REPRINTED FROM IBM SYSTEMS JOURNAL, VOL13, NO 1, 1974; © 1974, 1999

162 BoIES

Discussed are observations on the usage of an interactive com-
puting system in a research environment. Empirical data on user
behavior are discussed that concern the duration and frequency
of terminal sessions, the use of language processors, user re-
sponse time, and command usage.

User behavior on an interactive computer system

system

by S. J. Boies

The methodologies of the behavioral sciences can provide data
useful to systems engineers and designers of complex information
processing systems. For example, the quantitative description
of the usage of existing systems can provide an understanding
of those features that should be retained, deleted, or modified
as new systems evolve.

This paper summarizes one aspect of an ongoing project at the
IBM T. J. Watson Research Center. The project has as its goal
a basic understanding of the behavioral factors that limit and
determine human performance in interactive computer systems.
Reported here is an observational analysis of user interaction
with a complex interactive system, the IBM System /360 Time
Sharing System (T5s/360)." The paper is divided into two sec-
tions. The first provides a brief description of TSS/360 and the
method used in this study. The balance of the paper reviews our
results relative to user behavior. Among the issues discussed are
the following: the duration and frequency of terminal sessions:
the use of language processors; command usage; and user re-
sponse time and its determinants.

System and methodology
The user-system interactions described in this paper refer to

TSS/360 and terminals scattered throughout the Research Cen-
ter. Until the introduction of the Time Sharing Option (Ts0),

0018-8670/99/$5.00 © 1999 IBM IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999

TSS /360 was the major IBM large-scale interactive system.
Briefly, TSS/360 is a general-purpose system designed for use
both in program development and in interactive applications.
Users interact with TSS/360 through remote terminals, most of
which are IBM 2741 Communications Terminals in offices and
laboratory spaces. The remainder are in common terminal
rooms. The terminal keyboard resembles that of the IBM Selec-
tric® Typewriter, with the exception that the index key is re-
placed by an attention key. The maximum typing rate of the
terminal is 14.8 characters a second.

Training levels of the population using the TSS/360 system re-
ported here range from system programmers, who are doing sys-
tem development and maintenance, to users who simply sign on
and call application programs that lead them through sequences
of steps necessary to perform their tasks. A total of 375 persons
were authorized to use the system via an identification code. On
an average day, between 30 and 45 persons use the system at
any given time.

The data for this analysis were collected by the System Internal
Performance Evaluator (SiPE)?, which is a collection of pro-
grams for recording the use of aspects of the system and for and
providing information concerning the failure rate of system
modules. SIPE records the following items: (1) line of type that
is transmitted; (2) user identification code; (3) system and user
response times; and (4) the system function that generates the
transaction for each line that the system sends to the user and
that the user sends to the system. When the command system
analyzer detects a user-defined procedure during execution, a
record is made of the primitive commands that were called. This
information is written out to magnetic tape during the user ses-
sion. Hence, there is sufficient information present on the output
tape to reconstruct each user’s terminal session completely.

After the user has signed on to the system, the system prompts
the user to enter his request by unlocking the keyboard on the
user’s terminal. The user can then type in the command or
commands that he wants the system to perform. The system
does not start working on the commands until the user depresses
a carriage return. At that time the system locks the keyboard, so
that additional requests cannot be entered, and begins executing
the task. When the system has completed the task, it again un-
locks the keyboard. With this type of arrangement, it is possible
to divide the user session into alternating periods of user and
system response times. The user response time is defined as the
time between the system’s prompting the user to enter the next
command (by unlocking the keyboard) and the user’s depress-
ing the carriage return. The system response time is defined as
the time between the user’s depressing the carriage return and

IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999 VOL13, NO 1, 1974, REPRINT

recording
technique

BolEs 163

164 soies

Figure 1 Interactive system usage during a twenty-one day period

NUMBER OF USERS
8

w
o
[

20—

[N I I) [[I |
2 4 6 8 10 12 14 16 18 20
NUMBER OF DAYS SIGNED ON

the system’s unlocking the keyboard for the next request. It
should be noted that both the user response time and the system
response time include typing time. Also, the system response
time is the elapsed time required for the system to complete its
action on the request and not the time it takes the system to be-
gin working on the request.

