502 copeLa BT AL

Support

for Enterprise JavaBeans

in Component Broker

Objects were introduced as programming
constructs that encapsulate data and methods.
The goal was to foster software reuse and
simplify the developer’s concept of how a task
was implemented. The developer need only know
the interfaces to an object to use its
functionality. Distributed objects simplified
conceptualization further by removing the need
to know the locality of an object. Clients invoked
methods on distributed objects as if the objects
existed in the client’s process. Beyond this
location transparency, the need arose for
distributed objects to survive beyond the life of
one client, to be able to support thousands or
millions of clients, and to participate in
transactions. To support scalability, persistence,
and transactional semantics with no
dependencies on platform or data store,
“component models” were developed. In this
paper we look at various component models,
focusing on two: IBM’s Component Broker and
Sun’s Enterprise JavaBeans™. We show that they
augment each other and propose how Enterprise
JavaBeans can use the additional functions of
Component Broker to provide a scalable,
transactional, and persistent environment to
clients of both worlds.

he emerging component model for Java**, Java-

Beans**, defines “pluggable” program cle-
ments. These elements can be manipulated and run
in a visual builder. They are customizable and por-
table and can be made persistent. They are capable
of introspection, either by being self-describing or
by adhering to interface-naming conventions that im-
ply certain behavior patterns.

0018-8670/98/$5.00 © 1998 IBM

by C. F. Codella
D. N. Dillenberger
D. F. Ferguson
R. D. Jackson
T. A. Mikalsen
l. Silva-Lepe

Enterprise JavaBeans** (EJB) extends the JavaBeans
component model to distributed server components
that support transactions. This capability is an im-
portant part of the Java programming model for mul-
titier distributed applications.

Component Broker' (CB) is IBM’s comprehensive im-
plementation of the Object Management Group’s®
Common Object Request Broker Architecture**
{CORBA™™), which sets the standard for component-
based interoperability of software from different ven-
dors. It is imperative that Component Broker sup-
port the building, installation, and running of EJB
components on CB servers and that it support Java
programmers who build CB applications that use EJB
components.

In this paper, we discuss component models and, in
particular, Component Broker. We propose how EiB
components can use Component Broker environ-
ments. We look at support for Java clients and CB
clients, support for transactions, and run-time sup-
port. The paper concludes with a summary and some
potential problems that are yet to be addressed.

©Copyright 1998 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) ecach reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998

Component software and distributed objects

As the industry grows, the need for software to be
less complex, reusable, and platform-independent
has resulted in the creation of component program-
ming models. Objects encapsulate code and data.
They provide software reuse through inheritance and
defined method interfaces. However, only the lan-
guage compiler that creates an object knows of its
existence. An object “lives” within a single program.
External workstations or systems do not know about
the existence of these objects or how to reach them.

Distributed objects can live anywhere on a network.
They can be accessed via method invocations by cli-
ents, who need not be aware of the language and
compiler used to create them, or on which machine
or operating system the objects are executing. To
achieve this transparency, distributed objects use ser-
vices defined by a component model. Component
models such as CORBA, CB, EJB, and Microsoft’s Dis-
tributed Component Object Model, differ in the level
of functionality and quality they provide. Some ser-
vices that are needed to achieve object transparency
are: security, licensing, versioning, life-cycie manage-
ment, support for open tool palettes, event notifi-
cation, configuration and property management,
scripting, meta-data and introspection, transaction
control and locking, persistence, ease of use, and self-
installation.'

In this section we describe the JavaBeans, CORBA,
Enterprise JavaBeans, and Component Broker com-
ponent models.

JavaBeans and Enterprise JavaBeans. The Java-
Beans component model specities how components
expose their properties, methods, and events. Al-
though beans can use the Java Development Kit
(JDK**) as a component framework, a bean does not
derive from some universal base class that gives it
bean-like properties. Almost anything written in Java
can be made into a bean. In fact, according to the
JavaBeans specification, any Java class is a bean. This
means that the JavaBeans specification defines no
constraints. Introspection is what differentiates beans
from ordinary Java classes. As long as a bean fol-
lows the defined conventions, a tool can look inside
and discover its properties and behavior. The Java-
Beans naming conventions, also known as JavaBeans
design patterns, include conventions for naming sim-
ple properties, Boolean properties, indexed proper-
ties, multicast events, unicast events, and public
methods. In addition, a developer can define a Bean-

IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998

Info class to provide (via descriptors) all or parts of
the bean’s introspection information. This is op-
tional, as the Beaninfo class can be generated for any
bean that follows the naming conventions by using
the Introspector class. The JavaBeans component
model packaged with the JDK supports security (us-
ing the Java Security Manager), versioning, life-cy-
cle management, support for open tool palettes,
event notification, configuration and property man-
agement, scripting, meta-data and introspection, per-
sistence (using serialization), ease of use (via the
BeanBox, a simple test container), and is self-install-
ing (via Java archive files).

In contrast, Enterprise JavaBeans defines a contract
for how server-side components interact with their
container, in which the container acts as a frame-
work that expects application-specific beans to be-
have according to a given set of rules. To satisfy some
of these rules, an EJB component must derive from
an appropriate base class. Naming conventions are
not defined as explicitly in the EJB specification and,
although introspection can be used at the time an
EIB component is deployed, the preferred way of
communicating deployment information is via a de-
ployment descriptor. A deployment descriptor is
analogous to a Beaninfo class and is used by a de-
ployment agent. EJB defines interfaces and functional
behavior for security, life-cycle management, con-
figuration and property management, meta-data and
introspection, transaction control and locking, and
persistence. We describe these services in more de-
tail in subsequent sections. For more background on
EJB, see Matena and Hapner® and Brackenbury
et al.’

CORBA. The Common Object Request Broker Ar-
chitecture (CORBA) defines a framework for multi-
platform, multilanguage distributed object interac-
tion.® CORBA defines: (1) an abstract object bus’ for
objects to send requests and reccive replies, (2) an
interface definition language (IDL) for defining ab-
stract interfaces that objects can implement and in-
voke, (3) a number of object services that augment
the functionality of the object bus (e.g., the naming
service or the object transaction service), (4) a num-
ber of facilities that define “horizontal” and “ver-
tical” application frameworks that are used by bus-
iness objects, and (5) application objects that are the
consumers of the CORBA framework services.

Enterprise JavaBeans uses remote method invoca-
tion (RMI) IDL for its distributed object model and
the Java Transaction Service (JTS) for its distributed

CODELLA ET AL. 503

Figure 1 OTM architecture

OTM (TRANSACTION PROCESS!NG MONITOR)

| ORB (ABSTRACT OBJECT BUS)

transaction model. A subset of RMI, Java’s remote
method invocation protocol and application pro-
gramming interface (API), is mapped onto CORBA
by RMI/IDL and RMIIOP (Internet Inter-Orb Proto-
col). JTS is a Java implementation of the CORBA Ob-
ject Transaction Service (OTS). EJB also requircs
CORBA 1{OP to interoperate across multivendor serv-
ers, propagate transaction and security contexts, ser-
vice multilingual clients, and support ActiveX**
clients via DcoM** (Distributed Component Object
Model)-to-CORBA bridges.

Enterprise JavaBeans augments CORBA by defining
the interfaces between a server-side component
(bean) and its container. The container can be an
Object Transaction Monitor (OTM). An OTM is a
combination of a transaction processing (TP) mon-
itor with an object request broker (ORB), more spe-
cifically, a TP monitor built on top of an ORB. A TP
monitor behaves as an intermediary between client
and server processes to manage transactions, route
them across systems, balance their execution loads,
and restart them after failures. This gives a server
system with limited resources the scalability it necds
to serve large numbers of client processes.

An ORB is simply an object bus. In contrast, an OTM
provides a framework for running server-side com-
ponents (see Figure 1). The OTM framework is the
primary orchestrator of server-side components; it

B04 CODELLA ET AL.

calls components at the right time and in the right
sequence. An OTM maximizes the reuse of scarce sys-
tem resources by components. It prestarts pools of
objects, distributes their loads, provides fault toler-
ance, and coordinates multicomponent transactions.
Some of the activities performed by an OTM are: ac-
tivation and deactivation of components in memory,
coordination of distributed transactions, notification
of life-cycle events (such as creation, activation, de-
activation, and destruction) to components, and
management of the persistent state of a component.

IBM's Component Broker is an example of a
CORBA OTM that can be used to deploy EJB compo-
nents by implementing the contract between a com-
ponent and its container.

Component Broker: Distributed object
middieware

As mentioned earlier, an OTM coordinates large
numbers of server-side components using a frame-
work-based approach. In this approach, the frame-
work embodies the main pieces of server-side infra-
structure, such as activation and deactivation,
distributed transaction coordination, and persistent
state management. Components in this approach be-
come subservient to the framework, providing the
application-specific details (such as what application-
specific activities to perform prior to deactivation)

IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998

by plugging into, and thus completing, the frame-
work. Component Broker builds on a CORBA ORB,
borrowing elements from TP monitors such as En-
cina*** and cics* (Customer Information Control
System), resulting in a framework for managed com-
ponents that allows mixing in most of the object ser-
vices defined by CORBA. In addition, Component
Broker provides instance managers that manage
component state, mapping it to data in a database
management system (DBMS).

This section provides an overview of the main con-
cepts in Component Broker. The Component Bro-
ker run-time infrastructure includes the Managed
Object Framework, the Instance Manager Frame-
work, the Object Transaction Monitor, and a col-
lection of CORBA-compliant object services. Com-
ponent Broker also provides tools for the creation
of business objects and for installing, running, and
monitoring servers. In addition, Component Broker
defines a Client Programming Model: the activities
that a client can perform using the Component Bro-
ker infrastructure.

The Managed Object Framework. The Managed Ob-
ject Framework (MOFW) represents the set of inter-
faces and implementation conventions that must be
followed in order to create and use business objects
in Component Broker. The MOFW provides capabil-
ities beyond those present in the basic CORBA ORB
and object services defined by the Object Manage-
ment Group (OMG). The MOFW also provides sim-
plified interfaces to some of the basic CORBA inter-
faces. The MOFW is not the only set of interfaces
supported by Component Broker. Component Bro-
ker architecture allows additional frameworks that
can be used by business objects and client programs.
The relationship betwcen the MOFW and the
CORBA ORB and Common Object Services (COS) is
shown in Figure 2.

As the figure shows, busincss objects and client pro-
grams that use business objects can be written both
to the MOFw interfaces and directly to the
CORBA ORB and COS. The MOFW is not a complete
layer over the CORBA services. It adds usability and
function only in those places key to providing an in-
tegrated object server.

Managed objects and nonmanaged objects. Basically,
two kinds of objects are dealt with in Component
Broker: those that are managed by a Component
Broker server and those that are not. All of the
objects that client application programmers and

IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998

Figure2 Overview of MOFW

BUSINESS OBJECTS
AND CLIENT PROGRAMS

MANAGED OBJECT FRAMEWORK (MOFW)

CORBA ORB AND COS

business object builders use will be instantiated
from classes that descend, directly or most often in-
directly, from either IManagedlocal::ILocalOnly or
IManagedClient::IManageable.’ This ensures a min-
imum “footprint” for the client, separation of server-
only objects from those that may exist on either cli-
ent or server, and, most importantly, simplicity for
the programmer. No extra methods need to be used
or implemented because of this distinction.

Those objects that are to be local only will be instan-
tiated from classes that are descendants of ILocal-
Only (perhaps through INonManageable). Those ob-
jects that are to be accessed remotely and managed
by a Component Broker server will be instantiated
trom subclasses of the IManageable interface. Fig-
ure 3 shows the basic relationship between these im-
portant MOFW interfaces and the CORBA object ser-
vices interfaces. In this diagram, the boxes represent
classes and the arrow-terminated lines represent in-
heritance relationships.

A managed object has a rich structure that includes
its client interface, business logic, business object
state, and MOFW logic. Figure 4 illustrates a simpli-
fied view of this structure using an account business
object as an example. In this diagram, the dotted ar-
rows represent a dependency relationship from one
class to another, e.g., an AccountBO object depends
on an AccountDO object for the management of its
state data.

