'his paper describes the SIMSCRIPT system simulation language and
1e philosophy of system structure on which it is based.

\pplication of the language to programming both discrete and con-
nuous models 18 indicated and illusirated with examples.

IMSCRIPT processing is described and statistics regarding operating
haracteristics are given.

"he SIMSCRIPT system was developed at The RAND Corporation'**
y a group including the second author.

A description of the stmscrIPT language

by B. Dimsdale and
H. M. Markowitz

Che production of a digital simulator program, or of any program
or that matter, involves two steps: creating the model, then
sriting the program. Fundamentally, the writing of the program
s a technical detail which must of necessity wait upon the creation
»f the model. Nevertheless, the nature of the machinery available
or producing simulation programs is bound to exercise an in-
luence on the nature of the model. This is true because effective
nodeling requires abstraction of the essence of the system under
nvestigation, the direction taken in the abstraction being deter-
nined by the goals of the investigation. For complex systems it
s very often not clear which of many possible abstractions is
nost valid for the purposes at hand.

The choice in this case is naturally made of the one which is
sasiest to handle even, perhaps, if it appears slightly less desirable
;han another one which will clearly lead to great difficulties in
srogramming. At this point, it is worth remarking that the
1ormal course of a simulation is not described by: modeling,
srogramming, end of process; but rather by: modeling, testing,
nodeling, testing, ete., until an adequate model is developed. It
seems a natural conclusion that the less restraint placed upon the
modeler by the nature of his tools and their ease of use, the more
rapidly this process will converge on the average, this phenomenon
being the more pronounced for the more complex systems. From
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this it follows that the nature of the programming language
should facilitate program debugging, modification, and repetitive
testing. Storage capacity should not be wasted, reports of simula-
tion results should be easy to arrange and use, and not too much
time should be necessary to test models.

The stuscripT language** is based upon a description of systems
involving concepts denoted by entity, attribute, set, state, and
event. In this language, these terms have been assigned the
following meanings. Briefly, an entity is a class of objects described
by a fixed collection of parameters called attributes. Individual
members of an entity class have specific numerical values as-
signed to their parameters. Sefs are collections of individual
entities having certain common properties. The state of the model
at any given instant is completely described by the current list
of individual entities, their attributes, and set memberships. The
dynamics of the system are represented by changes of state; that
is, addition or deletion of individuals, change of attribute values,
set memberships, or some combination of these. These changes
take place instantaneously at discrete points in simulated time
and are called events. The time at which an event is to occur is
most frequently prescribed by sIMSCRIPT programming as current
time plus some increment. The occurrence of the event is caused
automatically by the siMscripr system at the prescribed time.
That is to say, changes of state take place automatically and
instantaneously (with reference to simulated time) at successive
discrete points in time. At the conclusion of any event, simulation
time is automatically increased to the time of the next event.

In order to indicate the nature of siMscrRIPT programming, it
is necessary to discuss some of the sub-categories of the concepts
mentioned above. As a matter of convenience, both with regard to
conserving computer storage space and ease of programming,
entities have been separated into two categories, permanent and
temporary. Permanent entities are known in advance to be present
during the entire simulation. Temporary entities are of known
form, but individuals, in general, appear and disappear during
the simulation. There is a special kind of temporary entity called
an event notice which is used to schedule future events, that is,
changes of state. The distinction is made because event notices,
as distinguished from other temporary entities, affect the auto-
matic timing operations.

Sets may have 0, 1, or 2 subscripts specifying the number of
entities with which the set is associated, that is, owner entities.
That is to say, an unsubscripted set belongs to the system, a
singly subscripted set belongs to one entity class, a doubly sub-
scripted set belongs to a pair of entity classes. The members of
the set may be ordered as Firo, LiFo, or ranked on some attribute,
high or low.

Events are of two kinds, endogenous and exogenous. Endoge-
nous events are those internally generated by the system itself,
exogenous are those imposed upon the system from the external
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rorld. Simulations consisting only of endogenous events (aside
rom initialization and requests for reports of a kind which do
iot influence the simulation) are called closed simulations else-
vhere, all others being called open.

It is worth noting at this point that continuous processes are
;pparently, but only apparently, excluded. The difficulty with
ontinuous processes is not contained in the siMscripT view of the
miverse but rather in the fact that arithmetic processes per-
ormed by digital computers are finite. The resolution of the
lifficulty lies in the use of well-known numerical methods for
olving differential equations. This point will be dealt with at
iome length later.

