
blocking and nonblocking versions of take and
read, set-oriented operators such asscan and con-
sumingscan, and a novel rendezvous operator,
rhonda, explained later.
Dynamically modifiable behavior: In addition to the
expanded set of built-in operators, T Spaces allows
new operators to be defined dynamically. Appli-
cations can define new datatypes and new oper-
ators that are downloaded into the T Spaces server
and used immediately. This is in contrast to rela-
tional database systems that have limited datatype
support and limited dynamic function (usually in
the form of triggers).
Persistent data repositoly: T Spaces employs a real
data management layer, with functions similar to
heavyweight relational database systems, to man-
age its data.31 T Spaces operations are performed
in a transactional context that ensures the integ-
rity of the data.
Database indexing and quely capability: The T
Spaces data manager indexes all tagged data for
highly efficient retrieval. The expanded query ca-
pability provides applications with the tools to
probe the data with detailed queries, while still
maintaining a simple, easy-to-use interface.
Access controls: Users can establish security pol-
icies by setting user and group permissions on a
Tuplespace basis.
Event notification: Applications can register to be
notified of events as they happen in the T Spaces
server.

T Spaces is appropriate for any application that has
distribution or data storage requirements. It can per-
form many of the duties of a relational database sys-
tem without imposing an overly restrictive (and prim-
itive) type system, a rigid schema, a bulky user API

WYCKOFF ET AL. 459

Table 2 Tuple object matching examples; Person is a subclass of SubclassableTuple and Employee is a subclass of
Person.

In addition to these basic operators, we have imple-
mented a new operator, rhonda. The rhonda oper-
ator takes a tuple and a template as arguments and
atomically swaps them with a matching template and
tuple from a rhonda executed by another process.
If process 1 executes rhonda((“A”),(String)), for ex-
ample, which writes the tuple (“A’) and requests any
tuple with a string value, and process 2 executes
rhonda((“B”),(String)), then process 1 will receive
the tuple (“B”), while process 2 will receive (“A’).
This is useful for atomic synchronization, such as
atomically returning a “ticket” to check the status
of a service request when a client issues the request.

Tuple matching. An extended Linda tuple-matching
algorithm is used to determine whether a tuple in
a Tuplespace satisfies a tuple retrieval request (read,
take, etc.). In the standard (Linda) case, the tem-
plate is simply a tuple, with one or more formal fields.
(Recall that a formal field has a type, but no asso-
ciated value.) A tuple matches the template when
all of the following conditions hold:

1. The tuple and template have the same number
of fields.

2. Each of the fields of the tuple is an instance of
the type of the corresponding field of the tem-
plate.

3. For each nonformal field of the template, the
value of the field matches the value of the cor-
responding tuple field.

Condition 2 simply extends the Linda notion of ex-
act type equivalence to an object-oriented notion of
type equivalence.

Advanced tuple matching. The basic structural match-
ing described above is similar to that used in most
Tuplespace systems. However, in order to provide

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

greater flexibility and database-like functionality, T
Spaces uses a more object-oriented approach that
offers more advanced matching options. These op-
tions are object compatibility, named field match-
ing, and query semantics.

Object compatibility. For a tuple to match an object
compatibility template (known as a Subclassable
Tuple template), the type of the tuple in the space
must be a subclass of the type of the template. In
this way, a programmer can treat tuples as objects,
customizing them to specific tasks. For simple ap-
plications where only structural equivalence match-
ing is needed, the Tuple class of the T Spaces isfinal
(i.e., it cannot be subclassed), and thus, when it is
used as a tuple or a template, it will only match other
tuples or templates of type Tuple. Table 2 shows
some sample tuples and templates.

Namedfields. One of the differentiating features of
T Spaces that distinguishes it from conventional Tu-
plespace systems is that it builds an index on each
named field in a tuple. This feature enables clients
to request tuples based solely on values in fields with
a given name, regardless of the structure of the rest
of the tuple (or even the position of the named field
within the tuple). For example, an index query of
the form (“foo”,8) will select all tuples (of any for-
mat) containing a field named “foo” with the inte-
ger value 8. It is also possible to specify a range of
values to be found in the index.

Queries: Tying it all together. The current implemen-
tation of T Spaces provides four types of queries:
Match, Index, And, and Or queries. A Match query
performs structural or object compatibility match-
ing (depending on its argument), whereas an Index
query performs a named-field query. And and Or
queries can be used to combine these other queries

WYCKOFF ET AL. 461

Figure 2 Data for the query examples

Table 3 Query examples

and build complex query trees. Examples of the in-
serted data are shown in Figure 2, and queries for
those data are shown in Table 3.

The explanation for the numbered queries in Table
3 is as follows:

2.

1. Query 1 is a regular structure Match query, where
the query values are fed directly into the read

operator. In this example, the query will return
the first tuple of the form (“Superman”, 75,
Rock(“Kryptonite”)).
The Match query’s functionality is similar to the
regular structure Match query, but it takes a query
tuple as input. In this example, the query will re-
turn all tuples of the form (“Superman”, 75,
Rock), where the values for the third parameter,
Rock, can be any valid Rock value.

462 WYCKOFF ET AL. IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

3. The Index query is either an exact match or a
range. In this example, it is an exact match on
the value “Spiderman.” This query will return
all tuples of any structure that have a Super-
hero field of the String type, with the value “Spi-
derman.”