CODELLA ET AL.

505

Figure 3 MOFW basic abstractions

- CORBA:Object

T
identifiableObject

Streamable

lNonManageéble

The box labeled Account defines the client interface
of this business object, that is, the attributes and op-
erations available to a client of the account business
object. The fact that Account inherits from IManage-
able indicates that an account object is accessible
remotely and that it can be persistent, accessed
securely, participate in transactions, and take advan-
tage of all the additional Component Broker fea-
tures. AccountBO implements the business logic de-
fined in the client interface, from which it inherits.
In addition, AccountBO also inherits from IManaged-
ObjectWithDataObject. The purpose of this class is to
provide an approach for handling essential business-
related state information. This approach is to del-
egate setting and getting attribute values to a data
object, which handles all interactions with the stor-
age mechanism. Other approaches include caching
the attribute values in the business object and syn-
chronizing with the data object at appropriate times,
as well as using no data object at all.

The data object that interacts with the storage mech-
anism is defined by AccountDO. This object provides
an abstraction of a persistent store, by presenting es-
sential state data attributes in a storage-mechanism-
independent fashion to the business object. The data

506 coDELLA ET AL

IManageable

object can use a “persistent object” to achieve im-
proved performance. Interacting with a persistent
object is one of the main responsibilities of the data
object.

A persistent object provides transformations be-
tween storage mechanism data types and an object’s
attribute types. This object also interacts with the
storage system’s cache. There is a separate persist-
ent object for each business object/data object pair,
and it represents all of the data associated with the
object.

Many of the interfaces that a business object class
inherits from the MOFW, and which make it possible
for the object to be actually managed, are not nec-
essarily related to the essential logic of the business
object itself and thus should not be the concern of
the implementor. The managed object subclass
AccountMO completes the implementation of inher-
ited interfaces from the business class. It also inher-
its a few additional interfaces that allow a managed
object to be fully managed within the Component
Broker environment. AccountMO does not imple-
ment all of these interfaces by itself. It relies on a
delegation scheme involving a “mixin” object.

IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998

Figure 4 Simplified managed object structure

IManagedObject

IManagedObjectWithDataObject

iDataObject

AccountPO

1 OtherMOlnterfaces

MixinObjectinterfaces

The mixin object is responsible for registering a bus-
iness object with the transaction service, triggering
the movement of data into and out of persistent stor-
age, and so forth. A mixin object makes use of ob-
ject services to provide appropriate behavior where
necessary. Some mixin behavior can be controlled
at run time based on interactions between the mixin
object and systems management, as we discuss later.

The Instance Manager Framework. A managed ob-
ject’s relationship to an instance manager is similar
to an object’s relationship to an object-oriented da-
tabase. That is, an instance manager provides capa-
bilities such as identity, caching, persistence, recov-
erability, concurrency, and security for its managed
objects. The Instance Manager (iM) Framework con-
sists of interfaces that apply to all kinds of instance
managers; for example, “container methods” that re-
port the total number of active objects, passivate
some or all objects (that is, force objects to remove
themselves from memory and save their state as ap-
propriate), and so on. This is in contrast to inter-
faces that apply to traditional legacy storage mech-
anisms such as DB2* (DATABASE 2*) and CICS, and
that are provided by specializations of the IM Frame-
work, such as the Business Object Instance Manager
(BOIM) Framework.

IBM SYSTEMS JOURNAL. VOL 37, NO 4, 1998

The BOIM Framework actually constitutes a com-
plete, runnable instance manager, as well as being
a framework that can be further extended and im-
plemented. As an example, Component Broker
provides a DB2 instance manager that is an actual
instantiation of the BOIM Framework and parame-
terizes BOIM with appropriate configurations. A par-
ticular kind of IM can only handle one type of legacy
store. Thus the DB2 IM provides support for man-
aged objects that are persistent in DB2 tables. A dif-
ferent kind of IM would be required for managed
objects that are stored through CICS. An M, or more
specifically a BOIM, includes containers, “homes,”
mixin objects, and configuration objects, among oth-
ers.

An IM container can be thought of as a further con-
figuration of a particular IM. Thus, we could config-
ure a DB2 IM in two different ways (to implement two
different transaction policies, or to connect two dif-
ferent databases, for example). A container provides
a configurable boundary for system administration
and management as well as a facility for storing ob-
jects. In addition, a container has the responsibil-
ities of interfacing with the ORB to resolve object
references, interacting with homes to reactivate
managed objects after they have been passivated, and

CODELLA ET AL. B07

Figure 5 Instance Manager containers and homes

defining policy for managed objects (this includes
decisions on passivation, caching, locking strategy,
transaction modes, and concurrency control).

A home provides a way to create and locate man-
aged objects. Thus, a given home is associated with
a single type of managed object. For example, there
is only one home to create and locate account ob-
jects and that home cannot create or locate any other
kind of managed object. In addition to creating man-
aged objects, a home brings them into existence by
reactivating them if they have been passivated. In
both of these cases, the home registers a managed
object with its container after bringing it into exist-
ence. In this way, the container will be able to re-
solve references to a managed object until it is pas-
sivated or removed.

There can be many homes in a single container.
Homes can be added to a container dynamically if
it becomes necessary to support a new type of ob-
ject. Homes that are associated with the same M will
necessarily be related to the same kind of legacy stor-
age environment (for example, DB2), and their man-
aged objects will be subject to the same kinds of pol-
icies.

508 CODELLA ET AL.

HOME #2

Thus we see that a container represents a configura-
tion of an IM instance, a home is related to a given
container, and a managed object is owned by exactly
one home. This is illustrated in Figure 5.

A mixin object is a special object provided to a bus-
iness object by an instance manager. The mixin ob-
ject integrates support for transactions and concur-
rency into the business object; it manages persistence
on behalf of the business object; it externalizes the
managed object key; and it participates in memory
management activities. The mixin object accom-
plishes these tasks by relying on the special “before”
and “after” methods provided by the mixin interface.
These methods are invoked on the mixin object by
other objects at appropriate times, and they allow
transactions to be properly committed, states to be
restored upon first reference, and so forth.

When a home creates a managed object, a special
configuration object gets involved in the process. The
configuration object is provided to the home by the
container. [t knows the policy information related
to the container and thus the type of mixin that needs
to be created. The configuration object is the instance

IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998

manager component that actually creates and ini-
tializes the mixin object.

The Object Traunsaction Monitor. Component Bro-
ker’s Object Transaction Monitor (OTM) provides
high availability and scalability of business objects
by performing load balancing of Component Bro-
ker processes or servers in which business objects
execute. The typical approach for load balancing
across a cluster of servers is to assemble them into
a server group. A server group consists of one or
more Component Broker servers that can run on one
or more hosts. Scalability is achieved by balancing
the workload across the servers in a server group and
by adding more servers if needed. High availability
is achieved—if one server becomes unavailable, the
other servers in the group can take over its respon-
sibilities.

A server group-aware client, that is, the client side
of the OTM, gathers information about servers in a
server group and their policies by communicating
with the group’s control-point server. The client can
then send requests to each server in the group ac-
cording to the bind policies that are in effect. An al-
ternative to an aware client would be to use a router.
However, a single router implies a single point of
failure and may become a performance bottleneck,
and using multipie routers just shifts the client aware-
ness problem from the servers to the routers.

A server group-aware object is any object that can
be used to balance work in a server group. When a
method is invoked on a server group-aware object,
the OTM determines to which of the servers in the
group to send the request. The object always appears
to the client as a single object with a single object
reference, even if it is activated concurrently in more
than one server by different clients. From the client’s
point of view, there are two different approaches to
distribute the requests to different servers: always
use the same server Iif it is available, or alternate
among servers.

Bind policies determine which server of a server
group should be selected to receive the next request
for a specific object. The bind policies that apply to
a given object, according to the system configura-
tion, are used to rank the available servers in a group.
Each policy can adjust the weighting given to each
server or mark the server as “impossible” for selec-
tion. The server with the lowest accumulated weight
will be selected. Bind policies cover different aspects
of server selection. Some may be used for load bal-

IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998

ancing, using a “round-robin” algorithm to distrib-
ute the load among servers. Other bind policies can
determine the selection of objects involved in a trans-
action by marking all of the servers, except the one
that runs the transaction, as “impossible” for selec-
tion. By combining these policies it is possible to de-
termine which server best satisfies the availability and
scalability requirements of a given request.

Object services. Component Broker supports
CORBA-compliant implementations of the object ser-
vices listed below. Rather than describing in detail
what these services are, we indicate how the Com-
ponent Broker implementations enhance their stan-
dard CORBA specification.

Naming service. In addition to implementing the stan-
dard naming service CosNaming module, Component
Broker’s naming service allows the manipulation of
compound names as character strings by extending
the CosNaming::NamingContext interface with the
subinterface IExtendedNaming::Naming Context, which
introduces parallel “_with_string” suffixed versions of
the operations in CosNaming::Naming context. For ex-
ample, it is possible to say something like the follow-
ing to resolve the compound name “/host/applications”
to an object:

myRoot—resolve_with_string(“/host/applications”)

The CORBA naming service only defines an interface
for handling name spaces; it does not define or man-
date any structure the name spaces must adhere to.
In contrast, Component Broker’s naming service de-
fines a structure, called the “System Name Tree,”
for its name space. An illustration of the System
Name Tree is shown in Figure 6.

The System Name Tree is useful for ensuring that
objects can be bound and located by “well-known”
name paths. An instance of the host name tree ex-
ists on every (server) host. A workgroup is a logical
collection of hosts whose aggregation creates some
administrative or operational synergy for the bus-
iness. A cell represents an administrative boundary
for the name space. Notice that the local host root
context is not bound to any other naming context.
The ORB::resolve_initial_references(“NamingService”)
operation returns the local host root for the host ma-
chine.

Security service. Component Broker’s security service
offers two major types of protection: authentication

CODELLA ET AL. (09

Figure 6 Component Broker's System Name Tree

HOSTROOT . HOST RESOURGES

WORKGROUPS

WORKGROUP
ROOT

*] CELLROOT | APPLICATIONS

and message protection. In a Web-based environ-
ment, authentication must guarantee that clients can
trust the servers they access, as well as guarantee that
servers can trust their clients. Component Broker
uses a DCE'" security server as a mutually trusted
third party that both clients and servers log on to
before communicating and from which they obtain
security tokens and have a security context estab-
lished on their behalf,

A security context stores credentials and quality-of-
protection information for clients and servers. A cre-
dential represents a user’s secure identity and role
in an interaction and allows the security server to
restrict access to the system accordingly. Levels of
quality of protection include no (or basic) protec-
tion, integrity, confidentiality, and both integrity and
confidentiality. When more than one server (e.g.,
Server 1 and Server 2) is involved in carrying out a
client’s request, either both servers can use the same
security server, or Server 1 can use its own security
credentials to interact with Server 2 and its security
server.

Life-cycle service. Component Broker’s life-cycle ser-
vice maintains a “factory” repository containing a
collection of naming contexts in the System Name

510 coDpELLA ET AL

RESOURCES _

Tree. The life-cycle service also provides an inter-
face for adding factories, at the time they are cre-
ated, to the repository. To find a factory, the follow-
ing steps must be followed: (1) decide on a location
scope, for instance, which part of the repository will
be searched for the factory; (2) determine which in-
terface the desired object supports, as well as the key
structure or string that identifies the interface; and
(3) set the location scope and pass the interface iden-
tifier to the factory finder. After obtaining a factory,
one of its methods can be called to create the de-
sired object. In practice, these steps amount to a few
lines of code, for example:

CORBA::Object_var obj;
obj = CBSeriesGlobal::nameService()—
resolve_with_string
(“host/resources/factory-finders/host-scope™);
IExtendedLifeCycle::FactoryFinder_var finder =
IExtendedLifeCycle::FactoryFinder::_narrow(obj);
obj = finder—find_factory_from_string
(“Person.object interface”);

Event service. Component Broker offers a standard
implementation of the CORBA event service, with
consumers, suppliers, event channels, and “push”
and “pull” communication models. In addition, Com-

IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998

ponent Broker offers two types of event services:
transient and persistent. In the case of event service
failure and subsequent recovery, consumers and sup-
pliers of a transient event service are able to com-
municate through the same channel reference they
used before the failure, but they must register again
with the channel before using it, and events not com-
municated to consumers before the failure are lost.
With the persistent event service, all objects, events,
and event data are kept in a persistent store. In the
case of failure all objects and data are recovered and,
after recovery, consumers and suppliers do not need
to register again with the channel.