The examples which follow will serve to indicate some of the
eatures of SIMSCRIPT programming. Consider a small neighbor-
100d market assumed to have one checkout stand and a fixed
wmber of carts, customers arriving according to a predetermined
ichedule, each with a shopping list. Also, the customer is assumed
o have certain personal characteristics: the length of time he
s willing to wait for a cart, and the length of time he is willing
;0 wait in the checkout line. At the time the customer enters
the simulation, his first act is to look for a cart. If he finds one,
1e immediately proceeds to shop, for a length of time determined
>y his shopping list plus a random increment. Once he finishes
thopping, he moves on to the checkout stand. If the stand is not
n use, he immediately checks out, this process taking an amount
»f time determined by the number of items plus a random number.
When he is checked out, his cart is returned for further use, and he
eaves. If, on arrival at the store, no cart is available, he waits in
1 FIFOo queue until one does become available, in which case he
oroceeds to shop as before, unless his maximum waiting time is
sxhausted, in which case he leaves without shopping. If, on arrival
1t the checkout, the stand is in use, a similar process takes place.
[t is assumed, in the event he leaves without checking out, that
his cart is returned for further use.

The information desired is of three kinds:

» Number of customers completely processed and the associated
quantities of merchandise.

» Number of customers lost by cart shortage and their mer-
chandise statistics.

» Number of customers lost at checkout and their merchandise
statistics.

In this model there is only one temporary entity, aside from
svent notices, customers whose name is SHOPR, names being
limited to five letters. A SHOPR has ten attributes: CANS, DAIRY,
FROST, DELI, FRUIT, MEAT, and several other items as shown
in Figure 1. Each of these attributes is used to contain the num-
ber of items of the various categories of merchandise on the
shopping list. Provision is made to allow random generation of
any of these numbers to account for impulse buying. Three
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more attributes are CRTWT, CKWAT, and WAIT. The first two
contain maximum waiting times for carts and for checkout.
The last is used to contain the time at which waiting begins in
either case. In addition to these thirteen attributes, there are
SCRTQ and SCKQ. These are defined in order to be used by the
SIMSCRIPT system in handling queues. They contain the names of
the successors to this shopper in the cart and checkout queues
respectively and are used only by the smscripT system. For any
sensible limitation on number of items and length of waiting time,
SIMSCRIPT memory organization allows this information to be
packed into an eight-word 1BM 7090/04 record. (The SIMSCRIPT
system was programmed for this equipment.)

There are two event notices. One is called SHOP and comes
into being when a SHOPR begins shopping. It schedules the end
of shopping procedure. It has one attribute, WHO, which is used
to cross reference the record of a SHOPR. The other event notice
is called CKOUT and comes into being when a SHOPR begins
checking out. It schedules the end of checkout procedure. It has
one attribute, PAYER, which is used to cross-reference the record
of a SHOPR.

The definition form reproduced in Figure 1 shows how the
above information is formally assembled. In a large measure, the
form explains itself. It may be worth noting, however, that entity
records may have from 1 to 72 words, consisting of a master
record and as many as 8 satellites. Each may have 1, 2, 4, or
8 words, each word being capable of storing 1, 2, 3, or 4 items of
information. These can be signed or unsigned, floating or integer,
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ith floating items being restricted to either a half or whole word.
o this example, permanent system variables are used to provide
torage for the number of carts currently available (CCART), or
»r various statistical quantities and other incidental information.
The endogenous event SHOP is described in detail to demon-
trate stMscRIPT statements and events sequencing. The career of
he customer begins with an exogenous event CUST which creates
SHOPR and loads his record appropriately. The same event
reates an event notice SHOP and schedules it. The event exhibited
elow takes place on schedule.

