
Technical note
WebEntree: A Web service
aggregator

by Y. Zhao

This technical note introduces IBM’s WebEntree,
a single-log-in Web service aggregator.
WebEntree provides an aggregated Web service
on top of distributed Web service systems (as
components) with a centralized access control
and content customization facility. Each service
system can have its own access control facility
and provide its own independent service.
WebEntree implements a flexible and dynamic
component-bundling mechanism, and can
provide personalized service with user-selected
component sets. WebEntree offers a convenient
way for new components to be “plugged in” and
“played.” The owner of the aggregated Web
service can keep each component’s original
branding, add more information, filter out certain
content, or customize the presentations.
WebEntree also provides a single user
registration and authentication interface for all of
its user-selectable service components.
WebEntree currently accommodates Web service
components invoked via HyperText Transfer
Protocol (HTTP, be., under a Web server) and
service components invoked directly from local
or remote application programming interfaces.
Other component interfaces are planned.

w eb service commercialization and personaliza-
tion usually involve user access control. This

means that users must register to obtain a service,
and they must be authenticated each time to access
the services, e.g., by providing user identification and
password. With a growing number of Web services,
each with its own authentication facilities, Web users
have been inconvenienced. For example, a user’s
identification (ID) in one system may not be accept-
able for another system because of ID conflicts. Also
the password validation policy (e.g., time period,
character restrictions, etc.) in one system may differ

from another. Consequently, a user must have mul-
tiple user IDS and passwords, and must be authen-
ticated several times to access different services. Mul-
tiple user IDS and passwords are inconvenient to use
and difficult to manage. WebEntree solves this prob-
lem by providing one common entrance for a user
to access all Web service systems, identified as Web
sewice components in this note. A user can register
and be authenticated only once at entrance; WebEn-
tree then handles user registration and authentica-
tion to Web service components. WebEntree also
provides the convenience of consolidating the user’s
Web services in one place, saving exploration time.

In addition, WebEntree assists a Web aggregation
service provider by not only providing a single log-in
entrance for users, but also the ability to change the
Web service components’ original branding, custom-
ize the presentation, filter out certain content, and
add the service provider’s own advertisements. Con-
tents from the different Web service components are
made accessible by WebEntree prior to sending them
to end users, which allows the aggregation service
provider to customize the content.

Through WebEntree, the aggregation service pro-
vider can also provide personalized services. Custom-
ers can select the prebundled Web service compo-
nent groups they want via initial registration, and they
can change their selections at any time. With the use
Wopyright 1998 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

584 ZHAO 0018-8670/98/$5.00 0 1998 IBM IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998

of WebEntree’s graphical user interface (Gu1)-based
administration subsystem, an aggregation service
provider can add or remove a Web service compo-
nent easily. Also, the service provider can dynam-
ically bundle the service components into different
groups, and manage user information and access to
the different groups. The administration activity will
not interrupt customer service.

Some WebEntree application scenarios follow:

Web service center as a virtual Web site: WebEn-
tree enables the separation of Web service from
Web contents, greatly reducing complexity for the
Web service provider. Thus, a Web service pro-
vider can create a service Web site without host-
ing the actual contents, offering a variety of pop-
ular Web applications and services from many
locations.
Existing Web publication service provider enhance-
ments: A publisher with an existing Web site can
add other interesting Web sites. This broadens the
contents and colors of the site and adds to its ap-
peal. WebEntree also enables the integration of
multiple Web service systems that the service pro-
vider may have.
Service site in a company’s intranet: In a company’s
intranet, there may be a need to construct a Web
service site that aggregates a variety of Web ser-
vices from outside as well as inside the company.
By using WebEntree, employees do not need to
individually pay registration or service fees for the
services provided because these items are handled
in one place. The single registration and log-in in-
terface and personalized home page also provide
employees with access convenience. In addition,
the company can customize and filter the Web con-
tents.
Service site for an extranet: An extranet is a network
among partners. There may be access control in-
volved with each partner’s Web site. WebEntree
makes it easier for a user to access the participat-
ing Web sites.

