REPRINTED FROM IBM SYSTEMS JOURNAL, VOL34, NO 2, 1995; © 1995, 1999

SP2 system architecture

Scalable parallel systems are Increasingly being
used today to address existing and emerging
application areas that require performance

levels significantly beyond what symmetric
multiprocessors are capable of providing. These
areas Include traditional technical computing
applications, commercial cotgputlng applications
such as decision support and transaction
processing, and emerging areas such as “grand
challenge” applications, digltal libraries, and
video production and distribution. The IBM SP2™
Is a general-purpose scalable parallel system
des‘?ned to address a wide range of these
applications. This paper gives an overview of the
architecture and structure of SP2, discusses the
rationale for the significant system design
decisions that were made, indicates the extent to
which key objectives were met, and Identifies
future system challenges and advanced
technology development areas.

he IBM SP2* is a general-purpose scalable par-

allel system based on a distributed memory
message-passing architecture. Generally available
SP2 systems range from 2 to 128 nodes (or process-
ing elements), although much larger systems of up
to 512 nodes have been delivered and are success-
fully being used today. The latest POWER2* tech-
nology RISC System/6000* processors are used for
SP2nodes, interconnected by a high-performance,
multistage, packet-switched network for interpro-
cessor communication. Each node contains its own
copy of the standard AIX* operating system and
other standard RISC System/6000 system software.
A set of new software products designed specif-
ically for the SP2 allows the parallel capabilities of
the SP2 to be effectively exploited.

414 AGERWALAETAL.

0018-8670/99/$5.00 © 1999 IBM

by T. Agerwala
J. L. Martin
J. H. Mirza
D. C. Sadler
D. M. Dias
M. Snir

Today, SP2 systems are used productively in a wide
range of application areas and environments in the
high-end UNIX** technical and commercial com-
puting market. This broad-based success is attrib-
utable to the highly flexible and general-purpose
nature of the system. This paper gives an overview
of the architecture and structure of SP2, discusses
the rationale for the significant system design deci-
sions that were made, indicates the extent to which
key objectives were met, and identifies system
challenges and advanced technology development
areas for the future.

We first discuss the overall goal of the SP2 system
and the key focus areas. Next we discuss our ra-
tionale for the systems approach we have selected
and which we will refine over time to meet these
requirements. This is followed by a discussion of
the overall SP2 system architecture, some of the
major system components, and the SP2 perfor-
mance. We conclude with our views on the key
challenges facing system architects of scalable par-
allel systems and areas in which we need to focus
in the future, and a summary of how the SP2 sys-
tems are being used today.

©Copyright 1995 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is
done without alteration and (2) the Journal reference and IBM
copyright notice are included on the first page. The title and
abstract, but no other portions, of this paper may be copied or
distributed royalty free without further permission by computer-
based and other information-service systems. Permission to re-
publish any other portion of this paper must be obtained from
the Editor.

IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999

Massively parallel processors (MPPs) have been
around for a number of years. These systems have
typically been designed to apply the combined ca-
pacity of hundreds and even thousands of low-cost,
low-performance processing elements for solving
single large problems. However, until recently
these systems were not adopted for mainstream su-
percomputing applications. Since the individual
processors gave very low performance, consider-
able effort was required up front to parallelize an
application code sufficiently (that is, divide the
code into multiple parts that can execute in par-
allel) even to get performance equivalent to the
mainstream uniprocessors. That was a major in-
hibitor. In addition, limited processor memory,
limited input/output, poor reliability, primitive non-
standard software development environments and
tools, and programming models that were closely
tied to the underlying hardware (such as the inter-
connection structure) all contributed to their fail-
ure to be generally accepted. MPPs remained, at
best, special-purpose machines for very narrow
niche applications.

From the inception of the SP2 project, our goal was
to design general-purpose scalable parallel sys-
tems. We realized (as did others’) that for mas-
sively parallel systems to succeed they must be
more general-purpose and less intimidating to use
than they have been in the past. They must also
provide all the capabilities available on a traditional
system, at similar or lower price/performance. The
basic nodes must be powerful enough and the un-
derlying operating system must have full function
so that users can move their current work over to
the system with little effort and run their current
applications in serial mode with acceptable perfor-
mance. The systems must support familiar inter-
faces, tools, and environments, support existing
standards and languages, and have common appli-
cations available. In this way, users can begin pro-
ductive use of the system with little upfront effort
and gradually parallelize and optimize the code
over time. In addition, the system must also pro-
vide support in key areas to enable customers to
grow (or scale) their applications in size and per-
formance beyond what can be achieved on con-
ventional systems.

Consequently, we have designed our systems to
be used in a variety of environments. These include
very large, stand-alone configurations dedicated to

IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999

VOL34, NO 2, 1995, REPRINT

solving extremely complex and large single appli-
cations, smaller systems that coexist with main-
frames and traditional supercomputers and that are
used to offload some of the work for price/perfor-
mance reasons, and consolidated servers for
midrange local area network server environments.

The scalable parallel capabilities of the SP2 system
allow customers to scale their applications, both
in computation and data, much beyond what is pos-
sible with conventional systems. Our initial focus
with the earlier SP1* was on high-performance sci-
entific and technical computing in areas such as
computational chemistry, petroleum exploration
and production, engineering analysis, research,
and “grand challenge” problems (those important
for national interest). Today, SP2 systems address
those areas and are also being used increasingly
for commercial computing—primarily for complex
query, decision support, business management ap-
plications, and on-line transaction processing.
Over time we expect SP2 systems to be used for
emerging applications such as large information
servers, digital libraries, personal communications,
video-on-demand, and interactive television, as
well as for mission-critical applications for busi-
ness operations such as airline reservations and
point-of-sales.

In order to properly address these diverse appli-
cations and environments, we realized that we
needed to focus the design on three key areas: pro-
gramming models, flexible architecture, and sys-
tem availability.

e Programming models—The SP2must support key
programming models prevalent in the technical
and commercial computing environment so that
existing applications can be readily ported (or mi-
grated from another processor) to the sp2. These
models are discussed in more detail later in this
section.

* Flexible architecture—The SP2 must be flexible
in how it can be configured and how it can be
used. The system must be scalable from a very
low entry point to a very large system, and be
able to do this in small increments. The nodes
must be individually configurable for hardware
and software to meet the specific requirements
of the customer’s application and environment.
The system must support a multiuser environ-
ment with a mix of serial and parallel, and batch
and interactive jobs, and must accommodate a

AGERWALAETAL. 415

416 AGERWALAETAL.

mix of throughput and job turnaround time re-
quirements.

¢ System availability—In order to succeed com-
mercially, the SP2 cannot merely be a research
machine; it must exhibit good reliability and
availability characteristics so that customers can
run their production codes on it. Points of cat-
astrophic failures must be removed and failures
must be isolated to the failing component and not
be allowed to propagate. The system must sup-
port concurrent and deferred maintenance for the
most common service situations and must sup-
port concurrent upgrade for the most common
system upgrade situations. Finally, critical hard-
ware and software resources must be designed
for transparent recovery from failures.

Programming models in technical computing. The
availability of software applications from vendors
is critical to the success of any technical comput-
ing system. There is a large number and variety of
such applications, and it is important to make it as
easy as possible for software vendors and custom-
ers to port their applications to the Sp2.

There is a significant number of applications avail-
able today for the RISC System/6000, and we must
preserve the execution environment for these ap-
plications so that they can continue to run serially
on an SP2 node without requiring any modifications.

In addition, key technical applications must be able
to execute in parallel. To facilitate this, the sys-
tem must provide support for prevalent parallel
programming models and styles, and provide a
comprehensive set of tools and environments (for
both FORTRAN and C) for the development of new
parallel applications, the porting of existing par-
allel applications, and the conversion of existing
serial applications.

There are essentially three parallel programming
models that are being used in large scalable sys-
tems (see Figure 1), the message-passing program-
ming model, the shared-memory programming
model, and the data parallel programming model.

Message-passing programming model. With the
explicit message-passing model, processes in a par-
allel application have their own private address
spaces and share data via explicit messages; the
source process explicitly sends a message and the
target process explicitly receives a message. How-
ever, since data are shared by explicit action on

VOL34, NO 2, 1995, REPRINT

the part of the processes involved, synchroniza-
tion is implicit in the act of sending and receiving
of messages. The programs are generally written
with a single-program, multiple-data (SPMD) stream
structure, where the same basic code executes
against partitioned data. Such programs execute
in a loosely synchronous style with computation
phases alternating with communication phases.
During the computation phase, each process com-
putes on its own portion of the data; during the
communication phase, the processes exchange
data using a message-passing library.

Shared-memory programming model. With the
shared-memory model, processes in a parallel ap-
plication share a common address space, and data
are shared by a process directly referencing that
address space. No explicit action is required for
data to be shared. However, process synchroni-
zation is explicit; since there are no restrictions on
referencing shared data, a programmer must iden-
tify when and what data are being shared and must
properly synchronize the processes using special
synchronization constructs. This ensures the
proper ordering of accesses to shared variables by
the different processes. The shared-memory pro-
gramming model is often associated with dynamic
control parallelism, where logically independent
threads of execution are spawned at the level of
functional tasks or at the level of loop iterations.

Data parallel programming model. The data par-
allel model is supported by a data parallel language
such as High Performance FORTRAN.? Programs
are written using sequential FORTRAN to specify
the computations on the data (using either itera-
tive constructs or the vector operations provided
by FORTRAN 90), and data mapping directives to
specify how large arrays should be distributed
across processes. A High Performance FORTRAN
preprocessor or compiler then translates the High
Performance FORTRAN source code into an equiv-
alent SPMD program with message-passing calls (if
the target is a system with an underlying message-
passing architecture), or with proper synchroniza-
tions (when the target system has a shared-mem-
ory architecture). The computation is distributed
to the parallel processes to match the specified data
distributions. This approach has the advantage of
freeing the user from the need for explicitly dis-
tributing global arrays onto local arrays and chang-
ing names and indices accordingly, allocating buff-
ers for data that must be communicated from one
node to another, and inserting the required com-

IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999

Figure 1 Dominant programming models in parallel technical computing

MESSAGE-PASSING PROGRAMMING MODEL |

e =
[—> MESSAGES

g
i PROCESS[

i |

E/ f’]z‘. I T

=

£

| DATA

] s
| || DATA ﬁ DATA

MLt g Al g

l
\ | :
PARTITIONED DATA (PRIVATE ADDRESS SPACES)

|
|
|

DATA PARALLEL PROGRAMMING MODEL

&£ e R E—— ——

| SERIAL PROGRAM

(R (-, o, W e, W
| DATA || DATA {|| DATA || DATA
| Pl g

DATA DISTRIBUTION DIRECTIVES

munication calls or the required synchronizations.
Another advantage is that High Performance
FORTRAN source code is compatible with regular
FORTRAN (since syntactically, directives are com-
ments), so that code development can occur on
ordinary workstations and porting code from one
processor to another is easier.

To date, the primary focus for programming large

scalable parallel systems has been on the explicit
message-passing and data parallel models, and our

IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999

' PREPROCESSOR ! |
| OR COMPILER |/

I———'f‘f]' |* e

VOL34, NO 2, 1995, REPRINT

| SHARED-MEMORY PROGRAMMING MODEL

- et - |

PP

’ SYNCHF{ONPZATION "_
OPERATIONS |

gt I o Gk \ 2
R (e (s

P o »
PROCESS PROCESS

] DATA

GLOBALLY ACCESSIBLE DATA (SHARED ADDRESS SPACE)

SVN(ARC iN\YA Le N
OPERATIONS |
I 2

o
PR«KHS ”FE){I =3 Pny l lh.(‘

A

@
it

Y

VB e o it

SHARED MEMORY

il

vsAf

PROCESS H\rr, PROCESS] |

Y AT 7 4
DATA | DATA]‘ DATA | DATA
i |5})

MESSAGE PASSING

current emphasis is on the efficient support of these
models. For the explicit message-passing model,
we must support the prevalent and emerging mes-
sage-passing libraries efficiently. For the data par-
allel model, we must provide High Performance
FORTRAN language support. Support of these pro-
gramming models and an easy-to-use program de-
velopment and execution environment are critical
to encourage software vendors and users to invest
the effort necessary to exploit the parallel capa-
bilities of scalable parallel systems such as Sp2.

AGERWALAETAL. 417

418 AGERWALAETAL.

Both explicit message-passing and data parallel
models encourage a fairly static (declarative) dis-
tribution of data. As programmers become more
sophisticated in the use of large scalable systems,
we expect that parallel numerical algorithms in
many disciplines will increasingly focus on sparse,

Support for function
shipping and data sharing
models enable commercial

applications.

irregular data structures, and dynamic distribution
of data and computation to nodes. In the future,
SP2 must also support a shared-memory program-
ming model to enable this evolution. Improvements
in compiler technology and in communications
hardware and software will be necessary to enable
support of this model on a system with an under-
lying distributed memory message-passing archi-
tecture. (Note that we are making a distinction here
between the underlying system architecture and
the supported programming style or programming
model. It should be fairly evident that with the cor-
rect software and hardware support, any of the pro-
gramming models can be supported on a system
with either of the underlying architectures.)

Programming models in commercial computing.
“Commercial computing™ is a broad term that has
many different connotations. For our purposes, by
commercial computing we will refer largely to on-
line transaction processing (OLTP), database query
processing, and related emerging applications such
as data mining and very large information servers.
Such commercial applications in the UNIX environ-
ment are largely based on a few key subsystems.
Database subsystems include DB2/6000*,** Oracle,’
Sybase, ® Ingres, and Informix.” Transaction mon-
itors include cICs/6000*,® Encina,® and Tuxedo. 1

Porting these few primary subsystems to runin par-
allel on a scalable parallel system provides the basis
for enabling a host of applications that utilize these
subsystems. Many commercial applications do not
need to be modified to run in a parallel environ-

VOL34, NO 2, 1995, REPRINT

ment since they utilize and request services from
a few key subsystems. Instead it is these sub-
systems that need to be enabled and optimized for
parallel execution or for throughput. The reason
is that for many applications, the bulk of the pro-
cessor time is spent executing function in the
subsystems; thus optimizing the subsystem perfor-
mance is the key aspect. Only sophisticated ap-
plications that provide considerable functionality
over and beyond the underlying subsystems need
to be specifically modified and tuned for parallel
execution on scalable parallel systems.