4. The fourth one is an example of an Index query
using a Range predicate. This query will return
all tuples of any structure that have a Super-
hero name in the range of “ A ’ through “L.”

5. The fifth one is an example of an And query. And
and Or queries can be arbitrarily nested and used
in any combination with other query types. This
q u e 4 will return all tuples of any structure that
have a name in the range of “A” through “L” and

- ”

an age in the range of 10 through 30.

as an exercise to the reader.
6. Query 6 is an example of an Or query and is left

Currently queries are restricted to single spaces.
However, since tuples of any shape or size are al-
lowed to coexist in a single space, this is not overly
limiting. In addition, having multiple tuple types in
the same Tuplespace provides interesting parallels
with relational database systems. For example, an
Index query over a single column is similar to a se-
lect predicate applied to the result of a join of N ta-
bles (where N is the number of distinct tuple types
taking part in the query).

Note that a common operation in relational data-
base systems is a join. In T Spaces terminology, the
join is a user-defined, not a built-in, operator (scan
the tuples with the specified column names, perform
a “query” operation, and a merge) that directly
matches existing tuples. Other relational database
operators, such as aggregation, group by, union, etc.,
could easily be added as well.

Client implementation. For ease of exposition, we de-
scribe the client implementation in terms of the cli-
ent being connected to a single T Spaces server. The
implementation, however, allows the client to con-
currently issue requests to multiple T Spaces serv-
ers.

All communication between the client and T Spaces
server is completely nonblocking. If a client thread
issues a blocking request, it is blocked in the client-
side library after sending the request and is awak-
ened when the response arrives. In this way, mul-
tiple threads in the same Java Virtual Machine can
share a Transmission Control Protocol/Internet Pro-
tocol (TCPIIP) connection to the T Spaces server. The

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

Figure 3 Client architecture

design allows multiple connections; however, the cur-
rent system creates only one connection.

The client-side T Spaces implementation comprises
the Tuplespace class, a low-level communication li-
brary for sending requests to the T Spaces server,
and a ResponseProcessor thread that demultiplexes
responses from the server, routing them to the ap-
propriate client thread. Figure 3 depicts a client vir-
tual machine with two application threads. The ap-
plication threads manipulate instances of the
Tuplespace class that use the communication library
to send requests to the server.

The communication library assigns each request a
unique identifier, which is used to implement a table-
based demultiplexing3* of the response stream from
the server. The identifier is used as a key to store a
request-response synchronization object, the Call-
buck, into the demultiplexing table, the Outstand-
ingRequestTuble. The Callback object has two meth-
ods: a waitForResponse method that decrements a
semaphore, blocking the requesting thread until the
response arrives; and a call method that increments
the semaphore, thus, unblocking the requesting
thread. Figure 4 illustrates the use of the Callback
object for synchronization between the requesting
thread and the ResponseProcessor.

WYCKOFF ET AL. 463

Figure 4 Client communication architecture bundled, sent to the server, and unbundled on the
server by the client and server communication lay-

Using the Callback object as a wrapper for the re-
sponse-handling code allows all server responses to
be handled uniformly. Event-handling code (for reg-
istered events), exception-handling services, and poll
services (e.g., “are you alive”) are all implemented
through the Callback object and an OutstandingRe-
questTable entry.

T Spaces server design. We begin the description of
the T Spaces server implementation by presenting
a high-level overview of the lifetime of a client Tu-
plespace operation. In the current model, all client
operations act on a single Tuplespace. Reference to
or creation of a Tuplespace is made by instantiating
a Tuplespace object. Once an instance of a Tu-
plespace object has been created, the client may ex-
ecute operations on that Tuplespace. In the current
design, a T Spaces server is centralized, and as a re-
sult, it does not share data and does not implement
multiserver transactions.

Figure 5 illustrates the architecture and shows the
layers involved in processing an operation. The op-
eration originates as a method invocation on the Tu-
plespace object in the client’s virtual machine. All
the information needed to process the operation is

ers. On the server, the Tuplespace that the opera-
tion references is found by the Tuplespace lookup
machinery. As we show in the next subsection, this
machinery is implemented by simply executing
the operation Processoperation on the Galaxy Tu-
plespace that contains tuples representing all the
existing Tuplespaces. Processoperation finds the
correct Tuplespace and passes the operation and
tuple operand to that Tuplespace to process.

The server representation of a Tuplespace is the TS
class. The TS class encapsulates the tuples in a Tu-
plespace (the database) and the set of operations that
act on the tuples (the factories). The separation of
data and the operations that act on the data was a
central design goal of the T Spaces architecture; op-
erations are added or changed without affecting the
database, and the database is changed without af-
fecting the operations. We discuss the benefits of this
design decision in a later subsection.

A “stack” of factories manages the set of operations
that act on the Tuplespace. Each factory in the stack
maintains a set of handlers that implement specific
operations. Given an operation name, a tuple, and
a client identifier, a factory returns an implementa-
tion of the operation. This provides maximum flex-
ibility since the factory may custom-tailor the oper-
ation implementation to the types of operands and
the issuer of the operation. If a factory does not im-
plement an operation, it may request the implemen-
tation from the factory immediately below it in the
factory stack.

