
Turning points in
software development

by R. Goldberg

The early days of software development consisted mainly of writing program code for computers, i.e.,
programming. I began to program very shortly before the first issue of the IBM Systems Journal was pub-

lished in 1962. Programming, still very new at the time, was the method by which computers were directed
to manipulate large amounts of data or perform very large calculations. The goal was to make computers
perform some operation that could not be done in any other way, and any nicety of quality or ease of use
was certainly secondary.

The IBM Systems Journal was established by a company that then contained one of the largest groups of
professionals dedicated to the creation of software. Reading through the cumulative index1 of the Journal
provides a sense of what was of concern to a very select group of programmers, spanning 38 years of evolution
of a very dynamic new discipline. Some papers are groundbreaking, others represent the crest of a wave iden-
tifying the forces that come together to produce a new approach, and most represent a definitive view of
the state of the practice in software development. As part of a retrospective look at computing developments
featured in the Systems Journal, a selection of papers on topics considered to be turning points in software
development are discussed in this section, and some representative examples are reprinted.

Software development as an art

The earliest sequence of published topics was concerned with examples of what could be done with software,
such as data analysis and large calculations. Programming was then a very new tool that was still being learned.
Programming languages evolved, and assembler languages gave way to higher-level languages. During this
time, as papers dealt with what could be done with software, this evolution extended to better ways of or-
ganizing programs to use hardware resources more optimally, i.e., operating systems and various other re-
source management tools.

The production of software was an art. The practitioners needed to be talented to perform this art and, in
parallel with other creative professionals, suffered through periods of unproductive effort. The potential ben-
efits of computers were being blocked by the inability to manage development predictably. But forces were
gathering to create a “sea change” in the way software would be developed. The notion that a methodology
could be defined to provide a recipe-like definition of the sequence of steps that a program developer should
go through in creating software, dictating what to do even when the solution was not evident, was becoming
popular.

My career at IBM brought me to a remarkable institution, the IBM Systems Research Institute. It was an in-
ternal graduate school created at about the same time that the IBM Systems Journal was launched. As a stu-
dent there in the early 1970s, I took a course on software development taught by Larry Constantine. The
material in the course was the precursor for the structured methodologies that dominated the mid-1970s of
software development. I joined the faculty several years later and met Glen Myers who was already writing

rCopyright 1999 by International Business Machines Corporation.

IBM SYSTEMS JOURNAL, VOL 38, NOS 2&3, 1999 0018-8670/99/$5.00 © 1999 IBM GOLDBERG 225

internal reports on composite structured design. Wayne Stevens was a student at the IBM Systems Research
Institute and in conjunction with Myers and Constantine wrote one of the earliest public papers on the ap-
plication of an analysis technique to create a structured design. Appearing as the first of the papers reprinted
in this section on software development, it is entitled “Structured Design” and was published in 1974.

Many other names have been associated with the structured methodologies and with software development
methodologies in general, and for a time the family of structured techniques was the recommended approach
to be used in developing complex systems. For a fuller description of many of the methodologies and a more
complete list of references, see my review paper2 in the 25th anniversary issue of the IBM Systems Journal
that appeared in 1986.

The use of methodologies was not the answer. Applications and systems continued to be plagued by low
overall productivity rates and an unacceptable number of errors. The search turned to how software was
being developed rather than what was being developed. The search was introspective and looked at the at-
tributes of the programmers as well as at the attributes of the sequence of process steps used to create soft-
ware. Although most of this came to fruition after methodologies became popular, the search had begun
earlier.

One of the more significant papers appeared in 1972 and focused on the way programmers organized them-
selves to create their work products.3 The concept of the chief programmer and associated team as a com-
bined unit of specialized effort was introduced in the first of the papers, which looked at the way software
was produced and how improvements in process could lead to both improvements in product and a decrease
in the cost of production.