Externalization service. Component Broker’s exter-
nalization service extends the CORBA standard by
providing the ability to control what is stored in the
stream, according to the object’s usage, using one of
the following streaming policies during externaliza-
tion and internalization: (1) reference, where a ref-
erence to a subobject is written into the stream, as
opposed to the subobject itself; (2) raw, where the
state of a subobject is externalized without its class
information; and (3) value, where the state of a sub-
object is externalized with its class information. Mis-
match of externalization and internalization policies
are detected. Also, the externalization service pro-
vides an additional I1BM stream format—a compact
format that reduces the information in a stream
whenever possible. This is in contrast to the OMG
standard format, which is a pessimistic format that
contains all information needed to move the state
of an object from one machine to another, no mat-
ter how different the machine architectures and op-
erating systems.

Identity service. Component Broker’s identity service
introduces a reference mechanism that associates
two identities, absolute and constant random, with
each object in a distributed system. Classes for ob-
jects that need these identities inherit the Identifia-
bleObject OMG standard interface. Absolute identi-
ties contain enough information to distinguish any
two objects. The system includes the appropriate in-
stance manager container information in the abso-
lute identity of an object. The constant random iden-
tity is a compact representation of the absolute
identity of an object, a four-byte key to a hash value.
As such it is not unique for every object, but it can
be used as a first-order comparison of object iden-
tities.

Query service. In Component Broker’s query service,
a collection is an aggregation of objects that can be

IBM SYSTEMS JOURNAL. VOL 37, NO 4, 1998

one of the following: (1) a home, i.c., the “birthplace”
and logical owner of objects of a given type; (2) a
view, i.c., a subset of some other collection based on
a predicate; (3) a reference collection, i.e., a collec-
tion that holds references to potentially heteroge-
neous objects; and (4) a single logical image, i.e., a
collection of other collections that gives the client
an image of one single collection. All of these col-
lections can be queried using IBM’s 00-SQL (object-
oriented structured query language) and using the
standard query evaluators. In addition, Component
Broker's query service supports query pushdown, an
optimization that delegates a query or parts of it to
adatabase when the query evaluator receives a query
on an object that has its state stored on the data-
base.

Transaction service. Component Broker’s transaction
service provides a standard implementation of the
CORBA Object Transaction Service (OTS), with sup-
port for atomic, consistent, isolated, and durable
(ACID) transactions, two-phase commit, and with
planned support for nested transactions. Component
Broker’s transaction service implements the OTS
standard interfaces Current and Coordinator and re-
quires that classes of resources taking part in a trans-
action inherit from the Resource interface and
implement its methods prepare, commit, rollback,
commit_one_phase, and forget. Note that aithough
Component Broker does not extend the CORBA OTS,
it does offer a way to synchronize the management
of a managed object’s state with transactional bound-
aries. This is accomplished by the mixin object, which
invokes synchronization methods on a managed ob-
ject before actually exccuting a transaction commit.

Concurrency service. Component Broker’s concur-
rency service implements the standard CORBA con-
currency service, coordinating the granting of the five
standard types of locks: intention read lock, read
lock, upgrade lock, intention write lock, and write
lock.

Component Broker Toolkit. Component Broker de-
fines a suite of tools to support the development of
server-based business object applications, including
tools for building business and data objects, defin-
ing object behavior, generating code, and debugging
and testing capabilities. The Component Broker
Toolkit** provides bridge technology that allows the
use of any tool that uses the MDL (model definition
language) format of Rational ROSE**. Tools for the
design of relational databases can also be bridged

CODELLA ET AL. 511

by using the standard data definition language (DDL)
format.

Component Broker Toolkit’s central tool is the Ob-
ject Builder, which integrates the activities performed
during business object development. The Object
Builder uses “smart guides” to assist in the devel-
opment of business objects. It also generates a sub-
stantial amount of the code that implements a bus-
iness object and facilitates the input of the business
logic code that cannot be generated and the map-
ping between a data object and its underlying data
store. The Object Builder uses a common data model
to format the meta-data it creates and store it in ver-
sion-controlled files. The Object Builder also pack-
ages and configures managed objects, containers, and
homes into application families that can then be used
by the Systems Management Tool to install the ap-
plication. In addition to installing applications, the
Systems Management Tool sets up Component Bro-
ker server networks with hosts and groups and per-
forms other important systems management activ-
ities.

Systems management. Component Broker’s systems
management (SM) provides the ability to configure,
deploy, monitor, and control a Component Broker
network. From the point of view of systems manage-
ment, there are three kinds of applications that are
deployed on a network: systems management, agent,
and client. The SM Application (SMAPPL) is the cen-
tral point for definitional configuration data and con-
tains a copy of the common data model (CDM). An
agent application allows the SMAPPL to communi-
cate with a Component Broker server in another
host; an agent also contains a copy of the CDM and
the portion of the configuration data that is asso-
ciated with its own host. Client applications can run
and are managed locally in their own hosts. These
applications are installed using the Application In-
stallation Tool.

The main user tool for systems management is the
sM User Interface, which can be attached to a host
that runs either the SMAPPL or an agent application.
With this tool a Component Broker network can be
set up, by creating and configuring management
zones, configurations, applications, cells, work-
groups, policy groups, and attributes of any of these
elements. All these pieces contribute to making sure
that error reporting, trace information, and perfor-
mance data for “wellness” reporting can be collected
and sent to responsible personnel, to be acted upon
in a timely fashion.

512 CODELLA ET AL.

Client Programming Model. The Client Program-
ming Model defines how programmers use (devel-
op objects that are clients of) business objects. Ap-
plication developers building either Tier-1 (client)
or Tier-2 (server) applications use the Client Pro-
gramming Model whenever they implement a new
object that makes use of a business object. Aithough
in this paper we focus on client applications written
in Java, Component Broker supports writing client

ure 7 presents a high-level overview of the Client and
Programming Model, with VisualAge* for C+ +, Vi-
sual Basic, Visual C+-+** and Java clients. The way
clients deal with business objects in the programming
model is consistent regardless of the underlying en-
capsulated “plumbing” that is required to support
the various mechanisms that were used to build the
business objects.

The client application accesses business objects, re-
siding on the server, that implement the business
logic of the application. As we have seen, a managed
object is a business object that has been installed on
a Component Broker server. In general, the client
application is unaware of whether the managed ob-
ject is remote or local, or implemented in the same
or another language. This transparency is achieved
by functions and architecture provided by Compo-
nent Broker and CORBA.

The managed object implementor provides the cli-
ent application with: (1) a set of interface files that
define the interface to a managed object and any
“helper” classes the client might use, and (2) DLL
(dynamic link library) and Java class files that im-
plement the classes in the interfaces and the helper
classes.

A client application performs at least some of the
following tasks:

1. Find objects. To find a managed object, a client
can use the naming service, navigating the Sys-
tem Name Tree with the well-known path and
name for the desired managed object. In general,
only a very small subset of the managed objects
in a distributed system will be directly bound to
a name in the naming service. Alternatively, a
managed object can be found by first finding a
known object, e.g., a factory or a collection, and
then invoking a find method on this known ob-
ject and passing it the managed object’s primary
key.

IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998

Figure 7 Client Programming Model overview

e

BA

VisualAge FOR G MANAGED OBJEGT
. CLIENTOBJECT - PROXY

VISUAL BASIG/VISUAL C++ | 71 MANAGED OBJECT
CLIENT OBJECT y "] PROXY

MANAGED OBJECT. |
JAVACLIENT OBJECT MANAC |

2. Use objects. This involves invoking methods on a
reference to a managed object, once this refer-
ence has becn found or created.

3. Create objects. A managed object can be created
by invoking a “create” method on a factory and
providing it with a key for the new managed ob-
ject. This operation will return an uninitialized
managed object and appropriate methods must
then be invoked to initialize its attributes. This
can result in significant overhead if every initial-
ization call has to go “across the wire.” Alterna-
tively, a so-called copy-helper object can be cre-
ated on the client side that contains all the data
necessary to properly initialize a managed object
upon creation. The client can then invoke a cre-
ate-from-copy method on the factory and provide
it with the key and copy-helper object.

4. Use sets of objects. A home in Component Bro-
ker represents a set of managed objects, all of the

IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998

CBOR

L A e
IDLTO-C++ TOOL | OBJECT IDL

LOGAL VisualAge
FORC++
CLIENT OBJECT

MANAGED
BJECT

MANAGED
OBJECT

MANAGED MANAGED
QBJECT OBJECT

A BN | ey, S
IDL-TO-JAVA TOOL OBJECT DL ;
4 DEVELOPMENT TOOLS

same type. A client can manipulate collections of
managed objects by creating an iterator on the
objects’ home and invoking the iterator’s naviga-
tion methods to obtain each subsequent object
in the home.

. Remember interesting and important objects. Com-

ponent Broker supports CORBA’s standard in-
teroperable object references (10R}, which allow
a client to refer to a managed object regardless
of where it is on the network. A client can con-
vert an IOR into a string and store this converted
object reference for future use.

Release or delete objects. When a client releases
a managed object, it loses its reference to it, but
the managed object still exists on the server. De-
leting a managed object not only removes the cli-
ent’s reference; it also removes the managed ob-
ject from the back-end data store.

CODELLA ET AL. §13

Figure 8 Enterprise bean on Component Broker
implementation layers

R rcoN‘rAtNEn

: x MANAGED OBJECT FRAMEWORK

CORBA AND OBJECT SERVICES SERVER

We have provided a high-level overview of the main
concepts in Component Broker. As we have seen,
these concepts provide a rich framework for the de-
velopment and operational reuse of distributed trans-
action-oriented enterprise applications.

Enterprise JavaBeans is an architecture for compo-
nent-based distributed computing. Enterprise beans
are components of distributed transaction-oriented
enterprise applications. Thus, at least from this point
of view, Component Broker is an ideal platform on
which to implement the EJB architecture specifica-
tion. In addition, the main concepts in the EJB spec-
ification, namely, Enterprise beans, containers, fac-
tories, finders, handles, and so on, correspond in a
natural way to concepts in Component Broker such
as business objects, homes, instance managers, and
so on. Thus, as we shall see in the following section,
providing support for EJB on Component Broker is
guided by the natural mapping between the corre-
sponding sets of concepts.

Architectural overview: EJB on CB

In providing support for EJB in Component Broker,
there are several guiding principles. To ensure Java
portability, the following apply:

* Any EJB component that adheres to the EJB spec-
ification should be usable in CB without modifi-
cation.

* Anty EJIB component written for CB should be us-
able in other systems and tools supporting EJB.
Thus any CB-related enhancements are encapsulated
and ignored by other EJB containers or servers.

514 CODELLA ET AL

* EJB components can be used in a way that is nat-
ural to a Java programmer, i.e., without writing in-
terface definition language (IDL) statements.

% The use of EJB constructs, classes, facilities, and
services is through EJB and related Java APIs and
no CB-specific ApIs need be used from within a
bean.

* The underlying EJB class and associated interfaces
are completely provided.

Other principles provide separation of concerns be-
tween EJB and CB:

*« Component Broker should play the roles of both
container and server, as defined in the EJB spec-
ification.

*% The specific mapping of EIB APIs and capabilities
onto the CB system should be hidden from the Java
programmer.

* Capabilities of CB that go beyond the EJB speci-
fication should be made available to the bean de-
veloper as installation time options (e.g., in Ob-
ject Builder) and should not affect the specific bean
class design itself.

% Any additions to an EJB package (Java archive
[1AaR] file) that are specific to CB should not inter-
fere with the package’s use in other systems.

Where there is ambiguity, incompleteness, or omis-
sion in the EJB specification, we will consider pro-
viding advanced capability for EJB components that
are installed on CB systems. In all cases, however,
we should properly separate such capability from the
definition of the component itself and not “pollute”
the actual bean class definition code with CB-specific
extensions.