The Tuplespace in Figure 5 has two associated fac-
tories. The SimpleDBase factory contains the join
and project (projection) handlers, and the Basic fac-
tory contains the handlers for the T Spaces API. The
SimpleDBase factory maps all join operation strings
to its join handler and all project operation strings
to its project handler. For other operation strings,
it requests the implementation from the Basic fac-
tory.

As shown in Figure 5, all operations pass through
the TS object that locates the appropriate handler
for the operation (from the factory structure), ver-
ifies that the issuer of the operation has the correct
access control privileges, and, if so, executes the op-
eration using the handler.

464 WYCKOFF ET AL IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

Handlers act on a single Tuplespace through the da-
tabase API of the T Spaces, called the TSDB (Tu-
plespace database) interface. T Spaces provides both
a main memory and a DB2 wrapper implementation
of the API via JDBC. The main memory database man-
ages the tuples directly, whereas the DB2 wrapper
simply calls DB2 to manage the tuples. Because both
types of databases implement the TSDB interface, the
same handlers may be used for both. More sophis-
ticated handlers may exploit properties of a specific
database type using API calls specific to that data-
base. The database backend provides the core func-
tionality of T Spaces; however, the separation of the
operations that operate on the data from the data-
base backend and the layered approach to the de-
sign of the overall system provides the flexibility and
extensibility of the system.

The current T Spaces server is implemented using
four types of threads: ConnectionListener, IOHan-
dler, TSDispatch, and CheckpointManager. The Con-
nectionListener thread listens for new connections
on the connection port number of the server. For
each new connection, it creates an IOHandler thread.
The IOHandler thread manages all 110 for the newly
created client connection. It dispatches incoming cli-
ent requests by creating a TSDispatch thread to ex-
ecute the request. Responses are sent by a monitor-
protected method in the IOHandler object, which
the TSDispatch threads invoke once an operation
has been processed. Each Tuplespace has an asso-
ciated CheckpointManager thread that periodically
checkpoints a transaction-consistent state of the Tu-
plespace. In the following subsections, we describe
the individual pieces of the server design of T Spaces.

Server system Tuplespaces. The two system Tu-
plespaces, Galaxy and Admin, form the catalog of
the T Spaces server. The Galaxy space contains tuples
describing each Tuplespace that exists on a T Spaces
server. Each of these tuples contains the name of
the Tuplespace, its type (i.e., main memory or DB2),
and a pointer to the internal Tuplespace wrapper
object, TS.

The Galaxy Tuplespace is where all operations be-
gin. The ProcessOperation handler of the Galaxy
Tuplespace executes an operation on another Tu-
plespace by looking up the associated Tuplespace
in the Galaxy and invoking the operation method of
the TS wrapper of that Tuplespace. The Galaxy Tu-
plespace also implements the CreateTuplespace,
Destroy Tuplespace, and TuplespaceExists operations.

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

Figure 5 Design overview

The Admin Tuplespace contains the access control
permissions for each Tuplespace, the groups that
each client belongs to, and the user name and pass-
word of each client. It is primarily used by the Tu-
plespace wrapper object, TS, to check whether the
submitter of each operation has the proper access
control privileges.

TSpaces wrapper object TS. A TS object encapsulates
the concept of a collection of tuples and the ability
to manipulate that collection. A TS has a name and
references to both a database instance (TSDB) and
the top-level factory (TSFactory) in its factory stack
(recall that the factories map operation names to op-
eration implementations, Le., handlers).

All operations are processed by the operation
method of the TS object. It finds the appropriate han-
dler (the implementation of the operation) for the
operation from its factory stack, checks that the cli-
ent has the access control privileges to execute the
handler, and, if so, executes the operation method
of the handler object.

WYCKOFF ET AL. 465

Figure 6 The basic structure of the TSMMDB design

The TSpaces sewerdata manager. For flexibility (and
scalability) reasons, the T Spaces server allows a dif-
ferent database implementation to be used for each
Tuplespace. It is accomplished by associating an in-
stance of a server database with a Tuplespace (as
mentioned above) and by allowing different imple-
mentations of the abstract interface TSDB. Currently,
there are three implementations of TSDB: TSSim-
pleDB, a simple array-based tuple manager (with
simple hash indexes), TSMMDB, a memory-resident
data manager (with associated linear hash and T Tree
indexes,33 and TSLargeDB, a wrapper and interface
for IBM’s DB2 system (which provides nearly unlim-
ited storage capacity). We expect that most appli-
cations will utilize the lightweight, high-speed main-
memory unit, TSMMDB, so we describe it here.

The TSMMDB system evolved from the memory-res-
ident storage management component of the Star-
burst Relational Database Management System
project.34 As shown in Figure 6, a T Space is man-
aged as a collection of fixed-size partitions, each con-
taining a set of tuple references. All references to
tuples are kept as data structure addresses rather than
real Java language references, which reduces con-
fusion during checkpoints and serialization.

The entire T Spaces server is managed as a “space
of spaces” since the Galaxy space contains references
to all of the other spaces (including itself) in the
server.

T Tree indexes currently come in two types: the Mod-
ified Linear Hash index (for exact match only) and
the T Tree index (for range and ordered matches).

466 WYCKOFF ET AL.

The Modified Linear Hash index35 is a simple main-
memory variation upon Withold Litwin’s Linear
Hash algorithm36 and is not described here. Simi-
larly, the T Tree index structure is a fairly simple data
structure, which we briefly describe here.