If the system is working on a user request when the attention
key is depressed, the system suspends processing and unlocks
the keyboard. If the system is waiting for the user to enter a
request when the attention key is depressed, the system ignores
anything the user might have typed in up to that point and reis-
sues the signal for the user to enter a request.

In our methodology, a user is defined on the basis of an identifi-
cation number in the system. Although most individuals have
only one identification number each and only use their own,
there are a few individuals each of whom has more than one
number or who use numbers that belong to others.

Our analysis of the methodology is based on the commands that
users issue to TSS/360 or to REDIT,” a conversational context
editor. Responses to user application programs, or responses to
signals from the system for additional information that are occa-
sionally given during the execution of a command, are excluded.

This study is based on terminal sessions during the twenty-one

working days of each of the months of September, 1971 and
January 1972.

VOL13, NO 1, 1974, REPRINT IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999

Figure 2 Number of terminal sessions of users during a twenty-one day period

Y
=3

30—

NUMBER OF USERS

20

61 OR GREATER

OL‘HILIJ‘P‘[JLLIPT!IJI-FLF-IE.H_UHrﬂ Sl
10 20 30 40 50 60°

NUMBER OF TERMINAL SESSIONS

Terminal usage patterns

The analysis in this section is based on terminal sessions that
occurred during the month of September, 1971. The duration of
a terminal session is defined as the total time between the user’s
signing on the system and disconnecting the terminal from the
system, regardless of the cause of the disconnection.

The community of 182 users consists of a few frequent users
and many infrequent users. Figure 1 is a histogram of the num-
ber of days on which users signed on the system. The usage pat-
tern indicates that 36 users, or about 20 percent of the popula-
tion, signed on the system on one day, and that more than 43
percent of the users signed on the system on five or fewer days.
A few users, however, signed on the system almost daily. Eleven
people signed on the system at least 20 days of the month, and
about 25 percent of the user population signed on 15 days or
more.

Figure 2 is a histogram of the number of terminal sessions per
user. About 34 percent of the users had five or fewer terminal
sessions each during the month. Only about 10 percent of the
users had more than 51 terminal sessions each per month.

During the 21-day period, there were 3409 terminal sessions, or
about 162 terminal sessions was day. The total time for all the
terminal sessions was about 3712 hours, or an average of about
176 hours per day. The solid line in Figure 3 is a plot of the
cumulative percentage of terminal sessions accounted for in the

IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999 VOL13, NO 1, 1974, REPRINT

definition
of terminal
session

system user
frequency

terminal
session
frequency

Boles 165

Figure 3 Cumulative percentage of number and connection time of terminal sessions

-
100 / /\7‘
600 MINUTES
/ OR GREATER

CUMULATIVE PERCENTAGE

1 | | | X
100 200 300 400 500 L
DURATION OF TERMINAL SESSION (MINUTES)

Figure 4 Users ranked by connection time and terminal usage

._.
f=]
=]

80—

CUMULATIVE PERCENTAGE

CONNECTION TIME

60—

R TERMINAL USAGE
401~

20—

[| | 1 1 f 1 1 L |
20 40 60 80 100
CUMULATIVE PERCENTAGE OF USERS

166 BOIES VOL13, NO 1, 1974, REPRINT IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999

range of sessions from 0 to 600 minutes duration. This plot
shows that there is a large number of brief terminal sessions,
which may be summarized as follows:

e More than 20 percent less than 5 minutes
e More than 50 percent less than 10 minutes
e About 75 percent less than 75 minutes

A large number of relatively short terminal sessions account for
only a small percentage of the total connection time. The dashed
line in Figure 3 is the cumulative percentage of the total connec-
tion time accounted for by the terminal sessions ranging be-
tween 0 and 600 minutes duration. Although 20 percent of the
terminal sessions are less than five minutes in duration these
short terminal sessions account for less than one percent of the
total connect time.

