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Network Implementation Language (NIL) is a high-
level programming language currently being used
for the implementation of prototype communica-
tion systems. NIL Is designed for writing executa-
ble architecture which can be compiled into effi-
clent code for the different machines and run-time
environments of a family of communicating prod-
ucts. NIL’s distinctive features Include (1) high-
level primitive type families supporting constructs
needed for concurrent systems, (2) facilities for de-
composition of a system into modules which can
be dynamically Installed and interconnected, (3)
compile-time typestate checking—a mechanism
for enhancing language security without incurring
large execution-time overhead.

etwork Implementation Language (NIL) is a

high-level programming language developed
by the Distributed Systems Software Technology
(DSST) Group at IBM’s Thomas J. Watson Research
Center. The language was originally developed to
implement experimental software for new and pro-
posed communications protocols. The logical details
of protocol algorithms had to be programmed com-
pletely and correctly in order to demonstrate and
validate the prototypes; also, the software structure
and layering of the prototypes had to be correct to
ensure that they could be expanded into fully func-
tioning systems. Taking as a starting point a tech-
nique for the formal specification of protocols,' the
DSST Group developed NIL as a programming lan-
guage that is (1) at a suitable level of abstraction for
communications architecture specification, (2) suf-
ficiently general purpose to be suitable for program-
ming the product-specific functions not defined as
part of the architecture, (3) effective for defining
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the configuration functions by which processes
are initiated and terminated, (4) secure enough to
support “open’’ layered systems, and (5) compila-
ble into efficient code for complete software sys-
tems. The DSST Group has also developed a com-
piler for executing NIL programs on the System/
370 and is currently using NIL to produce the
software for some communications prototype sys-
tems.

NIL is intended to support generic systems designs
that are not “tuned” to any particular hardware
or software execution environment.? The aim is
to provide portability not just among different
machines but among design points. Potentially this
characteristic of NIL software offers enormous
advantages, particularly in the field of communica-
tions and distributed processing.

For example, in IBM’s Systems Network Architec-
ture,’ there are protocols that must be shared
between data processing hosts and multiplexor com-
puters, or between multiplexor computers and intel-
ligent workstations. With the use of conventional
software techniques, the communications code for
such a variety of systems is expensive to design and,
furthermore, converting design into an implementa-
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Figure 1 Definition of network routing example problem
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tion requires individuals who are knowledgeable
both in communications architecture and in the
target machine environment. Since the implementa-
tions are controlled by distinct product organiza-
tions and different development teams, it is
extremely difficult to improve or extend the proto-
col algorithm without forcing major modifications
on some of the implementations. When an architec-
tural modification is agreed on, products based
on independent designs will have difficulty in im-
plementing the modification simultaneously. This
leads to a profusion of subset implementations and
an obligation to test all possible combinations.

These problems can be minimized if the architec-
turally defined functions can be specified as a single
product-independent source system developed and
tested within a group specializing in communication
protocols and interfaces. Ideally, a system of NIL
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source programs would define the architecturally
required functions common to all implementations
in the product family, and would define the inter-
faces between those functions and external environ-
ments. A product implementation would be gener-
ated by combining the architecture-defined pro-
grams with product-specific NIL programs and by
compiling them to produce directly executable code.
In this way, both software development costs and
the “inertia” of software evolution can be reduced.

Such a methodology, while producing the greatest
payoff in communications software systems, is also
likely to be valuable in other domains, such as

. work-flow management (“job entry”) subsystems,

operator interfaces, command languages, etc.
Language desig.n principles

NIL attempts to meet its goals by means of the
following strategies.

Representation-independent data description: Data
in NIL is manipulated in a way that is completely
independent of its physical organization and access.
The language semantics exclude assumptions about
the representation of data from having an effect on

Typical NIL systems are composed
of independent layers.

the correctness of a program. The particular repre-
sentation compiled from a given NIL source pro-

‘gram is controlled by the compiler, assisted by

pragma annotations to the NIL source. Pragma
annotations can be used by the compiler to choose
an implementation whose performance best suits
the design point. Selecting an alternate implemen-
tation affects only performance, not the meaning of
the program.