The T Tree data structure combines the efficient
lookup characteristics of an AVL tree (named from
the initials of its three developers) with the space
efficiency of a B tree.33,35 It is relatively easy to im-
plement, and because it is a memory-resident data
structure, it allows a wide variety of items to be in-
dexed in a variety of ways. Since the items in the T
Tree are references, and not actual data, the T Tree
does not need to manage variable-size data. Also,
since the references can point to virtually anything,
the T Tree function is really determined by the com-
pare routine, which can perform any type of com-
pare that an implementer creates. These include
multiattribute indexes, multidimensional indexes, in-
verted text indexes, and, of course, “regular” single-
attribute indexes.

Figure 7 shows an instance of a T Tree node (a close-
up) and a T Tree. A T Tree is a multi-item node AVL
tree, with some special tree-balancing operations that
are needed to deal with the multi-item nodes. A T
Tree node contains an array of data references, a
parent pointer, two child pointers, and some con-
trol information.

Factories and handlers: Customizing operations. Us-
ing the object-oriented design pattern of factories
and handlers,37 T Spaces employs factories to track
and manipulate handlers, the implementations of all

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

Figure 7 The T Tree structure

T Spaces operations. The factory-handler approach
allows the databases of T Spaces to be dynamically
customized. New operations may be added to in-
crease functionality, existing operation implemen-
tations may be changed without halting the system,
and operation implementations may be customized
for their operands or for the client issuing the op-
eration, or both. Given an operation string, a tuple
operand, and the client identifier for the issuer of
the operation, a factory selects an implementation
(a handler) to execute the operation.

A T Spaces operator is associated with a particular
operator family. For example, in the current imple-
mentation of T Spaces there are three families: Tu-
plespace operations, Administrative operations, and
Galaxy operations. For each operator family, there
is a stack of one or more factories that map the op-
erators to handlers. If a factory does not map a given
operation string, operand, and client identifier to a
handler, it may query the factory below it in the stack
for a handler for the operation. A factory may block
an implementation of an operation by simply throw-
ing a HandlerNotFound exception when it is que-
ried for the operation. Only the top-level factory on

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

the stack is directly accessible; it uses the lower-level
factories when it does not implement or block an op-
eration string, operand, and client identifier triple.
A factory must implement the TSFactory interface,
which has methods for allowing or disallowing the
stacking of other factories on top of it, and for re-
turning a handler given an operation string, tuple
operand, and client identifier triple.

Although it is not a trivial exercise, educated users
can write sophisticated handlers and download them
into the T Spaces server for execution. All handlers
must implement the TSHandler interface, which has
a method for executing an operation, given the tuple
operand of the operation. Handler implementers
have available to them the Database API of T Spaces,
which allows them to move tuples into and out of
storage and to perform data-related operations on
them. New factories and handlers may be down-
loaded to the server using the addFactoly and
addHundler methods, respectively. Of course, ex-
treme care must be taken when writing new facto-
ries and handlers, and only trusted users should be
allowed to download them to the server. In the cur-
rent T Spaces prototype, only designated system ad-

WYCKOFF ET AL. 467

Figure 8 Logical view of access control

ministrators have the access control privileges re-
quired to add new factories and handlers to a
Tuplespace.

Durability. The T Spaces server must ensure that
the effects of committed transactions are durable.
All of the operations of a transaction are recorded
in a redo log3* on stable storage before the trans-
action commits. In the event of a server failure, the
log is used to replay the operations of committed
transactions. Periodically, each Tuplespace database
is written to stable storage, and its log is truncated.
In addition to making tuple values durable, the T
Spaces server must also make uploaded types du-
rable.

New types arrive at the server in the form of tuple
fields or as subclasses of SubclassableTuple. In both
cases, the type needs to be saved on stable storage
before the transaction that uploaded it commits.
Java remote method invocation (RMI), used by
JavaSpaces, provides a transparent mechanism for
loading types from client to server and server to cli-
ent; however, it does not make those types persis-
tent. Because we needed to create our own mech-
anisms to make uploaded types persistent and
because transmitting data with Java RMI is slower
than with Java sockets,39 we chose to build our own

uploading mechanism using Java sockets and Class-
Loaders.40

For each new client connection, a ClassLoader is cre-
ated (the ClientClassLoader) and is used to create
the IOHandler for the connection. The Java run-time
system then uses the ClientClassLoader to load any
classes needed during the execution of that instance
of the IOHandler class. Specifically, when a tuple
that contains new types is uploaded from a client,
the ClientClassLoader for that client connection is
used to upload the bytecode for the new type. The
server tags these types with the URL (uniform re-
source locator) of the client that uploaded them so
that if they reference other types, the server can up-
load those types, provided the client is still connected.
On the client side, a ClassLoader for each server con-
nection is used to download types from the servers.