These key subsystems mentioned above have all
been enabled to run under the UNIX operating sys-
tem. They were initially developed for high-vol-
ume single-processor systems, but most have been
modified to run in a multiprocessor environment.
To provide performance, capacity, and availabil-
ity beyond symmetric multiprocessors, these sub-
systems are also being enabled to run in a clustered
systems environment; in this environment a sep-
arate instance of the subsystem runs on each of
the systems in the cluster, and a layer of software
ties these instances together to provide a single sys-
tem image to higher level application software.

There are two principal clustered system program-
ming models for parallel transaction and query pro-
cessing, as illustrated in Figure 2. In the function
shipping model™ (also referred to as the shared-
nothing model'?) the data are physically partitioned
among the nodes in the cluster, and remote func-
tion calls are made to access remote data. In the
data-sharing model, *-** the data are shared among
the nodes of the cluster. One option is to provide
a direct physical connection from all nodes to all
devices storing the database (for example via multi-
tailed devices). Alternatively, the data may be log-
ically shared among the nodes, but are physically
partitioned; in this case the remote data are shipped
to a requesting node cither at the database level,
referred to as data shipping, *° or at the input/out-
put device driver level, which we refer to as vir-
tual shared disk (vSD)' and further describe in a
later section. The software that ties the instances
together routes transactions to provide load bal-
ancing and affinity routing in the data-sharing case,
or routes them based on the locality of data in the
function shipping case. Complex queries are di-
vided into individual steps that can be executed in
parallel to reduce the turn-around time of a query.
For the data-sharing model, a fully distributed
“global lock™” manager must also be provided.

IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999

Figure 2 Dominant programming models in paraliel commercial computing

|

[FUNCTION SHIPPING (OR SHARE-NOTHING) MODEL

DATA-SHARING MODEL

\‘f“_@ @@

B il B Hlod

- | [
SINGLE INSTANCE F { | SINGLE INSTANCE
OF THE OF THE

l

1 P
|

SINGLE INSTANCE ! SINGLE INSTANCE
OF THE | pemee OF THE
SUBSYSTEM SUBSYSTEM

LOCK MANAGER

& DATA\
=

—— —
* LOGICALLY AND PHYSICALLY PARTITIONED DATABASE
+ FUNCTION SHIPPED TO WHERE DATA ARE LOCATED

|
[
F |
| SUBSYSTEM | SUBSYSTEM

|
|

The critical step to enable commercial applications
to run on a scalable parallel system is to support
both of these fundamental programming models ef-
ficiently and to optimize the execution of the var-
ious parallel subsystems. In this sense, the solu-
tion is actually less complex than the technical
computing area in which most of the individual ap-
plications have to be individually enabled for the
scalable parallel environment.

System strategy

Various system approaches to scalable computing
are being pursued commercially and are being in-
vestigated in academic environments. Scalable sys-
tems available today include the AT&T 3600 (for-
merly Teradata Corporatio'nz and the Tandem
Computers Inc. Himalaya**" in the commercial
com%uting arena, and the Cray Research, Inc.
T3D,? the Convex Computer Corporation
SPP1000,% and the Intel Corporation Paragon? for
scientific and technical computing. Academic re-
search covers a broad range of different areas of
investigation; these include how to improve the
scalability of shared-memory multiprocessors,?
what architecture support is required for low-la-
tency communication and fine-grain comput-
ing, %% and how to support efficient parallel pro-
gramming over networked workstations. %%

IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999

| *SINGLE LOGICALLY SHARED DATABASE (PHYSICALLY PARTITIONED)
+ DATA ACCESSED AND SHIPPED TO WHERE THE DATA ARE REQUIRED

l

VOL34, NO 2, 1995, REPRINT

.
Sy

In designing the SP2 as a flexible, general-purpose
scalable parallel system, we followed a set of guid-
ing principles that are discussed below. We arrived
at these principles after analyzing the current tech-
nology trends in both hardware and software, and
understanding the requirements in the different ap-
plication areas and customer environments we ex-
pected to address.

Principle 1. A high-performance scalable parallel
system must utilize standard microprocessors,
packaging, and operating systems.

Major technology advances in recent years have
primarily come from the workstation and distrib-
uted systems marketplace. High volumes and com-
petitive pressures in that marketplace have
prompted significant investments, resulting in sig-
nificant advances being made in all aspects of the
technology—processors, input/output technology,
communications technology, compilers, system
software, tools, and applications. Itis generally ac-
cepted that microprocessor performance is dou-
bling roughly every 18 to 24 months. This is being
accomplished through a combination of supersca-
lar designs, faster and more dense CMOS (comple-
mentary metal oxide semiconductor) technologies,
architecture improvements that take advantage of
the increased gate counts, and improved compiler

AGERWALAETAL. 419

420 AGERWALAETAL.

Figure 3 Processor technology trends

(A]

[UNIPROCESSOR PERFORMANCE

10,000 r”“" - s

(MILLIONS OF FLOATING-POINT OPERATIONS

PEAK MFLOPS
PER SECOND)

} YEARS

L

MPP = MASSIVELY PARALLEL PROCESSORS

optimizations that use these improvements. No
fundamental limitations are expected over the im-
mediate future, and processors with speeds in the
hundreds of megahertz are being designed in the
community. Furthermore, tightly packaged sym-
metric multiprocessors offer the opportunity for
even greater improvements in node price/perfor-
mance.

Figure 3 shows a least squares fit through the
performance and price (over the past 10 years
and extrapolated over the next few years) of
microprocessor-technology-based processors used
in MPP systems and custom-designed processors
used in traditional vector supercomputers and
mainframes. As the figure shows, the performance
of the two is rapidly converging, while the price
is diverging.It is our contention that specialized mi-
croprocessors for scalable, high-performance com-
puting will be unable to keep up with the rate and
pace at which the “commodity” microprocessors
will evolve and improve. Therefore, our design ap-
proach s to “ride” the microprocessor technology
curve; we will use standard components (both hard-
ware and software) from the workstation environ-
ment as much as possible, and develop custom hard-
ware and software only where standard technology
cannot meet some unique requirements of a scalable
parallel system at the desired performance levels.

VOL34, NO 2, 1995, REPRINT

UNIPROCESSOR PRICE

10,000

TRADITIONAL |

MICROPROCESSORS
IN MPPs

100 r

DOLLARS PER PROCESSOR (IN THOUSANDS)
=

85 90 95 00

Principle 2. Time-to-market with the latest tech-
nology is critical to achieving leadership perfor-
mance and price performance.

The rate of technology improvements mentioned
above creates both an opportunity and a challenge.
Since performance and time can essentially be
traded, it is imperative that the SP2 systems be able
to incorporate the latest microprocessor technol-
ogy very rapidly. This emphasizes the need to ex-
ploit this technology essentially as is, and place as
few dependencies as possible on our technology
suppliers for special features to support parallel
processing. It also has an implication for the un-
derlying system architecture; it must be flexible
enough to allow rapid exploitation of the latest
hardware and software technologies without re-
quiring time-consuming enhancements or modifi-
cations. This implies a relatively loose coupling be-
tween the nodes at the operating system level.

Principle 3. Required levels of latency (small mul-
tiples of memory access time) and bandwidth
(small submultiples of memory bandwidth) will re-
quire custom interconnected networks and com-
munication subsystems over the next few years.

For parallel applications, a key determinant of per-
formance is the process-to-process communication

IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999

Figure 4

Software structure required for a scalable paraliel system

APPLICATIONS

ﬁAPPLICAT[ON SUBSYSTEMS

L

(STORAGE MANAGEMENT, DATABASE SYSTEMS, ON-LINE TRANSACTION PROCESSING (OLTP) MONITORS, ETC.) |)

I/—" '_'{r/,,f T e O
| SYSTEM MANAGEMENT [l | JOB MANAGEMENT

BN

oy =
||| PARALLEL
|} | ENVIRONMENT

| COMPILERS, LIBRARIES, | |
ETC |/

| GLOBAL SERVICES

|

| AVAILABILITY SERVICES

—

ST = (‘ f
| HIGH-PERFORMANCE
[seawioss T |

STANDARD OPERATING SYSTEM (AIX)

STANDARD HARDWARE (RISC SYSTEM/6000)
(PROCESSORS, MEMORY, I/O DEVICES, ADAPTERS)

latency and bandwidth and the corresponding over-
head on the processor for executing the commu-
nications protocol. In typical scalable parallel
systems today, the sustainable pair-wise interpro-
cessor communication bandwidth for large mes-
sages is typically several tens of megabytes per sec-
ond, and the latency for short messages is of the
order of a few tens of microseconds. Systems with
global real shared-memory architecture can typ-
ically transfer a cache line amount of data from re-
mote memory at even lower latencies. Significant
improvements of up to an order of magnitude will
be required in the future as the individual nodes
improve in performance.

While several interesting “commodity” network
technologies (such as Fiber Channel Standard [FCS]
and Asynchronous Transfer Mode [ATM]) have re-
cently emerged, these alternatives are optimized
for a very different environment and do not pro-
vide the correct levels of latency, bandwidth, and
processor overhead to meet the stringent perfor-
mance requirements of parallel systems. For ex-
ample, ATM networks are different from networks
for scalable parallel systems in that the technol-
ogy is optimized for communication between het-

IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999

VOL34, NO 2, 1995, REPRINT

erogeneous systems across great geographic dis-
tances, there is no guaranteed delivery or flow
control in the low-level protocols, and there is no
protection implemented at low levels. High-level
protocols provide these functions and imply higher
latencies. Interconnection networks in scalable
parallel systems optimize for these functions at the
lowest levels, and we believe that Principle 3 will
therefore continue to be valid for low-latency as
well as for high-bandwidth environments. In either
case, standard network technologies with special
software will support high-bandwidth communica-
tions to external devices at tens-of-microsecond
latencies. This will allow scalable parallel systems
to more effectively utilize network resources for
a variety of tasks such as input/output, storage
management, and some forms of computation.

Principle 4. The system must support a program-
ming and execution environment identical to a
standard open, distributed UNIX environment.

Figure 4 shows the full stack of software (explained
in the rest of this section) that is required for en-
abling various technical and commercial applica-
tions to run. It is not feasible to develop unique

AGERWALAETAL. 421

Figure 5 High-level system structure for the IBM SP2

| NODE i

NODE n

P R (T IR I R S

|| | MicRO GHANNEL FULL AIX IMAGE
|/ | CONTROLLER i 2 Loy

¢ e —

| | FULL AIX IMAGE

I
i

l

|

|
J
|

422 AGERWALAETAL.

walsd 25 A5 _.4 oo OTHER : ek P
. == l ‘ o 4[ADAPTERS | (R [
[MEMORY P o= A | T_ it MEMORY B4 Bl -5 |
| SYSTEM | A | {
e airoagg ‘ MEMORY =— { TR SN
- R L | BUS - — L
, PROCESSOR) —— | sysTEM | PROCESSOR | o B
; ¥ | INPUT/OUTPUT e .
; —— | BUS Ly
; SWITCH
ADAPTER
r/” 2 e se o AN WY e T e R T R Y ST D T F LA X, e T MO LR R
| HIGH-PERFORMANCE SWITCH
ARV S S SRR S R Ay

new software for all or even the bulk of the com-
ponents in the stack specifically for a scalable par-
allel system. Much of the software for systems
management, job management, storage manage-
ment, databases, and message-passing libraries ex-
ists for distributed UNIX environments. Our goal
is to accommodate and depend on this software.
This support provides one of the dominant “per-
sonalities” of the system and allows software writ-
ten for a distributed UNIX environment and avail-
able for the underlying base node to run on the SP2
machine.

Principle 5. The system should provide a judi-
ciously chosen set of high-performance services
in areas such as the communications system, high-
performance file systems, parallel libraries, paral-
lel databases, and high-performance input/output
to provide state-of-the-art execution support for
supercomputing, parallel query, and high-perfor-
mance transaction solutions.

Scalable parallel systems must provide a second
dominant personality for the high-performance su-
percomputing environment. This consists of a set
of high-performance services, and a development
environment with tools to enable, develop, and ex-
ecute new parallel applications and subsystems
that cannot execute efficiently in conventional dis-
tributed system environments.

VOL34, NO 2, 1995, REPRINT

The combination of Principles 4 and 5 allows us
to overcome a significant limitation of prior highly
parallel solutions and dispel a commonly held mis-
conception that massively parallel machines can
provide only niche solutions. In fact, it is our con-
tention that scalable parallel systems can provide
the most general-purpose solutions. Principle 4
supports the execution of all distributed open sys-
tems software and Principle 5 at the same time pro-
vides competitive solutions for traditional MPP
grand challenge (national interest) and high-perfor-
mance commercial applications.

The first five principles lead us to the high-level
system structure shown in Figure 5. The nodes con-
sist of robust, high-function, high-performance
RISC System/6000 processors, each running a full
AIX operating system. The nodes are intercon-
nected by a High-Performance Switch through
communication adapters attached to the node in-
put/output bus (the microchannel). For the current
systems, using the microchannel as the interface
to the switch subsystem was a practical decision;
the standard microchannel interface allows us to
rapidly introduce new node technologies into the
system while achieving the target goals for latency
and bandwidth.

A full AIX image on each node, together with sup-
port for standard communication protocols on the

IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999

switch (i.e., Internet Protocol), provide full logi-
cal support of all standard distributed services. The
core of the high-performance services on the Sp2
is provided by a high-performance interconnection
network, an optimized communications subsystem
software and a parallel file system implemented as
kernel extensions to AIX, and a parallel program
development and execution environment. This sys-
tem architecture allows us to achieve state-of-the-
art performance, price/performance, and scalabil-
ity in supercomputing environments.

Principle 6. Desired system availability can be cost-
effectively achieved with standard commodity
components by systematically removing single
points of failure that make the entire system un-
usable, and by providing very fast recovery from
all failures.