The Web content mentioned earlier is information
that is representable by a Web browser. It can be
compound documents or business data. It can be
dynamically generated from database query and
computation or from static files. The Web service is
to provide Web content from a Web server to Web
browsers. Web service aggregation provides collective
Web services from involved Web services systems
(or components). It is different from integration,

IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998

which tends to provide a more tightly coupled sys-
tem.

Single registration and authentication efforts (or sin-
gle sign-on) for non-Web environments have been
around for a long time. A survey can be found in
Hursti.’ IBM’S Global Sign-On product is one exam-
ple.2 More can be found in the documents from The
Open These solutions usually are based
on DCE (Distributed Computing Environment) or
LAN (local area network) architecture, and for mul-
tiple hosts in an affiliated environment. In a Web
environment, the most popular service systems are
based on HyperText Transfer Protocol (HTTP),’ or
so-called Web servers, although Common Object
Request Broker Architecture (CORBA” *)-based IIOP
(Internet Inter-Orb Protocol) servers are beginning
to be considered now as well. These Web service sys-
tems usually are operated in a nonaffiliated environ-
ment. The problem of single registration and authen-
tication must be solved for Web service systems
operated across all different protocols.

In HTTP, the response to a request must come from
the server to which the request was sent. This makes
it difficult for requests to different HTTP servers to
go through a single aggregator gateway. Proxy serv-
ers6 can be a solution. HnP-based proxy servers have
been implemented by Netscape,’ IBM, and other
companies. Services available via proxy servers in-
clude firewall, cache,7 and content filtering and se-
lection.’ The problem with this solution is that the
proxy server must be specified on the Web browser.
Most corporate Web clients use a proxy server to go
through their firewalls and to get Internet access. Ob-
viously, different proxy servers are used by different
corporate firewalls. Since only one proxy server en-
try is allowed for each Web browser (although proxy
server relay is allowed from the entry proxy server),
it is difficult for a common service proxy to reach all
users inside different firewalls (each firewall proxy
has to be configured separately to use the common
service proxy). It will be more complicated when mul-
tiple common service proxies are involved through
different Web service providers. WebEntree has been
designed to solve this problem in an alternative way.

WebEntree adopts object-oriented architecture and
design. It is based on the object-oriented Java* * Web
servers (Web servers that support Sun Microsystems’
servlet application programming interfaces) and is
implemented purely in the Java language; therefore,
it is platform-independent.

*HAO 585

Figure 1 The conceptual architecture of WebEntree

Architecture

The conceptual architecture of WebEntree is shown
in Figure 1. WebEntree can provide services from
either inside a firewall (to serve intranet customers)
or outside a firewall (to serve certain internal infor-
mation to the world), as illustrated in Figure 2. To
enhance security, digital certification can be used to
establish trust between Web clients and WebEntree.
This can be implemented by using secure H T ~ P based
on SSL (Secure Socket Layer). Some Web service
components may also choose to use SSL with certif-
icates for security enhancement. Most current Web
servers support secure rn protocol. The challenges
in using SSL are (1) the involvement of a third party
who issues the certificates and (2) certificate man-
agement in both Web client and ~ e r v e r . ~ The third
party must be trusted by both the other two parties.
Depending on the needs of a Web service provider,
WebEntree can be configured to use or not to use
SSL.

As shown in the system architecture depicted in Fig-
ure 3, WebEntree has three main subsystems: user
registration, service engine, and administration. The
user registration subsystem coordinates user regis-

586 ZHAO

tration information with the corresponding service
components. The service engine accepts requests
from Web browsers, passes them to the correspond-
ing service components, obtains responses from the
components, and sends them back to the Web brows-
ers. Also, the service engine conveys user authen-
tication information to the corresponding compo-
nents, and provides various service options. The
administration subsystem is implemented with a
graphical user interface, which provides a convenient
mechanism for managing users and Web service
components, as well as for service and Web content
customization.

A data manager maintains a repository for user, ser-
vice component, user access group, and component
bundling information. It also manages a set of per-
sistent objects to accommodate repository accesses
from different threads and processes. This data man-
ager and relevant persistent objects are implemented
on top of JDBC (Java Database Connectivity), allow-
ing access to different database products.