Access control. In the spirit of the Andrew File Sys-
tem (AFS),41 the T Spaces access control architec-
ture is hierarchical. Each Tuplespace in the hierar-
chy defines a group-based set of access control
permissions that govern the creation and deletion
of “children” Tuplespaces, reading and writing of
tuples, and event registration. In this way access con-
trol can be enforced on the Tuplespace level; finer
granularity is not supported. This architecture allows

468 WYCKOFF ET AL IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

Figure 9 Access control components

T Spaces users to create their own “domains” that
they can administer themselves. Figure 8 depicts an
access control hierarchy (note that this logical hier-
archy applies to access control only; in particular, it
does not apply to the storage and retrieval of tuples
in Tuplespaces themselves). In the figure, the Tu-
plespace “grand central” is a child of the “IBM” Tu-
plespace. Its administrator has created a local user
“John” and a local group “GCS” to which “John” has
been added. The user “John” and group “GCS” are
visible to the “grand central” and “cyber-soda” Tu-
plespaces but not to the “IBM” or “garlic” Tu-
plespaces. As demonstrated by AFS, providing a hi-
erarchy of access control administration allows a
system to be scalable with respect to both admin-
istration and implementation. Even for our current
single-server architecture, allowing users to create
their own “domains” of access control is useful, and
for larger-scale deployment, it is a necessity.

The access control architecture is composed of the
user and group administration, handler permissions,
and Tuplespace access control administration com-
ponents. Figure 9 shows how these three components
determine the access permissions for each operation
defined on a Tuplespace. As the figure shows, the
handlers publish a set of “AccessAttributes” such as
“READ” that define their access control require-
ments. The Tuplespace access control component
defines on a per-Tuplespace basis which groups have
permission for which “AccessAttribute,” and the user
and group component manages user names, pass-
words, and group information. Caching of access per-
missions is stored in the IOHandler object on a per-
connection basis.

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

The access control mechanism may also be attached
to any existing system so that users can merge the
T Spaces access control mechanism with that of a
file system or database system. The T Spaces server
allows system administrators to overload the user and
group lookup routines so that they call the existing
system rather than the internal T Spaces routines.

T Spaces events. In T Spaces, an event is defined as
the execution of an operation on a T Space (excep-
tional conditions are not events). Any event may be
registered for using the eventRegister method. Besides
the T Spaces, and the operation and tuple template
that specify the event of interest, the client also spec-
ifies an object that implements the Callback inter-
face. When the event occurs, the system automat-
ically calls the call method of that object. In the
logical implementation of events, when an event for
which there are clients registered occurs, “event no-
tification tuples” are created for each registration.
These tuples are created in the transaction that cre-
ated the event of interest, and thus, their creation
will be atomic with the commit of the operation that
is the event.

Application examples

Potential applications for T Spaces come in all shapes
and sizes, partly because T Spaces serve a very gen-
eral service and partly because they can be used in
several different ways. We have already mentioned
the two main uses, namely, as a communication
buffer or as a database manager. However, it is also
useful as a synchronization mechanism (either by cli-
ents registering for events or just waiting for signal

WYCKOFF ET AL. 469

tuples to arrive) and for central control of real-time
events, such as communication (chat rooms) or mul-
tiplayer game controllers.

In this section, we present three different sample ap-
plications. The first two, the distributed clipboard
and the shared whiteboard, we implemented easily.
The third application presented here is an exercise
in how we might apply T Spaces to a real-world prob-
lem.

The Global Cut and Paste Buffer. In its simplest
form, a T Space acts as a “global whiteboard” for
communication among a group of distributed pro-
cesses. A process with data to share with the group
simply writes a tuple into a Tuplespace. A process
looking for data reads a tuple by providing a match-
ing template. In this section, we demonstrate this ba-
sic use with the Global Cut and Paste Buffer. This
application allows a user to “publish” the contents
of his or her local clipboard for viewing by any other
user on the network. Publishing enables easy and
flexible sharing of any data recognized by Java.

This application demonstrates the ease with which
distributed applications can be written using T
Spaces. Once a Local Cut and Paste Buffer has been
written, changing it into a Global Cut and Paste
Buffer is trivial. We implemented our own Global
Cut and Paste Buffer, the GCS Clipboard Viewer, in
which each user’s “buffer space” contains four text
buffers and is stored in a Tuplespace corresponding
to that user’s name. Buffer i is represented as the
tuple (i , buffer value). To view a buffer space, the
user enters the name of the space, and the applica-
tion simply creates an instance of that user’s Tu-
plespace (i.e., Tuplespace ts = new Tuplespace (user
name)), and reads each buffer tuple (e.g., Tuple
buffer = ts.read(1 , field.makeFormal(“String”))).
To publish a buffer space, the application performs
takes on the old buffer tuples and replaces them with
new buffer tuples using the write operation. Only
users with the proper access control permissions may
read and write these Tuplespaces.

Figure 10 shows a snapshot of our clipboard viewer.
In this figure, the content of buffer one indicates that
one of the authors, Toby Lehman, is publishing the
URL for a San Jose Merculy News story; in buffer two
he is publishing an e-mail snippet that he wants to
copy onto another machine in his office; and in buffer
three he is exporting a letter written in support of
a Harvey Mudd College student. Once Toby’s buffer
space has been published on the T Spaces server,

470 WYCKOFF ET AL.

other users can use their T Spaces clipboard viewers
(assuming the proper security privileges) to view the
contents. This example shows that T Spaces provides
a simple, easy-to-use mechanism for building sim-
ple distributed applications.