The structure described so far consists to a large
extent of commodity components that are pro-
duced for workstations rather than large system
environments. In a very large system with hun-
dreds or thousands of commodity parts, failures
in the node hardware, node software, and switch
will occur frequently enough so that the system
must be designed to continue functioning in the
presence of failures.

The distributed operating system architecture has
some inherent advantages over symmetric multi-
processors. The failure of an operating system im-
age does not have to disable the entire system since
the other operating system images can continue to
function. Our system approach to high availabil-
ity relies on this.

This approach requires that the system be config-
ured with sufficient replication (of hardware and
software components and data), and a software in-
frastructure for availability is provided. This infra-
structure consists of a set of availability services
for failure detection, failure diagnosis, reconfigu-
ration of the system, and invocation of recovery
action. The goal of these services is to allow a sys-
tem to gracefully degrade from N resources to M
resources (where M < N), and reintegrate the N
— M resources later in a nondisruptive manner.

It should be noted that this is merely an infrastruc-
ture. To provide real benefit to an end user, all
higher level subsystems such as the program de-
velopment and execution environment, job sched-
uling, and database and transaction subsystems

IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999

VOL34, NO 2, 1995, REPRINT

must exploit the N - M — N infrastructure and
take the appropriate recovery actions nondisrup-
tively.

Principle 7. Selected support for a single-system
image through the globalization of key resources
and commands, together with a single point of con-
trol for systems management and administration,
is preferred compared to-a true single-system
image.

At the level just above the high-availability serv-
ices, the software system view is that of N AIX im-
ages, each of which manages a set of local re-
sources and provides a set of local services. A
critical design decision is the level of a single-sys-
tem image to be supported. Two extreme ap-
proaches are possible: the first is to stay with the
totally distributed view; the second is to implement
a layer of software that makes the N images ap-
pear to be one in all respects (a true single-system
image).

This is a complex decision since different environ-
ments need different views. An interactive user
would generally prefer a true single-system image.
On the other hand, database subsystems have been
written for a distributed environment and expect
to see the totally distributed view; these sub-
systems explicitly manage the different images for
performance, and provide a single-system image
at the database subsystem level. Finally, for a tech-
nical computing user, a single-system image at the
source code level and at the UNIX shell level is
desirable.

Since providing a true (or complete) single-system
image in an efficient manner is a complex under-
taking and not a critical requirement in all envi-
ronments, we have taken a more pragmatic ap-
proach. There are clearly key resources (such as
disks, tapes, and directory services) that need to
be globally known and accessible. Similarly, there
are key commands that should be globalized for
ease of use. Our approach is to stage in the glo-
balization of these selective resources and com-
mands over time, based on the critical require-
ments of the applications and subsystems we
expect to support. Furthermore, our approach is
to provide hardware and software support for the
controlling, administering, and managing of N AIX
images and nodes in an SP2 system from a single
point (i.e., we will also provide a single-system im-
age at the system management level). Similarly,

AGERWALAETAL. 423

424 AGERWALAETAL.

we will provide a single-system image at the job
management level so that a user can submit a job
to the system as a whole, and the job management
software can automatically select and allocate the
required resources to the job from the set of re-
sources available in the system at that time.

Above the global services layer in Figure 4 are a
set of subsystems that are primarily built from stan-
dard distributed systems technology and tools,
with extensions or modifications where necessary.

System overview

In this section we give a brief overview of the sp2
system architecture. We focus on high-level design
choices that were made and, where appropriate,
the rationale behind them or the implications of
those choices.

System architecture. One of the fundamental deci-
sions in the design of a parallel system is the un-
derlying architecture. It is generally understood
that symmetric multiprocessors with centralized
memory and a single copy of the operating system
are not scalable to beyond a small number of pro-
cessors (typically up to a maximum of around 20
today). Furthermore, the single, system-wide op-
erating system image is a critical single point of fail-
ure; an operating system failure can result in the
loss of the total system.

In order to scale to hundreds of processors today
(and thousands in the future), the Sp2 is structured
as a distributed memory machine. In such systems,
a portion of the total system memory is packaged
close to each processor. Access to local memory
is fast and remains constant with the size of the
system, while access to remote memory is slower.
Scalable distributed memory machines can have
one of two underlying architectures based on how
data are shared—distributed shared-memory archi-
tecture or distributed memory message-passing ar-
chitecture (Figure 6).

With distributed shared-memory architecture, a
single global real address space exists across the
whole system. All of the physical memory is di-
rectly addressable from any node, and a node can
perform a load or a store instruction to any part
of the real address space. This underlying archi-
tecture has the advantage that it generally makes
it easier to efficiently support a shared-memory
programming model (discussed earlier in the sec-

VOL34, NO 2, 1995, REPRINT

tion on design goals). Typically there is a separate
operating system (or micro-kernel) image on each
node, but they are not independent; the different
images are tightly connected at least at the virtual
memory manager level so as to present a single
global real address space. In such systems, address
and data coherence must be maintained in hard-
ware (which makes the hardware complex and
costly, and is a fundamental limit to performance
and scalability), or in software (which adds to pro-
gramming or compiler complexity and program
correctness exposures, and can potentially affect
performance because of conservative coherence
management actions).

Alternatively, with a distributed message-passing
architecture, a processor has direct access (i.e.,
can perform load or store operations) to only its
local memory. Remote memory is not directly ad-
dressable and data are shared by explicitly send-
ing and receiving messages. Address and data co-
herence across nodes is not an issue here.

The SP2 is a distributed memory message-passing
machine. Two primary reasons, and a host of sec-
ondary reasons, led us to select this architecture
as opposed to the alternative distributed shared-
memory architecture.

In the alternative distributed shared-memory ar-
chitecture, a globally shared real (and we mean real
as opposed to virtual) address space implies fun-
damental changes in the operating system running
on these nodes—primarily in the virtual memory
management area, but affecting other areas of the
operating system. Requirement of such fundamen-
tal changes in the operating system would have
been contrary to our guiding Principles 1 and 2.

Even more important is our contention that an un-
derlying distributed memory architecture without
global real memory addressability is the correct
choice for cost-effective scalable parallel systems.
Such systems are inherently more scalable at the
system level because they do not require tight co-
ordination between the operating system images
on the different nodes to provide common address
space management and maintain address coher-
ence; nor do they require tight coordination at the
hardware level to maintain data coherence. Fur-
ther, message-passing structures with loose cou-
pling between the operating systems have inher-
ently more availability since it is easier to localize
failures to the failing node. Finally, a message-pass-

IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999

Figure 6 System architecture alternatives for scalable parallel systems

COMMUNICATION ARCHITECTURE

SHARED MEMORY

MESSAGE PASSING

@ | e L R T 7
ﬂ | | > o
N MEMORY |
2| LA
B 1
5 e £ty o s |
Q |
Z |w INTERCONNECTION NETWORK
S| it ; TP
o | |
TR l i
v | J | |
2/ Llw RO |
e N B
BT PR P 2
g © SR e £ FE 4
z SYMMETRIC MULTIPROCESSORS
[
>
o |
e g | e ey oo o e i e R
w | | e e e
s 4 INTERCONNECTION NETWORK | |1 L '
g bR RS y INTERCONNECTION NETWORK |
= i
o
g pmn | 4 7 ’ = A===r (—7 J ¥
2 | w Melt— | M |+ | me| ([l meolf { R Me ||
z2 |5 y | By |) | S ey | 1V
2| b - RECEIVE lLOAD | SEND ‘
=B . MESSAGE STORE MESSAGE ‘
o < - —_— i — _—— — | m——— |
519 A’_'ﬂ 8 | 68 v lf’_‘_"17 [1
@ 8 L Pl l— Pl P * Lo L
£ Y i 0] R S v el .
£ DISTRIBUTED SHARED-MEMORY MACHINES DISTRIBUTED MESSAGE-PASSING MACHINES
M=MEMORY P = PROCESSOR

ing architecture, if properly designed, allows for
significant offloading of the overhead associated
with communication and overlaps it with compu-
tation, especially when one can aggregate the data
to be communicated into a few large messages.

In a system with a distributed shared-memory
architecture, data are shared implicitly by merely
referencing them, and the referenced data from a
remote memory are accessed on a cache-line-by-
cache-line basis. Although a single line miss may
result in a latency and overhead that is very small
compared to message-passing architecture, many
such line misses would be required to share the data
that could have been passed with just one large
message.

IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999

VOL34, NO 2, 1995, REPRINT

Programming models. Our goal with the SP2 is to
support as many as possible of the dominant pro-
gramming models being used today in technical and
commercial parallel processing, and continue to
add others over time. Although introduced earlier
in the section on design goals, here we discuss what
support is provided for these models in the SP2 sys-
tem.

For technical computing, our initial focus is on ex-
plicit message-passing and data parallel models.
Because of the underlying message-passing archi-
tecture, clearly a message-passing programming
style is the preferred one for performance on the
SP2. Several message-passing libraries callable
from FORTRAN and C are supported on the SP2. We
provide MPL,* which is an advanced Message-

AGERWALAETAL. 425

426 AGERWALAETAL.

Passing Library that is tuned and optimized for the
underlying communication hardware of the SP2, and
will soon support the emerging Message-Passing
Interface (MPI)*! standard. We also provide the
PVMe, which is IBM’s optimized version of the mes-
sage-passing library used in Parallel Virtual Ma-
chines (PVM).*

The SP2 also supports the data parallel program-
ming model with High Performance FORTRAN.?
The Forge90 High Performance FORTRAN prepro-
cessor from Applied Parallel Research is available
today for the SP2, where the preprocessor converts
a High Performance FORTRAN program into an
SPMD structure using standard FORTRAN 77 and
calls to the MPL. A High Performance FORTRAN
compiler for the SP2 is expected to be available in
the future. As mentioned earlier, High Perfor-
mance FORTRAN relieves the programmer from
many of the details of data partitioning and com-
munications. In effect, it allows the user to pro-
gram within a single global name space.

For commercial computing, the function shipping
model (previously described in the section on de-
sign goals) fits the underlying distributed memory
message-passing architecture of the SP2. The other
dominant model is the data-sharing model and is
supported on the SP2 via the virtual shared disk sup-
port (that will be described in the section on sys-
tem components). Many of the popular databases,
on-line transaction processing, and business appli-
cation subsystems have been enabled to run on the
SP2. The typical user does not have to do anything
to exploit the underlying parallel capabilities of the
system; instead, the application subsystem takes
care of decomposing the individual queries to run
on multiple nodes or of routing the transaction to
the correct server.

Flexible architecture. The Sp2 was designed to ad-
dress a diverse set of application areas and cus-
tomer environments. Consequently, it was of fun-
damental importance that the SP2 have a flexible
architecture that allowed a customer to customize
the system to site-specific requirements and situ-
ations.

Figure 7 shows two views of an SP2 system, illus-
trating its configuration flexibility and operational
flexibility.

Configuration flexibility. The SP2 system consists
of from 2 to 512 POWER2 Architecture* RISC

VOL34, NO 2, 1995, REPRINT

System/6000 processor nodes, each with its own
private memory and its own copy of the AIX op-
erating system, interconnected by a High-Perfor-
mance Switch (Figure 7A). Each SP2 system also
requires a control workstation that is a separate
RISC System/6000 workstation that serves as the
SP2 system console.

As per Principles 1, 2, and 4, we have made no fun-
damental change to the base RISC System/6000 pro-
cessor and the AIX operating system. This means
that any of the major hardware or software options
available on the base RISC System/6000 worksta-
tions can be installed on an SP2 node. Similarly,
several thousand RISC System/6000 applications
are available immediately to an SP2 customer.

SP2 nodes can be configured to have one of two fun-
damental logical personalities. Some nodes are
configured as compute nodes and are used for ex-
ecuting user jobs. Other nodes are configured as
server nodes that provide various services required
to support the execution of user jobs on compute
nodes; these could be integrated file servers, gate-
way servers for external connectivity, database
servers, backup and archival servers, etc.

The requirements for node performance and con-
figurability can be very different for compute and
server nodes, and for different application areas.
As a result, SP2 provides three different physical
node types—thin node, thin node 2, and wide node.
These nodes differ in their configurability (mem-
ory and microchannel slots), performance charac-
teristics, price, and physical size. Each node pro-
vides an optimal price/performance point in specific
environments.

SP2 is designed for maximum configuration flexi-
bility so that a system can be tuned in a cost-ef-
fective manner to a customer’s particular require-
ments. The system can scale up over a very wide
range (2 to 512 nodes) in very small increments (one
or two nodes). There can be any mix of compute
and server nodes within the system. Similarly,
there can be any mix of thin and wide nodes (with-
in limits of frame configuration options). Further-
more, each SP2 node can be individually configured
for memory, adapters, internal hard disk, and soft-
ware. This configuration flexibility is an important
distinguishing characteristic of the SP2 system com-
pared to other MPP systems.

IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999

Figure 7 Flexible architecture features of the SP2 system

]

COMPUTE NODES

2

g e

=0
L

-
L |

SWITCH

A_rm

v

o

SERVER NODES

ek

et
5 R
/I, Uh,_ a7

ALL NODES ARE SEPARATELY CONFIGURABLE FOR
MEMORY, /0O DEVICES, NETWORK CONNECTIONS,
AND SOFTWARE.

THREE PHYSICAL NODE TYPES: THIN NODE, THIN NODE 2,
AND WIDE NODE WITH DIFFERENT CONFIGURABILITY AND
PERFORMANCE CHARACTERISTICS.

Operational flexibility. Sp2 systems will commonly
be used as enterprise-wide or department-wide
servers and therefore must accommodate a mix of
job types (serial and parallel, interactive and
batch), and accommodate throughput as well as re-
sponse time requirements of applications. With a
large user community sharing the system, the sys-
tem must function as a throughput engine, concur-
rently processing unrelated user jobs; however,
when response time is important, it must be pos-
sible to usurp required system resources and ap-
ply them to one or a few large, long-running jobs.