A relatively small percentage of the users account for a large
percentage of the total terminal usage. Figure 4 shows the cumu-
lative percentages of total connection time and terminal usage,
both as a function of the cumulative percentage of users. The
figure indicates that the most active 7 percent of users account
for 25 percent of the total connect time, and that the most active
13 percent of the users account for more than 50 percent of the
connection time. At the other extreme, the least active 50 per-
cent of the users require only 5 percent of the total connection
time. The cumulative percentage of terminal sessions-as a func-
tion of cumulative percentage of connection time reveals a simi-
lar pattern.

Under the previously given definition of terminal session dura-
tion, one can imagine that the user might not have been at the
terminal all the time he was connected. We now, therefore, con-
sider the terminal usage pattern under an alternative definition of
the length of the terminal session. Here we attempt to embody
system usage in the definition as follows: a terminal session is
the duration of time from sign-on to a significant break in the
work, which also includes disconnection. For purposes of this
analysis, we have defined a 10-minute interruption as the thresh-
old of a significant break in the session. Recommencing work
after such a break is counted as a new terminal session, provid-
ed more than one command is issued following the break.

Under the new definition of terminal session, 4580 terminal ses-
sions were tabulated over the 21-day period. A total of 1647
terminal sessions were terminated by a failure to respond for
over 10 minutes. The main effect of this definition has been to
increase the number of terminal sessions that last between 25
and 75 minutes and to decrease the number of terminal sessions

IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999 VOL13, NO 1, 1974, REPRINT

sessions and
terminal usage

users and
terminal usage

modified
definition of
terminal session

BolEs 167

session hours
accumulated by
number of users

session hour
per user
per day

high usage
by few users

168 Boies

Figure 5 Number of users ranked by total connection time

R @
S o

TOTAL CONNECTION TIME (HOURS)

4 L |

0 | 1 | | 1 }
20 40 60 80 100 120 140 160 180 200
NUMBERS OF USERS RANKED BY TOTAL SESSION HOURS

that last more than two hours. The total connection time was
reduced from 3713 hours to 3428 hours, a reduction of 281
hours or about 16 hours per day.

Since the 10-minute-lapse criterion gives a more accurate indica-
tion of the amount of time a user is actually using the system, it
is used in the following analysis. Figure S is a plot of the total
number of session hours accumulated by numbers of users who
signed on the system. For base-line purposes, the system was up
about 232 hours or about 11 hours per day. Only one person
used the system for more than 100 hours, and only 16 people
used the system for more than 60 hours each. At the other ex-
treme, more than half of the users accumulated less than 7 hours
each of connection time during the month.

Figure 6 is a plot of the average amount of time users used the
system on days they signed on the system. In other words, this
is a plot of the total connection time per user divided by the
number of days users signed on the system. Seventeen percent
of the users signed on the system an average of three or more
hours on each day they used the system. More than 50 percent
of the users signed on for at least an average of 1.25 hours.

Again, the most striking pattern revealed here is the high per-
centage of use accumulated by a relatively small number of
users. The amount of terminal time shows that 13 percent of the
users accounted for 50 percent of the terminal time, whereas the

VOL13, NO 1, 1974, REPRINT IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999

Figure 6 Users ranked by connection time per day signed on

6.5
6.0

5.5

5.0

45

4.0

35

3.0

25

20

AVERAGE USAGE PER DAY SIGNED ON (HOURS PER DAY)

0.5

00 |]]] 1] | J
20 40 60 80 100 120 140 160 180 200
USERS RANKED BY CONNECT TIME PER DAY SIGNED ON

least active 50 percent of the users accumulated only 5 per-
cent of the terminal time. This observation is based on data for
users who actually used the system during the month. Although
about 375 users were authorized to use the system, only 182
actually signed on. A second aspect of the data is the number of
days that users actually signed on during the month. Only 25
percent of the users were active on 15 or more days. A question
for investigation is how the usage of users who sign on frequent-
ly differs from that of users who sign on infrequently.

The data indicated two key factors regarding the user population
studied. Many users leave their terminals for relatively long pe-
riods of time, during which their only demand is that of holding a
keyboard-open port into the system. Since a user may return
only to sign off, he would not have been harmed if the system
had dropped his line after an established period of disuse. Just as
current systems allow the user to specify the amount of CPU
time that can elapse before the system deletes a task, perhaps
interactive systems should allow the user to specify the longest
permissible keyboard-open time before a task is deleted. The
data suggest that such a capability could reduce the number of
ports required to service a given number of users.