It was observed early that defect detection and repair was a dominant cost in software production. Many
strategies were devised to create an effective portfolio of test cases to find errors, but these were usually put
into effect late in development and involved actual costly execution of code. Groups in IBM began to im-
plement early manual reviews of the artifacts created as part of systems and application development. These
artifacts included everything from requirements documents, to code, to documentation. Michael Fagan made
the intuitive connection between software quality assurance and the quality assurance techniques used in
manufacturing operations. He measured effectiveness, codified process, set step goals, and instituted a de-
tection and correction flow for defect tracking. He called his approach the “inspection process,” a name de-
rived from quality assurance processes used in manufacturing. His paper “Design and Code Inspections to
Reduce Errors in Program Development,” reprinted in this section, was truly a turning point in software
development.

When the inspection process was being defined, I was teaching software engineering at the IBM Systems Re-
search Institute. Fagan was a frequent guest speaker in my classes, and it was almost possible to chart the
students’ change in attitude as the use of inspections picked up. When the idea was first presented, they
vehemently objected to the thought of subjecting a personally produced product to the public scrutiny of their
peers, but after five years or so, students then attending classes could no longer conceive of a development
project that did not plan for the managed use of resources to conduct inspections. Even as late as 1998, newly
published papers can be found extolling the benefits of inspections and statistically documenting the cost
savings that occur because of the ability to detect errors earlier in the software development process.

Inspections, however, focused only on single steps of development. Attention then shifted to what it would
take to move software development from a hand-crafted process to a predictable and manageable engineered
process. That transition was not going to be easy and has still not been completed. To achieve this formidable
goal, it would be necessary to first understand enough about the quantifiable aspects of the artifacts produced
in development to be able to create formulas or tables that could be used both to plan and to measure pro-
gress.

In 1977 Walston and Felix analyzed 60 development projects in order to estimate the rate at which code had
been produced, so as to come up with an algorithm to plan future projects. Their words, taken from their
paper published that same year,4 describe the effort:

GOLDBERG IBM SYSTEMS JOURNAL, VOL 38, NOS 2&3, 1999226

This paper discusses research into programming measurements with emphasis on one phase of that re-
search: a search for a method of estimating programming productivity.

They looked at many of the project conditions in order to arrive at a statistical result that could be used to
predict future project duration and effort. The idea of understanding the statistical nature of the elements
of production, size of the effort, and rate of completion, is a necessary prerequisite for converting software
production into an engineering discipline. You cannot plan where you want to be until you understand where
you are today.

Software development as a science

The evolution of software engineering as an accepted field took a major step forward with the publishing
of the landmark work directed by Harlan D. Mills at the former IBM Federal Systems Division. The five-part
sequence that appeared in Volume 19, Number 4, of the IBM Systems Journal laid out the pragmatic foun-
dations of how we should manage the production of high-quality software. As Mills says in the introduction
of his paper, “Principles of Software Engineering,” which is included with the reprints in this section:

Software engineering has as one of its primary objectives the production of programs that meet speci-
fications, and are demonstrably accurate, produced on time, and within budget.

This sequence of papers began a transition in both the management of software development and in how
we look at software quality. The relationship between a software fragment, a requirements specification, and
the ability to demonstrate the equivalence between the two using predicate calculus techniques, described
in a paper by Linger,5 was the second significant concept that these five papers discussed. As part of the
sequence, the Mills and Linger papers presented turning points—one on the management of software de-
velopment and one on the creation of very high-quality components. Each concept has had a profound effect
on the way in which software development is done today.

The management sequence, the view that a disciplined engineering approach must be taken, leads to the
use of project management techniques, the creation of a defined process, a work breakdown structure of
known steps, associated verification and validation steps, and the use of statistical control techniques to en-
sure quality and process improvement.