Figure 7B shows the operational flexibility of the
SP2 systems in such an environment. Using the job
management software, SP2 nodes can be partitioned
into different pools for different classes of work—
interactive, batch serial, and parallel. Jobs of dif-
ferent classes are channeled to the corresponding
pool by the job manager. The nodes within a pool
may be shared by several jobs, or they may be ded-

IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999 VOL34, NO 2, 1995, REPRINT

—

Lad
INTERACTIVE POOL BATCH SERIAL POOL

BEes
BESs |

[

BESSE | &

i

—A

[l
Lely V|

Z,“_{L_._JF Vs .L_,,,,ﬂrff?)/j‘;—-_ = ||
I [[
e s T [\

PARALLEL POOL

SERIAL POOL
@8 INTERACTIVE
[1 BATCH SERIAL

SERVER NODES

I3 PARALLEL DATABASE SERVER

[J OTHER SERVERS (FILE SERVERS,
GATEWAYS, ETC.)

PARALLEL POOL
O] NODES ALLOCATED TO FOUR
DIFFERENT PARALLEL JOBS
(.1 UNALLOCATED NODES AVAILABLE
FOR OTHER PARALLEL JOBS

icated to a single application. In the figure, each
small square represents a processor node. Using
the job management system software, an admin-
istrator can identify different sets of processors for
different types of work. For example, a set of eight
can be reserved for doing interactive work. An-
other set of eight can be kept aside for batch serial
production jobs.

The figure also shows that some nodes may be set
aside as server nodes; server nodes provide spe-
cific services that are required by applications run-
ning on the compute nodes. In the figure, there is
a set of six general server nodes that could be used
for specific services such as file servers and/or gate-
way services; another set of 10 nodes has been con-
figured as a parallel database server.

Similarly, a number of nodes may be set aside for
parallel work and form the parallel pool; when a
parallel job is submitted, it requests a parallel job

AGERWALAETAL. 427

428 AGERWALAETAL.

partition with the required number of nodes. The
system software locates these nodes from the par-
allel pool and, if the requested number of nodes
is available, they are allocated to the job and the
job begins execution in that partition. There can
be several parallel job partitions created as long as
there are nodes available in the parallel pool. In
the figure there are four hypothetical partitions of
eight, four, six, and eight nodes each and there are
still six unallocated nodes in the parallel pool avail-
able for another parallel job. As parallel jobs com-
plete, they return the nodes they were using to the
available pool.

Parallel programs generally execute in a dedicated
partition of processors; this allows the individual
processes to remain loosely synchronized and thus
achieve good parallel speedup. It also allows the
processes to use direct user-mode communication
that bypasses the operating system, thus resulting
in better performance. Multiple parallel jobs can
be running on the machine simultaneously, each
controlling a disjoint set of the nodes. Because of
the topology of the interconnection network, there
are no restrictions on the size of a parallel job par-
tition or on the topological location of the nodes
in the partition; this provides significant flexibility
in application design as well as in job management
and resource management. This is discussed fur-
ther in the section on the communication sub-
system.

Input/output architecture. The SP2 system provides
an input/output (I/0) subsystem that scales in per-
formance and capacity with the computation ca-
pability of the system.

Typically, an SP2 system will be part of an enter-
prise-wide network, and therefore must have ac-
cessibility to network data. In fact, data required
by many technical applications are so large that
the data are typically stored on less expensive ar-
chival storage somewhere in the customer net-
work, and retrieved into the on-line storage only
when required by an application. Similarly, be-
cause of high-availability requirements, commer-
cial relational databases are typically copied pe-
riodically on to similar network backup and
archival systems.

External servers connect to the SP2 via interme-
diate gateway nodes (G in Figure 8). The connec-
tion between the gateway nodes and the enterprise
servers can be via a local area network, or LAN

VOL34, NO 2, 1995, REPRINT

(Ethernet, token ring, or the fiber distributed data
interface FDDI), or a high-speed interface such as
high-performance parallel interface (HiPPI), Fiber
Channel Standard (FCS), or ATM switches. The ex-
ternal servers provide IO and file service in re-
sponse to requests from SP2 compute nodes
through a LAN-based distributed file system such
as Network File System** (NFs**), Andrew File
System (AFS), or Distributed File System (DFS).
By using multiple servers and multiple gateway
nodes, the aggregate 1/0 bandwidth can be scaled.

However, the scalability of such a solution is lim-
ited and it cannot meet the more stringent require-
ments of parallel applications for high-bandwidth,
low-latency, and low-overhead access to a single
shared data object. For high-performance 1/0 re-
quirements, the sP2 allows 1/0 and file servers to
be integrated into the system by configuring some
of the nodes as 1/0 and file servers (/0 server nodes
in Figure 8). Raw 1/O capacity and bandwidth can
be arbitrarily increased simply by adding more 1/0
server nodes. With the 1/0 server nodes directly
on the same “attachment fabric” as compute
nodes, significantly higher bandwidths are possi-
ble than over LANs. More importantly, with clients
and servers connected via a reliable switch sub-
system rather than LANs, there is the opportunity
in the future to move to a tuned, lightweight com-
munications protocol for 1/0 and file system oper-
ations; this would considerably reduce processor
overhead compared to the overhead associated
with protocols (such as Transmission Control
Protocol/Internet Protocol, or TCP/IP, and User
Datagram Protocol/Internet Protocol, or UDP/IP)
normally used over LANs. Finally, the /0 server
node memory can provide sufficient buffer cach-
ing for improved 1/0 performance.

When applications are parallelized for speed im-
provements, their /0 bandwidth requirement from
a single file also increases proportionately. Such
bandwidths cannot be satisfied by standard net-
work file systems, even with integrated /0 server
nodes; the single server and the single link to the
switch ultimately limit the maximum bandwidth
that can be supported to a single file. SP2 expects
to provide a parallel file system (discussed later)
that allows files to be distributed (optionally un-
der user control) across multiple I/O nodes to in-
crease the bandwidth to that file from a parallel
application.

IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999

Figure 8 The SP2 /O architecture

SP2 SYSTEM
COMPUTE NODES

.-‘.‘7‘1 I/-__/’! ‘1' 7 =
DT [

v &

|
GATEWAY ’
|

D - Sl R R
~ |
|

| HIGH-PERFORMANCE SWITCH :

HIGH-SPEED
NODES INTERFACE OR LAN
) CONNECTION SRS
8 > [
pATIP | EXTERNAL SERVERS 1
3 1 |
. [
1—.__—‘(' | | [
- G 1/“—l—L’: |

[
St

. B P
I o] ,“‘[le] [| le] j o j aas 1o ﬂ
| DO | J

PARALLEL FILE SYSTEM STANDARD FILE
SERVER NODES SERVER NODES

[1’0 SERVER NODES

Note that the integrated 1/O server node architec-
ture logically supports the function shipping model
for commercial parallel computing discussed ear-
lier; the clients on compute nodes ship the file re-
quests to the servers on 1/O server nodes. The
data-sharing model is also supported by providing
global access to disks connected to individual
nodes as discussed later in the section on global
services.

System components

Given the overall system architecture and features
described in the previous section, we now look at
some of the primary system components in more
detail. These components have a direct impact on
the essential character of the system—scalability,
flexibility, its general-purpose nature, performance
and price/performance, system availability, and us-
ability.

Processor nodes. A first-order determinant of per-
formance for both serial and parallel jobs is the in-
dividual node performance. Our decision was to
use the fastest and most robust processors avail-
able to us. This way users can get reasonable per-

IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999

VOL34, NO 2, 1995, REPRINT

formance on their existing serial applications with-
out ever modifying them to run in parallel.

The SP2 nodes are standard POWER2 Architecture
RISC System/6000 processors. * They are supersca-
lar (issuing and executing multiple instructions con-
currently every cycle) rather than merely super-
pipelined (running the processor at very high
frequency), and incorporate many sophisticated
organizational techniques to achieve high sustain-
able performance. As previously discussed in the
section on configuration flexibility, the SP2 provides
three physical node types—wide node, thin node,
and thin node 2. The structure for these is shown
in Figure 9.

Both the wide and the thin nodes have two fixed-
point units, two floating-point units (each capable
of a multiply-and-add every cycle) and an instruc-
tion and branch control unit. A 66.7 megahertz
(MHz) clock speed gives the processors a peak per-
formance of 267 million floating-point operations
per second (MFLOPS). The instruction unit can de-
code and issue multiple instructions every cycle
to keep all the units busy. This is matched with a
large-capacity high-performance memory hierar-

AGERWALAETAL. 429

Figure 8 The SP2 processor node structure for thin and wide nodes

INSTRUCTION BUS 128 BITS
I Poea '*L""; | P t L*f*ﬁ

S a 1 1 o

AT — /1| PRt /‘
1 1]

BRANCH CONTROLLER ‘ l | TWO INTEGER UNITS j 1] ! TWO FLOATING-

AND I-CACHE | | AND MEMORY | : | POINT UNITS

(32 KB) | MANAGEMENT } 1 J |

% ¥

WN, TN2: 128 BITS EACH
TN: 64 BITS EACH

430 AGERWALAETAL.

‘ |
! 32 BITS EACH
HERERy P A R
| r’———
MICRO
! _|L CHANNEL |
i S £ o T L N e SOV
| 80 MB/s y lr ot A LTSNy
: MICRO CHANNEL oS S T R et
WN: 8 SLOTS | DATA CACHE
| TN2, TN: 4 SLOTS | WN: 25C6 KB WN: 64-2048 MB
» —— W 256 KB | TN2, TN: 64-512 MB
pe) | MEMORY BUS ; [
: | | WN: 256 BITS ‘ [) |
|/ TN2:128BITS b I SR ;
“"“—MT“ o TN: 64 BITS
SYSTEM /0 BUS W s o i i KB = KILOBYTES
64 BITS MB = MEGABYTES

| LEVEL-2 CACHE
| N: 0 MB

| TN2:0, 2 MB

| TN:0, 1 MB

chy. For example, in the SP2 wide node, the
memory can be up to 2 gigabytes (GB) and has a
bandwidth of 2.1 GB per second; a 256 kilobyte (KB)
four-way set associative cache can supply data at
the rate of four 64-bit operands per cycle to the
floating-point units. As a result, within a tight loop
one can effectively sustain performance equivalent
to a two-pipe vector processor (two loads/stores,
two floating-point multiply-and-add, index incre-
ment and conditional branch every cycle). Features
such as short instruction pipelines, sophisticated
branch prediction techniques, register renaming
techniques, large cache, large memory, and high
cache and memory bandwidth all add up to a very
robust processor capable of good performance on
both vectorizable as well as scalar code. As a re-
sult, the processor consistently sustains a very high
percent of its peak capability. The SP2 thin nodes
are similar to the wide nodes but have a less ro-
bust memory hierarchy and /0 configurability.

VOL34, NO 2, 1995, REPRINT

WN = SP2 WIDE NODE
TN2 = SP2 THIN NODE 2
TN = SP2 THIN NODE

The robustness of the nodes, both in configurabil-
ity and performance, is a primary advantage of the
SP2 system. In fact, on a processor-to-processor
basis, we believe that the SP2 has the most pow-
erful node in any contemporary scalable parallel
system; this contributes greatly to the overall SP2
system performance.

Communication subsystem. Because of the high re-
quest rate, communication between processes in
a parallel job must be high bandwidth and low la-
tency. Traditional AIX (or UNIX) interfaces cannot
provide the required performance. As per Princi-
ples 3 and 5, SP2 provides a communication sub-
system as one of the high-performance services to
match the performance requirements for commu-
nications within a parallel job. Further, since the
communication subsystem is the heart of the sys-
tem, we paid special attention to making it reliable

IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999

and able to recover from most failures automat-
ically (and transparently to the applications).

The SP2 nodes are interconnected by a High-Per-
formance Switch* designed for scalability, low la-
tency, high bandwidth, low processor overhead,
and reliable and flexible communication between
the nodes.

The topology of the switch is an any-to-any packet-
switched, multistage or indirect network similar to
an Omega network.3 This allows the bisection
bandwidth to scale linearly with the size of the sys-
tem, which is critical for system scalability. In con-
trast, the bisection bandwidth of direct networks
(such as rings, meshes, or multidimensional tor-
oids) increases much more slowly (or not at all, as
in the case of simple rings).

A consequence of the High-Performance Switch
topology is that the available bandwidth between
any pair of communicating nodes remains constant
irrespective of where in the topology the two nodes
lie. This is not the case with direct networks. In
general, the bandwidth available to a node is equal
to! x k/h, where [is the link bandwidth, k is the
number of links in the switch per node, and 4 is
the average number of hops through the switch re-
quired for a communication operation. In a mul-
tistage network such as the High-Performance
Switch, the average number of hops, 4, and the
number of links per node, k, both scale logarith-
mically with the number of nodes. Thus the band-
width between any communicating pair of nodes
remains constant. This lends considerable flexibil-
ity in programming and managing such systems.

In contrast, in a direct network the number of hops,
h (for arandom communication pattern), increases
with the number of nodes, but the number of links
per node, k, stays constant. As a result, the av-
erage bandwidth per pair of communicating nodes
decreases. Because of this problem, programmers
have an additional optimization parameter to worry
about; they must carefully design the application
so as to minimize A by trying to limit internode
communications to close neighbors. Additionally,
the resource manager and job scheduler must be
designed to allocate nodes for a parallel applica-
tion that are topologically in close proximity with
each other, and carefully map the processes to the
nodes so as to minimize the average number of
hops required by the internode communication in
the application. These optimizations are not crit-

IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999

VOL34, NO 2, 1995, REPRINT

ical with a topology such as that of the High-Per-
formance Switch.

Figure 10 shows the switch structure for a 64-way
sP2. The switch is designed to be scalable, with the
building block being a two-staged 16 X 16 switch
board, made up of 4 X 4 bidirectional crossbar
switching elements. Each link is bidirectional and
has a 40-megabytes-per-second bandwidth in each
direction. The switch uses buffered cut-through
worm-hole routing for maximizing performance.*
In small systems (up to 64-way) only one switch
board is required per 16 nodes. For the 64-way sys-
tem shown in the figure, the required switch boards
are packaged within the processor frames (one per
frame) and connected via interframe cables to get
a four-stage switch network. A frame is the “box™
that houses up to 16 nodes and one switch board.
Additional switch stages are required for larger sys-
tems. The extra switch boards for these additional
stages are packaged in a special switch frame with
up to eight switch boards per frame.