The second observation is that TSS/360 maintains data sets on-
line even though the users are not signed on the system. The
fact that many users sign on only occasionally suggests that
removing users’ data sets from on-line storage when users are
not signed on the system is a technique that could be explored

IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999 VOL13, NO 1, 1974, REPRINT

observations

Boles 169

distribution
of language
processor
users

FORTRAN IV
error detection

170 BsoiEs

as a method of supplementing existing data archival systems.
Such a technique seems likely to allow equivalent service to
more users with fewer on-line disk packs.

Language processors

One goal of interactive systems is that of simplifying the produc-
tion of application programs. TSS /360 has two facilities designed
to aid the programmer: (1) interactive language processors, and
(2) program control statements. This section discusses our find-
ings of the way interactive language processors on TSS /360 were
used and whether the special features of such systems do, in
fact, aid programmer performance.

TSS /360 supports three language processors: FORTRAN IV, As-
sembler Language, and PL /1. Both the FORTRAN IV and Assem-
bler Language processors are interactive in two senses. The user
enters a program in the language of the language processor, and
the processor performs a line-by-line check of the program for
syntax errors. If an error is detected, the language processor
types an error message and prompts the user to correct the line.
Thus the user has immediate feedback concerning the correct-
ness of each line and a chance to correct it. Also, if the language
processor detects an error when it is processing a stored pro-
gram, the processor types out the offending line on the terminal
to indicate the nature of the error, and prompts the user to modi-
fy the line. In this way, changes are made to the source program
as well as being reflected in the output of the language proces-
sor. The PL/1 language processor is not interactive in either of
the above senses.

The first question in the language processor study deals with
numbers of language processor users. During a five-day study
period, one or more of the language processors was invoked by
each of 39 users, out of a total of 114 who signed on the system.
That is, 34 percent of the users signing on the system used lan-
guage processors. Of the users of language processors, 87 per-
cent used only one of the two interactive processors. The PL/1
and the FORTRAN IV language processors were equally used,
each accounting for 35.90 percent of the total. Thus PL/1 and
FORTRAN 1V account for about twice the usage as the Assem-
bler Language processor (15.39 percent). The 13 percent of the
users who invoked more than one language processor were al-
most uniformly distributed among the four possible combina-
tions. As expected, most of these users were system support
personnel.

Studied also were error detection and reporting experience when
programs were presented to the three language processors. Over

VOL13, NO 1, 1974, REPRINT IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999

a five-day study period, 113 programs were submitted to the
FORTRAN 1V language processor. The language processor de-
tected and reported errors in 15.93 percent of the programs. In
the remaining cases, either the complete program was processed
error free (77.87 percent), or the user terminated the language
processor before an error was detected (6.20 percent).

During the same period, 66 programs were presented to the
Assembler Language processor. In 12.12 percent of the cases,
the Assembler Language processor detected an error; in 25.76
percent of the cases, the user terminated the process before the
language processor detected an error; and in 62.12 percent of
the cases, the complete program was processed without detect-
ing any errors.

Similarly, 139 programs were presented to the PL/1 language
processor during this period. Errors were detected in 16.55 per-
cent of the programs; 10.07 percent of the programs were termi-
nated by their users before an error was detected; and 73.38
percent of the programs were processed completely without
an error.

These data were found to be repeatable over another five-day
period, wherein essentially the same results were obtained. The
percentages of syntactically correct programs that we have ob-
tained are consistently higher than the verbal estimates given to
us by many computer scientists prior, during, and after data
collection. Like results of other behavioral studies, the error-
detection findings may seem intuitive after the fact, though, of
course, they were not obvious at all prior to the study. That
these results are not unique to the particular circumstances
studied is suggested by the results of Moulton and Muller®, who
found that 66 percent of student-submitted DITRAN programs
were able to be compiled correctly.

One might also inquire into the percentage of new programs that
are compiled correctly as first submitted. Although this seems
like a sensible question, it is, in fact, an arbitrary if not an impos-
sible thing to define a ““new” program on an interactive system.
The critical fact, from the point of view of human factors in sys-
tems engineering, is that syntactic errors are not a major bottle-
neck for computer programmers, since syntactic errors occur in
only about 20 percent of the programs.