The distributed whiteboard. T Spaces may also pro-
vide a distributed whiteboard for communication
among a group of distributed processes. A process
that wants to modify part of the whiteboard simply
updates tuples in the whiteboard space. A process
wishing to see the whiteboard may read the tuples
in the whiteboard space. We implemented a simple
line drawing whiteboard using T Spaces. Each cli-
ent runs a Java applet that continuously refreshes
its view of the whiteboard either by reading the tuples
in the bulletin board space or registering for update
events on the whiteboard space. Each line in the
whiteboard is represented as a tuple. The user may
delete existing lines or add new lines. When the user
adds lines, the application simply creates a tuple for
each new line and sends it to the T Spaces server.
To delete lines, the application creates templates for
the lines to be deleted and simply performs a take
with those templates. The changes are immediately
available to other users. Figure 11 shows what a user
sees while editing a figure using the GCS whiteboard.
Once the user is finished editing, the application will
create tuples for newly created lines, send those to
the T Spaces server, create template tuples for each
destroyed line, and send take requests for the de-
stroyed line tuples to the T Spaces server. These small
example applications show that T Spaces is simple
and easy to use and thus well-suited for simple ap-
plications. In the next subsection, we describe how
T Spaces could be used for a more complex appli-
cation.

The ubiquitous computing environment. Since T
Spaces connects all programs to all programs, it also
connects all programs to all services that are sup-
ported by programs. For example, a collection of
printers attached to a UNIX** LAN (local area net-
work) would be visible to any program running on
any client, without any prior printer definition. Sim-
ilarly, scan, fax, e-mail and pager services would be
available to arbitrary clients via T Spaces, as well as
any general program service, such as a search en-
gine or image translation program.

In the T Spaces world, a common computing envi-
ronment with access to all possible network services
is surprisingly easy to build. A set of applications,
written in Java, map the system-specific service (e.g.,

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

Figure 10 The Clipboard Viewer: a simple distributed application using T Spaces

printing service) or application (e.g., Web search)
to a standard tuple representation. Any client from
any platform can generate a tuple and send it to a
T Spaces server. Applications, listening for specific
tuples, pick up jobs when they see them and execute
them. In building this environment, one would write
the service application to run on the platforms where
they could do the most good. At the IBM Almaden
Research Center, most network printers are visible
to AIX systems. Therefore, one AIX printer service
application would listen for tuples posted to the
“printing space,” pick them up, and send them to an
AIX queue. Similarly, queries about queues and print
status could also be done. On every other local
printer that should be attached to the common plat-
form, a user simply runs the local print application

(although, in practice, the local application can prob-
ably handle a number of services). We anticipate lit-
tle system interruption when deploying this scheme,
since the T Spaces global environment is only ad-
ditive, not disruptive. Thus, to an existing comput-
ing environment, T Spaces simply adds connectivity.

One of the more advanced aspects of the T Spaces
global environment is that it allows the introduction
of a smart middleman into the equation. Therefore,
as mentioned above, one can build a useful indepen-
dent print service that provides access to any printer
in the building, which is beneficial, as long as the
whereabouts of all the printers is known. However,
a smart middleman can add intelligence. A PDAwith
a location sensor gives the current location to the

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998 WYCKOFF ET AL. 471

Figure 11 GCS Whiteboard snapshot

smart middleman, which then in turn selects the most
appropriate printer, based on location, availability,
speed, resolution, etc. In addition, after having cho-
sen a printer, the middleman can also display a map
to the PDA user showing the path from the user’s cur-
rent location to the printer.

Just as a printing service can be made generally avail-
able through T Spaces, so can any other service. But
the real power of the environment is shown by how
new computers, such as the Tier-0 devices, are en-
abled with any network service and are connected
to any other network computer through the simple
T Spaces interface. Data from a smart cell phone
can easily be made available to a PDA, an automo-

bile computer, a home security computer, a personal
computer, or even a corporate mainframe computer.

Conclusion, project status, and future work

It is interesting that people often accept limitations
without question when no alternatives exist but then
will not tolerate anything but the best solution when
better alternatives are known. Currently, the model
for distributed programming is synchronous, directed
point-to-point communication, and the program-
ming community appears to accept this without ques-
tion. Although the Tuplespace model of communi-
cation has numerous benefits for the distributed
application programmer, most Tuplespace efforts of

472 WYCKOFF ET AL. IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

the past remain unknown to the general population,
having been known only to the relatively obscure area
of parallel programming. However, with T Spaces
and Sun Microsystems’ JavaSpaces pushing into the
mainstream of computing, this is about to change.
The usefulness of the Tuplespace model is simply
too promising to ignore, and, with the added diver-
sity of the emerging Tier-0 devices breaking the ex-
isting point-to-point communication model, the tim-
ing could not be more perfect.

T Spaces embodies the convenience of the Tu-
plespace communication model, the robust reliabil-
ity and trustworthiness of a database system, and the
platform independence of the Java programming
language. It contains most of the features that to-
day’s Tier-0 devices need in a network middleware
package. Furthermore, it not only serves as the in-
terface to other programs and distributed compo-
nents, it is a fully functional data repository that can
act as the primary data store or a caching front end
to a corporate data warehouse.

The T Spaces project released version 1.02 to the
public via the IBM Alphaworks* channel (the URL
for Alphaworks is http://www.alphaworks.ibm.com)
on March 16, 1998. The release contained most of
the features described in this paper, except for the
recovery features, which, at that time, were still in
development. As part of the next release, version 2,
we will be adding function and support for additional
interfaces to the T Spaces server. The T Spaces en-
gine itself will be improved with features like XML
(Extensible Markup Language) support so that XML
data can be indexed and searched, a distributed beans
interface so that JavaBeans* * can listen for, and re-
ceive, events on distributed machines, a CORBA in-
terface so that T Spaces can communicate directly
with non-Java platforms, and a mobile interface so
that T Spaces can function as a replication server to
the mobile clients.