Of course it will always be possible for an EJB de-
veloper to create an EJB component on Component
Broker that is not portable by including direct calls
to MOFW classes. The component will then be us-
able only on a CB server. If a component uses other
CB business objects (as CORBA objects) then it will
be portable to other platforms, as long as either (1)
the required business objects have also been ported,
or (2) there is a CB server somewhere in the network
that maintains the required objects.

Enterprise beans in Component Broker terms. In
Component Broker, Enterprise beans are applica-
tion object (a kind of business object) classes, and
bean instances are created as managed objects on
a CB server. CB fills the roles of both container and
server, providing implementation of those interfaces

IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998

Figure 9 Mapping of EJB run-time objects to CB

EJB1 INSTANCES

via the MOFW and object services, tailored accord-
ing to environment properties defined by the EJB pro-
vider and packaged with EJB (see Figure 8).

Since the implementation will only make use of Com-
ponent Broker interfaces and not system-specific ser-
vice APIs, the container can be easily ported to all
of the platforms on which Component Broker is
available.

Client view. An Entcrprise bean on CB looks the same
as any other Enterprise bean to a Java client. Com-
ponent Broker Toolkit generates client bindings that
present the bean as a local object on which the EJB
interface methods can be called. Remote method
calls are accomplished via the CB ORB on client and
server systems, using IHOP.

Server view. On a CB server system, beans are con-
tained in specialized homes that implement the £/B-
Home interface. Each EJB class is supported by an
EJBHome instance that contains instances of the
class. An EJBHome object is responsible for finding,
creating, and destroying EJB object instances (see
Figure 9).

IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998

EJB2 INSTANCES

A specialized CB home object is used to implement
EJBHome objects. If we determine that there is com-
mon behavior it can be extracted into an EJBHome
class.

EJB classes and the CB MOFW. The diagram in Fig-
ure 10 illustrates the interfaces and classes involved
in creating an example “Account” bean as a man-
aged object on Component Broker. The classes in
the diagram are grouped according to the roles de-
fined in the EJB 1.0 specification.*

Support for clients of Enterprise beans

Clients of Enterprise beans perform the actions
shown in Table 1. From this table, we see that the
following objects need to be exposed to the client:

* EJB home. The exposed EIB home implements, in
addition to the EJBHome interface, a number of
create(. . .) methods that correspond to the ejbCre-
ate(. . .) methods defined in the Enterprise bean
class, as well as a number of find<method>{(. . .)
methods, with corresponding ejbFind<method>
defined in the Enterprise bean class, defined by

CODELLA ET AL. §15

Figure 10 Extension relationships for interfaces and classes of an Account component

| 'EJBObject (from EJB)

el EJBHome (from EJB)

EntityBean (from EJB) £

AccountHome Account

AccountHomelmp!

AccountRemotelmpl

the EJB provider at EJB development time. These
methods can return single EJBObject instances, as
well as collections of them, allowing the client to
use sets of objects, as prescribed in the Compo-
nent Broker Client Programming Model.

Bean remote interface. This interface defines, in
addition to the methods defined by the EJBObject
interface that it extends, the business methods im-
plemented by the bean. Thus, the client only needs
an object that implements this interface to make
effective use of the bean.

Handle. This is a local object for which remote
stubs need not be generated.

Context. To be able to find containers, the client
must be able to make instances of InitialContext,
which will be exposed by INDI (Java Naming and
Directory Interface).

User transaction. This object exposes a minimal
number of transaction control methods to the cli-
ent, as opposed to the full power of the Java Trans-
action Service.

516 CODELLA ET AL.

AccountBeanimpl

Consequently, code for Java clients will include the
following kinds of items:

* Remote stubs. These include stubs for EJBHome
objects and bean remote interfaces. These stubs
are generated at deployment time.

* Local-only objects. In order to use handles, clients
need to be able to have access to the handle class.
This class is provided by the EJB provider at EJB
development time.

* A Java ORB. This should be able to “marshal” ac-
tual arguments of a method invocation into an [IOP
request, send an [IOP request to the server, receive
an 110P reply from the server, and “unmarshal” re-
turn values from a method invocation. In addition,
the Java ORB must provide the necessary INDI func-
tionality for a client to look up bean stores and the
current transaction object. Furthermore, the Java
ORB must include the implementation of the Cur-
rentTransaction interface. This ORB can either be

IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998

Table 1

Actions performed by a client of an Enterprise bean. “<BRIN>" represents the bean remote interface name.

<BRIN>

ST EJBMetaDat
- getClassName <BRIN>: .-
getHomelnterfaceClass

- getPrimaryKeyClass

g t}tRérﬁoteInterfaceClass‘

downloaded with the bean stubs or already in-
stalled in the client’s workstation.

For non-Java clients, handle classes and stubs for the
EJBHome and bean remote interface should be avail-
able. These could be generated in each language that
aclient could use to interact with an Enterprise bean,
or they could be generated in IDL form and the lan-
guage-specific stubs could be generated at the client
site on demand. In addition, an ORB for the corre-
sponding language should also be available on the
client’s workstation.

Support for Enterprise beans

Enterprisc beans can be of at least two kinds: ses-
sion beans and entity beans. In turn, entity beans can
have their persistence managed by the container or
by the bean itself. In Component Broker, session
beans correspond to application objects and entity
beans correspond to business objects. One of Com-
ponent Broker’s strengths is that it can manage the
persistence of business object data items automat-
ically and that business objects can use their data

IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998

items independently of the actual back-end data
store. Thus entity beans with container-managed per-
sistence are most naturally mapped to business ob-
jects, as Component Broker defines them. However,
it is possible to define business objects to implement
entity beans with bean-managed persistence.

The main elements in the implementation of an En-
terprise bean include a remotc interface that extends
EJBObject, a home interface that extends EJBHome,
and an Enterprise bean class that implements either
SessionBean or EntityBean. Figure 11 illustrates the
mapping of these elements for a hotel entity bean—a
Hotel remote interface, a Hote/Home interface, and
a HotelBean class—at a high level. Here boxes rep-
resent C++ objects, ovals represent Java objects, a
boldface label stands for the name of the class in-
stantiated by an object and an italicized label stands
for the name of an interface implemented by a class.
Solid lines represent interactions within the same lan-
guage and dotted lines represent cross-language in-
teractions; the rounded rectangle representing a cli-
ent indicates that this could be either a C++ or a
Java object.

CODELLA ET AL.

517

Figure 11

Overview of the mapping of an entity bean to Component Broker

1 EJBObject

EJBHorme

HotelDO
CBHotelDOImpl

CBHotelHomeMO_impl

Separation of an EJB object from its Enterprise
bean. The EJB specification allows for, but discour-
ages, the implementation of a bean’s remote inter-
face by the Enterprise bean class. This is in contrast
to Component Broker, where the business object in-
terface is implemented by the business object class
and ultimately instantiated by a managed object. On
the other hand, the current implementation of the
Component Broker infrastructure is written in C+ +;
thus a managed object that implements the bean’s re-
mote interface will need to use a C+ +-to-Java inter-
action mechanism to invoke the remote interface meth-
ods implemented in the Enterprise bean class.

Using a delegation scheme from the managed ob-
ject that implements an Enterprise bean’s remote
interface to the bean’s class both achieves the sep-
aration between remote interface and bean class and
allows a clean C+ +-to-Java interaction. This del-
egation scheme involves the definition of a Java
“bean tie” class that implements an IDL interface ex-
posing the Enterprise bean class to the C++ man-
aged object and home object. In Figure 11, the
hotel bean tie is the _IHotelBeanimpl object that
implements the /Hote/Bean interface. This way, all
access to a bean passes through the bean tie, which
then delegates to the bean instance. In addition, as
seen in Figure 11, the bean tie implements the EJB-
Context interface (via either the EntityContext or Ses-
sionContext interfaces) that allows the bean to inter-
act with its container.

518 CODELLA ET AL

EJB objects and managed objects. An Enterprise
bean’s remote interface is written as an RMI remote
interface. However, the managed object that imple-
ments it is CORBA IDL-based, so an RMI-to-IDL trans-
lation is required, which implies support for RMI/IIOP.
In a later section we describe the requirements on
RMI/IIOP posed by an effective support of Enterprise
beans on Component Broker. In Figure 11, CBHo-
telMO_Impl is the managed object that implements
Hotel and EJBObject as IDL interfaces that have been
derived from their RMI counterparts provided by the
bean developer.

Cross-language interactions can be implemented ei-
ther by local proxies or by remote proxies. For ex-
ample, CBHotelMO_Impl uses a local proxy to send
messages to the bean tie. On the other hand, Ho-
telBean could send messages to a CBHotelMO_Impl
that implements Hote/ using a local proxy, if the man-
aged object is located in the same process, or using
aremote proxy if it is not. Either way, HotelBean sees
only an RMI Hotel interface.

The methods defined by the EJBObject interface and
their implementation by a managed object are as fol-
lows:

~ The remove method delegates to the LifeCycle-
Object::remove method implemented in the man-
aged object. This method must reactivate the cor-
responding bean instance if it was passivated. No-

IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998

Figure 12 Implementation of a bean pool

EJBHome
HotelHome

Lot 1BeanPool
L CBHotelHomeMO_impt

EJBObjact
Hotel
| CBHotelMO_impl

tice that since the managed object implements two
interfaces that define a remove method (namely,
EJBObject and LifeCycleObject), one of these two
method definitions will need to be renamed to
avoid the name collision. One option is to rename
the method—to something like ejpbRemove—in the
IDL interface that gets generated from the EJBOb-
ject interface.

s The getEJBHome wmethod delegates to the
IManageable::getHome method implemented in the
managed object.

» The getHandle method should return the CB han-
dle of the managed object associated with the En-
terprise bean. See also the section on handles that
follows.

» The getPrimaryKey method is implemented by the
managed object, for entity beans only, by getting
the primary key fields from the data object and
building and returning a primary key object.

~» The isldentical method delegates to the
IdentifiableObject::is_identical method implemented
in the managed object.

In addition, application-specific extensions of EJBOb-
Ject, such as Hotel, define application-specific meth-
ods. Each one of these methods is implemented by
the managed object, such as CBHotelMO_Impl, by del-
egating to the bean via the bean tie, as we have seen.

EJB homes and beans’ life cycle. An Enterprisc bean

home can be supported in Component Broker by a
specialized home that implements its create and find

IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998

{HotelBean
EntityContext
_IHotelBeanimpl &

EntityBean
HotelBean

methods. In Figure 11, the hotel home is given by
the CBHotelHomeMO_Impl object that implements
the HotelHome and EJBHome interfaces. In addition,
this specialized home implements an /BeanPool in-
terface that manages the life cycle of Enterprise
beans via their bean ties. Upon creation, a bean tie
instantiates a bean and passes itself to the instance
as an EJBContext object. The bean instance remains
attached to the bean tie until the home releases the
bean tie. This occurs when the bean pool invokes
release on the bean tie, which in turn tells the bean
instance to release its EJBContext object. After re-
leasing a bean tie, the bean pool makes null its ref-
erence to it, at which point the bean tie and the bean
instance are candidates for garbage collection. Fig-
ure 12 illustrates a high-level structure of the objects
involved in implementing a bean pool.

Bean ties are owned by the bean pool implemented
by the bean’s home. They are lent to managed ob-
jects upon activation and creation of a bean, and they
are returned to the bean pool when the managed
object is destroyed. In the special case of home finder
methods, the home temporarily borrows a bean tie
from the bean pool to perform the find. Each home
implements the /BeanPool interface. This interface
provides methods for managing the acquisition and
release of bean ties. The /BeanPool interface is used
by the home and the managed object. Notice that
the EJB specification discusses bean pools only inre-
lation to stateless session beans and entity beans.

CODELLA ET AL. 510

The methods defined by the EJBHome interface and
their implementation by a specialized home are as
follows:

* The remove method delegates to the remove
method implemented by the mixin associated with
the home, which must reactivate the correspond-
ing bean instance if it was passivated. Notice that
EJBHome.remove can take either a handle or a pri-
mary key as an argument, the latter when the home
hosts entity beans. In order to support passing this
argument from the client to the home object, the
class that implements the handle or the primary
key must be serializable!" and it must be a valid
RMI/IDL type, which implies that an implementa-
tion of RMIATOP must be available.