Early in the 1980s I joined the IBM Software Engineering Institute (SEI) to put together a curriculum directed
at improving the skills of the professionals who manage software development. The IBM SEI started from the
ideas of Mills and his group and worked on the technology transfer of these ideas into the mainstream de-
velopment areas of the IBM Corporation. I worked extensively with a group, directed by Watts Humphrey,
whose mission was to improve the software development process. The entire contents of Volume 24, Number
2, describes their work and should be reviewed by anyone who wants to understand how to improve his or
her own organization. A technique that was used extensively, described in the 1985 paper, “A Programming
Process Study” by Ronald Radice, John Harding, Paul Munnis, and Richard Phillips, included as a reprint,
involved the evaluation of eight large-system programming locations within IBM and evaluated them accord-
ing to a set of process stages. The “maturity” of the organizations along those specific attributes pointed at
where and how process improvement could be effected. The Software Engineering Institute set up at Car-
negie Mellon University used this idea and created the Capability Maturity Model (CMM) to measure the
effectiveness of development organizations. The application of the techniques described in the above paper
by Radice et al., codified and expanded in the CMM, and applied in the Space Shuttle work done at the IBM
Federal Systems Division, was further described by Billings et al.6 in 1994 in the Systems Journal.

A paper published in 1985 described how one could move from defect detection to defect prevention. This
paper, by C. L. Jones,7 described how to institutionalize a set of process steps that will extinguish complete
classes of defects. The process is triggered by the discovery of a defect, which leads to the identification of
why it occurred, and culminates in process changes that would have prevented that defect from occurring
at all. This idea was described in expanded detail by Mays et al.8 and extended by Bhandari et al.9

IBM SYSTEMS JOURNAL, VOL 38, NOS 2&3, 1999 GOLDBERG 227

The second sequence of papers, which derived from the landmark Mills issue, is associated with the ideas
of provably correct programs. The method described to create such programs depends on choosing logical
design structures from among a set of patterns that have been shown not to alter the intent of the specification
from which they have been derived. To this was added the state machine concept that isolated a particular
method from possible side effects that could otherwise seep in from the external environment.

A 1987 paper on box-structured information systems by Mills, Linger, and Hevner10 increased the emphasis
on a hierarchy of data abstractions and the separation of the methods from the environments in which they
would be embedded. Although not the only source of object orientation, the initial idea of the provably cor-
rect program was moving steadily in that direction. This direction was cemented even further in the 1993
paper by Hevner and Mills, 11 which specifically called out the connection between object-based system de-
velopment and box-structured methods.

The use of object orientation to create applications and the beginning of a definition of a methodology that
could be used in customer service engagements was also described in the IBM Systems Journal in the 1993
paper entitled “The Impact of Object Orientation on Application Development,” by Alistair Cockburn, re-
printed in this section. Although this paper is not a direct descendent of the initial work by Mills and Linger
referenced earlier—the ideas of data abstraction and encapsulation, and incremental and iterative devel-
opment—all were featured in the turning point papers of more than ten years earlier.

The use of patterns as paradigms to be reused in order to increase both productivity and quality, introduced
in 1980, was reemphasized within object-oriented methods and at a more complex level in a 1996 paper.12

The emphasis here is on design patterns described in an abstract sense and then instantiated for a particular
problem. It is precisely the idea suggested earlier for the creation of provably correct programs.

The existence and use of a library of well-defined objects that could then be reassembled for specific purposes
later is still being echoed, whether as design patterns or as class libraries of application-specific components.
The use of encapsulation and data abstraction to isolate processes from their environments is the enabling
feature of the Java** language. These methods all have their roots in the earlier work so well documented
in the IBM Systems Journal.

Summary

My intent in this commentary was not to describe every paper related to software development in the 38-year
publication history of the Journal, nor to claim that they were all significant. There are many more papers
that fit in the sequences described. There are also other important topics that have not been mentioned—for
example, the papers describing the methodologies and economic benefits of software reuse.