It is possible, however, to measure changes that occur in pro-
grams between successive submissions to a language processor.
In the 231 FORTRAN 1Iv, PL/1, and Assembler Language pro-
grams that contained no syntactic errors, an average of 11.87
changes occurred to existing lines and an average of 3.01 lines
were added between submissions. For the 23 programs that the

IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999 VOL13, NO 1, 1974, REPRINT

Assembler
Language
error
detection

PL/1 error
detection

modification,

resubmission,
and syntactic
errors

Boies 171

172 soiEs

user error
correction
observations

language processors both completed and found errors in, there
was an average of 12.12 changes and 31.88 lines added between
submissions. Thus there is some support for the assertion that
there is a positive relationship between the amount of modifica-
tion between resubmissions and the probability of detecting a
syntactic error.

The system being studied was so designed that when the FOR-
TRAN 1V or the Assembler Language processor in TSS/360 de-
tected an error, a diagnostic message and the offending line were
displayed on the terminal, and the user was prompted to correct
the error. Of the 26 programs in which this event occurred, in
only one case did the user correct all of the errors in his pro-
gram; twice he corrected some but not all the errors. The most
common response was to request the language processor to con-
tinue without correcting the error (10 times). In seven cases,
the user terminated the language processor when an error mes-
sage appeared. In the remaining six cases, the system stopped or
the session ended while the language processor was waiting for
the user to correct the program.

These results demonstrate that users seldom need the interactive
error correction features of language processors, because, even
when they can use them, they fail to do so. Although TSS /360 has
the facility for checking program syntax as it is typed at the ter-
minal, we found that this facility is seldom used, and then it is
used only when the program is short.

Results of this analysis suggest that syntactical errors detected
by a language processor or TSS /360 are not a major bottleneck in
program development. Results indicate that programmers do not
use the interactive error correction features of the language pro-
cessors even when syntactic errors are detected. There are, of
course, many possible explanations for the lack of use of this
facility. The important finding is, however, that syntactical er-
rors do not represent a major source of delay in the development
of programs. Our observations suggest that techniques that per-
mit the user to make small changes to his program on the basis
of information signaled during the program run might reduce the
time required to program a given application.

Command usage

We now discuss our observations on user commands issued
from terminals to TSS/360 and REDIT. The latter is an editing
system that has been implemented at the IBM Research Center.
User or system-defined procedures, therefore, are not broken
down into primitive TSS/360 commands. User responses to an
application program are eliminated from this analysis. Callaway,

VOL13, NO 1, 1974, REPRINT IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999

Considine and Thompson’ have recently described application
programs running under TSS /360 that make extensive use of the
TSS /360 programming and environment.

This study includes user responses that occurred during the
January 24, 1972 to January 29, 1972 observation period. Tabu-
lations of the 20 most frequently used TSS /360 and REDIT com-
mands reveal that more than 75 percent of the commands issued
during the study period were text-editing commands. More than
63 percent of the total were text editing commands issued to
REDIT, and 11 of the most heavily used TSS /360 commands were
text editing commands. This high usage suggests the importance
of having a smoothly working text editor on any general-purpose
interactive system.

The high usage of the text editing commands and the relatively
low usage of TSS/360 commands—especially programmer-ori-
ented commands, such as the program control statements — raise
the question of how TSs /360 is being used. To answer this ques-
tion, the command usage for each of the users was examined so
as to classify each user as to the type of work he was perform-
ing. On the basis of a preliminary analysis, the following four
different types of usage were defined: (1) programming (as indi-
cated by the use of the language processors and data definition
commands); (2) netting (indicated by commands to ship jobs
to the System/360 Model 91); (3) manuscript preparation (in-
dicated by the use of RUNOFF and the lower case mode in the
text editors); and (4) miscellaneous. Most of the users in the
miscellaneous category issued only a few commands, and these
commands were of a general nature. Several such users simply
signed on, processed no data, and then signed off. In almost all
cases, the user could easily be assigned to one of the four cate-
gories. The only major exception was that several users of the
netting feature also made relatively frequent use of the RUNOFF
facility.