We have not yet run any formal performance tests
on T Spaces, only small-scale informal ones. We are
optimistic with results so far in terms of search, in-
sert, and delete performance. However, a true mul-
tiuser experiment that tests T Spaces performance
and scalability under significant user load will pro-
vide truly useful results.

Acknowledgments

We thank the IBM Grand Central Station team for
their extensive testing of our system, the Harvey

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

Mudd College team for their work on the Palm Pi-
lot** Client, and Norm Pass, for his continued sup-
port of our project. Our special thanks to John Tho-
mas for getting our system ready for public release
and thanks also to Kevin Eustice, programmer ex-
traordinaire, for his fine proofreading and coding ca-
pabilities.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Apple Computer Inc.,
Object Management Group, Oracle Corp., Sybase, Inc., Infor-
mix Software, Inc., Sun Microsystems, Inc., The Open Group, or
3Com Corp.

Cited references and notes

1. Popular Electronics (Janualy 1975).
2. http://www.omg.orgiabout/wicorba.htm, Object Management

Group.
3. J. M. Cheng, C. R. Loosley, A. Shibamiya, and P. S . Worth-

ington, “IBM Database 2 Performance: Design, Implemen-
tation, and Tuning,” IBM SystemsJoumal23, No. 2,189-210
(1984).

4. http://www.software.ibm.com/data/db2/udb, IBM Corpora-

5. R. Bamford, “Oracle: A High-Performance Production
tion.

DBMS,” presentation at 19th ACM SIGMOD Conference on
the Management of Data (May 1987).

6. http://www.oracle.com, Oracle Corporation.
7. P. Melmon, “The Sybase Open Server,” Proceedings of the

SIGMOD International Conference on Management of Data,
SIGMOD Record 21, No. 2, 413-413 (June 1992).

8. http://www.sybase.com, Sybase, Inc.
9. C. Lamb, G. Landis, J. Orenstein, and D. Weinreb, “The Ob-

jectStore Database System,” Communications of theACM34,
No. 10, 50-63 (October 1991).

10. http://www.objectdesign.com, Object Design Co.
11. Y.-M. S h y , “VERSANTReplication: Supporting Fault-Tol-

erant Object Databases,” Proceedings of the 1995 ACM SIG-
MOD International Conference on Management ofData (May
1995), pp. 441-442.

12. http://www.versant.com, Versant Co.
13. Building an Object-Oriented Database System-The Story of

02 , F. Bancilhon, C. Delobel, and P. Kanellakis, Editors, Mor-
gan Kaufmann Publishers, San Francisco, CA (1992).

14. http://www.o2tech.fr, O2 Technology, Ardent Software, Inc.
15. R. Ananthanarayanan, V. Gottemukkala, W. Kafer, T. J. Leh-

man, and H. Pirahesh, “Using the Co-Existence Approach
to Achieve Combined Functionality of Object-Oriented and
Relational Systems,” Proceedings ofthe ACM SIGMOD Con-
ference (1993), pp. 109-118.

16. B. Reinwald, S . Dessloch, M. J. Carey, T. 3. Lehman, H. Pi-
rahesh, and V. Srinivasan, “Making Real Data Persistent: Ini-
tial Experiences with SMRC,” POS (1994), pp. 202-216.

17. S . J. White and D. J. DeWitt, “QuickStore: A High Perfor-
mance Mapped Object Store,” SIGMOD Record 23, No. 2,
395-406 (June 1994).

18. M. Stonebraker, “Postgres DBMS,”SIGMODRecord 19, No.
2, 394 (June 1990).

19. R. Tolksdorf, “Laura: A Coordination Language for Open
Distributed Systems,” 13th IEEE International Conference on
Distributed Computing Systems (1993), pp. 39-46.

WYCKOFF ET AL. 473

20.

21.

22.

23.

24.
25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

A. Polze, “Using the Object Space: A Distributed Parallel
Make,” 4th IEEE Workshop on Future Trends of Distributed
Computing Systems, Lisbon (September 1993), pp. 234-239.
P. Ciancarini, A. Knoche, D. Rossi, R. Tolksdorf, and F. Vi-
tali, “Coordinating Java Agents for Financial Applications
on the WWW,” Proceedings of the 2nd Conference on Prac-
tical Applications of Intelligent Agents and Multvlgent Tech-
nology (PAAM) (April 1997), pp. 179-193.
JavaSpace Specification, Revision 0.4, http://java.sun.com:
80/products/javaspaces/specs/js.ps, Sun Microsystems, Inc.
P. Ciancarini, A. Knoche, R. Tolksdorf, and F. Vitali,
“Pagespace: an Architecture to Coordinate Distributed Ap-
plications on the Web,” Computer Networks and ISDN Sys-
tems 28, No. 7-11 (May 1996).
L. Stesin, personal communication (July 1997).
B. Anderson and D. Shasha, “Persistent Linda: Linda +
Transactions + Query Processing,” Workshop on Research
Directions in High-Level Parallel Programming Lang~lages,
Mont-Saint-Michel, France (June 1991). Published as Spring-
er-Verlag Lecture Notes in Computer Science 574.
N. Afshartous and M. C. Harrison, “Expressing Concurrency
in Griffin,” IEEE International Conference on Paralleland Dis-
tributed Systems (1996), pp. 292-301.
D. Gelernter, “Generative Communication in Linda,” TO-
P U S 7, No. 1, 80-112 (1985).
N. Carrier0 and D. Gelernter, “Linda in Context,” Commu-
nications of the ACM 32, No. 4, 444-458 (April 1989).
D. Gelernter and A. J. Bernstein, “Distributed Communi-
cation via Global Buffer,” Proceedings of the ACM Principles
ofDistributed Computing Conference (1982), pp. 10-18.
In the original Linda systems, the fields were restricted to
primitive types such as integer and string, and aggregates such
as structures and arrays. Several modern systems, including
ours, eliminate this restriction.
In fact, by attaching a Structured Query Language (SQL) front
end to T Spaces, we could create a Java-based SQL database
engine.
D. Lea, Concurrent Programming in Java Design Principles and
Patterns, Second Edition, Addison-Wesley Publishing Co.,
Reading, MA (1997).
T. J. Lehman and M. J. Carey, “Query Processing in Main
Memory Database Management Systems,” Proceedings of the
ACM SIGMOD Conference (1986), pp. 239-250.
T. J. Lehman, E. J. Shekita, and L. F. Cabrera, “An Eval-
uation of Starburst’s Memory Resident Storage Component,”