Security: Typical NIL systems are composed of
independent /ayers. Each layer defines interfaces to
adjacent layers while hiding the internal data and
algorithms constituting its implementation. A sys-
tem may contain alternative implementations of a
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single layer running concurrently, e.g., X.25, Syn-
chronous Data Link Control (SDLC), and user-
defined data link controls. It is a design objective of
NIL to facilitate the coding of systems that allow
user-supplied and system-supplied layer implemen-
tations to coexist. NIL’s security mechanisms guar-
antee that a user-supplied module may interact with
other modules only through their interfaces, and
that each layer’s private data shall remain private,
even in the presence of programming errors.

NIL achieves its security guarantees without requir-
ing expensive memory-protection hardware or run-
time checks. This is possible chiefly because (1) NIL
forbids direct manipulation of pointers by source
programs, and (2) NIL supplements full type check-
ing with typestate checking, which is a form of
compile-time guarantee that invalid operation
sequences will not occur.

Full set of system concepts: There is limited value
in providing representation independence or secu-
rity in a high-level programming language if the
user is forced to escape into an underlying operating
system for essential services such as tasking,
dynamic introduction of new code, and the binding
of ports between process instances. In NIL all these
services are provided through language primitives
whose semantics are consistent with a wide variety
of underlying implementations. It is particularly
important to have the passing of access rights to a
newly created NIL process instance performed
explicitly by the program creating the new process.
Each program has statically defined interfaces, but
the connections made to those interfaces are not
fixed until that program is instantiated during exec-
ution.

Defining data without reference to its
representation

NIL’s approach to portability can be illustrated by
means of a simplified programming problem. The
message routing layer of a communications network
node with multiple links must determine for each
message it receives which link, if any, to use for the
next hop. In Figure 1, Node A must forward
messages that it receives for destinations B, C, D, E,
and F. They can be forwarded either on link TO_B
or on link To_C. This decision is made using the
destination address in the header of the received
message and the routing tables saved in the node
(Figure 2). This algorithm must be duplicated in
every node of the network. However, particular
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Figure 3 Routing table lookup in PL/| using an array

Implementation
data
dcl MSGPTR pointer; message to be forwarded
dcl FOUND bit(1); terminates scan loop

/%
/%
dcl X integer /1 index for array scan
dcl 1 ROUTTAB 105 /” array of 10 entries
S
7

o 3k ok

2 DEST integer, a destination address

2 QCBPTR pointer; link queue for this dest
dcl 1 MSG based, message data structure

2 DEST_FIELD integer, /* destination address

2 DATA char(255) var;

*

S st sk 3k
NSNS

/* message data

code

FOUND = '0'B;
LOOP: do X = 1 to 10 while(=FOUND);
if ROUTTAB.DEST = MSGPTR->DEST_FIELD
then FOUND = '1'B;

end;
if FOUND
then call ENQUEUE(MSGPTR,ROUTTAB(X-1).QCBPTR);

else
: *
.. /* error action for unknown address */

implementations of the routing tables must reflect
the requirements of the different network node
machines. A simple end-user workstation might
communicate only with a fixed, predefined number
of host applications; in these circumstances an array
representation of the routing information would be
appropriate. Alternatively, a high-performance
message-forwarding node might be required to keep
track of thousands of final destinations and to
dynamically respond to information about new des-
tinations and new routes. In the latter context, a
hierarchical, tree-based organization of the data
would be more appropriate.

If the routing algorithm module is designed using a
programming language such as Pascal or PL/I, both
the declarations of the routing data and the algo-
rithms for access to routing tables necessarily
reflect a decision as to whether to organize the data
using arrays or trees. In Figure 3 and Figure 4,
sample codings of the two representations are
shown. It is apparent that even though these code
fragments implement the same function, there is
hardly a line of code in common among them. There
is little chance of being able to use one source-level
definition of the abstract algorithm to generate the
other.