STORE WHO (SHOP) IN PRSN
DESTROY SHOP
IF(CKWT)EQ(0), GO TO 660
LET CCK = CCK + 1
FILE PRSN IN CKQ
STORE TIME IN WAIT (PRSN)
GO TO 760
60 STORE 1 IN CKWT
CREATE CKOUT
CALL CHEKT
STORE PRSN IN PAYER (CKOUT)
CAUSE CKOUT AT TIME + CT
60 RETURN

The first instruction retrieves the pointer to the SHOPR and stores
t in temporary storage called PRSN. The second instruction is used
1ere to return to dynamic storage the space used for the SHOP
svent notice record, just as a CREATE statement removes from
jynamic storage the space for the record being created. The third
statement investigates availability of the check stand. If not
awvailable, the next statement files the pointer in its appropriate
olace in the queue and adjusts the queue count. FILE (and
REMOVE) involve dynamic storage allocation again. Present time
is filed for later computation of the time spent by the SHOPR in
the queue, and this part of the process ends. If the check stand
is available, it is made busy. An event notice CKOUT is created
in order to schedule the end of checkout event. A subroutine
CHEKT is used to compute the amount of checkout time. The
pointer for the SHOPR is stored, and the CAUSE statement sched-
ules the end of checkout event at current time plus a time computed
in the subroutine. To underline a point about sequencing, note
that this event creates and schedules a next event. Obviously it
could have created and scheduled any number of events.

The above routine illustrates all the siMscrIpT “entity oper-
ations’’ except CANCEL, REMOVE, and REMOVE FIRST. CANCEL
deletes an event from the schedule, and may be followed by
destruction of the event notice or by a new CAUSE if the event is
to be rescheduled. REMOVE and REMOVE FIRST are set oper-
ations of obvious intent. Among the most noteworthy of the
remaining SIMSCRIPT statements are the decision commands which
may be modified by control phases. For example, the statement
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Figure 2

FIND FIRST, FOR EACH PRSON OF CKQ,

WITH (CKWAT(PRSN))LE(12), AND (CANS(PRSN))
EQ(0), AND (FRUIT(PRSN))GE(6), OR (BIRD
(PRSN)) L8(2) AND (DRUG(PRSN))GR(3), IF NONE,
GO TO 50

has the following effect, if CKQ is a ranked queue: it goes through
the members of the queue one by one, seeking the first member who
meets at least one of the two conditions:

e The maximum he will wait in the check stand queue is less
than or equal to twelve minutes; he is buying no cans; he is
buying six or more fruit items.

¢ He is buying less than two poultry items; he is buying more
than three drug items.

If such a member is found, the pointer to his record is stored in
PRSN, and the program continues with the next statement.

Another pair of commands of great power are ACCUMULATE,
COMPUTE. For example, COMPUTE Al, A2, A3, A4, A5, A6 =
MEAN, SUM, SUM-SQUARES, MEAN-SQUARE, VARIANCE, STD-
DEV OF CANS (PRSN), FOR EACH PRSN OF CKQ, which is self-
explanatory.

Up to this point, no mention has been made of the report
generator. The first step required in producing a report is to assign
a name to it, whence it may be called as a subroutine. The for-
mat is specified on a report generator layout form, as in Figure
2. The name appears in the first line. The form indicates structure
of the line, asterisks (*) representing variables to be inserted.
The content line specifies which variables are in fact to be inserted.

SIMSCRIPT REPORT GENERATOR LAYOUT FORM
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‘igure 3 Report generated

SALES STATUS OF XYZ SUPERMARKET
AT 18 MINUTES AFTER 11 O'CLOCK ON THE 7TH DAY OF OPERATION
COMPLETELY LOST LOST AT
PROCESSED NO CARTS CHECKSTAND
NUMBER OF CUSTOMERS 387 52 93
NUMBER OF DAIRY ITEMS 729 204 312
NUMBER OF FROZEN FOOD ITEMS 587 62 51
NUMBER OF DELICATESSEN ITEMS 79 102 93
NUMBER OF FRUIT ITEMS 487 62 153
NUMBER OF MEAT ITEMS 78 109 36
NUMBER OF POULTRY ITEMS 983 326 487
NUMBER OF FISH ITEMS 158 62 39
NUMBER OF PASTRY ITEMS 79 0 3
NUMBER OF DRUG ITEMS 426 39 158
NUMBER OF HARDWARE ITEMS 627 128 79
NUMBER OF LIQUOR ITEMS 36 72 58
NUMBER OF PERIODICALS 196 212 108
NUMBER OF VEGETABLE ITEMS 47 63 22
NUMBER OF CONFECTIONERY ITEMS 8 12 15
NUMBER OF TOBACCO ITEMS 386 72 204
NUMBER OF CANS 119 33 47
NUMBER OF PAPER PRODUCTS 59 27 93

The repetition specifications have to do with printing arrays.
Thus in the example, the command CALL PROFIT, provides for
1 report as indicated, including an array whose contents may be
specified by the user (at execute time). Figure 3 shows a report
produced by this model. Obviously, it is extremely simple to
insert special reports for tracing and snapshots. This means, of
sourse, that debugging both the program and the model in the
source language is no problem.