A tabulation of the results of a separate analysis of the com-
mand usage for each of the four groups indicates that the 39
percent of the users classified in the miscellaneous category
account for only 6.81 percent of the commands issued. This
confirms results based on the amount of terminal time used, and
indicates that a relatively large percentage of the users accounts
for only a very small percentage of the total system load. A sec-
ond finding is that in the command usage of those users who
invoked a language processor, slightly more TSS /360 commands
than REDIT commands were issued. The TSS/360 commands
accounted for about 41 percent of all commands issued.

Users involved in manuscript preparation and computer netting
combined to account for 52.32 percent of the commands issued.

IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999 VOL13, NO 1, 1974, REPRINT

text editing
commands

TSS/360
command usage

manuscript
and netting

Boles 173

174 soiEs

REDIT

Over 80 percent of the commands issued by these users were
text editing commands. An analysis of the commands that are
not text editing commands indicates a high usage of commands
dealing with public storage (e.g., searching for data sets, trans-
ferring data sets between archival and public storage and print-
ing and erasing data sets). Although manuscript and netting
users made little or no use of such TSS/360 features as virtual
storage, program control statements, and interactive language
processors, they made good use of the excellent context editing
facility and of those features of TSS/360 that deal with the alloca-
tion and use of on-line storage. Few netting users who shipped
information to the System/360 Model 91 used the language
processors on TSS/360. This can be interpreted as providing
support for the generality of the results discussed in the earlier
section on language processors. Our interpretation is based on
the assumption that one uses the language processors on
TSS /360 FORTRAN 1V, and PL/1 as relatively fast-turnaround syn-
tax checkers prior to shipping jobs to the batch 0S/360 machine
if he expects a syntax error.

An analysis of all commands issued reveals that there were
many cases in which a user would issue a REDIT command while
operating in the TSS/360 state, or issue a TSS/360 command
while operating in the REDIT state. Although a small percentage
of these anomalies may be the result of errors in the analysis
program, most of them are the result of a user issuing the wrong
command for his operational state. (Excluded from considera-
tion here are cases in which users intentionally issued TSS /360
commands while in the REDIT state via the underscore facility).
Because of the apparent failure of users to remember their
command states, caution should be used in assigning the same
command name for different or even similar functions in dif-
ferent command substates.

There are several interesting aspects of the command usage in
REDIT. The high frequency of the FILE command may result
from many users invoking REDIT to make only a few changes to
programs. After the changes have been made, a user issues the
FILE command to make a permanent copy of the data set on
public storage. REDIT currently loads the entire data set into vir-
tual storage when the user is working on the data set. Thus if the
user only wants to change one line in a 300 line program, an
unnecessary burden is placed upon the system by first having to
load the entire program into virtual storage, and then to write
the program out on public storage.

Another aspect of REDIT usage is its technique for moving be-
tween parts of a data set. REDIT has two commands— LOCATE
and FIND—to perform context searches between lines. In our
study, these commands account for 6.79 percent of the com-

VOL13, NO 1, 1974, REPRINT IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999

mands issued to REDIT. Six commands used to move the current
line pointer on the basis of lines or line numbers associated with
the data set (POINT, NEXT, TOP, BOTTOM, UP, and NP) account
for 26.89 percent of the commands issued to REDIT. The POINT
command alone accounts for eight percent. This finding suggests
that users often have a relatively new listing of the data set that
they are editing, which is supported by the high use of the
TSS /360 PRINT command.

Based on our studies up to this time, we believe that it is impor-
tant to develop an understanding of the behavioral criteria that
may be useful in designing command languages for interactive
systems. The command language is the users’ major interface
with the system. Yet a system can have all the desirable func-
tions and still be lacking in some respect if the user does not
know how to use the commands. Our results seem to indicate
that a large number of users know and use only a few com-
mands, or use only the simplest form of the commands. The re-
sult is that they often use lengthy sequences of commands to
accomplish what a single command could do. Since almost any
command language format can be implemented, behavioral crite-
ria can be used as the basis for selecting formats that best suit
users’ needs and habits. Because virtually any command lan-
guage has parameters associated with at least some of the com-
mands, basic behavioral work should be undertaken to explore
the advantages and disadvantages of positional, keyword, and
mixed formats from the standpoint of user performance.