A user must be registered to obtain services from
WebEntree. User registration information is prop-

IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998

Figure 2 WebEntree for both intranet and extranet Web users

agated to the user-selected Web service components
or applications by the registration subsystem. Initial
groups of service components can be selected dur-
ing registration. After registration, a user is granted
a user ID, a password, and a certificate if SSL authen-
tication is involved in a selected Web service com-
ponent. Then, the user can log in to the member ser-
vice provided by WebEntree. After user log-in, the
service engine authenticates the user and provides
a personalized home page that includes hyperlinks
to all service components the user has selected. When
the user clicks on a component’s hyperlink, the re-
quest is sent to the service engine. The service en-
gine first compares the user’s access to the acces-

sibility requirements for the requested service
component. If the user has proper access, the ser-
vice engine will retrieve the Web content from the
selected URL (uniform resource locator) and send
it to the user. Also, users can post content to a Web
service component. Optionally, the service engine
can also support usage logs and reporting, and an
interface to a billing or payment subsystem.

The WebEntree administration subsystem is imple-
mented in two versions: a server-based Java appli-
cation version and a Java applets version, viewable
with a Web browser. The user interface is basically
the same in both versions.

IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998 ZHAO 587

Figure 3 WebEntree’s system architecture

User registration subsystem administrator assisted via electronic mail. In the au-

The user registration subsystem allows users to reg-
ister themselves. It also provides a user with an ini-
tial list of selectable service groups. Each group
contains a list of service components, and each com-
ponent can reside in multiple groups. Also, a user
can access multiple groups. The user registration in-
formation is stored in a persistent repository (i.e.,
a database) via the data manager. This registration
information is propagated to the access control sys-
tems of user-selected service components. Therefore,
only one registration is necessary to access all ser-
vice components that are routed to WebEntree. It
also enables a single user-authentication interface,
i.e., a user needs only to log in once to access all of
the services provided by selected service components.
A sample user registration form is shown in Figure
4. The architecture and control flow for this sub-
system are shown in Figure 5.

Registration mechanisms. WebEntree provides two
types of user registration mechanisms: automatic and

tomatic registration mechanism, a user fills in a reg-
istration form like the one shown in Figure 4. Then,
the registration form is sent to the registration man-
agervia URL after submission. The registration man-
ager parses the user’s information and calls the data
manager to store the user data into the aggregator’s
database. Then, the registration manager invokes the
registration dispatcher to register the user to the se-
lected Web service components. The user becomes
a member and gets access to the aggregated Web
service immediately.

If a proofing procedure needs to be performed be-
fore a user can be registered, the administrator-as-
sisted registration mechanism can be applied. With
this mechanism, the user’s registration forms are
routed to a system administrator via electronic mail.
If approved, the administrator sends the user’s reg-
istration form to the registration manager. Then the
registration manager stores the user’s registration
information in the aggregator’s database via the data

IBM SYSTEMS JOURNAL. VOL 37, NO 4, 1998

Figure 4 A sample user registration form

manager and invokes the registration dispatcher to
propagate the registration information. The user is
notified via electronic mail about membership and
access information.

Registration synchronization. The registration syn-
chronization between WebEntree and other Web
service components is achieved by propagating user
registration information in WebEntree to other user-
selected service components via the regular regis-
tration channel provided by these components, e.g.,
via HTML (HyperText Markup Language) forms, cli-
ent registration applets, or server registration APIS
(application programming interfaces). For each Web
service component, there is a special registration han-
dler. This handler, implemented in Java code, sends
registration information in the format that is accept-
able by the component’s registration interface. The
registration method in a registration handler is cus-
tomized code. Since each Web service component’s
registration interface can be unique, registration
method automation does not seem possible in a non-
affiliated environment.

The registration dispatcher is a daemon, started at
aggregation service initialization time, that detects
user registration and invokes the registration han-
dlers to send registration information to the user-
selected Web service components or applications.