The above example illustrates the loss of portability
through overspecification. If the properties of a
data object are defined by relying on a sample
representation of it, it will be extremely difficult to
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Figure 4 Routing table lookup In PL/1 using a sorted tree

data

dc1 MSGPTR pointer; /f message to be forwarded f/

dcl FOUND bit(1); /* terminates scan loop W/

dcl X pointer; /i cursor for tree scan =/

dcl ROOT pointer; /* locates routing table i/

dc] 1 TABLEREC based, /* tree node record il
2 DEST integer, /* a destination address Wl
2 QCBPTR pointer, /* link queue for this dest */
2 LEFT  pointer, /* to smaller dests subtree =l
2 RIGHT pointer; /* to larger dests subtree sl

dcl 1 MSG based, /* message data structure 7/
2 DEST_FIELD integer, /* destination address !
2 DATA char(255) var; /™ message data 3/

code

FOUND = '0'B;

X = ROOT;

LOOP: do while(=FOUND & X == null);

if MSGPTR->DEST FIELD = X -> DEST

then FOUND = T1'B;

else
if MSGPTR->DEST -FIELD < X->DEST
then X = X->LEFT;
else X = X->RIGHT;
end;
if FOUND
then CALL ENQUEUE(MSGPTR,X -> QCBPTR);

else
3 2 *
. /* error action for unknown address- ™/

i

Figure 5 Routing table lookup in NIL

data

declare
( ROUTTAB : table
( DEST : integer key,
LINK : MSG1 TYPE sendport),
AROW : row in ROUTTAB,

-- temporary for lookup
MSG1 :  MSGI_TYPE )

-- message to be routed

code

block
find AROW in ROUTTAB key(MSG1.DEST_FIELD);
send MSG1 to AROW.LINK;

on(NOT_FOUND) ...
-- error action for unknown address
end block;

show that implementations using an alternative
representation are correct.

The NIL program for the routing algorithm
described above is insensitive to whether the data is
represented as a tree or an array. (See Figure 5.)
Either the compiler will choose the appropriate
representation, or it will offer the user a menu of
choices which can be selected by specifying a prag-
ma.

The type constructor used to cover both array and
tree structures is an abstract table associating a
unique “link for next hop” with any valid “destina-
tion address.” There is a single set of language-
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defined operations for accessing data in abstract
tables: the verbs FIND, INSERT, and DELETE.

NIL’s primitive abstractions are organized into a set
of type constructors called type families. Each type
family is designed to provide considerable latitude
to the compiler implementer while at the same time
providing a simple set of rules by which the NIL
programmer may reason about his programs. For
example, message and table are NIL type families
representing movable data records and extensible
collections of data associations, respectively.

Relationship of NIL to data abstraction
languages

Every programming language provides a set of base
data types and data type constructors. Data
abstraction languages*® concentrate on mecha-
nisms for defining new types from more primitive
ones. In practice, these languages have chosen the
conventional memory-oriented types, such as
arrays, as primitive types. In these languages the
programmer has to define higher-level types appro-
priate to his needs using the memory-level con-
structs.

Although data type definition may be useful as a
data-hiding and program-decomposition mecha-
nism, the failure to define suitable high-level types
as part of the programming language has disadvan-
tages:

¢ The design of a type family such as NIL’s abstract
table is not easy—the type family must have
broad applicability and must be parameterizable
to produce useful individual types; the semantics
defined for the type should not excessively con-
strain future implementers. Individual users are
more likely to develop specialized types with
specific problem areas and even with specific
implementations in mind.

» The semantics of user-defined types are normally
inherited from an encapsulated implementation;
any additional information about the abstract
specification of properties of the type is optional
and usually omitted.

Above the level of the NIL primitives, NIL and other
languages supporting abstraction have much in
common. All these languages support the decompo-
sition of complex programs into layers that hide
their internal structure from adjacent layers and
provide access only through narrow interfaces.
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(Some of the differences in NIL’s approach are
discussed in a later section covering run-time mech-
anisms for binding adjacent layers.)

Other data abstraction languages differ from NIL
chiefly in that

» Users are not required to program at any particu-
lar level of abstraction; they may choose to pro-
gram using pointers and other low-level primitive
types, whereas in NIL, pointers are never directly
visible.

* NIL specifies a complete set of operations, opera-
tion sequence rules, and semantics for a recom-
mended set of type families for use in systems
programming.