The model discussed above is useful only as an illustrative
device to introduce siMscrRIPT concepts. Another supermarket
model includes the entrance of the customer as an endogenous
event, and the number of check stands as automatically controlled
by the volume of business on hand, within limits. A larger variety
of statistics is gathered concerning queues at the check stands,
and cart usage. In particular, a report is made showing the
number of carts in use as a function of time. An entry appears in
this table for each change in the number, opposite the time at
which the change occurs. The programming of the report is quite
simple. An array of proper size is provided, and entries are made
in successive positions in that array. With the assistance of a
counter, this report is CALLed when the array is full, or when the
simulation ends.

Returning to the question of continuous models, suppose now
that a model involves a set of differential equations as well as a
discrete structure. For the moment also suppose that the simplest
possible integration technique is adequate. That is to say, given
the values of the variables at a point ¢ in time, the values of those
variables at a time ¢ + At is obtained by increasing the values of
the variables in proportion to their slopes at time ¢, the factor of
proportionality being At. (This is the kind of model to which the
pYNAMO system® addresses itself, and the integration technique
used there.) The smMscriprT technique for dealing with this situa-
tion is as follows:
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1. The exogenous event which begins the simulation also creates
an event notice (perhaps called STEP) and CAUSEs it (that is,
schedules it) at TIME + DT, DT being fed in at execute time.
It also computes and stores initial slopes.

2. The event routine (STEP) goes to a subroutine to compute
updated values of the variables and their slopes, and again
CAUSEs STEP at TIME + DT.

The effect of this is to cause a single step to take place every
DT in time. If values of z are required for times other than those
arising in the integration, a simple interpolation suffices. Output
of tables of functions against time can be obtained by the device
indicated above for arriving at a chart of cart usage against time.

There are problems inherent in this approach to continuous
models which imply the necessity of a more flexible arrangement.
The most obvious of these problems is that sufficient accuracy
with this kind of integration formula may require an extremely
small time interval, hence an inordinate amount of computer
time; it is quite possible, in fact, that no time interval exists
which provides a specified accuracy of solution. Resolution of
such a difficulty may require introduction of a higher order, that
is, more precise, integration method. This is, in fact, the reason for
subroutinizing the integration process in (2) above. It is a simple
matter, once arranged this way, to replace the integration sub-
routine.

Another case involves models in which a continuous process
may be characterized by a set of parameters that eliminates the
need for integration. For example, the motion of a satellite may be
described by differential equations of motion, and the flight path
computed by integration. For certain purposes it may also be
described by certain sets of equations, the equation of the ellipse
among others, so that position for any specified time, or vice
versa, can be computed directly. In a case such as project Mer-
cury, where the requirement may be to find time of arrival at
some dozen positions around the earth, this would have the effect
of replacing thousands of events involving integration by a dozen
events involving evaluation of some formulas.

All of these problems, in addition to problems which arise when
there are discontinuities in the solutions or their derivatives, such
a8 those introduced in the various phases of a missile launch, are
quite easily handled in the siMscrIpT language. This is not to say
that the associated mathematical problems are easy. The difficulties
associated with these problems are simply not resolvable by pro-
gramming techniques. However, once they have been resolved by
other means, SIMSCRIPT makes it easy to program the result.

Once the definition and report generator forms are completed,
event routines are written, and an events list is made up, cards are
punched from all this preparatory to translation. siMscrIpT transla-
tion then takes place on a 7090/94 under the control of the FORTRAN
11 monitor. This translation produces a FORTRAN input tape.

VOL3, NO 1, 1964, REPRINT IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999



Wherever it finds sIMSCRIPT type errors, it incorporates devices
into the FORTRAN program to force diagnostics—it also prints
sIMsCRIPT diagnostics on line. Examples of such errors are: im-
proper punctuation, missing parentheses, certain misspellings.

