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The function of programming nolation in systems design and the
characteristics of a suitable language are discussed.

A brief introduction 18 given to a particular language (developed
by the author and detailed elsewhere) which has many of the desired
properties.
Application of the language s illustrated by the use of familiar
examples.

Programming notation in systems design

by K. E. Iverson

In any area of design, systematic design procedures are necessarily
based upon methods for the precise and formal description of
the entities being designed. Because complex systems commonly
embrace elements from a number of disparate disciplines (e.g.,
computers, programming systems, servomechanisms, accounting
systems), there exists no common terminology or notation ade-
quate for the description of an entire complex system, and hence
no adequate basis for systematic “systems design’’.

Despite the variety in the components involved, there is an
important element common to all systems design; namely, the
universal concern with the procedures or algorithms executed by
the system. In a fully automatic system the procedures are, by
definition, explicit, and the behavior of such a system can be
fully described by the explicit procedures, more commonly called
programs. Even in semi-automatic systems a program description
can be used effectively to describe the automatic portion and to
isolate and identify the variables subject to specification by
people or other incompletely predictable agents.

The programming notation or language used in the description
of a system must be universal enough to conveniently describe
programs appropriate to each of the elements embraced in a
system. It must also be precise. To be truly effective in design it
must further be concise and subject to formal manipulation,
i.e., statements in the language must satisfy a good many signifi-
cant formal identities.
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It is important that a language be easy to learn, to remember,
and to use. To this end, the operations incorporated should be
a systematic extension of a relatively small number of elementary
operations, the operation symbols employed should be mnemonic
(i.e., each symbol should itself suggest the operation it represents
as well as the relationships with other operations), and the language
should be separable (i.e., it should be possible to learn and use
part of the language applicable to some one area without learning
the entire language).

The present paper is a brief introduction to a programming
language more fully developed elsewhere.! It has been developed
for, and already applied in, a variety of areas including micro-
programming and computer organization, automatic programming
systems, data representation, search and sorting procedures,
matrix algebra, and symbolic logic. These and other areas of appli-
cation are outlined in Reference 2 and developed more fully in the
sources indicated in the bibliography.

The language

The basic arithmetic operations provided must obviously include
the four elementary arithmetic operations (to be denoted by the
familiar symbols) as well as rounding to the nearest integer (up
and down) and maximization and minimization. The operations
of rounding a number z down and up will be called floor and
cetling and will be denoted by | x| and [z7 respectively. The
maximum of z and y will be denoted by = 7| ¥ and the minimum
by z |y.

The symbols chosen for the four operations just defined not
only suggest the operations denoted, but also suggest the duality
relations which hold among them, namely:

L—z]= —[27, and
(—2) J(=9) = —(@=1y).

These relations are easily verified for the example z = 3.142,
y = 2.718 as follows:

[—3.142 | = —4 = —[3.1427, and
(—3.142) | (—2.718) = —3.142 = —(3.1427 2.718).

The basic logical operations provided must include the familiar
and, or, and not (negation). They are defined only on logical
variables, i.e., on variables which take on only two values irue
and false. It is convenient to use the integers 1 and 0 to denote
true and false, respectively, so that arithmetic operations can also
be performed upon logical variables. For example, if z, v, and 2z
are logical variables, then n = =z + y + 2z gives the number of
them which are true.

The symbols used for and, or and not are A, V, and an over-
bar, respectively. Again, the symbols reflect the important duality
relation (DeMorgan’s Law):

zAy=EV7Pp.
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Logical variables are themselves frequently determined by
the comparison of two variables z and y (not necessarily logical)
to find if they satisfy some specified relation ®. This type of
operation will be denoted by (x®y) and defined to have the value
1 or 0 according to whether the relation ® holds or not. For
example, 2 < 3) =1, 2> 3) =0,and (z > ) = (z < p).
Moreover, if z and y are themselves logical variables, then (z = y)
clearly denotes the exclusive-or function of z and y.