» The getEJBMetaData method returns the home ob-
ject’s meta-data. See the following section for a
description of the mapping of the EJBMetaData in-
terface and a later section for a description of how
to instantiate these meta-data at run time.

In addition, application-specific extensions of EJB-
Home, such as HotelHome, define application-specific
methods, each of which must be either a create
method or a finder method. Finder methods can be
defined only on homes hosting entity beans. See the
sections on entity beans and session beans for issues
related to implementing these methods.

EJB meta-data. The EJBMetaData interface allows
a client to obtain various meta-data associated with
a home object. Since EJBMetaData is not a remote
interface, the class that implements it must be se-
rializable and it must be a valid RMI/IDL type. This
implies that in order to fully implement the E/BMeta-
Data interface, an implementation of RMI/IIOP must
be available. The following methods are defined in
the EJBMetaData interface:

® The getEJBHome method returns a reference to
the B home class that implements the application-
specific EJBHome interface, e.g., CBHotel[Home-
MO_Impl, which implements HotelHome. The re-
turned reference is cast to the application-specific
EJBHome interface, ¢.g., HotelHome. Notice that
since this method is invoked on a local E/JBMeta-
Data instance there is an opportunity for optimiz-
ing access to the returned reference to the home.
Otherwise the issue arises as to whether this ref-
erence can be effectively serialized by RMI/ITIOP.

o The getHomelnterfaceClass method returns the
class object of the application-specific EJBHome
interface, e.g., HotelHome.

520 CODELLA ET AL.

* The getPrimaryKeyClass method obtains the class
object for the primary key class. This will return
the primary key class associated with the CB home
that implements this EJBHome object.

* The getRemotelnterfaceClass method returns the
class object of the application-specific EJB remote
interface, e.g., Hotel.

* The isSession method returns true if the current
bean is a session bean and false otherwise. At cre-
ation time of an EJBMetaData object, the container
can set the value of this method on the meta-data
object. The container knows this value, since it ei-
ther is or is not a home for session beans.

Handles. Handles can be implemented using Com-
ponent Broker handles. Since Handle is not a remote
interface, the class that implements it must be se-
rializable and a valid RMI/IDL type. In order to fully
implement the Handle interface, an implementation
of RMI/IOP must be available.

The getEJBObject method is defined by the Handle
interface. This method returns a valid reference to
the EJB object represented by this handle. In CB, this
will return a reference to the associated managed
object for the EJB instance. This should be a local
operation. As an implementation consideration, the
handle can incorporate additional information along
with a managed object’s I0R (interoperable object
reference), so that if the ObjectNotFound exception
is returned by the ORB, the handle can use an alter-
native mechanism, such as the directory service, to
locate the managed object.

EJB context. A bean instance uses an EJB context
object to obtain contextual information, such as the
bean’s environment properties or its primary key. An
EJBContext object is provided to a bean instance by
its container at bean instance creation time. As we
have seen, the bean tie implements the context, cre-
ates the bean instance, and passes itself to the bean
instance as its context. The bean tie uses a reference
to the managed object to which it delegates the im-
plementation of some of the EJBContext methods.
These methods are as follows:

» The getCallerldentity method obtains the security
1D (identity) of the immediate caller. This method
can be delegated to the CB Current object, which
can be obtained from the ORB. Given that this
method returns a java.security.ldentity object, the
Credentials type returned by the Current object will
need to be mapped to the java.security.Identity type.

» The getEJBHome method delegates to the

IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998

IManageable::getHome method implemented in the
managed object.

* The getUserTransaction can return the CB Current
object, which is then mapped to a UserTransaction
object.

» The getEnvironment method returns a Property ob-

ject containing the bean’s environment properties.

This method can use the SM API to read the envi-

ronment properties from internalized DDL (as dis-

cussed in a later section), create a property object,
populate the return values, and send the property
object back to the caller.

The isCallerinRole method accepts a security ID

and checks to see if the caller of the bean has the

input security ID. This method can invoke this.get-

Calleridentity and compare the result with the in-

put Identity.

* The setRollbackOnly method can be delegated to
the Current object’s rollback_only method.

¢ The getRollbackOnly method can be delegated to
the CB Coordinator object.

The EJBContext interface is extended by the Session-
Context and EntityContext interfaces to provide con-
textual information specific to session beans and en-
tity beans, respectively. These two interfaces and the
methods they define are described in subsequent sec-
tions.

Support for entity beans

An entity bean represents data in a database and it
provides shared access to multiple users. Entity beans
are transactional and long-lived, and they survive
crashes of the EJB server. Entity beans correspond
naturally to CB’s business objeccts.

An entity bean can implement its persistence directly,
using bean-managed persistence, or by relying on its
container, using container-managed persistence. An
entity bean must implement the EntityBean interface.
Notice that this means that an entity bean must pro-
vide implementation for the state control methods
ejbLoad and ejbStore, regardless of whether the en-
tity bean uses bean-managed or container-managed
persistence. Thus, an entity bean with container-man-
aged persistence can be mapped to a business ob-
ject that has a cached data object. For an entity bean
with bean-managed persistence, one option is to map
to a business object with a cached data object in or-
der to take advantage of the syncFromDataObject and
syncToDataObject callbacks, ignoring the data ob-
ject itself. Another option is to use a business object
without a data object and to subclass the business

IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998

object’s transactional mixin to call the state control
methods. Figure 13 illustrates the mapping of a ho-
tel entity bean, showing a structure of the classes to
be instantiated. Notice that /HotelBean, implemented
by _IHotelBeanlmpl, extends /Bean and IBeanWithCDO.
The bean tie is responsible for providing the call-
backs defined in the EntityBean interface. These
callbacks are defined and exposed to the C++ side
managed object by the /Bean and /BeanWithCDO
interfaces and they are implemented by the bean tie
via delegation to the bean. These two interfaces sep-
arate the state control methods from the more ge-
neric callbacks that can also be used by session bean
ties. In addition to bean delegation, a bean tie pro-
vides MOFW-like services for the bean. For example,
during the activation and passivation of container-
managed entity beans, the bean tie is responsible for
synchronizing the bean’s state with the container’s
data object, in addition to performing the state con-
trol callbacks. Notice that in this situation it is the
bean tie that actually interacts with the data object,
instead of the managed object. This is why _IHotel-
Beanimpl has a reference to a Hote/DO object, im-
plemented by CBHotelDOImpl.

The methods defined by the EntityBean interface are
mapped to Component Broker through the bean tie.
The setEntityContext method can be called from the
bean tie’s constructor when it instantiates the bean
and is given a reference to the bean tie object itself,
which implements the EntityContext interface. Other
EntityBean interface methods can be called from
methods defined in and exposed by the bean tie for
this purpose, as shown in Table 2.

Create and finder methods. In addition to the meth-
ods defined in the EntityBean interface, an entity bean
must implement a number of application-specific cre-
ate and finder methods. Create methods for bean-
managed entity beans as well as finder methods for
both kinds of entity beans are required to return the
primary key (or keys) of the bean (or beans) just cre-
ated or retrieved. Keys are discussed in a subsequent
section. If an entity bean’s home finder method re-
turns a collection of keys, then the collection must
be of a valid RMI/1IOP type. For the time being all
that is needed is that java.util. Enumeration be a sup-
ported RMUVIIOP type.

Finder methods for entity beans are to be generated
by the container tools, presumably from some spec-
ification given by the bean developer. Unless the im-
plementation of this specification can be readily gen-
erated automatically, it is assumed that it will require

CODELLA ET AL. §21

Figure 13 Mapping of a Hotel entity bean to Component Broker

’i‘rJBO‘gfg 4 IMana, gedOb]ectWithCachedDataOb/ect
(from EJB) {from IManagedServer)

IManagedBean
{from IBeanServer)

Hotel
{from travel}

IManageable_impl
(from MOFW_impl)

I lManagedBean Impl
1 (from IBeanServer)

CBHotelMO

CBHotelMO_impi

1 (from IBeanServerLocal)

HotelDO
(from TraveiServerLocal)
i

CBHotelDOImp!

!

a———‘--uu-—-mn—*nu_n—d

Table 2 EntityBean methods and corresponding ponent Broker. The CBHoteIHomeBO_ImpI class im-

bean-tie methods plements the functionality in the E/JBHome interface

‘ in terms of IHome_Impl. In Figure 14 we see refer-

ences from HotelBean to a proxy of the CBHotel-

HomeMO _Impl class. This reference can be obtained,

for example, by a call to getEJBHome on the EJBOb-
ject implemented by CBHotelMO_Impl.

An entity bean’s home class, CBHotelHomeMO_Impil
in Figure 14, also implements the /BeanPool inter-
tace. This interface is used by the home itself:

* When servicing finder methods, the home acquires

human intervention, presumably by the bean de- a “finder” bean tie, uses it to invoke the appro-
ployer. priate ejbFind method, and returns it to the bean
pool.
Entity bean homes. The diagram in Figure 14 shows * When servicing create methods, the home acquires
the mapping of a Hotel entity bean’s home to Com- a bean tie and lends it to the managed object.
522 CODELLA ET AL. IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998

Figure 14 Mapping of a Hotel entity bean’s home to Component Broker

IBeanPool
(from IBeanServerl_ocal)

HotelHome
| (from travel)

IBOIMExtManagedObject:IHome
(from IBOIMExtManagedObiject)

CBHotelHomeBO

IHome_{mpi
(from MOFW_Impl)

CBHotelHomeMO

: CBHotelHomeBO_impl

CBHotelHomeMO_Impl

The /BeanPool interface is also used by the managed
object:

¢ During execution of initForReactivation, the man-
aged object borrows a bean tie from the bean pool.

¢ During execution of uninitForPassivation and un-
initForDestruction, the managed object returns the
borrowed bean tie to the bean pool.

Keys. For a bean with identity (that is, a bean in a
nonpooled state), the primary key is stored as at-
tributes in the bean’s associated data object. This is
true for both bean-managed and container-managed
entity beans. A bean’s primary key class is packaged
within the bean’s JAR file and must be a valid RMI/IIOP
value type, allowing an IDL value type to be gener-
ated from it. The bean’s Component Broker primary
key (IDL and C++ implementation) is generated
from this generated IDL.

For container-managed entity beans, the data ob-
ject is generated with an attribute for each of the

IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998

bean’s persistent fields. A subset of these attributes
represents the bean’s primary key. For bean-man-
aged entity beans, the data object is generated from
the bean’s primary key IDL. [t contains attributes rep-
resenting the bean’s primary key. The following
transformations arc performed on the various rep-
resentations of the primary key:

1. The bean’s Component Broker primary key is
transformed to data object attributes. This form
is used by the data object in the implementation
of internalizeFromPrimaryKey.

2. Data object attributes are transformed to the
bean’s Component Broker primary key. This is
used by the managed object in the implementa-
tion of getPrimaryKeyString.

3. The bean’s primary key value type is transtormed
to the bean’s Component Broker primary key.
This is used by the home, in the implementation
of the create and finder methods.

4. Data object attributes are transformed to the
bean’s primary key value type. This is used by the

CODELLA ET AL. 523

Figure 15 An object interaction diagram for the Itinerary bean mapping

IBeanDO.
HotelDO
CBHoteiDOImpl.

EJBObject

Hotel -
IManagedBean
IManagedObjectWCDO
CBHoteIMO_Impl

EJBHome

IHome

HotelHome

1BeanPool
CBHotelHomeMO_impl

" _jHotelBean-

Impt Proxy

bean tie in the implementation of EntiryCon-
text.getPrimaryKey and by the managed object in
the implementation of EJBObject.getPrimaryKey.

Entity context. The EntityContext interface extends
EJBContext, and like EJBContext, it is implemented
by the bean tie. The methods defined by the Enti-
tyContext interface and their mappings are as follows:

* The getEJBObject method can return a reference
to the managed object’s proxy, cast as an EJBOb-
ject.