If a user-selected Web service component provides
personalized service, the user profile information,
user ID, and password are sent to this component
for registration. Notice that the password here is not
the same password used to access the aggregator.
The component password is generated by running
a Java algorithm, and the algorithm produces the
same password each time. To change the password
is to change the algorithm, which belongs to the sys-
tem and is transparent to users. The password pol-
icies can be provided from the administrator’s in-
terface, and the Java code will be dynamically
generated and compiled. The generated passwords
comply with the password policies specified by the
Web service components. The password algorithm
is implemented as a method inside the registration
handler.

IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998

Figure 5 The architecture and control flow of the registration subsystem

The registration handlers are dynamically loaded at
run time, an advantage of Java code. Therefore, the
registration handlers can respond to registration in-
terface and password changes for a Web service com-
ponent at any time during service, as necessary. Since
each password is uniquely generated at run time for
each Web service component (by running the Java
code), an intruder to WebEntree will not be able to
find passwords to the Web service components. Each
aggregated Web service component can use its own
password generation methods (e.g., with encryption)
or the default ones provided by this Web service ag-
gregator.

If a Web service component does not provide any
personalized service, it is unnecessary to propagate
user information to it. The aggregator is registered
to each Web service component with a separate ID
and password. The aggregator’s ID can be either
dynamically generated (as for the password) or

stored in the Web service component authentication
table. The password generation is as described above.

This two-level registration and authentication mech-
anism, along with run-time password generation for
accessing real content in the Web service compo-
nents, has enhanced WebEntree’s security, because
the passwords to Web service components are not
recorded anywhere. The Web service component de-
termines whether clear password text is allowed to
be transferred on the network (e.g., basic authen-
tication) or not (e.g., digest authentication). For af-
filiated Web service components, one-time password
or token-based authentication can be considered as
well for further improvement of security, e.g., the
Kerberos method. SsL-based authentication can give
better security, but is more expensive when consid-
ering certificate management and the involvement
of a third party. lo The overall security also relies on
the security implementation for individual Web ser-

IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998

vice components, although WebEntree does not re-
duce their security level.

Since the same password is used by all users from
WebEntree, if passwords are easily obtained from
a particular Web service component (e.g., passwords
are stored as clear text in the server or database),
the possible damage to this component would be
greater because of WebEntree’s involvement. To
provide better security service for each Web service
component, a different password could be generated
for each user. The drawback of this choice would be
the additional complexity for password generation
and maintenance, although the implementation
would still be practical.

After registration, a user is granted a user ID, a pass-
word, and a certificate if SSL authentication is used.
The user can then log in to the member service pro-
vided by the service engine of the aggregator.

A registered user can be removed by the system ad-
ministrator. In addition, a user can remove himself
or herself by selecting deregistrution. During dereg-
istration, the registration manager removes the user
from the aggregator’s database and invokes the reg-
istration dispatcher to remove the user from previ-
ously selected Web service components. Users can
also update their service selections by themselves.
Each time a user updates his or her service compo-
nent group selection list, registration information will
be sent to the newly selected components and de-
registration information will be sent to the deselected
components. Some Web service components may re-
quire more specific information than the general reg-
istration information that WebEntree provides. If
so, an additional request form will prompt the user
after their selection.

WebEntree service engine

The WebEntree service engine performs user au-
thentication, service access control, gateway access
to Web service components, and personalized user
services. The service personalization is based on the
user ID obtained during user authentication. For ba-
sic and digest authentication, the user ID, password,
and authenticated server are stored in the Web
browser (both Netscape Navigator** and Internet
Explorer** support this feature). The user ID and
password are sent to the Web server in the request
header each time the user makes a URL request via
the Web browser. Thus, the WebEntree service en-
gine can provide personalized content to users based

IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998

on their user ID in the request header. For other au-
thentication mechanisms “cookies” and session-
tracking techniques can be used to carry user infor-
mation. The servlet APIS are useful for these
operations. ‘ I

The architecture of WebEntree’s service engine is
shown in Figure 6. The Web service coordinator
manages the workflow among the different compo-
nents inside the service engine. For first-level authen-
tication (users authenticate to WebEntree), the ac-
cess authenticator checks the user’s credential (i.e.,
user ID and password) based on the information in
the URL request (e.g., for basic or digest authenti-
cation, user ID and password are in the request head-
ers) and the information in the user credential ob-
ject (created from the persistent data in database).
If they are a match, the access authenticator sends
“true” to the Web service coordinator; if not, “false”
is sent. Based on the authentication result, the Web
service coordinator either generates the user’s per-
sonal home page or sends back an alert to inform
the user of the access violation.