In this paper, we have discussed command languages that are in
the current state of the art. We believe that it is also important
for the behavioral scientist to begin to explore alternative types
of command languages. For example, there is a body of opinion
that the problems of a command language will be solved by lan-
guages implemented in the natural language of the user. How-
ever, there is no general agreement concerning what a natural
command language should look like. One often cited proposal is
that the command language should have a syntax that is the
same as the syntax of the natural language of the user. The sys-
tem should then be able to understand a command as long as it
is a syntactically valid form composed of words in the lexicon.

Another opinion suggests that it is more important to have natu-
ral communication than to have communication in a natural lan-
guage. This is based on the observation that the primary charac-
teristic of communications among members of a work group is
not that they are syntactically valid, but rather that they are
based upon a common understanding. This implies that if the
computer is to be made an effective member of a work group it
must have the common knowledge that is shared by members of
the group.

IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999 VOL13, NO 1, 1974, REPRINT

observations
and behavioral
studies of
command
languages

BoEs 175

176 BoIES

User response time

Accurate characterization of user response times (URT) in a
system is of interest to system designers for estimating the
amount of load that individual users place on a system. Since the
URT can be seen as measure of user performance, we must un-
derstand how various other system parameters —such as the sys-
tem response time (SRT)—are related to URT. This part of the
paper, which summarizes our findings relative to URT in
TSS /360, is based on user sessions that occurred in September,
1971.

The mean user response time was found to be 59.89 seconds,
the median was between 9 and 10 seconds, and the mode was 4
seconds. As indicated by the differences among the mean, medi-
an, and mode, the URTs form a very skewed distribution. Our
tabulations indicate that over 90 percent of the URTs are within
one minute, and the mean of these responses is 12.61 seconds.
Only about 1 percent of the URTs are over 14 minutes. The in-
clusion of these times in the analysis, however, more than dou-
bles the average URT.

An analysis of URTs in the range above ten minutes indicates
that many of these response times are two or three hours. Often
a long URT follows a long SRT. Over 17 percent of the URTs of
over 600 minutes are commands to log off. Many other times,
the user issues only one or two additional commands and then
logs off.

These data indicate that during the time the user is interacting
with the system he is maintaining a very high rate of response.
This is most clearly indicated by the fact that over 50 percent of
the URTs are less than 10 seconds long. It is also clear that users
tend to leave their terminals for relatively long periods of time.
We conclude that the overall mean of the user responses is
based on the combination of two very different distributions and
probably has very little value as a characterization of the aver-
age URT.

Using the finding that there are many very fast URTs leads to a
better understanding of the effects that changes in the SRT might
have on user performance. For example, assume a 10 or a 20
second SRT. If one uses the mean URT as the base, then the av-
erage command cycle (URT plus SRT) changes from about 70 to
80 seconds, a relatively small percentage increase. An alterna-
tive way to view the increase is that the command cycle changes
from between 10 and 20 seconds to between 20 and 30 seconds
in more than 50 percent of the cases. This results in a much larg-

VOL13, NO 1, 1974, REPRINT IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999

er percentage increase in the command cycle time and gives a
much more realistic estimate of the effects of a long SRT on user
performance.

A number of factors are related to the URT length. The length of
the URT is related to the type of activity in which the user is
engaged. This is indicated by the following two observations:
(1) the average (mean of those responses less than 600 seconds)
URT for TSS/360 commands was 32.24 seconds; and (2) the
average URT for REDIT commands was 19.28 seconds. Previous
work® has indicated that the URT is related to the complexity
of the command, and evidence from this study tends toward
the same conclusion. There is also a marked tendency for the
length of the URT to increase as the length of the SRT increases.
The correlation coefficient between an SRT to a given com-
mand and the URT to the next command is 0.837. As the SRT
increases from 1 to 10 seconds, the URT increases almost mono-
tonically from about 15 to 24 seconds.

It is not yet clear how these factors are interrelated. For exam-
ple, it is unclear how much of the difference between REDIT and
TSS/360 commands can be accounted for by the fact that TSs
commands tend to be more complex. Similarly, the fact that
there is a strong correlation between system response and user
response times does not establish that a long system response
time causes a long URT. Work is continuing on the SIPE analysis
as well as on basic behavioral studies to develop a better under-
standing of these factors.