This journal does represent the ebb and flow of ideas as practiced by dedicated professionals whose careers
are devoted to the effective and efficient production of software. Along the way it recorded key turning-point
ideas that were expanded and modified and that still play a crucial role in how we build software.

**Trademark or registered trademark of Sun Microsystems, Inc.

Cited references

1. 1962–1994 Cumulative Index, IBM Systems Journal 33, No. 4 (1994).
2. R. Goldberg, “Software Engineering: An Emerging Discipline,” IBM Systems Journal 25, No. 3/4, 334–353 (1986).
3. F. T. Baker, “Chief Programmer Team Management of Production Programming,” IBM Systems Journal 11, No. 1, 56–73 (1972).
4. C. E. Walston and C. P. Felix, “A Method of Programming Measurement and Estimation,” IBM Systems Journal 16, No. 1, 54–73

(1977).
5. R. C. Linger, “The Management of Software Engineering, Part III: Software Design Practices,” IBM Systems Journal 19, No. 4,

432–450 (1980).
6. C. Billings, J. Clifton, B. Kolkhorst, E. Lee, and W. B. Wingert, “Journey to a Mature Software Process,” IBM Systems Journal 33,

No. 1, 46–61 (1994).
7. C. L. Jones, “A Process-Integrated Approach to Defect Prevention,” IBM Systems Journal 24, No. 2, 150–167 (1985).

GOLDBERG IBM SYSTEMS JOURNAL, VOL 38, NOS 2&3, 1999228

8. R. G. Mays, C. L. Jones, G. J. Holloway, and D. P. Studinski, “Experiences with Defect Prevention,” IBM Systems Journal 29, No.
1, 4–32 (1990).

9. I. Bhandari, M. J. Halliday, J. Chaar, R. Chillarege, K. Jones, J. S. Atkinson, C. Lepori-Costello, P. Y. Jasper, E. D. Tarver, C. C.
Lewis, and M. Yonezawa, “In-Process Improvement Through Defect Data Interpretation,” IBM Systems Journal 33, No. 1, 182–214
(1994).

10. H. D. Mills, R. C. Linger, and A. R. Hevner, “Box Structured Information Systems,” IBM Systems Journal 26, No. 4, 395–413 (1987).
11. A. R. Hevner and H. D. Mills, “Box-Structured Methods for System Development with Objects,” IBM Systems Journal 32, No. 2,

232–251 (1993).
12. F. J. Budinsky, M. A. Finnie, J. M. Vlissides, and P. S. Yu, “Automatic Code Generation From Design Patterns,” IBM Systems

Journal 35, No. 2, 151–171 (1996).

Robert Goldberg IBM Learning Services, 590 Madison Avenue, New York, New York 11210 (electronic mail: bobgold@us.ibm.com). Dr.
Goldberg is an Engagement Manager supporting the IBM Software Group. In this capacity he works with the Software Group to assure
the availability of training to maintain and enhance the skills of their professionals. He is one of the architects of the IBM Object Tech-
nology University and has been curriculum manager with broad responsibility for software engineering and object technologies. He
joined IBM in 1968 in a branch office as a systems engineer but very shortly thereafter moved into education as a faculty staff member
of the IBM Systems Research Institute, then as a manager in the IBM Software Engineering Institute, and then managed the Software
Development Technology Transfer Center. He is the coauthor with Mark Gillenson of Strategic Planning, Systems Analysis, and Database
Design—A Continuous Flow Approach and coeditor with Hal Lorin of Economics of Information Processing, Volumes I and II. He is
fascinated by the possibilities that technology brings to advanced training. Dr. Goldberg is an ADCOM member of the IEEE Education
Society. He received his B.S. in physics from the Polytechnic University of New York in 1960, and his doctorate in physics from Rutgers
University in 1969.

Reprint Order No. G321-5701.

IBM SYSTEMS JOURNAL, VOL 38, NOS 2&3, 1999 GOLDBERG 229