524 CODELLA ET AL

 The getPrimaryKey method is implemented by the
bean tie by getting the key’s fields from the data ob-
ject and building and returning a primary key object.

Entity bean container implementation issues. An en-
tity bean’s deployment descriptor can specify that a
bean is re-entrant, although it is not clear whether
it is possible for a client to perform concurrent calls
to the same bean in the same transaction, or whether
a bean is allowed to perform calls on itself. Given
that a mixin already performs thread serialization

IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998

Figure 16 Sequence diagram: Creation of a HotelBean object

Hotel-

:108Hing() | .

12: createFro

at the transaction level, an option to support thread
serialization is for the mixin to make sure that only
one method is being executed by the managed ob-
ject implementing the bean.

Scenarios. Figure 15 shows an object interaction di-
agram that elaborates the diagram in Figure 11, with

IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998

the major objects defined in the mapping of the Ho-
tel and HotelHome interfaces and the HotelBean class.

The sequence of operations in Figure 16 illustrates
the activation of a HotelBean instance when a client
calls findByPrimaryKey on a HotelHome object. It is
assumed that the CBHotelHomeMO_Impl object ex-

CODELLA ET AL. 525

Figure 17 Sequence diagram for activation of a HotelBean object

Htinerary- :CBHotel-

Bean HomeBO_lmpi

ists at this point. This can be created at the time the
CB server is launched.

The sequence of operations in the diagram of Fig-
ure 17 illustrates the creation of a HotelBean instance
when a client calls create on a HotelHome object.

Support for session beans

A session bean executes on behalf of a single client,
can be transaction-aware, and can update data in an
underlying database on behalf of the client, although
it does not represent such data. A session bean is
relatively short-lived and is destroyed when the EJB
server crashes.

Session beans have a natural correspondence to
Component Broker’s application objects, which can
be used to manage processes, tasks, or control flows.

B26 CODELLA ET AL.

However, given that application objects are not yet
fully available, and that a business object’s data ob-
ject can be useful, a session bean can be mapped to
Component Broker using a managed object with a
data object. The diagram in Figure 18 illustrates the
mapping of an itinerary session bean.

There are three differences between this mapping
and that of an entity bean:

1. ltineraryBean implements the SessionSynchroniza-
tion interface.

2. The litineraryBean interface, which exposes the
bean tie to the C+ + side, extends the /Synchro-
nizableBean, [SerializableBean, and /Bean inter-
faces. ISynchronizableBean exposes the Session-
Synchronization interface to the C+ + side so that
the mixin can invoke its methods via CBltinerary-
MO_Impl. SerializableBean exposes serialization
and deserialization methods to the C++ side so

IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998

Figure 18 Mapping of an ltinerary session bean to Component Broker

| EJBObject IManagedObjectWithCachedDataObject
{from EJB) .| (from IManagedServer)

ftinerary v IManagedBean | IManageable_Impl
(from travel) {from IBeanServer) {from MOPW _impl)

CBltineraryMO iManagedBean_Impl
(from IBeanServer)

’{ CBltineraryMO_imp!

{tror IBeanServerLocal)

[SessionBeanDO
(from I1BeanServerLocal)

*| ISessionBeanDOImpl
- (from IBeanServerLocalimpli)

that CBltineraryMO_Impl can perform such oper- A session bean implements the SessionBean inter-
ations on the bean at passivation and reactivation. face. As with the EntityBean, the methods defined
IBean is a gencralization of IBeanWithCDO, which by this interface are mapped to Component Broker
does not define methods to synchronize with a through the bean tie. The setSessionContext method,
data object. as we have seen, can be called from the bean tie’s

3. CBltineraryMO_Impl uses a generic data object, im- constructor when it instantiates the bean and is given
plemented by I1SessionBeanDOImpl. This data ob- a reference to the bean tie object itself, which
ject is used to store a primary key that the home implements the SessionContext interface. Other
can use to locate the bean. This is where the se- SessionBean interface methods can be called from
rialized conversational state can be stored for a methods defined in and exposed by the bean tie for
“stateful” session bean when it is passivated. this purpose, as shown in Table 3.

IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998 CODELLA ET AL. §27

Table 3 SessionBean methods and corresponding
bean-tie methods

Notice that SessionBean does not define ejbLoad and
ejbStore. This is because a session bean has no per-
sistent data to be transferred to and from a back-
end data store.

Also notice that SessionBean does not define unset-
SessionContext, without which the container cannot
ensure that a bean’s session context is properly re-
leased when the bean is removed (in a similar fash-
ion as an entity bean can be requested to unset its
entity context). This method seems necessary and it
could be invoked from the release method, defined
for this purpose, on the bean tie.

Stateful session beans’ conversational state and pas-
sivation. A stateful session bean can maintain con-
versational state, on behalf of its client, that must be
retained across transactions. This state is not data
that must be stored persistently in a database. How-
ever, passivation of a session bean requires holding
on to its conversational data until it is reactivated.
Thus, the data object, associated with the managed
object that implements the session bean’s remote in-
terface, can be used to store the session bean’s se-
rialized conversational state as a BLOB (binary large
object). This actually makes the session bean recov-
erable in the event of a crash, at least to the point
of the latest passivation, which, combined with a pas-
sivate-at-end-of-transaction policy, would be to the
point of the latest commit or rollback. Another is-
sue has to do with what to serialize, in particular,
what to do if a piece of the session bean’s conver-
sational state is not serializable. Options for dealing
with this include requiring the bean developer to ex-
plicitly mark pieces of its conversational state that
are to be passivated, using the transient keyword.

Session synchronization. If a session bean is trans-
action-aware, that is, if its methods are called within
a transaction, as indicated in the session bean’s de-
ployment descriptor, then the session bean may im-
plement the SessionSynchronization interface. Notice

528 CODELLA ET AL.

that this interface can only be implemented by state-
ful session beans. The methods defined by this in-
terface and their mapping to Component Broker are
as follows:

* The afterBegin method can be called from the mix-
in’s before method, which can check whether a
transaction has just begun. Alternatively, wherever
the mixin starts a transaction it can perform this
call.

e The beforeCompletion method can be called from
the mixin’s beforeCompletion method.

 The afterCompletion method can be called from
the mixin’s afterCompletion method and is given
the mixin’s status of the completion.

Notice that the managed object’s transactional mixin
needs to be subclassed in order to call these meth-
ods at appropriate times. This subclassing needs to
occur from whatever mixin class is used to imple-
ment EJB transaction attributes, as discussed later.

Stateless session beans. Since stateless session bean
instances are identical when they are not serving a
client-invoked method, they do not need to be pas-
sivated; furthermore, there is no fixed mapping be-
tween clients and stateless instances. This means that
from one method invocation to the next, the client
may be interacting with different stateless instances.
However, although a stateless bean cannot imple-
ment the SessionSynchronization interface, it can still
have transaction attribute values defined for it or its
methods. This can potentially create a situation
where a stateless instance may be shared by two
transactions. For example, consider a stateless ses-
sion bean with the TX_REQUIRED attribute value and
two methods m/ and m2. A client may begin a trans-
action, invoke m/ on an instance of this bean and
then invoke m2 after a considerable amount of
“think” time. Meanwhile, another client invokes m7
on an instance of this bean. Given that the first cli-
ent has been holding its instance of the bean idle for
some time, the container may decide to assign this
instance to the second client, to improve perfor-
mance. To avoid this situation, it would be useful to
require a stateless instance to remain associated with
a client for the duration of a transaction. This would
make the sharing model for stateless session beans
analogous to that of entity beans, which cannot be
shared by two transactions or within the same trans-
action.

Session bean homes. Figure 19 shows the mapping
of an itinerary entity bean’s home to Component

IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998

Figure 19 Mapping of an Itinerary session bean’s home to Component Broker

IBOIMExtManagedObject:IHome
{from IBOIMExtManagedObject)

HirteraryBean .
{from TravelTieLocaly:

(from MOFW. Impl)

_iineraryBeanimpl
{from CBltinerary):

CBiltineraryHomeMO

célﬁnararyﬂqm 0. Impt

CBltineraryHomeMO. Impi -

Broker. The CBltineraryHomeBO_lmpl class imple-
ments the functionality in thec EJBHome interface in
terms of IHome_lmpl. Here we see references from
ItineraryBean to a proxy of the CBltineraryHome-
MO_Impl class. This reference can be obtained, for
example, by a call to getEJBHome on the EJBObject
implemented by CBltineraryMO_Impl.

Aswe saw carlier for an entity bean, a session bean’s
home class also implements the /BeanPool interface.

Identity. Session beans hide their identity from the
client and from the bean itself. That is, at run time,
neither the client nor the bean instance can obtain
the bean’s identity. A session bean is an anonymous
resource, which exists on the client’s behalf.

The managed object that represents the session
bean’s remote interface, however, requires identity,
even though this identity is not visible to the client
or the bean. The identity is needed to establish an
object reference, for the managed object, that

IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998

1 {from Travel)

uniquely identifies the object. For stateful session
beans, this identity serves as a key during passiva-
tion and activation.

Like entity beans, the session bean’s identity is rep-
resented by a primary key. Unlike entity beans, how-
ever, session beans do not have state data that can
be used as a primary key. For this reason, session
beans use a special primary key, UUID (universal
unique identifier), that provides a globally unique
key for the bean. A common data object class ISes-
sionBeanDOImpl, which extends /UUIDDataObject, is
used for all session beans. UUIDDataObject instan-
tiations are transient and support UUID primary keys.

Session context. The SessionContext interface ex-
tends EJBContext, and like EJBContext, it is imple-
mented by the bean tie. One method is defined by
the SessionContext interface: getEJBObject. This
method can return a reference to the managed ob-
ject’s proxy, cast as an EJBObject.

CODELLA ET AL.

529

Figure 20 An object interaction diagram for the Itinerary bean mapping

Session bean container implementation issues.
The discussion on serialized access to managed ob-
jects, in the section on entity bean container imple-
mentation issues, applies here as well. Additional is-
sues for session beans are:

* Thread serialization. 1t is illegal to make a “loop-
back” call to a session bean. Also, session beans
cannot be shared among clients, so it is illegal for
two clients to make concurrent calls on a session
bean instance. Thus, it is not necessary to allow
for the case of a loopback call when enforcing
thread serialization, or to differentiate between

530 CcoDELLA ET AL

loopback calls from client concurrent calls, as is
the case for entity beans.

Timing out. A session bean’s deployment descrip-
tor can specify a session time-out value in seconds.
One implementation option is to have the mixin
start a timer in either its after method or its after-
Completion method. This timer can signal an event
that the container can listen for to time out the
session bean.

Transaction context of session bean methods. 1f the
methods newlnstance, setSessionContext, ejbCreate,
ejbRemove, ejbPassivate, finalize, ejbActivate, and
afterCompletion of a session bean are not already

IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998

Figure 21

Sequence diagram: Creation of an ItineraryBean object

| Htinerary-
| Beanimpl

:CBitinerary-
MOlmpt

called without a transaction context, given the map-
ping defined in this and the previous sections, then
it will be necessary for the container to suspend
a potentially active transaction before calling these
methods, and to resume it afterwards.

~ Reactivation. Although the state diagram for state-
ful session beans (in the EJB specification) does not
indicate it, it seems that it is necessary to invoke
newlnstance as well as setSessionContext prior to
invoking ejbActivate, unless the diagram implies
that the method “ready” state is also a pool state.

Scenarios. Figure 20 shows an object interaction di-
agram, analogous to the diagram in Figure 15, with
the major objects defined in the mapping of the /tin-
erary and ltineraryHome interfaces, and the Itinerary-
Bean class.

The sequence of operations in Figure 21 illustrates

IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998

the creation of an ltineraryBean instance when a cli-
ent calls create on an ltineraryHome object. It is as-
sumed that the CBltineraryHomeMO_Impl object ex-
ists at this point. This can be created at launch time
by the server.

Distribution

Given that Component Broker is CORBA/110P-based,
to support the RMI-based programming model as-
sumed by Enterprise beans, an implementation of
RMI/IIOP is necessary. In particular, the following
items are required in order to implement the sup-
port for EJB by Component Broker outlined in this
document:

& Definition of remote interfaces, such as £EJBOb-
ject and EJBHome, as RMI interfaces and compiled

CODELLA ET AL.