An SP2 node connects to the switch board through
an intelligent Micro Channel* adapter. The adapter
has an onboard microprocessor that offloads some
of the work associated with moving messages be-
tween nodes. The adapter can move messages to
and from processor memory directly via direct
memory access (DMA), thus reducing the overhead
on the processor node for message processing and
significantly improving the sustainable bandwidth.
It also provides protection support for secure user-
mode communication between nodes within a par-
allel partition, without requiring system calls. This
allows lower application-to-application message la-
tency by avoiding kernel calls. Message cyclic re-
dundancy check (CRC) code generation and check-
ing is also done by the adapter, further reducing
the overhead on the SP2 node. Normal message
passing between the processor node and the
adapter is driven by polling to avoid the overhead
of interrupt processing. The communication sub-
system allows shared use of the communications
system by both user and kernel tasks; both user-
space and Internet Protocol traffic is concurrently
supported over the switch.

The communication subsystem hardware and soft-
ware are designed for reliability and transparent
recovery from hard and soft failures.

The switch hardware is fully checked. Each switch-
ing element is in fact shadowed by a duplicate

AGERWALAETAL. 431

432 AGERWALAETAL.

Figure 10 SP2 Switch structure for a 64-node system

SWITCH

4 x 4 CROSSBAR
l‘ SWITCHING ELEMENT

~

16 NODES

16 NODES

16 NODES

16 NODES

YItY Yevy vvly vvew

[

Lt g

L

LINKS (40 MEGABYTES/SECOND
BANDWIDTH IN EACH DIRECTION)

switching element so that any error in the switch-
ing elements is detected. Similarly, packets on all
links carry CRC codes; the code is generated at one
end and checked at the other to detect errors in
the links.

The switch always contains at least one stage more
than necessary for full connectivity. Since the ba-
sic switching element is a 4 X 4 bidirectional cross-
bar, this extra stage guarantees that there are at
least four different paths between every pair of
nodes. The redundant paths provide for recovery
in the presence of failures (as well as reduce con-
gestion in the switch). In the presence of hard er-
rors in the switch (due to a failing switching ele-
ment or link), the switch can be reinitialized and

VOL34, NO 2, 1995, REPRINT

the routes between nodes regenerated to avoid the
failing components.

The communication subsystem software comple-
ments the hardware capability to provide transpar-
ent recovery of lost or corrupted messages. The
communication protocol supports end-to-end
packet acknowledgment. For every packet sent by
asource node, there is a returned acknowledgment
after the packet has reached and been received by
the destination node. Thus the loss of a packet will
be detected by the source node. The communica-
tion subsystem software automatically resends
packets if an acknowledgment is not received
within a preset interval of time. "

IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999

When an error is detected by the switch subsystem
hardware, the switch enters the diagnostic mode,
during which the cause of the error is identified.
Thereafter new internode routes are generated,
avoiding any failing component or link that was de-
tected, and then the switch is brought back into
run mode. At this time, the communication sub-
system retransmits the packets that were lost in
transit when the failing event occurred. Thus the
full error-detection support of the hardware, cou-
pled with the error recovery capability of the soft-
ware, results in a very reliable and robust commu-
nication subsystem for the SP2.

Parallel environment. The SP2 AIX Parallel Environ-
ment* is an integrated set of components that
allow a user to develop, debug, and tune parallel
FORTRAN or C programs, and to initiate, monitor,
and control their execution.

The application of Principles 5 and 6, and to some
extent Principle 2, resulted in a decision to base
the Parallel Environment as much as possible on
standard AIX tools and techniques and conform to
established standards. This allows us to reduce the
learning time and maximize ease-of-use for custom-
ers. Most commands use familiar UNIX syntax and
various AIX tools are made available for use with
the Parallel Environment. Program compilation,
scheduling, execution, and monitoring are done in
manners familiar to UNIX programmers.

The Parallel Environment has four primary com-
ponents: the Message-Passing Library, the Paral-
lel Operating Environment, the Visualization Tool,
and the Parallel Debugger.

Message-Passing Library. The parallel Message-
Passing Library (MPL)? is an advanced commu-
nications library that supports the explicit message-
passing model for FORTRAN or C programs. It
provides a rich and comprehensive set of functions
and subroutines for implementing simple pair-wise
communication between processes, as well as
more powerful collective communications opera-
tions involving user-definable groups of processes.

The MPL is implemented to exploit the SP2 High-
Performance Switch using an optimized, light-
weight user-space protocol that does not require
akernel call. Alternatively, a user can elect to have
the MPL run using the TCP/IP protocol over a local
area network connection or over the switch.

IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999

VOL34, NO 2, 1995, REPRINT

Parallel Operating Environment. The Parallel Op-
erating Environment (POE) provides a user envi-
ronment for initiating, monitoring, and controlling
the execution of a parallel application. It can be
used to (1) compile and link parallel code with mes-
sage-passing libraries, (2) create a parallel parti-
tion with the required nodes (nodes can be either
explicitly specified by the user or selected by the
SP2 resource manager based on user-specified job
requirements), (3) load the parallel job on the nodes
in the parallel partition, and (4) communicate with
and monitor the job while it is executing. The par-
allel application is controlled by a Partition Man-
ager process created by POE on the node or work-
station that was used to initiate the application.

The Visualization Tool. The Visualization Tool (VT)
provides performance monitoring and trace visu-
alization for a parallel application. Performance
monitoring displays system activity in real time
while the application is running. Trace visualiza-
tion is a postmortem process that allows the user
to view in detail the interactions between parallel
processes, using traces collected during run time.
VT can be used to debug an application by iden-
tifying deadlock situations and analyzing interpro-
cess communications, and it can be used to ana-
lyze and tune a parallel application by identifying
performance bottlenecks and load imbalances.

The Parallel Debugger. The Parallel Debugger is
a source-level debugger with both a command line
and a graphical interface. It is an enhancement of
the familiar UNIX dbx debugging tool and incorpo-
rates additional functions specific to parallel pro-
gram debugging.

The AIX Parallel Environment is soon expected to
provide support for an optimized version of the MPI
message-passing library.

Parallel file system. Standard UNIX distributed file
systems (e.g., NSF, ASF, and DFS) do not satisfy
the extremely high bandwidth to file data required
by some data-intensive applications. A parallel file
system (PFs)* is one of the high-performance serv-
ices created for sP2 to address the unique require-
ments of supercomputing applications that require
scalable high bandwidth to an individual file from
a parallel application.

PFS supports parallel access (from an application
running in parallel on multiple compute nodes) to
a file that is striped (i.e., the data are distributed)

AGERWALAETAL. 433

434 AGERWALAETAL.

across multiple PFS server nodes. It allows the user
to control the physical layout of parallel files when
they are created—that is, the user can specify how
the data in the file are to be distributed into phys-
ical partitions across the PFS server nodes. In ad-
dition, it allows each process within a parallel ap-
plication to open a different subfile (or logical file
partition) within a parallel file. Thus, processes
may open disjoint partitions of a parallel file, and
this partitioning may be changed during program
execution without changing the physical layout of
the file. Processes may also share access to the
same subfile (or to the entire file). Accesses to
shared files are guaranteed to be atomic and se-
rializable. A scalable serialization protocol is used
that does not require locking of the file or parts of
itwhenever itis accessed. PFS supports files greater
than 2 GB in size, and asynchronous 1/0. Standard
UNIX file system calls (vnode interface) are sup-
ported by PFS, and additional capabilities of PFS
are made available to users via the UNIX ioctl op-
eration.

Access to the PFS is provided by a PFS client that
runs on each compute node. In addition, each PFs
server node runs a PFS server. These server pro-
cesses communicate among themselves and col-
lectively form a parallel server that satisfies re-
quests of PFS clients.

When a PFs (sub)file is opened, the PFs client is
provided information about the physical layout of
this file. Any subsequent access to this file results
in direct communication from the client to any
servers that hold parts of the accessed file, with
no additional communication to a manager hold-
ing meta-data. Each write access results in exactly
two messages between the client and each involved
server (data are sent and an acknowledgment is re-
ceived); each read access results in exactly three
messages. Data are cached (buffered) only at the
PFS server nodes so that no communication is
needed for cache coherence. Atomicity and seri-
alizability are guaranteed by a protocol executed
by the PFS server nodes; this guarantees that ac-
cesses that belong to the same transaction are seen
in the same order at each server node.

Availability services. The availability services pro-
vided by the SP2 system and described below are
today used by a limited and controlled set of sub-
systems. In the future, as the application program-
ming interfaces and the function of these services
stabilize, our intention is to make them more gen-

VOL34, NO 2, 1995, REPRINT

erally available. These services would then form
a scalable infrastructure that can be used by soft-
ware developers to build recoverable subsystems
and servers for the SP2. As discussed earlier in the
section on Principle 6, by using these services, crit-
ical subsystems can be designed to gracefully de-
grade from N resources to M resources (where
M < N) without disruption of service; later, the
N — M resources can be reintegrated into the sys-
tem in a nondisruptive manner after they have been
serviced.

Today, SP2 availability services provide for “heart-
beat,” membership, notification, and recovery co-
ordination.

Heartbeat services allow processors in the system
to be monitored for normal operation.

Membership services allow processors and client
processes to be identified as belonging to some de-
fined group; a group is generally formed to include
members providing some known and related ap-
plication service.

Notification services allow members of the group
to be notified when membership in the group
changes. Membership within a group changes as
processors join or leave the group as a result of
various node events, such as node restart, shut-
down, or a failure.

Recovery coordination services provide a mech-
anism for initiating recovery procedures within the
active group in reaction to node events that change
the membership. These services are used to co-
ordinate the running of recovery procedures across
the members of the currently active group in re-
sponse to membership changes.

These services are implemented via daemons (un-
attended programs set up to execute periodically
or by the occurrence of an event) running on the
nodes. The heartbeat daemons exchange periodic
heartbeat messages to determine which nodes are

up.

In the event of a failure, the surviving members of
the group are notified of the event, and the spe-
cific recovery action or procedure is initiated. The
recovery procedure is specified by the subsystem
that is to be recovered.

Currently these services are used to varying de-
grees by some of the SP2 system software compo-

IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999

nents (such as the virtual shared disk described
later) as well as one of the third-party (supporting
vendor) application subsystems. As the applica-
tion programming interfaces and the functions for
these services stabilize, we intend to make them
more generally available. Over time we expect that
all of the critical SP2 subsystems and many other
third-party software will use them to provide trans-
parent recovery.

sP2 also supports AIX High-Availability Cluster
Multi-Processing/6000 (HACMP/6000*), an alterna-
tive software subsystem that allows up to eight SP2
nodes to be configured in a highly available clus-
ter. In the past, HACMP/6000 has been available only
for a cluster of RISC System/6000 workstations.

Global services. As discussed earlier in the section
on Principle 7, a full single-system image is not a
critical requirement for SP2; instead, much of the
benefit associated with a single-system image can
be derived from providing elements of this func-
tionality as global services. Global access to spe-
cific resources such as disks, files, and communi-
cation networks is the primary requirement.

In sp2, global access to files is provided today by
networked file solutions such as NFS and AFS.
These provide for concurrent shared access to file
data and are the basis for the globalization of this
resource.

Global network access is provided via normal net-
work routing functions and TCP/IP and UDP/IP sup-
port over the switch. In this way, SP2 nodes that
are not physically attached to an external network
still have the ability to communicate through nodes
that are physically attached (i.e., through gateway
nodes).

Global access to disks is provided by the virtual
shared disk !¢ support introduced earlier in the sec-
tion on programming models in commercial com-
puting. Using VSD, an application running at any
SP2 node can transparently access any disk, phys-
ically located on any other SP2 node, as if it were
locally attached to that node. This is done by trap-
ping a request for a remote shared disk at the disk
driver level and shipping the request to the cor-
responding node. In effect, VSD is a device driver
layer that sits on top of the AIX Logical Volume
Manager and exports a raw device interface. If the
access is to a shared disk that is locally connected,
the vsD layer passes the request directly on to the

IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999

VOL34, NO 2, 1995, REPRINT

Logical Volume Manager on that node. If, how-
ever, the access is to a shared disk attached to a
remote node, the vsD layer sends the request to
the vSD on that remote node (through the switch),
which in turn passes it on to the remote Logical

The primary requirement
is global access to
resources such as disks,
files, and networks.

Volume Manager for access. The response is re-
turned to the VSD on the originating node and to
the requesting application.

vsD is highly optimized for performance, both in
terms of remote disk access bandwidth, and in
terms of the overhead on the processor to access
remote data. For instance, when a request is
shipped to a remote node, causing a communica-
tion adapter interrupt at the remote node, the cor-
responding disk access is initiated at the interrupt
level. By contrast, network file systems such as
NFS need to schedule a daemon at the remote
server node, and consequently have a much higher
processor overhead and lower bandwidth than
vsD. The aggregate bandwidth supported at a
server node is about an order of magnitude higher
than that for remote access for typical network file
systems. Remote disk access for a single client us-
ing vsD is close to the disk bandwidth for sequen-
tial access, and slightly lower than the local access
rate for random access of small data blocks.

VSD provides transparent switching to an alterna-
tive server for recovery. For this feature, each vsD
server is logically paired with an alternate second-
ary server. The disks must be twin-tail attached to
both the primary and secondary server nodes.
However, only the primary tail is active normally.
The heartbeat service is used by the primary and
secondary nodes to monitor one another. If the sec-
ondary node detects a primary node failure, con-
trol of the disks attached to the failing node is trans-
parently switched over to the secondary server,
and requests to those disks continue to be serviced

AGERWALAETAL. 435

436 AGERWALAETAL.

by the secondary server node transparently to the
application. The SP2 availability services are used
by VSD to implement this transparent recovery
capability.

Currently, VSD is primarily required by database
subsystems based on the data-sharing architecture
that requires access to disks from any node.

Another global service is the system data repos-
itory (SDR). The SDR is a distributed data repos-
itory that provides data storage and retrieval across
nodes of the SP2 and the control workstation. It
contains system-wide information about the nodes
and switches and their configuration, and about the
jobs currently in the system. It is used by system
management, hardware monitor, parallel file sys-
tem, switch subsystem, and Resource Manager.