System implementation using NIL is factored into
two phases. During the functional design phase,
algorithms are coded in NIL, checked, and de-
bugged. Functional design considers issues of modu-
larity, extensibility, and algorithmic complexity,
but not data representation. During the optimiza-

System implementation using NIL is
factored into two phases.

tion phase, appropriate data representations are
selected so that the system meets appropriate per-
formance criteria, such as code size, system
throughput, response time, fault-tolerance, etc. The
choice of representation can be made either (a)
automatically by the compiler, (b) manually by
selection of an appropriate pragma, (c) by a poste-
riori determination of the best pragma based upon
instrumentation of the executing code, or (d) in the
worst case, by augmenting the compiler by adding
support for an alternative representation.

The NIL type familles

There are 15 predefined type families in NIL. These
are briefly summarized below.

e integer — The natural numbers. Individual im-

plementations will vary in their capacity to imple-
ment all sizes of integers.
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¢ boolean — The truth values true and false.

» enumeration — Each type defines a discrete set
of values with user-defined names. There is
ordering defined, but no arithmetic.

e string — Sequences of elements, which may be of
boolean or enumeration type. Strings may be
copied, compared, or concatenated. Contiguous
substrings may be extracted or overlaid.

e table — A set of zero or more row objects. Each
row is a set of fields whose name and type may be
defined by the user. All rows within a table are of
the same type. The user may define certain attri-
butes to be keys (meaning that their values are
unique within a table), and may define the collec-
tion of rows to be ordered or unordered. Rows
may be inspected, updated, inserted, or deleted.
The entire table, or a selection (subset) of the
table, may be enumerated.

e row — Used to access individual row objects
within a table.

o tableset — A collection of related tables, which
are created or destroyed as a unit. Tables within a
tableset may be related as follows: one of the
tables may be the domain of an attribute in
another table. For example, if one table is a
PART-SUPPLIER relation, and another a SUPPLIER-
CITY relation, the domain of SUPPLIERs in the
first relation may be constrained to come from the
members of the SUPPLIER-CITY relation.

e variant — A collection of fields of user-defined
name and type, grouped into mutually exclusive
cases. When a variant is initialized, exactly one of
these cases is initialized. A select block is avail-
able to check the current case of a variant by
branching to an appropriate case clause. Within
each case clause, the programmer may access
fields within that case.

* message — A collection of fields, whose names
and types depend on the message type. Messages
may be dynamically allocated and destroyed as a
unit. Messages may be communicated between
processes by sending a message to a sendport and
receiving it from the connected receiveport.

e interchange message — An object that can be
accessed as a collection of fields, but for which a
complete mapping into bit string format has been
defined. Because interchange messages are bit
strings, (1) they may be used as a universal
medium of exchange to 1/0 devices or to other
programs outside the NIL environment, (2) they
may be remapped as a different collection of fields
having the same total bit string length, and (3)
they are restricted to contain those NIL types for
which bit string mappings are defined, namely
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Figure 8 An ADA example of language integrity fallure

task body A is
type SESSION is access PROTOCOL_3;
THIS_SESSION: SESSION;
begin

THIS_SESSION:= new PROTOCOL_3;

task body B is
type R is access RCB;
R1,R2: R;
begin
R1:= .new RCB;
R2:=SRT

UNCHECKED_DEALLOCATE (R1);
R2.Fi:= ...

scalars, and for aggregates whose ultimate con-
stituents are scalars.

e call message — A collection of fields called pa-
rameters. Call messages are used in synchronous
communication (subroutine calls) to pass data
from the caller to the called procedure or process,
and to return data to the caller.

e call_interface — A queue of call messages of
homogeneous type. Each call _interface is either a
callport, an acceptport, or a procedure. One or
more callports is connected either to an acceptport
or to a procedure. Then calls are made over the
callport. If the callport is connected to a proce-
dure, a new procedure activation is created when
the call is made and destroyed upon return to the
caller. If the callport is connected to an accept-
port, the call is queued. The caller waits until the
acceptport owner dequeues the call, processes it,
and returns it.

o send_interface — A queue of messages of a par-
ticular message type with all fields initialized.
Every send_interface object is declared to be
either a sendport or a receiveport. Communica-
tion is achieved by connecting one or more send-
ports to a receiveport. Messages sent over the
sendport may be received by the owner of the
receiveport.

e catalog — Stored access rights defining the abil-
ity to connect a callport to a specific acceptport or
procedure, or to connect a sendport to a specific
receiveport.

o component — A dynamically loaded collection of
processes and procedures, as seen from the creator
of the component. The owner of a component has
no ability to see objects belonging to any modules
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in the component. Owners may test for completion
and completion status of a component and may
cancel a component.