The next process is compilation of the FORTRAN program into
machine language, under control of the FORTRAN 11 monitor. This,
of course, leads to standard FoRTRAN output. It may well be noted
that all options available in FORTRAN are also available in sM-
SCRIPT, that is, the input deck to the smscripT translator may
be entirely in siMSCRIPT or a mixed smMscrIpT-binary deck. The
user also has the option of requesting, through control cards, a
translation and compile only or a translation-compile-execute
run. In the latter case, an input data deck must also be provided.
The first few cards of the data deck must be of a specified form
axpected by the housekeeping section of the program as provided
by the siMscripT translator.

The function of these cards is to allow initialization of all
permanent system variables; in particular, this allows the user to
specify array size at execute time rather than compile time.

Corrections can conveniently be made either at the sMscrIpT
r machine language level. sIMscRIPT compilation is arranged
n conjunction with segmentation of the siMscripr deck in such
v manner that only those segments which have been changed
1eed to be recompiled. For example, each event routine and each
ubroutine is a segment, as is the deck of definition cards produced
rom the definition forms; so that if one event routine is changed
mly that routine needs to be recompiled, and so forth. Since binary
'orrections are made in a binary deck produced by the ForTRAN
:ompiler, they are made in the customary manner.

In some cases, it may be desirable to let the computer analyze
he results of previous runs (to determine the value of policy para-
neters for a next run) and then make this next run immediately
vithout getting off the machine. To accomplish this, the calendar
aay be cleared of coming events, as described elsewhere,* then
ime reset with the statement

LET TIME = 0.0

n large programs which require more than one core-load, and in
games” in which human participants interact with computer runs,
he RECORD and RESTORE statements are useful. The statement

RECORD MEMORY ON TAPE J,
RESTORE TO 30

uts a complete snapshot of core and registers on the specified
ape. When a RESTORE FROM TAPE K statement is executed
rith tape K positioned at the start of the previously RECORDed
le, then the machine will be set up as it was when the RECORD
tatement was executed, except that control is first given to state-
1ent 30. The FORTRAN chain feature is also available.

Some 25 smMSCRIPT programs in the areas of logistics, manu-
weturing, medicine, and computer systems were examined. It turns
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out that for most of these simulations, execution time is in the
neighborhood of 10,000 events per minute. This assumes that
event routines are of “reasonable size’”’ (which is usually the case),
that the logic is not unusually complex with respect to loop
structure, and that there are not too many long set searches.
It is to be noted in this connection that complex simulations do
not normally owe their complexity to the existence of such condi-
tions, but rather to the existence of a larger variety of events
of normal size.

The statistics for compilation time show that siMSCRIPT com-
pilation normally takes about one third as long as the subsequent
FORTRAN compilation. It should be remarked here that if the
simulation program were written directly in FORTRAN, the time
for compilation of the program would probably be larger than the
time for the double compilation required for smMscripr. The
reason for this is that the timing and initialization routines, among
others, are provided in binary form. The siMscrIPT compiler only
retouches them to fit the specific problem at hand, a process which
takes very little time, particularly as compared with the FORTRAN
compilation of complete routines of this complexity.

As for utilization of storage space, dynamic storage allocation
obviously provides substantial advantages with regard to both
utilization of available space and speed of execution, since it
obviates any necessity for reshuffling storage and wastes no
storage capacity on non-existent entities or set members.

Space is also conserved by the flexibility provided for struc-
turing entity records and by the fact that dimensions are not
specified until execute time.

The storage requirements of the siMsSCRIPT control routines
during execution are as follows: Two thousand cells are required
during initialization and are then returned to the pool for tempo-
rary entities. Another two thousand cells are required for the other
sIMscrIPT chores, such as control of the dynamic storage alloca-
tion process, the exogenous events buffer, random number gen-
erator, ete.

Enough teaching experience has been accumulated to state
that most persons in this field with no other programming experi-
ence can be taught siMscrIpT in from 30 to 40 hours of instruction,
which includes writing one or two small sample programs.

Those who have learned siMscrrpr say that it has helped to
structure their view of the system to be simulated. That is, the
manner in which siMscrIPT looks at a system to be simulated is in
itself an aid to model building.

In a trivial sense, SIMSCRIPT can accomplish anything the
computer can accomplish since it can do anything FORTRAN and FAP
can do. In practice, FORTRAN and FAP code is rarely used. It is
significant to note that, to date, no programmable simulation
problem has been proposed to the authors which has not been
amenable, in rather straightforward fashion, to smMscripT treat-
ment.
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