The user’s personal home page is generated based
on the user ID, the user-accessible component
groups, and the Web service components in these
groups. An access control object for each Web ser-
vice component indicates by which groups it can be
accessed.

After the user selects a hyperlink from his or her
home page, the second-level authentication pro-
ceeds, between WebEntree and the Web service
component indicated by the selected URL. The Web
service coordinator sends authentication information
to the component’s Web server-a password for ba-
sic or digest authentication, and a certificate for SSL
authentication.

After authentication, the Web service coordinator
sends the user request to the Web request dispatcher.
The dispatcher constructs the URL based on the pa-
rameter string passed by the user and the server map
information stored in the repository. Then, the dis-
patcher sends the constructed URL to the corre-
sponding Web service component, gets response
content back, and sends it to the Web service co-
ordinator.

Notice that if WebEntree and the Web service com-
ponent are not on the same side of a firewall, a proxy
server or a SOCKS (socket secure) server can be used
for service request and access.

ZHAO 591

Figure 6 The architecture of the service engine

After the Web service coordinator gets the Web con-
tent from the Web service component, it sends the
content to the content editor. The content editor
parses the content and performs the following op-
erations:

Converts URLs for protocols (H n P , FTP [File
Transfer Protocol], telnet, gopher, etc.) to point
to WebEntree’s service engine. The URLS for im-
ages, sounds, and other multimedia data are
changed to the absolute path to the original serv-
ers. It should be noticed that the “CODEBASE” at-
tribute for Java applets should be specified for the
original server.
Adds information to the content according to the
predefined service request, e.g., the WebEntree
service owner’s branding
Adds specific information to the content accord-
ing to user information

The local or remote applications related to content
are hosted in WebEntree’s Web site. The content

can be in the local machine of the Web service en-
gine or can be accessed via DCE, CORBA, etc. The
Web service coordinator directly serves the content
in WebEntree’s Web site by invoking local and re-
mote applications; no content parsing or transfor-
mation is necessary.

To enhance performance, a cache manager, as shown
in Figure 6, manages a cache for service data. These
service data are in the form of persistent data ob-
jects, such as the Web service component’s informa-
tion object, access control information object, and
authentication information object. Each Web ser-
vice component is given a unique ID when it is added
to WebEntree, and the cached component informa-
tion objects are retrieved by component ID. Also, the
user-persistent data, such as the user profile infor-
mation object and the user credential information
object, can be cached for the most recent users. These
user-data objects can be retrieved by user IDS. No-
tice that Web content is not cached here; it is han-
dled by Web servers or cache proxy server^.^,^

IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998

Figure 7 The architecture for scalability and load balancing

There is a continuously running notification agent
for each service engine instance (therefore for each
Web server) waiting for messages from the admin-
istration subsystem. When the administration sub-
system makes any changes to the persistent data, it
sends a message to each notification agent. The no-
tification agent then invokes the cache manager to
update the cache from the persistent storage.

Digital certificates are involved when WebEntree or
Web service components use SSL. If WebEntree uses
SSL, it needs to get a server certificate. If some of
the Web service components use SSL and are out-
side the WebEntree firewall, WebEntree needs to
get client certificates for these components as well.
If these components are inside the WebEntree fire-
wall, then direct handshaking between Web clients
and service components can be facilitated, and
WebEntree’s involvement will not be necessary.

Services provided by the service engine to registered
users include changing selected service groups,
changing profile information, changing passwords,
and browsing over all Web service components.

IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998

For maximum performance, the service engine is
scalable to multiple servers and can run in multiple
boxes. The load balancing is controlled by a connec-
tion manager, as shown in Figure 7. Both the con-
nection manager and the service engine instances are
run continuously. The initial service request from a
Web client browser to the aggregator goes first to
the connection manager. Based on the work load in
each instance of the service engine, the connection
manager selects a least-loaded instance to provide
the service. The first Web page is generated dynam-
ically by the connection manager with hyperlinks to
this least-loaded service engine instance.

An instance of the service engine can be added or
removed by an administrator, based on the volume
of user requests. This service scale adjustment op-
eration will not interrupt the provided Web services.
If an administrator makes any changes to the per-
sistent data in the database that are relevant to the
cached persistent data objects, the administration sub-
system will send messages to each notification agent
in each service engine instance. Each notification agent
will notify the cache manager to update the cache.

.zHAO 593

Administration subsystem

The cur-based administration subsystem provides
system administrators with a convenient tool for the
management of user information and Web service
components, as well as for Web aggregation service
customizations. It can be implemented by Java ap-
plets (based on a Web browser) or an application
(based on a server). Its major functions are described
in this section.

Registration processing. Administrator-assisted reg-
istration processing provides a way to retrieve user
registration mail, evaluate user information and ser-
vice selections, modify incoming user data, and reg-
ister users to the WebEntree system.

Service management. Some basic system adminis-
tration features are listed as follows:

User information view. This is a view of a selected
user’s profile, the Web service component groups
that the user has access to, and a complete list of
Web service components that are accessible by the
user. A user can be selected by user ID, by user
name, or by group.
User update. This is an interface for administra-
tors to add or remove a user, to update a user’s
profile and access group information, and to
change a user’s password.
Web service component information view. This view
provides information views for a selected compo-
nent. That includes the component’s name, its
unique ID in the system, the service it provides, the
server it is located in, its invocation URL, the au-
thentication type it uses, the groups it belongs to,
etc.
Web service component update. This is an interface
for administrators to add or remove a selected Web
service component, to update a component’s in-
formation, and to assign or unassign the compo-
nent to a group. A component can be assigned to
multiple groups.
Group information view. The Web service compo-
nents are bundled into groups. For a selected
group, this view shows which Web service compo-
nents are inside the group, and which users have
access to the components in this group.
Group update. Administrators can add or remove
a group, change a group’s name, change a group
by adding or removing Web service components,
and add or remove users from a selected group.
Server information view. This view shows which Web
service components are in each server and which

port a component is using. The server information
is used for Web request dispatching and Web con-
tent transformation.
Server update. A server can be added to or removed
from a server control list. WebEntree service ac-
cess control only applies to the servers in the server
control list.
Service scale control. Based on the volume of user
requests, a WebEntree server can be added or re-
moved by a system administrator.

Server administration tool for load balancing. Scal-
ability and load balancing are provided by the service
engine of WebEntree. A Web server for a service en-
gine can be added or removed by the use of the server
administration tool. The server information is stored
in a configuration file in the same server as the admin-
istration subsystem. As the administration subsystem
is designed to be in a single server, a file is more con-
venient to use than a database.

Conclusion

WebEntree, a Web service aggregator, provides an
aggregated Web service by bringing other Web ser-
vice systems into the service site. Although each Web
service component may have its own user registra-
tion and authentication facilities, the aggregated ser-
vice system performs user information and creden-
tial coordination activities and provides a single
registration and log-in capability to its users. The ag-
gregated Web service provides convenience by put-
ting services a user wants in one place for access
through a single log-in. The aggregation of Web ser-
vice components from other Web sites can broaden
the content, enrich the portfolio, and enhance the
Web site of a Web service provider.

Currently, the Web service components are selected
by the service provider who uses WebEntree. Agent
technology for content discovery can be added in the
future to find interesting service components. Also,
user-based agent service could be added to bring free
information to users, based on their interests anal-
ysis, to achieve better personalized services. This will
be possible when more Web content is based on XML
(extensible Markup Language).

The system is implemented purely in Java with Java
servlets” running under an H T ~ P server, JDBC for
repository or database access, and either Java ap-
plets or a Java application for the administration sub-
system. New features will be added to WebEntree,

IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998

such as an advertising system, usage logs and report-
ing, billing and payment subsystem, and many more.