531

Table 4

Context source and commit action for valid transaction attributes

into IDL, with the subsequent generation of CORBA
stubs and skeletons

* Support for “objects by value,” to allow passing
objects of types such as EJBMetaData and java.
util.Enumeration (to return collections of primary
keys), as well as handles and keys between clients
and servers

* Translation of exceptions from IDL to Java. In ad-
dition to generating the appropriate valuc-based

text.” This assumption is supported by the functional
specification of the different types of mixin classes.

Mapping EJB transaction attributes. Based on Ta-
ble 4, it seems that the following mapping from trans-
action attribute values to Component Broker trans-
action model options applies:

; g : TX_NOT_SUPPORTED > No
IDL exception for a given RMI exception, TX_REQIJIRED > Atomic
EJB-specified exceptions need to be mapped into TX SUPPORTS > Neutral
their corresponding Component Broker excep- - cutra
TX_MANDATORY > Default

tions. For example, an EJB client’s reference on a
referenced but nonexisting instance generates the
NoSuchObjectException in RMI. This exception
must be mapped into IDL and into the InvalidObj-
Ref exception raised by Component Broker.

Transactions

Table 4 summarizes where the transaction context
comes from when a client invokes an Enterprise bean
object’s method with valid transaction attribute val-
ues. The table also states whether or when a commit
is issued by the transaction server when the invoked
method completes.

The table also lists the types of transaction models
supported by Component Broker. The options avail-
able (default, atomic, neutral, and no transaction)
affect the way a managed object behaves when no
transaction is active. No transaction is active if there
is no transactional current object on the thread used
to invoke a method on the object. Thus it is assumed
that if a transaction is active then the mixin object
and the managed object that it supports will execute
in the context of this transaction. This is what is
meant by the entries in the table marked “inherit con-

532 CODELLA ET AL.

As aresult, it would be necessary to introduce a new
mixin class to support the behavior prescribed by the
“TX_REQUIRES_NEW” transaction attributc value,

In addition, the transaction attribute for an Enter-
prise bcan can have the value TX_BEAN_MANAGED,
which means that the bean is allowed to perform its
own transaction demarcation. A method of a statc-
ful session bean that begins a transaction could com-
plete without committing or rolling back the trans-
action. Thus, the transaction context in which any
given method of such a bean executes depends on
whether or not the instance of the bean has itself
begun a transaction but not committed it or rolled
it back. This is in contrast to the transaction context
depending on whether or not a client that invokes
the given method was associated with a transaction
context. This also has implications not only for a
transaction context created by the Enterprise bean
instance, but also for the transaction context asso-
ciated with a method invocation coming from a cli-
ent. Specifically, if a client’s invocation has a trans-
action context associated with it, the transaction
context must be suspended when the invoked method

IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998

Table 5 Atomic actions for mixin

completion

starts and resumed when the invoked method com-
pletes. In addition, if a method of an Enterprise bean
instance begins a transaction but does not commit
it or roll it back, the corresponding transaction con-
text must be suspended when the method completes
and it must be resumed when any other method of
the bean instance starts, until a method of the bean
instance either commits the transaction or rolls it
back. This nontrivial behavior for stateful session
beans is currently not supported by the CB transac-
tion model and thus a new mixin class or some other
mechanism would have to be introduced to support
it.

Transaction attribute values on a per-method ba-
sis. If these were all the changes to the Component
Broker transaction model needed to support the EJB
transaction attribute values, then the current archi-
tecture for transactional mixins could be preserved,
with additions to support the TX_REQUIRES_NEW and
TX_BEAN_MANAGED EJB transaction attribute values.
But an EJB’s transaction attribute can also be asso-
ciated with an individual method, as opposed to be-
ing associated with an entire Enterprise bean. This
means that from one method invocation to another,
an Enterprise bean may be using different transac-
tion attribute values. For example, let us assume that
a client invokes methodl on EJB1 with no transac-
tion context and it subsequently invokes method?2
on EJBI, again with no transaction context. Let
us further assume that method]l has the
TX_NOT_SUPPORTED transaction attribute value and
that mmethod?2 has the TX_REQUIRED transaction at-
tribute value. Then the container would not need to
do anything when method1 is invoked or when it com-
pletes, but it would have to begin a transaction when
method? is invoked and commit the transaction when
method2 completes. This behavior goes beyond the

IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998

capabilities of the current transactional mixins pro-
vided by Component Broker.

To support EJB transaction attribute values on a per-
method basis it is necessary to define a new kind of
mixin. It must behave like any of the currently de-
fined transactional mixins when any method of an
Enterprise bean is invoked. Let us consider what
atomic actions this mixin can perform, prior to
starting an invoked Enterprise bean method and af-
ter such a method has completed, for any of
the EJB transaction attribute values, including
TX_REQUIRES NEW and TX_BEAN_MANAGED. These
atomic actions can be performed on a client’s trans-
action context that comes in a method invocation,
on a transaction context that can be or may have been
begun by the container via the mixin itself, and on
a transaction context that may have been begun by
the bean (for the case of an Enterprise bean with
the TX_BEAN_MANAGED value). Table 5 shows these
atomic actions.

Before starting a given method, a client’s transac-
tion context can be suspended, or it can be propa-
gated to the method’s thread, i.e., it can be inher-
ited, or the mixin can throw an exception, or it can
do nothing if a client’s transaction context is not
present in the request to invoke the method. Sim-
ilarly, at method completion the mixin can resume
a client’s transaction context if it is present, or do
nothing otherwise. Also at method completion, the
mixin can throw an exception if it needs to commit
a transaction it started but the transaction context
is not there anymore, perhaps because the bean com-
mitted it or rolled it back by mistake. The mixin could
also suspend a transaction it started; although this
action is not called for by any of the EJB transaction
attribute values, it could be used to support behav-

CODELLA ET AL. §33

Table 6

Actions performed by mixin for transaction attributes other than TX_BEAN_MANAGED

lient’s Transacti

ior similar to disabling autocommit in JDBC (Java da-
tabase connectivity). Finally, if a stateless session
bean or an entity bean that uses TX_BEAN_MANAGED
starts a transaction in a given method but it does not
commit or roll back the transaction before the
method completes, the mixin must throw an excep-
tion.

To perform these actions the mixin needs the fol-
lowing objects or pieces of information:

* A client’s transaction context in a method request
(or that there is no transaction context)

* The transaction policy for the method being in-
voked. To know this the mixin will need to have
access to the run-time representation of the trans-
action attribute value for the method invoked or
for the bean that contains it that was defined in
the deployment descriptor.

% The kind of bean on which the request is being
made. This allows the mixin to throw an exception
at method completion on a bean’s transaction that
was not committed or rolled back, for stateless ses-
sion or entity beans.

* A transaction context started by the mixin (if any)

% A bean’s transaction context (if the bean has
started one)

Given this information, a mixin can decide what to
do for a given request on any method of its Enter-
prise bean. Whether or not an action is to be per-
formed on a client’s incoming transaction context will
not depend on the value of the EJB method’s trans-

B34 CODELLA ET AL.

action attribute; the mixin will always need to know
whether there is a transaction context coming in from
the client. This is in contrast with a transaction con-
text the mixin may have created or with one the bean
itself may have created. If the transaction attribute
value is other than TX BEAN_MANAGED, then the
mixin need not be concerned about a transaction con-
text having been created by the bean. The bean is pro-
hibited from actually beginning a transaction if it does
not have this transaction attribute value defined for one
of its methods. On the other hand, if the transaction
attribute value is TX_BEAN MANAGED, then the mixin
need not be concerned about a transaction context that
it created. This is because the container, and thus the
mixin, need not ensure that an EJB’s method executes
within a transaction; this is left to the bean itself.

Table 6 outlines the actions a mixin needs to per-
form on a client’s incoming transaction context, as
well as on a transaction context the mixin may need
to create or may have created (depending on whether
there actually is a client’s incoming transaction con-
text), and for each of the transaction attribute val-
ues other than TX BEAN_MANAGED.

Notice that when there is a client’s incoming trans-
action context the action on it at method start for
TX_NOT_SUPPORTED and TX_REQUIRES_NEW could
be either “throw exception” or “suspend.” It could
be “throw exception” because the container must
guard against the bean being associated with a trans-
action and then having a method on the bean invoked
outside the transaction, as is indicated in Section

IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998

Table 7 Actions performed by mixin for TX_BEAN_MANAGED

Incoming Client’s No Incoming Client’s
Transaction Context Transaction Context
Action on Action on Action on Action on
client’s bean’s client’s bean’s
transaction transaction transaction transaction
context context context context
At method Existing bean’s transaction context Suspend Resume Do nothing Resume
start
No existing bean’s transaction context Suspend Do nothing Do nothing Do nothing
At method Existing bean’s transaction context Resume Throw Do nothing Throw
completion exception exception
or suspend or suspend
No existing bean’s transaction context Resume Do nothing Do nothing Do nothing

11.7.2 of the EJB specification. If the client had be-
gun a transaction and invoked a method with
TX_SUPPORTS, for example, then the subsequent in-
vocation of a method with either TX NOT_SUP-
PORTED or TX_REQUIRES_NEW would require the cli-
ent’s incoming transaction context to be suspended,
assuming the client did not commit or roll back the
transaction between the two method invocations.
However, suspending the client’s incoming transac-
tion context is not enough, because the bean—de-
pending on the implementation of the container—
may already have the client’s transaction associated
with its thread, thus violating the rule prescribed by
Section 11.7.2 of the EJB specification.

Also notice that the two entries for the case where
there is no client’s incoming transaction context at
method completion for TX_MANDATORY are left
blank. This is because this situation cannot occur,
given that at method start for this case an exception
was thrown and the thread never reaches method
completion.

Table 7 outlines the actions a mixin needs to per-
form on a client’s incoming transaction context, as
well as on a transaction context the bean may
have created, for the transaction attribute value
TX_BEAN_MANAGED.

Notice that at method completion, when there is an
existing bean’s transaction context, the action on it
could be either “throw exception” or “suspend.” This
is because only stateful session beans with a
TX_BEAN_MANAGED method can begin a transaction
within that method and not commit it or roll it back,

IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998

which is the only casc where an existing bean’s trans-
action can be suspended. In the remaining cases—
either stateless session or entity bean—the container
throws an exception.

Isolation levels. Container-managed entity beans,
just like their counterpart Component Broker bus-
iness objects, cache their persistent data items. On
the other hand, the CB programming model does not
provide any facility for supporting isolation levels at
this level of caching. The client(s) are supposed to
provide their own concurrency control.

One option to support the isolation levels specified
by EJB is to use the concurrency service to imple-
ment the isolation levels declared in the deployment
descriptor, at least for support on Component Bro-
ker for the workstation. Component Broker for
0s/390* (Operating System/390) does not do any
caching of data at any level. So in Component Bro-
ker for 08/390, support for isolation levels would re-
quire mapping the isolation level options to what-
ever isolation levels its back-end data store provides.
For example, DB2 provides isolation levels that are
similar to those defined by EJB: uncommitted read,
cursor stability, read stability, and repeatable read.

Security

Supporting EJB security-related functions in Com-
ponent Broker requires mapping a subset of the Java
security model into the security model defined for
Component Broker. There are two areas of concern:
security between the client and the server, and se-
curity within Component Broker. Security between

CODELLA ET AL. §35

the client and the server can be handled by Com-
ponent Broker’s Secure Socket Layer implementa-
tion.

The EJB specification defines methods such as get-
Callerldentity and isCallerinRole, as well as deploy-
ment descriptor items that deal with authenticating
the identity of an Enterprise bean to a Component
Broker container. In addition, the AccessControlEn-
try interface deals with deciding what entities can run
methods on an Enterprise bean.

Identity. The java.security.ldentity interface can be
mapped to CORBA’s Securitylevel2::Credentials by
providing support for the privilege attributes secur-
ity name, group, role, capabilities, clearance level, and
host authentication. These attributes can be part of
a CBldentity class that implements java.security.lden-
tity.