Although the number of distinct variables occurring in a  arrays
complex system is normally very large, they tend to fall into a
much smaller number of classes such that all members of any one
class receive similar treatment. The system is rendered more
tractable by grouping each class into a list or table and specifying
the operations in the system as operations on entire arrays. In
an accounting system, for example, a ledger is a collection of
similar accounts and any ‘‘updating’’ process specified for the
ledger implies that the process is to be applied to each account
in the ledger. Similarly, the main memory of a computing system
is a collection of registers, and since each register is itself a col-
lection of characters it may be considered as a two-way array or
table whose ith row corresponds to the 7th memory register and
whose jth column corresponds to the jth character of all registers
in memory.

In mathematics, the terms vector and matriz have been given
to the one-way array (list) and the two-way array (table), re-
spectively. Since precise, convenient, and well-known conventions
have long been established for vectors and matrices, these terms
will be used in preference to the less formal notions of “list”
and “table.”

A vector will be denoted by a boldface lower case italic letter
(as opposed to lightface lower case italic for a single element,
or scalar), and a matrix will be denoted by boldface upper case
italic. The 4th component of a vector x is denoted by x;, the 7th
row of the matrix M by M, the jth column of M by M;, and
the element in the ith row and jth column by M. Clearly, M’
and M; are themselves vectors and M; is a scalar.

For example, if the vectors x and y are defined by

x = (3; 6,12, 1),

y=(a, e ionu),

then x; = 12, and y; = i. Moreover, if M is the logical matrix
0110
1001
001 1J,

then M* = (1,0,0, 1), M, = (1,0, 0), and M} = 1.
The dimension of a vector x is denoted by »(x) and defined
as the number of components of x. A matrix M has two dimensions;
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Figure 1 Binary search
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the row dimension v(M) denoting the common dimension of the
row vectors M* (i.e., the number of columns in M), and the column
dimension u(M) denoting the dimension of the columns of M.
In the examples x, y, M of the preceding paragraph, »(x) = 4,
v(y) = 5, u(M) = 3, and v(M) = 4.

The well-known binary search provides an elementary illu-
stration of the operations introduced thus far. The objective is
to determine where an argument a occurs in an ordered list of
numbers, i.e., to determine the index j such that x; = a, where
the vector x is the list of numbers in ascending order. The binary
search procedure restricts the search to an interval x;, X1, - - - , X;.
At each stage the restriction is strengthened by comparing a
with x;, where j is the index of the (approximate) midpoint of
the interval, and then restricting the search to x;, X;.., X;-i,
if a < x; 0rto X;44, Xj4o, +++, X if @ > 2;.

The entire process is described by the program appearing in
Figure 1. The indices ¢ and % are first set by steps 1 and 2 to in-
clude the entire list x. At each repetition of the loop beginning
at step 3, the midpoint j is determined as the floor of the average
of 7 and j. The three-way branch at step 4 terminates the process
if x; = a, and respecifies either the upper limit &k or the lower
limit ¢ by branching to step 5 or to step 6 as appropriate. The
convenience of the notation for the dimension of a vector in setting
or testing indices is apparent from step 2.

The convenience of extending the addition operator to vectors
in a component-by-component fashion is well known. Formally,

z—x+y

is defined (for all numerical vectors x and y having a common
dimension) by the relation z; = x; + y;, forz = 1,2, --- , »(x).
In programming it is convenient to extend all of the basic opera-
tions on two variables in precisely the same way. For example,
ifx=(6,3 1,4 andy = (1,3,5,4), thenx + y = (7, 6, 6, 8),
xXy=(695, 16)) (x_'y) = (6,3,5,4), (x> y) =(@1,0,0, 0),
a'nd(x > y) \% (x < y) = (1;0:0’0) \ (070) 170) = (1:07 17 0) =
(x #= y).

Each of the basic operations are similarly extended element-
by-element to matrices (e.g., X + ¥, X X ¥, (X # Y)), to yield
a matrix result.