Acknowledgments

This work was supported by the Telecommunications
and Media Solutions unit of IBM. I would like to
thank my former colleague Khalid Asad for his ini-
tial contribution to the single log-in conceptual ar-
chitecture and implementation tools. I would like to
thank Denny Zhang, Chris Demas, and others for
their implementation work. Also, I would like to
thank Paul Grandin, Chris Demas, Andrea Ma-
caluso, and Frank Stein for reading and comment-
ing on this paper, and thank Frank Stein for giving
me the opportunity to lead this project.

**Trademark or registered trademark of Object Management
Group, Sun Microsystems, Inc., Netscape Communications Cor-
poration, or Microsoft Corporation.

Cited references

1.

2.
3.

4.

5.

6.

7.

8.

9.

10.
11.

12.

J. Hursti, Single Sign-On, Department of Computer Science,
Helsinki University of Technology (November 1997), avail-
able at http://innv.tcm.hut.fi/Opinnot/rik-110.501/1997/single-
sign-on.htm1.
See http://www.software.ibm.com/enetwork/globalsignon/.
Introduction to Single Sign-On; The Open Group (1996);
available at http://www.opengroup.org/security/sso/sso-
intro.htm.
X/Open Single Sign-on Service (XSS0)”Pluggable Authen-
tication Modules, The Open Group (1997); available at http:
//www.opengroup.orglonlinepubs/8329799/toc.htm.
R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-
Lee, “Hypertext Transfer Protocol-HTTPil.1,” Network
Working Group RFC 2068 (January 1997); available at http:
//www.w3c.org/Protocols/rfc2068/rfc2068.
A. Dave, M. Sefika, and R. H. Campbell, “Proxies, Appli-
cation Interfaces, and Distributed Systems,” Proceedings Sec-
ond International Workshop in Object Orientation in Operat-
ing Systems, Paris, France (September 1992), pp. 212-220.
Netscape Proxy Server Deployment Guide, Netscape Com-
munications Corporation, available at http://home.netscape.
com/comprod/server_central/eval_guide/proxy/deployment/
index.htm1.
Known Web Proxy Servers Implementing PICS, World Wide
Web Consortium, available at http://www.n2h2.com/pics/
proxy-servemhtml.
S. P. Miller, B. C. Neuman, J. I. Schiller, and J. H. Saltzer,
“Kerberos Authentication and Authorization System,” Proj-
ect Athena Technical Plan, Section E.2.1, Massachusetts In-
stitute of Technology, Cambridge, MA (October 1988).
See VeriSign, Inc. at http://www.verisign.com/.
JavaServer Product Documentation, Sun Microsystems, Inc.;
available at http://jserv.javasoft.com/products/java-server/
documentation/index.html.
Java Servlet Application Programming Interface White Pa-
per, Sun Microsystems, Inc. (1996); available at http://mech.
postech.ac.kr/Java/java.sun.com/produc~/jeeves/C~entRele~e/
doc/api.html.

Accepted for publication July 13, 1998.

Yan Zhao Adobe Systems, Inc., 345 Park Avenue, San Jose, Cal-
ifornia 95110 (electronic mail: yanzhao@aol.com). Dr. Zhao
worked for IBM from 1992 until she recently joined Adobe Sys-
tems’ Advanced Technology Group as a senior computer scien-
tist. She was an architect, a technical team leader, and a devel-
oper in several software research and development projects at
IBM. Her technical interests are the Internet, Web-based con-
tent management and publishing, digital libraries, distributed com-
puting, data modeling, and database design. She has filed several
patents and provided technical consulting services for IBM mar-
keting and external customers. Dr. Zhao received the B.S. and
M.S. degrees in computer telecommunications and engineering
in 1982 and 1985 from Beijing University of Posts and Telecom-
munications, where she was an assistant professor and lecturer
until August 1988. She received the M.N.S. degree in computa-
tional mathematics in 1991 and the Ph.D. degree in computer
science in 1995, both from Arizona State University.

Reprint Order No. G321-5692.

IBM SYSTEMS JOURNAL, VOL 37, NO 4, 1998