Component Broker defines three kinds of creden-
tials: received, own, and invocation. It creates and
places a received credential on the thread of exe-
cution for any method request that comes into a
server. A call such as

CBldentity id = EJBContext.getCallerldentity()

can access and return the received credential, gen-
erated by Component Broker, as a CBldentity object.

The “own” credential is the identity of the principal
that owns the object. By default, the own credential
points at the server process. This credential can be
changed. Given that an EJB’s ControlDescriptor de-
fines runAsMode and runAsldentity attributes, it should
be possible to set the own credential of an EJB's im-
plementation. An issue that arises here is how to au-
thenticate an object or method whose mode or iden-
tity is being changed. One possibility is to use DCE
to create a set of authorized log-in sets. When an
Enterprise bean is deployed, the principal name of
a control descriptor’s mode or identity attribute must
correspond to one of these authorized log-in enti-
ties. This authentication can be done in the construc-
tor for CBldentity, which takes a principal name as
argument and performs the authentication when a
CBldentity is created, returning a null object if the
authentication fails.

The invocation credential is the credential of the
principal on whose behalf down-stream requests are
performed. If delegation is disabled, the invocation

536 CODELLA ET AL.

credential is set equal to the own credential, that is,
down-stream requests are invoked under the own
credential. If delegation is enabled, the invocation
credential is set equal to the received credential, that
is, down-stream requests are invoked under the cre-
dential of the requester.

Invocation. Invocation deals with deciding which en-
tities can run methods on an Enterprise bean. The
EJB AccessControllist class allows the specification,
on a per-bean or per-method granularity, of which
principals are allowed to execute a method.

All inter-Enterprise bean method requests are in-
tercepted by the managed object’s before method.
Thus, the basic approach for invocation authentica-
tion would be to catch each method request and
check the invocation credential against the list of CB-
Identities in the EJB AccessControlList for the given
method.

Naming

A client of an Enterprise bean locates the bean’s
home interface using JNDI. An Enterprise bean’s
home interface name is defined in the bean’s deploy-
ment descriptor. This name is used as the trailing
part of the actual name that the container binds into
its version of the INDI name space. This means that
the container can prefix the name of an Enterprise
bean’s home as defined in the bean’s deployment de-
scriptor with an arbitrary JNDI path. An Enterprise
bean home is mapped by Component Broker into
a CB home, which can be found using CB’s implemen-
tation of the COS naming service. As we saw earlier,
in addition to extending the COS naming interfaces,
CB’s naming service defines an architected structure
for its name space, called the System Name Tree.

In Component Broker’s programming model, homes
are found using factory finders, which in turn are
stored in the System Name Tree in a structured lo-
cation. This location is typically denoted by the name
“host/resources/factory-finders/host-scope.” Notice
how this name is traversed in the System Name Tree
by starting at the local host root node and following
the host name.

Thus, to map the name of an Enterprise bean’s home
to Component Broker, two issues must be dealt with:

¢ Factory finders are not used in the EJB program-

ming model.
* The name of the Enterprise bean’s home is an ar-

IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998

bitrary JNDI name that does not denote any struc-
tured location.

It is possible in principle to deal with the last issue
by prefixing the location of the factory finder to the
Enterprise bean’s home name as defined in the de-
ployment descriptor. In most cases, this will not be
enough, as additional deployment-time configura-
tion may be required. For example, the deployer may
need to further prefix the home’s path with a name
appropriate to the enterprise. Additionally, it is not
specified how clients (including bean instances) dis-
cover the full path to the home of a deployed bean.
It seems reasonable to expect a bean instance, in the
client role, to generate JNDi paths at run time, based
on some exposed environment property (which
would have to be configured at deployment time).
This would essentially lead to nonstandard, bean-
specific, deployment descriptors masquerading as
environment properties. Furthermore, it does not ad-
dress the clieat side.

Conclusion

Focusing on the architectural mapping of Enterprise
beans to CB alone does not address the run-time and
system management requirements that are needed.
Future work is needed to define new functions in
Component Broker administrative tools. These func-
tions would include the ability to construct and ex-
ecute the necessary Java Naming and Directory In-
terface services to seamlessly register Enterprise
beans to clients from a CORBA naming tree. Inter-
faces to native security controls to govern access to
beans need to be incorporated into these deployment
tools. Configuring Component Broker servers that
load JAR files from application-specific class paths
are needed for production-level isolation. Packag-
ing CB-generated classes with specific EJB JAR files
also needs to be elucidated. Where Enterprise beans
take advantage of Component Broker function for
capabilities richer than the EJB specification, addi-
tional deployment and packaging capabilities are
needed from these tools.

Enabling Enterprise JavaBeans to run on Compo-
nent Broker servers merges the strengths of two
worlds. To EIB users, a CB environment provides a
secure, transactional, scalable environment. For
Component Broker application developers, the
plethora and richness of JavaBeans tools can be used
to develop CB applications. The pervasiveness of Java
and the larger functionality of Component Broker
are made available to both the Java and CB commu-

IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998

nities. EIB developers do not require any knowledge
of CB to run Enterprise beans on Component Bro-
ker. Indeed, CB can be viewed as an extension to EJB.
Enterprise beans can be made to run in CB with lit-
tle effort. Writing applications using EJB classes
makes Java a fine language for creating enterprise
applications.

At the time this article was written, Gemstone Sys-
tems, Inc., Oracle Corporation, WebLogic, Inc.,
Netscape Communications Corporation, 1BM, and
SUN Microsystems, Inc. had announced general avail-
ability dates for EJB implementations. For platforms
supporting Component Broker, the design for scal-
able and transactional EJB servers is already in place.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Sun Microsystems, Inc.,
Object Management Group, Transarc Corporation, or Rational
Software Corporation.

Cited references and notes

1. O. Gample, A. Gregor, S. B. Hassen, D. Johnson, W. Jon-
sson, D. Racioppo, H. Stollinger, K. Washida, and L. Wid-
engren, Component Broker Connector Overview, IBM Inter-
national Technical Support Organization, SG24-2022-00
(May 1997); available from IBM branch offices or at hitp:
/www.redbooks.ibm.com/.

2. See http://www.omg.org for more information about the Ob-
ject Management Group.

3. R. Orfali, D. Harkey, and J. Edwards, The Essential Distrib-
uted Objects Survival Guide, John Wiley & Sons, Inc., New
York (1995).

4. V. Matena and M. Hapner, SUN Microsystems Enterprise
JavaBeans, Version 1.0 (March 1998); available at ftp:
//tp.javasoft.com/docs/cjb/.

5. I F. Brackenbury, D. F. Ferguson, K. D. Gottschalk, and
R. A, Storey, “IBM’s Enterprise Server for Java,” IBM Sys-
tems Journal 37, No. 3, 323-335 (1998).

6. R.Orfaliand D. Harkey, Client/Server Programming with Java
and CORBA, 2nd edition, John Wiley & Sons, Inc., New York
(1998).

7. By abstract object bus, we mean a high-level transport mech-
anism that allows objects to interoperate, regardless of lo-
cation, source language, or operating system,

8. For more information on Encina, see http://www.transarc.
com/dfs/public/www/htdocs/hosts/external/Product/Txseries/
Encina/Brochure2.0/cncina.html.

9. This notation indicates module name::interface.

10. DCE is the Distributed Computing Environment, from the
Open Software Foundation, now called The Open Group.
DCE is “middieware” that consists of multiple components
that have been integrated to work closely together. Sce http:
/fwww.camb.opengroup.org/tech/dee/info.

11. That is, it must implement the Java Serializable interface.

Accepted for publication July 1, 1998.

CODELLA ET AL.

537

Christopher F. Codella IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 704, Yorktown Heights, New York
10598 (electronic mail: codella@us.ibm.com). Dr. Codella reccived
the B.S. degree from Rutgers University in 1977, the M.S.E. dc-
gree from the University of Michigan in 1978, and the Ph.D. de-
gree from Cornell University in 1984, all in electrical enginecr-
ing. He is currcntly a research staff member and manager of the
Component Software group at the Thomas J. Watson Research
Centcr. Dr. Codella joined IBM in 1979, doing semiconductor
device design and simulation at the East Fishkill, New York, semi-
conductor lab and the Watson Research Center. In 1989 he joined
the Computer Science department at Watson, working in sim-
ulation, 3D graphical virtual environments, and distributed ob-
ject systems, and became manager of the Virtual Worlds group
there in 1993. In 1996 he worked on assignment as manager of
Enterprise Application Architecture in the IBM Consulting
Group. Returning to the Research Division in 1997, he formed
the Component Software group involved in research and devel-
opment in distributed object technology, enterprise application
middleware, and enterprise Java, as well as pilot customer en-
gagements with Component Broker. Dr. Codella is a Senior Mem-
ber of the Institute of Electrical and Electronics Engineers.

Donna N. Dillenberger IBM Rescarch Division, Thomas J. Watson
Research Center, P.O. Box 704, Yorktown Heights, New York 10598
(electronic mail: engd @us.ibm.com). Ms. Dillenberger joined IBM
in 1988 at the former Data Systems Division in Poughkeepsie.
She joined the Research Division in 1994. She has worked on
future hardware simulations, workload management, objects, and
the Web.

Donald F. Ferguson /BM Software Group, Thomas J. Watson Re-
search Center, 30 Saw Mill River Road, Hawthorne, New York 10532
(electronic mail: dff@us.ibm.com). Dr. Ferguson joined IBM as
a research staff member in 1987 and is currently a Distinguished
Engineer in the IBM Software Group. He is also Chief Architect
and Technical Leader for IBM’s Component Broker product and
Enterprisc JavaBeans implementations. During his career in IBM,
he has contributed to IBM cache management, operating system
and transaction processing workload management, multimedia
content server, system management, and distributed objcct-ori-
ented products. He is an author of seven current or pending pat-
ents and over two dozen technical publications. Dr. Ferguson has
received two IBM Outstanding Innovation Awards, four Research
Division Technical Awards, two IBM Invention Plateau Awards,
an IEEE best paper award, and was clected to the IBM Academy
of Technology in 1997.

Rory D. Jackson /BM Research Division, Thomas J. Watson Re-
search Center, P.O. Box 704, Yorktown Heights, New York 10598
(roryj@us.ibm.com). Mr. Jackson is an advisory engineer in the
Component Software group at the Watson Research Center. He
received the B.E. degree in electrical engineering from New York
University, the M.S. degree in computer engineering from Syr-
acuse University, and the M.B.A. degree in management infor-
mation systems from Iona College, New Rochelle, New York.
Mr. Jackson has been with IBM since 1975 and has worked on
the design and development of EBeam lithography systems, par-
allel processor machines, the 1996 Atlanta Olympics Web data-
base, and enterprise software products.

Thomas A. Mikalsen [BM Rescarch Division, Thomas J. Watson
Research Center, P.O. Box 704, Yorktown Heights, New York 10598
(electronic mail: tommi@watson.ibm.com). Mr, Mikalsen is an ad-

538 coDELLA ET AL

visory software engineer and member of the Component Soft-
ware group at the Watson Research Center. He received the B.S.
degrec in computer science in 1991 from the Rochester Institute
of Technology and is presently working toward the M.S. degree
in computer science from Polytechnic University, Brooklyn, New
York. His interests include distributed systems, distributed ob-
ject frameworks, and application development tools.

lgnacio Silva-Lepe IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 704, Yorktown Heights, New York 10598
(electronic mail: isilval@us.ibm.com). Dr. Silva-Lepe joined IBM
in 1997 and is an advisory software engineer with the Compo-
nent Software group. He participated in the design and imple-
mentation of the mapping of the Enterprise JavaBeans specifi-
cation onto Component Broker, the definition of the composite
business object for Component Broker’s Object Builder, and more
recently on the definition of a new type of Enterprise bean that
can communicate via asynchronous messaging. He received the
B.S. degree in computer systems engineering from Universidad
ITESO, Guadalajara, Mexico in 1985, and the M.S. and Ph.D.
degrees in computer science from Northeastern University, Bos-
ton, Massachusetts in 1989 and 1994.

Reprint Order No. G321-5688.

IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998