The SDR is the result of an important design de-
cision to require that critical system data (such as
jobmanagement and system management data) not
only be local to the servers that implement the func-
tion; instead, the server data must be maintained
externally in a system-wide repository (that being
SDR). The rationale for this is twofold. First, it elim-
inates redundancies and inconsistencies between
servers using the same data. But more importantly,
it is the first step toward solving the server avail-
ability problem in large scalable parallel systems.
The goal is that critical global servers (such as the
Resource Manager and file systems) should be re-
startable. If a primary system server fails, then it
should be possible to restart the server without af-
fecting other servers and user jobs in the system
in any catastrophic manner. During the period of
time when the failing server is unavailable, requests
to that server will cause the requester to be de-
layed, but there should be no other sympathetic
failures caused by the server outage. The way that
a failing server gets restarted is by inspecting the
SDR objects that contain all the necessary informa-
tion for it to bring itself back to its state prior to
failure.

System management. The SP2 system management
and system monitoring software provides the ad-
ministrator with a single point of control for man-
aging and monitoring the SP2 system. The under-
lying philosophy was to build upon many of the
system management tools, commands, and inter-
faces already available for the A1X/6000* worksta-
tion environment. SP2 system management exten-
sions facilitate performing traditional system

VOL34, NO 2, 1995, REPRINT

management functions in a system with multiple
nodes, each running its own independent copy of
the operating system. These functions include sys-
tem installation, system operation, user manage-
ment, configuration management, file manage-
ment, security management, job accounting,
problem and change management, hardware mon-
itoring and control, and print and mail services.

The single point of control is via the control work-
station that acts as the system console. It is a sep-
arate RISC System/6000 workstation that connects
to each SP2 frame (the nodes and switch board) in
the system. By logging on to the control worksta-
tion from anywhere on the customer network, an
administrator can remotely manage the entire SP2
system from a central location.

The system management software uses the
UNIX distributed shell command dsh and the se-
cure client/server system sysctl for initiating sys-
tem management commands from a single point of
control and have them execute in parallel on mul-
tiple nodes. Sysctl is used for executing remote
commands in parallel and uses the UNIX security
package Kerberos for authentication. Filters are
provided to facilitate specifying which nodes to
operate on and for modifying and consolidating
the responses in order to make them more
comprehensible.

Hardware monitoring allows the administrator to
monitor and control the state of the SP2 hardware.
Eachnode, switch board, and frame in the SP2 sys-
tem has a supervisor card that provides sensing of
environmental conditions and control over the
hardware components. Through this facility, an ad-
ministrator can power nodes and switches on and
off, reset nodes or switches, change the key switch
position of a node, and monitor the node displays,
node and frame voltage levels, node temperature,
and certain hardware failures. Information can be
viewed at various levels of abstractions—single
node, frame, switch or total system—all from the
control workstation.

Job management. Users access the SP2 system
through an external network, either in batch mode
or interactive mode. In batch mode, jobs are sub-
mitted using network job scheduling software.
Typically that will be LoadLeveler** or Ngs.*
Currently, LoadLeveler is the only supported
mechanism for submitting parallel batch jobs. For
interactive access, a user logs on to the SP2 sys-

IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999

tem via the standard distributed UNIX rlogin com-
mand. The logon can be directed to a specific SP2
node by using the corresponding network address.
Alternatively, the SP2 host name can be specified,
in which case the user is given logon access to a
lightly loaded SP2 node.

The sP2 Resource Manager is a parallel job server
that runs on one of the SP2 nodes and manages the
allocation of nodes to parallel jobs entering the SP2
system. The nodes of an SP2 system can be divided
into a serial pool and one or more parallel pools.
Nodes in a parallel pool are used exclusively for
running the processes of parallel jobs. Nodes in
the serial pool are used to run serial jobs and to
run the Partition Manager for a parallel job.

When a parallel job is initiated (either interactively
or as abatch job via LoadLeveler), a Partition Man-
ager process for that job is started on a node in the
serial pool. The Partition Manager connects to the
Resource Manager and requests the required num-
ber of nodes; if available, the Resource Manager
returns a list of the nodes that would form the par-
allel partition for that job.

Once the parallel partition is established, the Par-
tition Manager loads a copy of the executable code
for the job and starts a Partition Manager daemon
on each of the nodes in the partition. The Partition
Manager daemon on each node then starts execu-
tion of the process. When the application ends
(either normally or abnormally), the Partition
Manager is responsible for cleanup and orderly ter-
mination, and for returning the nodes in the par-
tition to the Resource Manager.

If the node on which the Resource Manager is run-
ning fails, a backup Resource Manager is automat-
ically started on another SP2node. Transparent re-
covery is accomplished by the backup Resource
Manager reinstating the original state by retriev-
ing all job and node resource data from the system
data repository.

Reliability and availability features. In the design
of the system we paid particular attention to min-
imizing the probability of catastrophic failures. A
catastrophic failure is defined as a complete sys-
tem failure and restart is not possible, even in de-
graded mode, until service is applied. In particu-
lar, the system is designed to be tolerant of single
node failures; the effect of a failing node is isolated
to applications using that node. Independent op-

IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999

VOL34, NO 2, 1995, REPRINT

erating system images on each node make this pos-
sible. As previously described in the section on the
communication subsystem, the SP2 communication
subsystem is designed for transparent recovery
from most common hard and soft errors. Support
for Redundant Array of Inexpensive Disks (RAIDs),
multi-tailed devices, and mirroring is provided for
storage media recovery.

In the most common situations, hardware and soft-
ware service or upgrade can be applied to 2 node
or a part of the system while the rest of the system
remains in operational mode. A node in an SP2 sys-
tem can be powered off and disconnected from the
rest of the system to perform repairs on the node,
and later replaced and “powered-up” while the rest
of the system is operational.

The SP2 frames are designed for reliable, remotely
controlled operations with concurrent maintenance
and upgrade capability. Each frame has redundant
main power supplies to reduce the chance of a sys-
tem outage due to a power supply failure.

Support for transparent recovery of software sub-
systems and servers is provided by the SP2 avail-
ability services, as described earlier. Currently
these services are used by the vSD and the Re-
source Manager as well as one of the database sub-
systems. As these services stabilize and are made
more generally available, we expect many of the
other SP2 system software components and other
third-party software subsystems to use them to
provide transparent recovery.

Similarly, the system data repository (SDR) pro-
vides a convenient mechanism for externalizing
critical system data from the servers that use them.
This way servers can be designed to be restartable
after a failure using a backup copy on another node
and re-establishing the original state by retrieving
the data from the SDR. Currently the SP2 Resource
Manager uses this capability to provide transpar-
ent recovery. Over time we expect other critical
system servers to use this capability.

Performance

The primary determinant of system performance
for a parallel system is the performance capability
of the two primary building blocks—the individ-
ual nodes and the communication subsystem used
to interconnect the nodes. We first discuss the ca-

AGERWALAETAL. 437

438 AGERWALAETAL.

Table 1 SP2 node performance where the data for
Linpack 100 and Linpack TPP are in MFLOPS,
and SPECInt92 and SPECfp92 are In SPEC

units
Benchmark Thin Thin Wide Node
Node Node 2
Linpack 100 b5 132 132 (MFLOPS)
Linpack TPP 183 227 237 (MFLOPS)
SPECint92 114 122 122 (SPEC UNITS) |
SPECfp92 205 251 260 (SPEC UNITS) |

pabilities of these building blocks in the SP2 and
then look at system-level performance.

Table 1 shows the performance of the three dif-
ferent SP2 node types for several common bench-
marks. SPECint92 and SPECfp92% are, respec-
tively, suites of integer and floating-point code
fragments defined by the System Performance
Evaluation Cooperative (SPEC); these fragments
run entirely out of the processor cache on typical
microprocessors and therefore do not stress the
memory subsystem. Linpack 100 and Linpack TPP
benchmarks* are solutions of relatively small sys-
tems of linear equations, but typically do not fit in
the processor cache and therefore represent a dif-
ferent aspect of technical computing application
performance than SPECfp92. Thus the Linpack
and SPEC results should not be compared with each
other. Linpack performance of SP2 nodes is signif-
icantly higher than that of nodes used in other scal-
able parallel systems available today. * The pow-
erful nodes with robust configuration capability are
afundamental advantage of the SP2 system and are
one of the primary contributors toward the good
system-level performance of the SP2, as we show
later.

The primary standard benchmarks in commercial
processing are benchmarks defined by the Trans-
action Processing Council (TPC), ** which also pub-
lishes the results of the benchmark measurements
on different systems. There are several TPCbench-
marks representing different types of commercial
workloads. The TPC-Cbenchmark is representative
of database transactions in a retail operation.
Again, considering single processor performance,
the SP2 nodes are considerably more powerful than
the nodes used in other scalable parallel systems. *!
For example, the published TPC-C measurement for
the sp2 wide node (which is equivalent to the RISC

VOL34, NO 2, 1995, REPRINT

System/6000 Model 590) is 726.1 tpmC (TPC-C
transactions per minute) with a corresponding
$/tpmC of 1395.

Generally speaking, the SP2 wide node provides the
highest performance in most environments; the Sp2
thin node 2 is typically within 10 percent of the wide
node performance, while the SP2 thin node is typ-
ically 20 to 30 percent lower. In environments
where performance is gated by the amount of node
memory and I/O configurability, the wide node gen-
erally provides the best solution; otherwise, the
thin nodes generally provide better price/perfor-
mance.

The other primary performance determinant is the
communication subsystem. Table 2 shows latency
and sustainable bandwidth measurements using
different SP2 nodes. The latency measures the time
to send a zero-byte message from one process
space to another on a remote node; it accounts for
all hardware and software path lengths between the
sending application process and the receiving pro-
cess. The point-to-point bandwidth measures the
sustainable rate at which a process running on one
node can transfer data to another application pro-
cess running on another node; it assumes very large
messages, one-way data transfer, and accounts for
all hardware and software overheads involved in
the transfer path. Finally, the exchange bandwidth
measures the sustainable rate at which two appli-
cation processes running on two different proces-
sors can exchange data in a simultaneous send and
receive (two-way transfers). The performance is
measured using the IBM Message-Passing Library
(MPL), both with user-space communication over
the switch and also through UDP/IP over the switch.
Both paths are simultaneously available to users
and, depending on the application, either or both
may be used.

The sustainable pair-wise bandwidth of the SP2 is
comparable to that of other scalable parallel sys-
tems available today. Many of the scalable paral-
lel systems available today provide higher switch
link bandwidths than SP2, but when the switch to-
pology effects, message payload capability, and
other system features are taken into consideration,
the sustainable bandwidth between random pairs
of processors in the system is comparable to that
of the SP2 system.

However, compared to distributed shared-mem-
ory systems (such as the Cray T3D), the latency of

IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999

Figure 11 SP2 performance for the Linpack HPC benchmark

Ho—

GFLOPS

NUMBER OF PROCESSORS

/\ SP2 WIDE NODES
(O SP2 THIN NODES
[1 sP1

| OTHER SCALABLE | |
| PARALLEL SYSTEMS
(64 PROCESSORS)

6.4 GFLOPS
3.8 GFLOPS

CRAY T3D:
TMC CMS:

Table 2 SP2 communication subsystem performance -

Node, Communication Latency

Point-to-Point Exchange

Mode (microseconds) Bandwidth (MB/s) Bandwidth (MB/s)
Thin node, user space 40 35 41
Thin node 2, user space 39 36 48
Wide node, user space 40 36 48
Thin node, UDP/IP b 10 13
Thin node 2, UDP/IP 270 12 16
Wide node, UDP/IP 269 12 16

the sP2 system is higher. This can affect parallel
application performance adversely if the applica-
tion is structured for frequent fine-grained commu-
nication. But it is important to remember that dis-
tributed shared-memory systems access data
synchronously and in units of cache line size. In
contrast, a distributed message-passing system can
transfer data asynchronously and in very large
units. In situations where the data to be transferred
can in fact be aggregated into one large message,
the longer latency of the message-passing machine
is not an issue, and the asynchronous nature of the
transfer can be an advantage.

For parallel application execution capability, there
are two standard benchmarks that are widely used
today, namely the Linpack HPC and the NAS Par-
allel Benchmark suite.

IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999

VOL34, NO 2, 1995, REPRINT

The Linpack HPC is functionally similar to the other
Linpack benchmarks discussed earlier, but it does
not specify any problem size; instead, it allows the
problem size to grow with the size of the system
under test. Its performance is a function of the
floating-point capability of the nodes, the memory
size, and the interprocessor communication per-
formance of the system. Figure 11 shows that for
an equivalent number of nodes, the SP2 delivers sig-
nificantly higher performance than other scalable
parallel systems that have reported the Linpack
HPC performance. ! Other systems shown are the
Cray 13D, the Thinking Machines CM5**, and the
Intel Paragon.

The NAS Parallel Benchmark suite, developed by
the Numerical Aerodynamic Simulation (NAS) proj-
ect at the National Aeronautics and Space Admin-

AGERWALAETAL. 439

440 AGERWALAETAL.

Figure 12 NAS Parallel Benchmark performance for IBM SP2 and selected other scalable parallel systems

NAS KERNELS - CLASS B (128 PROCESSORS)

R A . -
| [
F A
w15 | fieo
= i b]
2 | ‘
& | i | |
2 10} 10.6| | [
e} | | —
o ‘ 89]|
S } .
(&) 5"_ I | L 5.7/56
| |
: S = a—
; g 18]
0! BT 1) [0
EP cG MG
NAS PSEUDOAPPLICATIONS - CLASS B (128 PROCESSORS)
R O B O S 33 o e :
167 '
w 15}
= |
e .
| 130 Fidn
S |
5 10| n2 |
g !
= |
& i 245
[+ | 7 1 |
2y 52 | 55 ||
| < e A
TRy m—— 22 | 29"
ol | it 16 |/ i

LU

[7] 1BM SP2 (WIDE NODES)

["]crAY T3D [INTEL PARAGON

istration (NASA) Ames Research Center, *? consists
of five kernels and three pseudoapplications that
collectively represent the NASA/Ames scientific
computing workload. The kernels have simple data
structures and each represents a fundamental com-
putational structure in NASA’s acrodynamic sim-
ulation applications. The simulated applications
have multiple interacting data structures, and are
more closely related to the full applications in use
by NASA scientists. The kernels address specific
components of system performance, while the sim-
ulated applications examine the overall system per-
formance that is attained by combination of the
components.