The summation of all components of a vector x is frequently
used and is commonly denoted by > x.. In order to extend this
type of process (called reduction) to all binary operations it is
necessary to employ a symbolism which incorporates the basic
operator symbol (in this case +), thus: +/x. For example, if
x=(6,314),andy = (1,3, 5,4), then +/x = 14, X/x = 72,
T/x=6=—(1/(=%), V/x# y) =1, AN/x =y =0,
and +/(x # y) = 2.

Reduction by a relation ® is defined similarly:

®R/x = (+ (B,RX)RxS) - -+ RX,).
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For example, if x = (1, 0, 1, 1), then »/x denotes the application
of the exclusive-or operation to x, and

#/x = (1 % 0) = 1) % 1)
= (1 1) 5 1)

© 5 1)

=1.

1

The fact that an even-parity check (odd-parity codes are illegiti-
mate) is equivalent to the exclusive-or may now be expressed
(using the definition of residue from Table 1) as

#=/x=2|+/x.

Reduction of a vector by any operator © is extended to a
matrix M in two ways: to each of the rows (denoted by ©/M
and called row reduction) or to each of the columns (denoted by
©//M and called column reduction). Each yields a vector result.

For example, if

0,1,1,0 1,0,1,1
M=|(1,1,1,0/, and N=11,1,1,0/,
0,0,1,1 1,0,0,1

then +//M = 1,2,3,1), +/M = (2,3,2), #/M = (0, 1, 0),
and A /(M = N) = (0, 1, 0). Moreover, an even-parity check on all
rows of M would be denoted by V/#/M, and in this example a
check failure would be noted, ie., V/#/M = V/(©0, 1,0) = 1.

Although all elements of an array may normally receive the
same treatment, it is frequently necessary to select subarrays
for special treatment. The selection of a single element can be
indicated by a subscript (e.g., x;), but for the selection of groups
of elements it is convenient to introduce the compression opera-
tion u/x. This is defined for an arbitrary vector x and a logical
vector u of the same dimension:

y<—u/x

denotes that y is obtained from x by suppressing each component
x; for which u; = 0. For example, if x = (d, e, s, i, g, n), and
u=(1,0,0, 1,1, 0), then u/x = (d, i, g). Moreover, (z & y)/z
denotes the selection from z of those components which differ
from the corresponding components of y, and +/(z = y)/z
denotes the sum of such components. Operations are performed
in order from right to left unless parentheses indicate otherwise.

Selection operations are extended to arrays in the same manner
as reduction operations. Thus, if u = (1,0, 1,0), v = (1, 0, 1),
and M and N are the matrices just employed in the examples
of reduction, then
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u/M= |1, 1}, v//M = [0’ LAY 0],
0, 1 0, 0, 1, 1

0, 0

and N/M = |1, 0.

0, 1

For example, if Iis a 3 X 15 logical matrix representing the
3 index registers in a computer (e.g., the IBM® 7090), and if
t is the 3-bit tag vector which selects the rows of I to be ored
together to produce the vector z finally used in indexing, then

z=V//t//L

Certain essential operations converse to compression (mesh,
mask, and expansion) are easily defined in terms of the compres-
sion operator itself and are extended to matrices in the established
manner (Reference 1, p. 19).

To specify fixed formats it is convenient to adopt notation
for several special logical vectors, each of a specifiable dimension n.
Thus of(n) denotes a prefiz vector of j leading 1's, o'(n) a suffiz
vector of j trailing 1’s, ¢’(n) a unit vector with a 1 in position j,
and e(n) a full vector of all 1’s. Hence, ¢’(5) = (1, 1, 1, 0, 0),
o’() = (0,0,1, 1, 1), £(4) = (0, 1,0, 0), and &(n) is a zero vector.
If the dimension 7 is clear from compatibility requirements it
may be elided. Thus, if ¢ is the 36-bit command register of the
IBM 7090 (which contains the next command to be executed),
then ©'®/c denotes the address portion.