566 (1992).
Transactions on Knowledge and Data Engineering 4, No. 6,555-

T. J. Lehman and M. J. Carey, “A Study of Index Structures
for Main Memory Database Management Systems,” Proceed-
ings of the IEEE International Conference on Vely Large Data
Bases (1986), pp. 294-303.
W. Litwin, “Linear Hashing: A New Tool for File and Table
Addressing,” Proceedings of the IEEE International Confer-
ence on Very Large Data Bases (1980), pp. 212-223.
E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software, Ad-
dison-Wesley Publishing Co., Reading, MA (1994).
B. A. Bernstein, V. Hadzilacos, and N. Goodman, Concur-
rency Control and Recovery in Database Systems, Addison-Wes-
ley Publishing Co., Reading, MA (1987).
S. Hirano, Y. Yaw, and H. Igarashi, “Performance Evalu-
ation of Popular Distributed Object Technologies for Java,”
ACM Workshop on Java for High-Performance Network Com-
puting (February 1998), pp. 81-90.

is responsible for finding a class given its name. The Class-
Loader that loads a class is used to find any classes that the
loaded class needs during its execution.

41. J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols,
M. Satyanarayanan, R. N. Sidebotham, and M. J. West, “Scale
and Performance in a Distributed File System,”ACM Trans-
actionson ComputerSystems6,No. 1,51-81 (February 1988).

Accepted for publication April 6, 1998.

Peter Wyckoff Courant Institute of Mathematical Sciences, New
York University, Computer Science Department, 251 Mercer Street,
New York, New York 10012 (electronic mail: wyckoff@cs.nyu.edu).
Mr. Wyckoff is pursuing a Ph.D. in computer science at New York
University. He holds a bachelor’s degree from the State Univer-
sity of New York at Stony Brook and a master’s degree from New
York University. He participated in the T Spaces project while
he was an intern at the IBM Almaden Research Center.

Stephen W. McLaughry Universityof Oregon, Computerand In-
formation Science Department, Eugene, Oregon 97403 (electronic
mail: stephen@cs.uoregon.edu). Mr. McLaughry is pursuing a
Ph.D. in computer science at the University of Oregon. His re-
search interests include type theory and distributed systems. He
holds a bachelor’s degree from Williams College and a master’s
degree from the University of Oregon. He worked on the T Spaces
project while he was an intern at the IBM Almaden Research
Center.

Tobin J. Lehrnan IBMResearch Division, Almaden Research Cen-
ter, 650 Haty Road, San Jose, California 95120-6099 (electronic
mail: toby@almaden.ibm.com). Dr. Lehman joined the Almaden
Research Center in 1986, shortly after receiving his Ph.D. from
the University of Wisconsin-Madison. His thesis on the area of
memory-resident database systems introduced some novel con-
cepts in index structures, query processing, logging, recovery, and
concurrency control. At IBM he participated in a number of
projects, including distributed database systems (R*), a hierar-
chical database machine, a new age computing environment, an
extensible database system project (Starburst), an object-relational
database system (SMRC), and a revolutionary Web searchipublish
system (Grand Central Station). Dr. Lehmanwas one of the orig-
inal architects of the IBM ADSM backup product, and he was
the creator and chief implementer of both the text search func-
tions and the Large Object (LOB) support in the DB2 Common
Server Version 2. He is currently the leader of the T Spaces proj-
ect in the computer sciences department. His research interests
include object-relation database systems, large object manage-
ment, memory-resident database systems, making the world
smaller through indexing the World Wide Web, and using T
Spaces to increase productivity.

Daniel A. Ford IBM Research Division, Almaden Research Cen-
ter, 650 Hany Road, San Jose, California 95120-6099 (electronic
mail: daford@almaden.ibm.com). Dr. Ford manages the Grand
Central Station research project in the computer sciences depart-
ment. His research interests include Web crawling, Web channel
publication, XML standards, RAID tertiary storage, intelligent
home networks, and knowledge management.

Reprint Order No. G321-5686.

40. A ClassLoader is the piece of the Java run-time system that

474 WYCKOFF ET AL. IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