Figure 12 shows the performance of the SP2 sys-
tem (using wide nodes with a fully configured mem-
ory subsystem) using the Class B NAS Parallel

: THINKING MACHINES CORP. CM5-E

VOL34, NO 2, 1995, REPRINT

SP

* FOR PARAGON: 256 PROCESSORS
FOR CG, 400 FOR SP AND 408 FOR BT

Benchmarks, compared to some other massively
parallel systems, as reported in Reference 43. The
results are shown in Cray €90 single processor
equivalents, and are for 128-node systems (except
for three cases on the Intel Paragon where data are
only available for a different number of processors,
as noted in the figure). The SP2 significantly out-
performs other equivalent size systems, especially
on the pseudoapplications that are closely related
to full applications in use by NASA scientists. The
implementations of the NAS benchmarks on the Sp2
are described in depth in References 44 and 45.

To characterize the SP2 relative to commercial com-
puting requirements, we started with intrinsic da-
tabase operations for decision support environ-
ments and have tested their scalability on Sp2
systems with increasing numbers of nodes. For

IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999

Figure 13 Performance of the SP2 using the Wisconsin Benchmark set (1 GB database size) for decision support
- environments, and using the IBM DB2 Parallel Edition relational database subsystem

WISCONSIN BENCHMARK PERFORMANCE ON THE SP2

5000 £— 52

:

1000

200 -

ELAPSED TIME (SECONDS)
o
o
=]

=
(=]
(=]

o

-]
Tk

|
n j

|

|

|

|
w

1

NUMBER OF NODES

<> CREATE INDEX
(O DATABASE LOAD

/\ SCAN AND AGGREGATE
[] SORT, MERGE, JOIN

these measurements we have used the Wisconsin
Benchmark“ that tests the following basic oper-
ations on a 1 GB database: (1) load database, (2)
create index, (3) scan database and aggregate re-
sult, and (4) sort, merge, and join.

It is important to realize that when evaluating the
performance of the SP2 system in this context, the
performance of the database subsystem itself is as
significant as that of the hardware platform. The
two database subsystems that have been ported for
parallel execution on the SP2 are the Oracle Par-
allel Server (Version 7.1) and the DB2* Parallel Edi-
tion. The elapsed time for these operations on SP2
with DB2 Parallel Edition is shown in Figure 13 and
shows generally linear speedup with good parallel
efficiency. Measurements for Oracle 7.1 will be
available in the future. We also expect to do mea-
surements on TPC-D (decision support) and TPC-C
(on-line transaction processing) benchmarks de-
fined by the Transaction Processing Council.

Key future challenges

We expect that the future evolution of SP2 systems
will continue to be guided by the principles that
we articulated in the section on system strategy.
In particular, we will continue to exploit worksta-
tion technology as much as possible. However, as
the market for the scalable parallel systems ex-

IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999

3

VOL34, NO 2, 1995, REPRINT

pands, we will continue to assess technologies that
are specifically targeted to scalable parallel com-
puting.

A symmetric multiprocessor as the basic node in
a scalable parallel system is an attractive option
for future systems. It can provide significant im-
provement in peak node performance at a cost that
is not much higher than the cost of a uniprocessor
with the same amount of storage. However, effec-
tive use of this performance is a challenging prob-
lem. In particular, one needs to manage two
levels of parallelism, with big differences in per-
formance and function between intranode commu-
nication and internode communication. Hiding the
complexity of two levels of parallelism by provid-
ing transparent compiler exploitation will be cru-
cial.

The communication subsystem in scalable paral-
lel systems must continue to improve in perfor-
mance and capability. Efficient support of a shared-
memory programming model requires aggressive
bandwidth increase and latency reduction. This
precludes interfacing to the switch via the 0 bus
in future SP2 systems. Direct connection to an in-
ternal memory bus will lead to improved perfor-
mance, but will require a more specialized pack-
age and interlocking of adapter technology and
processor technology.

AGERWALAETAL. 441

442 AGERWALAETAL.

Aggressive latency reduction will require a com-
munication architecture that will allow a proces-
sor to access remote memory without involving the
remote processor. Such functionality is already
available in one form or another on some systems.
However, current implementations either compro-
mise on performance (latency), or require a global
real address space. The challenge is to provide such
functionality with very low latency on a virtual
memory system with minimal impact on system in-
terfaces, while still maintaining the distributed mes-
sage-passing system model we have adopted for
scalability and availability.

Very large and scalable information servers (in-
cluding video and multimedia servers) require the
sharing and movement of massive amounts of data
among nodes. A key metric here is the processor
overhead for moving data. Minimizing processor
overhead and supporting large throughput, rather
than low latency, is critical.

There is limited experience today with scalable
storage systems and scalable file systems, and
hence limited knowledge to guide system architects
in the design of future parallel 1/0 subsystems. Yet
low-cost, scalable 1/0 is key to the success of scal-
able parallel computing. The High-Performance
Storage Subsystem (HPSS) initiative (a cooperative
effort between key government labs and several
vendors of high-performance systems) has gener-
ated solutions to some of the key issues in this area.
The challenge is to quickly incorporate these so-
lutions into mainline products.

Efficient utilization of future scalable parallel com-
puters will require major advances in software
technology. Efficient compiler technology is needed
to support more convenient programming models
while preserving portability to other platforms.
Future systems will have to support efficient time
sharing of processors by parallel jobs, and preemp-
tive scheduling of parallel computations. This re-
quires a mechanism for coordinated dynamic allo-
cation of processors and memory to the processes
that constitute a parallel job; in particular, support
for gang (simultaneous) scheduling is required. Also,
users should be able to control the execution of par-
allel jobs (e.g., via a parallel shell), and connect par-
allel computations (e.g., via parallel pipes), with the
same convenience with which they control or con-
nect individual processes today.

VOL34, NO 2, 1995, REPRINT

The availability of parallel application codes and
subsystems is critical for the success of scalable
parallel computing. The development of such codes
is hampered not only by the difficulties of parallel
programming, but also by the lack of accepted stan-
dards in this arena. High Performance FORTRAN
and the Message-Passing Interface (MPI) are two
successful examples of establishing such (de facto)
standards. Much more is needed. In particular,
standards are needed in the area of parallel sys-
tem services, such as parallel 1/0.

Another aspect, particularly in commercial appli-
cations, is that of providing coordinated and con-
sistent recovery between a large number of sub-
systems running on any scalable parallel system.
These could include multiple database systems, a
transaction monitor, a parallel file system, a mul-
timedia server, resource managers, the operating
system, the global 1/O subsystem, etc. Each sub-
system may detect several software failure condi-
tions on its own, and these need to be combined
with other failure detection mechanisms (such as
the heartbeat service), for overall diagnosis. Or-
dering, synchronization, and parallelism during
recovery of the various subsystems is needed.
Providing a high-availability infrastructure that ad-
dresses these issues is a challenging problem.

Meanwhile, the software technology used in se-
quential systems is progressing. Object-oriented
(00) programming and object-oriented storage (ob-
ject-oriented databases, object-oriented file sys-
tems) are becoming more prevalent; operating sys-
tem technology is evolving to better support 00.
Future scalable parallel systems will have to cope
with this evolution, both because of its impact on
the basic uniprocessor software technology, and
because of the importance of 00 for future appli-
cations. Scalable 00 technologies are yet to emerge
from the research community. Yet such technol-
ogies are likely to have a major impact on the fu-
ture of scalable parallel systems.

Summary

In this paper we described the seven guiding prin-
ciples that form the basis for the SP2 system archi-
tecture, and how these influenced the system over-
view and system components. Our contention was
that these principles should let us bring to market
scalable parallel solutions in a timely manner for
awide range of applications. This has largely been
borne out by the success and broad-based market

IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999

acceptance SP1 and SP2 systems have enjoyed since
the SP1 systems became generally available.
Around 400 sP1 and sP2 systems (with 2 nodes all
the way up to 512 nodes) are today being used pro-
ductively in many different areas, including com-
putational chemistry, crash analysis, electronic de-
sign analysis, seismic analysis, reservoir modeling,
decision support, data analysis, on-line transaction
processing, local area network consolidation, and
as workgroup servers. They are being used in di-
verse industry areas including manufacturing, pro-
cess, distribution, transportation, petroleum, com-
munications, utilities, education, government,
finance, insurance, and travel.

Time-to-market with the latest technology has been
one of the keys to the success of the SP1 and Sp2.
The SP1 system was introduced in the market
roughly one year after the POWERparallel system*
program was started. This was accomplished
through Principles 1, 2, and 3 by using many stan-
dard RISC System/6000 hardware and software
components and leveraging interprocessor commu-
nication technology developed in IBM Research.
The sP2was delivered less than a year after the SP1.
The loosely coupled system structure allowed sig-
nificant enhancements in the communication pro-
tocols and a very fast introduction’of the new
POWER2 miCroprocessor.

Another key to success has been the availability
of key applications. A wide range of IBM and ven-
dor applications and subsystems run in parallel on
the sp2. These applications span a spectrum of ar-
eas: computational chemistry and pharmaceuti-
cals, engineering analysis, electronics analysis, and
petroleum explorations and production in the tech-
nical computing area; database management sys-
tems, transaction processing monitors, and bus-
iness applications systems that run on top of
database subsystems, for the commercial comput-
ing area; and general tools for system management,
network management, and storage management.
Most are currently available.

Principles 1, 4, 5, and 7 are the primary reasons
behind the broad portfolio of parallel applications.
Support of Principles 1 and 4 also contributes to
the several thousands of RISC System/6000 appli-
cations available on the SP2. The support for stan-
dard distributed AIX program development and ex-
ecution environment, key programming models,
standard message-passing libraries, globalization
of key resources, and availability services has al-

IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999

VOL34, NO 2, 1995, REPRINT

lowed independent software vendors to modify key
applications and subsystems to run on the SP2 with-
out diverting from their mainstream development
strategies.

Our strategy of using standard microprocessors
and a mature operating system, complemented
with a set of high-performance services has pro-
vided other benefits. The system provides industry-
leading performance as shown by most key bench-
mark results. The system installs easily and
exhibits good availability characteristics. The flex-
ible system architecture and a variety of applica-
tions allow users to start doing real work imme-
diately. For example, a large 400-node SP2hasbeen
installed at the Maui High-Performance Comput-
ing Center. Within a few weeks of delivery, Pro-
fessor Frank L. Gilfeather, one of the principal in-
vestigators, provided the following testimonial:
“We are seeing availability (considering down time
from all causes) of 98 percent and are achieving
70-90 percent CPU utilization. Compared to other
MPP machines, the SP2 has set a new standard in
ease of installation and use, availability, reliability,
and cost/performance.”

This broad-based acceptance attests to the flexi-
ble and general-purpose nature of the architecture
and validates the principles we used to design the
sp2 to effectively address the requirements of a
wide range of applications and industries.

Acknowledgments

Ray Bryant, Daniel Frye, Kevin Gildea, and Don
Grice were part of the SP2 systems team and made
significant contributions to the SP2 systems archi-
tecture. Christos Polyzois and Jim Rymarczyk
were instrumental in the definition of SP2 architec-
ture enhancements for commercial computing.

The overall success of SP2 is the result of contri-
butions of many other people in all the various
phases in the development and delivery of a sys-
tem—system architecture and system design, hard-
ware and software design and development of the
different system components, system test, manu-
facturing, applications enabling, performance
benchmarking, marketing support, and service.
They are too numerous to acknowledge them all
individually here but their contributions were crit-
ical.

AGERWALAETAL. 443

444 AGERWALAETAL.

Much of the success can also be attributed to the
close working relationship between the IBM POWER
Parallel Division and the 1BM Research Division,
and others from the RISC System/6000 hardware
group, the former Federal Systems Marketing Di-
vision, IBM Software Solutions, and the European
Center for Scientific/Engineering Computing. Joint
partnerships with some of our key customers
helped guide and validate many of our architec-
ture and design decisions.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of X/Open Co. Ltd., Tan-
dem Computers Incorporated, Sun Microsystems, Inc., or
Thinking Machines Corporation.

Cited references

1. D.E. Nielsen, “A Strategy for Smoothly Transitioning to
Massively Parallel Computing,” Energy and Technology
Review, University of California, Lawrence Livermore Na-
tional Laboratory (November 1991).

2. C. H. Koelbel, D. B. Loveman, R. S. Schreiber, G. L.
Steele, Jr., and M. E. Zosel, The High Performance FOR-
TRAN Handbook, The MIT Press (1994).

3. Database 2 AIX/6000, Programmer’s Reference Manual,
SC09-1573-00, IBM Corporation; available through IBM
branch offices.

4. Database 2 Parallel Edition, White Paper, Database Group,
IBM Software Solutions Toronto Lab., 1150 Eglinton Ave.
East, North York, Ontario M3C 1H7, Canada.

5. Oracle for Massively Parallel Systems—Technical Over-
view, Oracle White Paper, Oracle Corporation (March
1993).

6. M. Ferguson, “Parallel Query and Transaction Process-
ing,” Info DB (USA) 7, No. 3, 18-27 (Summer 1993).

7. D. Clay, Informix Parallel Data Query (PDQ), IEEE Com-
puter Society Press (January 1993).

8. Customer Information Control System/6000 Storage
(CICS/6000): Technical Overview, GC33-1225, IBM Cor-
poration; available through IBM branch offices.

9. M. Sherman, Distributed Transaction Processing with
Encina, IEEE Computer Society Press (January 1993).

10. J.M. Andrade, M. T. Carges, and M. R. MacBlane, “Open
On-line Transaction Processing with the Tuxedo System,”
digest of papers from the IEEE 37th COMPCON (Spring
1992).

11. D. W. Cornell, D. M. Dias, and P. S. Yu, “On Multisys-
tem Coupling Through Function Request Shipping,” IEEE
Transactions on Software Engineering SE-12, No. 1, 1006
1016 (October 1986).