Concluding remarks

We have observed programmers at work using existing interac-
tive systems in an IBM research environment. Our observation
of the use of language processors indicates that users of TSS /360
seldom need the interactive error-correction features of the lan-
guage processor. Also, when a user might use such features, he
seldom does. By implication, these observations also point to
the importance of implementing SIPE-type data collection sys-
tems. We have presented our observations of the relationship
between system response time (SRT) and user response time
(URT). The results indicate that a long SRT is related to a long
URT. This suggests that ways be sought to reduce the undesir-
able effects of a long SRT and to reduce the SRT-URT interaction
without adding to the cost or complexity of the system.

The command language of TSS/360 is rich. Counting the REDIT
commands, there are well over 300 commands available to the
user. Our studies indicate, however, that only a small number of
commands account for a large percentage of the total command

IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999 VOL13, NO 1, 1974, REPRINT

BoiEs 177

178 BoiEs

usage. Also observed is the use of sequences of commands
where one command would have performed the task. This habit
places unnecessary burdens on both the system and the user.

These observations have developed out of an ongoing project.
Many other areas therefore remain to be studied. It seems
reasonable, for example, that an effort should be undertaken to
explore how recent results of Meyer9 on the representation and
retrieval of semantic information and Juola and Atkinson' on
human memory scanning can be used to increase the use of
commands that the user has available.

ACKNOWLEDGMENT

The author wishes to acknowledge R. N. Ascher, who performed
much of the programming for this study; J. D. Gould, who pro-
vided the initial guidance; L. A. Miller for his useful critiques;
and Rebecca Stage, who assisted in the manuscript preparation.
Work on this manuscript was done while the author was sup-
ported, in part, by a contract from the Office of Naval Research.

CITED REFERENCES

1. IBM System /360 Time Sharing System: Terminal User's Guide. Form No.
GC28-2017, IBM Corporation, Data Processing Division, White Plains,
New York 10604 (1970).

2. IBM System/360 Time Sharing System: Command System User's Guide,
Form No. GC28-2001-6, IBM Corporation, Data Processing Division,
White Plains, New York 10604 (1971).

3. IBM System /360 Time Sharing System: Concepts and Facilities, Form No.
GC28-2003, IBM Corporation, Data Processing Division, White Plains,
New York 10604 (1971).

4. W. R. Deniston, SIPE: “A TSS/360 software measurement technique,”
AFIPS Conference Proceedings, Spring Joint Computer Conference 34
(1969).

5. C. H. Thompson, User’s Guide to the Research Context Editor, IBM Re-
search Report Ra-28 (1971).

6. P. G. Moulton and M. E. Muller, “DITRAN-A compiler emphasizing diag-
nostics,” Communications of the ACM 10, 45 -52 (1967).

7. P. H. Callaway, J. P. Considine, and C. H. Thompson, “Uses of virtual
storage systems in a scientific environment,” IBM Systems Journal 11,
No. 3,200-218 (1972). _

8. S. J. Boies and J. D. Gould, “User performance in an interactive computer
system,” Fifth Annual Princeton Conference on Information Sciences and
Systems (1971).

9. D. E. Meyer, “On thé representation and retrieval of stored semantic infor-
mation,” Cognitive Psychology 1, 242-300 (1970).

10. J. G. Juola and R. C. Atkinson, “Memory scanning for words versus cate-
gories,” Journal of Verbal Learning and Verbal Behavior 10, 522-527
(1971).

VOL13, NO 1, 1974, REPRINT IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999

Stephen J. Boies

Research Division, Thomas J. Watson Research Center, Yorktown Heights,
New York.

Cognitive psychology (Ph.D., University of Oregon, 1971). Joined IBM in 1970
as a Research Staff Member. He investigated behavioral factors that limit and
determine human performance in interactive computer systems. He has also in-
vestigated human capacities for representing and processing information. He is
currently exploring ways that a digital computer can be used to process and
store speech.

IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999 VOL13, NO 1, 1974, REPRINT

Boies 179