The successive digits in the decimal representation of a
number such as 1776 may be treated as the components of a
vector ¢ = (1, 7, 7, 6) and the number they represent is then the
base ten value of the vector g. More generally, a vector £ may be
evaluated in a mixed base system with radices specified by a
radiz vector r. This operation will be called the base r value of ¢
and will be denoted by r L . To define it by example, consider the
system of temporal units up to the day, for which r = (24, 60, 60).
Then if ¢ = (2, 3, 4) is the elapsed time in hours, minutes and
seconds, s = r L £ = (2 X 60 X 60 + 3 X 60 + 4) = 7384
is the elapsed time in seconds.

In a fixed base b number system, r = be. Hence (10 &) L x
is the base 10 value of x and (2 ¢) L y is the base 2 value of y.
In the important case of base 2, elision of the radix vector 2 e
is permitted. Hence if the 2'° X 36 logical matrix M is the memory
of the 1BM 7090 and ¢ is the command register, then

16
§ — M.L(-) /¢

describes the transfer of the operand to the storage register s.
If y is any number (not necessarily integral), then (y ¢) L a
obviously denotes the polynomial in y with coefficients a.
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A reordering of the components of a vector x is called permuta-
tion. Any permutation can be specified by a permutation vector
whose components take on the value of its indices in some order.
Thus, ¢ = (3, 1, 4, 2) and r = (1, 4, 5, 2, 3) are permutation
vectors. Permutation of x by a permutation vector p is denoted
by x» and defined as follows. If

Yy<—=x

then y; = xs,. For example, x¢ = (X3, X1, X4, X5). It is clear from
the definition that permutation is conveniently executed by in-
direct addressing.

Rotation is a particularly important case of permutation
which warrants special notation. Thus k¥ T x denotes cyclic left
shift by k places and & | x denotes cyclic right shift. For example,
21 @, e a) = (a,t, ). Rotation of prefix and suffix vectors can be
used to define infizx vectors; e.g., 2 | ¢*(6) = (0,0, 1, 1, 1, 0),
and t = (18 | ¢*)/c denotes the index tag portion of the com-
mand c¢ in the 1BM 7090.

Permutation is extended to matrices by rows (X») and by
columns (Xp) in the established manner, as is rotation (¢ T X
andh T X).

The ordinary matrix product, usually denoted by AB, can be
defined conveniently using the reduction operation:

(4B); = +/(4° X By).

To make explicit the role of the elementary operators 4 and X,
this product will be written as 4 B, and the definition will be
extended more generally to 4 oL B, where ©; and ©; are any
pair of binary operators.

Applications of the generalized matrix product abound: if
U is a square logical mairix representing the direct connections
in a network (node ¢ is connected to node j if U; = 1), then
M = U U is the matrix of connections via paths of length two;
if D is a distance matrix (Dj is the direct distance from city ¢
to city j), then T = D 7 D is the matrix of distances for the
shortest trip of exactly two legs. The well-known identities of
matrix algebra can be easily and usefully extended to operators
other than ().

Conclusion

In comparing this programming language with others, it is neces-
sary to consider not only its use in description and analysis (which
has been emphasized here), but also its use in the execution of
algorithms, i.e., its use as a source language to be translated into
computer code for the purpose of automatic execution.

In description and analysis (and hence in exposition), the
advantages over other formal languages such as FORTRAN and
ALGOL reside mainly in the conciseness, formalism, variability
of level, and capacity for systematic extension.

The conciseness and its utility in the comprehension and the
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debugging of programs are both fairly obvious. The advantage of
formalism (i.e., of numerous formal identities) in a programming
language is not so clearly recognized. Programme 2 of Reference 3
provides an example of the use of formal identities in establishing
the behavior of an algorithm; a similar treatment could easily
be provided for Program 2 (matrix inversion by Gauss-Jordan)
of Reference 2. Indeed, any valid algorithm for a specified process
is itself an outline of a formal constructive proof of its own validity,
the details being provided by the formal identities of the language
in which the algorithm is presented.