12. M. Stonbraker, “The Case for Shared Nothing,” IEEE Da-
tabase Engineering 9, No. 1 (1986).

13. N.P. Kronenberg, H. Levy, and W. D. Strecker, “VAX-
Clusters: A Closely-Coupled Distributed System,” ACM
Trans. Comput. Syst. 4, No. 2, 130-146 (May 1986).

14. A.Sekino, K. Moritani, T. Masai, and K. Goto, “DCS—A
New Approach to Multi-System Data-Sharing,” Proceed-
ings of the National Computer Conference, Las Vegas, NV
(July 1984), pp. 59-68.

15. P. S. Yu, D. M. Dias, D. W. Cornell, and A. Thomasian,

16.

17.

18.

19.

21.
22.

26.

27.

29.

30.

31.

32.

33.

34

VOL34, NO 2, 1995, REPRINT

“Performance Comparison of 1/0 Shipping and Database
Call Shipping: Schemes in Multisystem Partitioned Data-
bases,” Performance Evaluation 10, No. 1, 15-33 (1989).
P. S. Yu, D. M. Dias, J. T. Robinson, B. R. Iyer, and
D. W. Cornell, “On Coupling Multi-Systems Through Data
Sharing,” Proceedings of the IEEE 75, No. 5, 573-587
(1987).

D. Attanasio, M. Butrico, J. Peterson, C. Polyzois, and

S. Smith, Design and Implementation of a Recoverable Vir-

tual Shared Disk, IBM Research Report, in preparation.

F. Carino and P. Kostamaa, “Exegesis of DBC/1012 and

P90: Industrial Supercomputer Database Machines,” Pro-

ceedings of the 4th International Parallel Architecture and

Languages (Europe) Conference (1992).

R. Horst, “Massively Parallel Systems You Can Trust,”

Proceedings of Spring COMPCON 94 (February 1994).

. Cray Research, Inc., Cray T3D Technical Summary (Sep-

tember 1993).

Convex Computer Corp., Convex Exemplar Scalable Par-

allel Processing System: System Overview (1994).

W. Groscup, “The Intel Paragon XP/S Supercomputer,”

Proceedings of the 5th ECMWF Workshop on the Use of

Parallel Processors in Meteorology (November 1992).

. D. Lenoski, J. Laudon, K. Gharachorloo, W. D. Weber,
A. Gupta, J. Hennesey, and M. Lam, “The Stanford DASH
Multiprocessor,” IEEE Computer 25, No. 3, 63-79 (March
1992).

. A. Agarwal, J. Kubiatowicz, D. Kranz, B-H. Lim,
D. Yeung, G. D’Souza, and M. Parkin, “Sparcle: An Ev-
olutionary Processor Design for Large-scale Multiproces-
sors,” Micro 13, No. 3, 48-61 (June 1993).

. B. S. Ang, Arvind, and D. Chiou, StarT the Next Gener-

ation: Integrating Global Caches and Dataflow Architec-

tures, MIT CGS Memo 354 (February 1994).

W. J. Dally, J. A. S. Fiske, J. S. Keen, R. A. Lethin,

M. D. Noakes, P. R. Nuth, R. E. Davison, and G. A. Flyer,

“The Message-Driven Processor: A Multicomputer Pro-

cessing Node with Efficient Mechanisms,” IEEE Micro 12,

No. 2, 23-39 (April 1992).

S. K. Reinhart, J. R. Larus, and D. Wood, “Tempest and

Typhoon: User-level Shared Memory,” Proceedings of the

21st Annual International Symposium on Computer Archi-

tecture (April 1994), 325-336.

. T. E. Anderson, D. E. Culler, and D. Patterson, “A Case

for NOW (Network of Workstations),” IEEE Micro 15,

No. 1, 54-64 (February 1995).

P. Keleher, S. Dwarkadas, A. Cox, and W. Zwaenepol,

Distributed Shared Memory on Standard Workstations and

Operating Systems, Technical Report RICE COMP TR93-

206, Rice University (June 1993).

V. Bala et al., “IBM External User Interface for Scalable

Parallel Systems,” Parallel Computing 20, No. 4, 445-462

(April 1994).

MPI Forum, Document for a Message Passing Interface,

Technical Report CS-93-214, University of Tennessee (No-

vember 1993).

V.S. Sundcram, G. S. Geist, J. Dongarra, and R. Manchek,

“PVM Concurrent Computing System: Evolution, Expe-

riences and Trends,” Parallel Computing 20, No. 4, 531-

545 (April 1994).

S. White and S. Dhawan, “POWER2: Next Generation of

the RISC System/6000 Family,” PowerPC and POWER2:

Technical Aspects of the New IBM RISC System/6000,

Prentice-Hall, Inc., Englewood Cliffs, NJ (1994).

. C. B. Stunkel, D. G. Shea, B. Abali, M. G. Atkins, C. A.

IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999

Bender, D. G. Grice, P. Hochschild, D. J. Joseph,
B. J. Nathanson, R. A. Swetz, R. F. Stucke, M. Tsao, and
P. R. Varker, “The SP2 High-Performance Switch,”” IBM
Systems Journal 34, No. 2, 185-204 (1995, this issue).

35. T.Feng, “A Survey of Interconnection Networks,” IEEE
Computer 14, No. 12, 12-27 (December 1981).

36. M. Snir, P. Hochschild, D. D. Frye, and K. J. Gildea, “The
Communication Software and Parallel Environment of the
IBM SP2,” IBM Systems Journal 34, No. 2, 205-221 (1995,
this issue).

37. P. F. Corbett, D. G. Feitelson, J.-P. Prost, G. S. Almasi,
S.J. Baylor, A. S. Bolmarcich, Y. Hsu, J. Satran, M. Snir,
R. Colao, B. D. Herr, J. Kavaky, T. R. Morgan, and
A. Zlotek, “Parallel File Systems for the IBM SP Com-
puters,” IBM Systems Journal 34, No. 2, 222-248 (1995,
this issue).

38. S.Dewey and J. Banas, “LoadLeveler: A Solution for Job
Management in the UNIX Environment,” AIXtra (May,
June 1994).

39. B. Beckenbach, “User Experience with Queuing Systems
for UNIX Batch Processing,” Proceeding of SHARE Eu-
rope Spring Conference (April 1994), pp. 15-22.

40. The Benchmark Handbook for Database and Transaction
Processing Systems, 2nd Edition, J. Gray, Editor, Mor-
gan Kaufmann Publishers, Inc. (1993).

41. J. Dongarra, University of Tennessee Linpack Performance
Report, University of Tennessee (September 1994).

42. D.Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter,
L. Dagum, V. Verkatakrishnan, and S. Weeratunga, The
NAS Parallel Benchmarks, Technical Report RNR-94-007,
NASA Ames Research Center (March 1994).

43. D. Bailey, E. Barszcz, L. Dagum, and H. Simon, NAS Par-
allel Benchmark Results, Technical Report RNR-94-001,
NASA Ames Research Center (October 1994), and sup-
plements.

44. R. C. Agarwal, B. Alpern, L. Carter, F. G. Gustavson,
D. J. Klepacki, R. Lawrence, and M. Zubair, “High-Per-
formance Parallel Implementations of the NAS Kernel
Benchmarks on the IBM SP2,”” IBM Systems Journal 34,
No. 2, 263-272 (1995, this issue).

45. V. K. Naik, “A Scalable Implementation of the NAS Par-
allel Benchmark BT on Distributed Memory Systems,”
IBM Systems Journal 34, No. 2, 273-291 (1995, this issue).

Accepted for publication February 21, 1995.

Tilak Agerwala IBM POWER Parallel Division, Highly
Parallel Supercomputing Systems Laboratory, 522 South
Road, Poughkeepsie, New York 12601-5400 (electronic mail:
tilak@vnet.ibm.com). Dr. Agerwala is the Director of Parallel
Architecture and System Design in the POWER Parallel
Division and is responsible for system architecture, technol-
ogy strategy, and performance evaluation. His area of exper-
tise is computer architecture with a focus on high-performance
computing, superscalar designs, and parallel processing.
Dr. Agerwala received his Ph.D. in electrical engineering from
The Johns Hopkins University, Baltimore, Maryland, in 1975
and his B. Tech. degree from the Indian Institute of Technol-
ogy, Kanpur, India, in 1971. From 1975 to 1979 he was an as-
sistant professor at the University of Texas at Austin. He joined
IBM in 1979 as a research staff member at the Thomas J. Wat-
son Research Center. From 1984 to 1987 he established and
managed broad research programs in parallel processing, su-
percomputing, and artificial intelligence. He was appointed to
the Corporate Technical Committee in 1987 and was Director

IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999

VOL34, NO 2, 1995, REPRINT

of Future Systems Technology in the RISC System/6000 di-
vision prior to assuming his present position. Dr. Agerwala has
published several papers and given numerous invited techni-
cal presentations worldwide in his area of expertise. He is a
member of the IBM Academy of Technology and was elected
to its Technology Council in 1990. He has served on many pro-
fessional panels and advisory committees. Dr. Agerwala is a
member of ACM and a Fellow of the Institute of Electrical and
Electronics Engineers.

Joanne L. Martin IBM POWER Parallel Division, Highly
Parallel Supercomputing Systems Laboratory, 522 South
Road, Poughkeepsie, New York 12601-5400 (electronic mail:
jmartin@vnet.ibm.com). Dr. Martin joined IBM as a research
staff member at the Thomas J. Watson Research Center in No-
vember, 1984. She received her Ph.D. in mathematics from The
Johns Hopkins University in 1981 and conducted research in
performance evaluation for supercomputers at Los Alamos
Partnerships and Performance Studies. Her area of expertise
is in the evaluation of performance of supercomputing systems,
an area in which she has published a number of papers and ed-
ited books and journals. In May 1991, Dr. Martin was appointed
manager of her present department, which is responsible for
performance and modeling for the POWER Parallel Division,
and in January 1993, she was appointed a Senior Technical Staff
Member in recognition of her work in the area of analysis of
high-performance systems. She has maintained a connection
to the external scientific community, editing a journal that is
published by The MIT Press, serving as the general chair of
Supercomputing 90, and serving as an advisor to the Depart-
ment of Energy and the National Science Foundation (where
she served as the chair of the program advisory committee for
advanced scientific computing in 1991). Additionally, she was
named to Who’s Who in Science and Engineering for 1992-1993.

Jamshed H. Mirza IBM POWER Parallel Division, Highly
Parallel Supercomputing Systems Laboratory, 522 South
Road, Poughkeepsie, New York 12601-5400 (electronic mail:
mirza@vnet.ibm.com). Dr. Mirza is currently a system archi-
tect in the POWER Parallel Division and works on various as-
pects of the architecture definition and system design for fu-
ture SP2 systems. Since joining IBM in 1982, he has held several
technical and management positions in the design and devel-
opment of system products for the technical computing mar-
ket. Prior to that, he was an assistant professor of computer
science at the Polytechnic Institute of New York, Brooklyn.
Dr. Mirza has a B. Tech. degree from the Indian Institute of
Technology, Kharagpur, India, and M.S. and Ph.D. degrees
in computer science from the Polytechnic Institute of New
York, Brooklyn.

David C. Sadler IBM POWER Parallel Division, Highly
Parallel Supercomputing Systems Laboratory, 522 South
Road, Poughkeepsie, New York 12601-5400 (electronic mail:
dsadler@vnet.ibm.com). Mr. Sadler is currently a member of
the Parallel Architecture and System Design Department where
he has been working on the definition of languages, architec-
ture, and system design for scalable parallel RISC-based sys-
tems. Prior to joining the Parallel Architecture and System De-
sign Department he managed the initial software development
effort for the SP1 for the communication subsystem and the
parallel programming environment. Mr. Sadler received his
B.S. in mathematics from the Pennsylvania State University
in 1967. He joined IBM in 1967 and has held various technical

AGERWALAETAL. 445

and management positions within IBM. He managed the de-
velopment activities for IBM for 4700 COBOL, 4700 C, 4700
Assembler, IBM Clustered FORTRAN, Enhanced Clustered
FORTRAN, 4700 Host Support programs, network manage-
ment tools for distributed systems, and 4700 microcode devel-
opment. He has held technical and management positions within
IBM’s supercomputer and parallel programming efforts since
1986.

Danlel M. Dlas IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 704, Yorktown Heights, New York
10598. Dr. Dias received the B. Tech. degree from the Indian
Institute of Technology, Bombay, India, and the M.S. and
Ph.D. degrees from Rice University, Houston, Texas, all in
electrical engineering. He currently manages the Parallel Com-
mercial Systems group at the IBM Thomas J. Watson Research
Center, which includes exploratory systems architecture, de-
sign, and analysis, in the areas listed below, with a focus on
reducing these ideas to working prototypes and products. His
current research includes highly available clustered systems,
parallel and distributed systems, video server architectures, par-
allel transaction and query processing, reliable disk architec-
tures, interconnection networks, and performance analysis. Dr.
Dias has published more than 100 papers in refereed journals
and conferences. He has won two best paper awards, IBM Out-
standing Innovation and Technical Achievement Awards, five
Invention Achievement Awards, and Research Division
awards. He holds eight U.S. patents, with four additional pat-
ents pending.

Marc Snir IBM Research Division, Thomas J. Watson Re-
search Center, P.O. Box 218, Yorktown Heights, New York
10598 (electronic mail: snir@watson.ibm.com). Dr. Snir is sen-
ior manager at the IBM Thomas J. Watson Research Center,
where he leads research on scalable parallel software and on
scalable parallel architectures. He recently led the Vulcan soft-
ware effort and the initial design and prototyping of parallel soft-
ware for the IBM SP1. He received a Ph.D. in mathematics
from the Hebrew University of Jerusalem in 1979. He worked
at New York University (NYU) on the NYU Ultracomputer
project from 19801982 and worked at the Hebrew University
of Jerusalem from 1982-1986. He has published on computa-
tional complexity, parallel algorithms, parallel architectures,
interconnection networks, and parallel programming environ-
ments. He recently contributed to High Performance FOR-
TRAN and to the Message-Passing Interface. Dr. Snir is a mem-
ber of the IBM Academy of Technology, a senior member of
IEEE, and a member of ACM and SIAM.

446 AGERWALAETAL. VOL34, NO 2, 1995, REPRINT IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999