The ability to describe a process at various levels of detail is
an important advantage of a language. Reference 2 illustrates
this ability in the specification of a computer; Programs 6.32 and
6.33 of Reference 1 illustrate it at a quite different level, involving
the description of the repeated-selection sort in terms of tree opera-
tions and in terms of a representation of the tree suitable for
execution on a computer.

The capacity for systematic extension is extremely important
because of the impossibility of producing a workable language
which incorporates directly all operations required in all areas
of application; the best that can be hoped for is & common core
of operations which can be extended in a systematic manmer
consistent with the core. As a simple example, consider the intro-
duction of exponentiation. Since this is a binary operation, an
operator symbol, say ~, is adopted and is used between the
operands; thus ¥y ™ z denotes z raised to the power y. Then
y —x, Y — X, /x, etc., are automatically defined. As a further
example, consider the adoption (in the treatment of number
theory) of operators for greatest common divisor (z | y) and
for least common multiple (z | ¥). Then |/x is the g.c.d. of the
numbers X;, X;, -+ X,. Moreover, if p is the vector of the first
»(p) primes (e.g., p = (2, 3, 5, 7, 11)), and f is the vector of ex-
ponents in the prime factorization of a number n, then n = f X p.
Similarly, if F* is the factorization of n;, then n = F X p, and
clearly, L/n = ( ] //F) X p,and |/n = (1 //F) X p.

Compared to ordinary English, this notation shares with other
formal languages the important advantage of being explicit.
Moreover, it is rich enough to provide a description which is as
straightforward as, and easily related to, the looser expression in
English. For example, indirect addressing (via a table of ad-
dresses p) is denoted by x»,.

In the matter of execution, the advantages of this notation
in analysis and exposition are, in some areas at least, sufficient
to justify its use even at the cost of a subsequent translation (to
another source language for which a compiler exists) performed
by a programmer. However, for direct use as a source language,
two distinct problems arise: transliteration of a program in charac-
ters available on keyboards and printers, and compilation.

Because operator symbols were chosen for their mnemonic
value rather than for availability, most of them require translitera-
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tion. However, because the symbols are used economically (e.g.,
the solidus “/” denotes compression as well as reduction, the
symbol-doubling convention eliminates the need for special sym-
bols for column operations, and the relational statement obviates
special operators for ezclusive-or, implication, etc.) the total num-
ber of symbols is small. (Note that the set of basic symbols
employed in a language such as ALGoL includes each of the specially
defined words such as IF, THEN, etc.)

Reference 4 outlines one of many possible simple transliteration
schemes. The mnemonic value of the original symbols must be
sacrificed to some extent in transliteration, but the transliteration
need not impair the structure of the language—a matter of much
greater moment.

The complexity of the compilation of a source language is
obviously increased as the language becomes richer in basic opera-~
tions, but is decreased by the adoption of a systematic structure.
The generalized matrix product X o, ¥, for example, greatly in-
creases the power of the source language, but the compiler need
produce only the same skeleton program required for the ordinary
matrix product, permitting the specification of ©, and ©, as
any of the basic operations in its repertoire. Moreover, the direct
provision of array operations frequently simplifies rather than
complicates the task of the compiler. For example, the operation
X % Y could be compiled so as to execute the basic arithmetic
operations in any one of several orders and could therefore choose
one best suited to the indexing and other facilities available. On
the contrary, the use of po statements as in FORTRAN or ALGOL,
although it requires the programmer to specify more detail (ie.,
the indexing), makes it difficult or impossible for the compiler
to determine whether the particular order of execution specified
by the indexing of the loops is essential, and hence inviolable.

In this brief exposition it has been impossible to explore many
extensions of the notation such as set operations, files, general
index-origins, and directed graphs and trees. Likewise, it has
been impossible to include extended examples. However, a mastery
of the simple operations introduced here should permit the inter-
ested designer to try the notation in his own work, referring to
the papers indicated in the bibliography for extensions of the
notation and for guidance from its previous use in applications
similar to his own. The portion of the notation essential to micro-
programming is summarized in Table 1.
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