Motivation for security

The term “security” is sometimes loosely applied to
any programming language and run-time system
with facilities for detecting and reporting program
errors. In this paper, the term is used with a more
precise meaning specifically relevant to the reduc-
tion of integration and testing effort. Our use of the
term is consistent with its use by Hoare in his
Turing Award Lecture:’ security is the principle
that every syntactically incorrect program should be
rejected by the compiler and that every syntacti-
cally correct program should give a result or an
error message that was predictable and comprehen-
sible in terms of the source language program
itself.

In NIL this principle of security is extended by also
requiring that no system of modules that has been
demonstrated to be working correctly can be made
to fail by executing in the presence of other modules
that have no language-defined interface to the origi-
nal system.

Many cases of unauthorized interference between
programs result from performing operations on data
in the wrong representation. Type checking has
widely become recognized as the means to overcome
this form of security failure. However, type check-
ing alone is not sufficient to prevent the reading of
uninitialized data and access to dangling or unini-
tialized pointers and entry variables. The ADA pro-
gram in Figure 6 illustrates how these errors can
destroy security. Task A is assumed to be a correctly
written task which may have been formally vali-
dated. Task B is an incorrect program executing
anywhere in the same system, which deallocates a
dynamic object and subsequently accesses it. The
error in Task B will not in general be detected by an
ADA compiler and will cause Task A to behave in a
completely unpredictable way. Although Task A
has been shown to be “of itself”” correct, it cannot be
trusted to execute correctly unless certain properties
of all other software executing in the same system
are verified.

Errors associated with the use of uninitialized data
and with pointers aliasing data are extremely hard
to detect in a programming language that permits
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direct manipulation of pointers. Faced with this
problem, most high-level programming languages
have resorted to some combination of the following
remedies:

» Omitting the language constructs that can give
rise to the problems

» Requiring an elaborate or expensive run-time
system—typically garbage collection or interpre-
tive execution

» Abandoning language security and passing on the
problems to the compiler writer or user of the
language

NIL is a secure programming language in the sense
defined by Hoare. NIL programs may interact with
each other only via their defined interfaces, and
these interfaces do not include sharing of an
abstract memory. The rules of NIL permit secure
implementations without the usual performance
penalties. Specifically, NIL run-time environments

¢ Need not perform garbage collection

* Need not explicitly check for uninitialized data
before use

* Need not worry about the possibility of concur-
rent access to a data item from within two
processes

» Need not worry about the possibility that a
process may terminate or be canceled without
freeing its resources

It is extremely difficult to provide a single com-
pletely general security mechanism that can apply
to all program abstractions or to all uses of pointers.
In providing security, NIL takes advantage of the
fact that each type family can be given a set of
security rules appropriate to the programming tech-
nique which that type family embodies. We shall
use the semantics of the message type family in NIL
to illustrate this point.

How security is enforced in the NIL message type
family. A standard technique in systems design is to
communicate between processes via queues of mes-
sages. A process wishing to send information first
allocates a message object, then fills its fields with
information and sends the message off to a queue
owned by the process that is supposed to receive this
information. That process may dequeue the mes-
sage at any subsequent time and process its fields.

Since messages may contain many fields, and copy-
ing large amounts of data is expensive, most effi-
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cient implementations of message passing within a
single physical memory allocate the message object
from a global heap and perform send and receive by
copying a pointer to the sender’s message into a
queue owned by the receiver. A key requirement of
this implementation is that after a process has sent a
message to some other process, the sending process
must lose the capability to read or update fields in
the message. If this restriction is not enforced, it
becomes extremely difficult to write correct pro-
grams in a multiprocess environment, since sender
and receiver may have concurrent access to the
same data. If the receiver then disposes of the
message, the sender will have a dangerous “dan-
gling reference.” Although a single message may
become accessible to different processes at different
times, at any one time a message should be accessi-
ble to at most one process. When a multiprocess
system is coded in an insecure language such as

A message type is defined by giving
alist of field names and types.

assembler, the restriction on message use is pre-
served either by informal agreement among the
programmers not to access messages after they have
been sent or discarded or by a run-time system that
physically moves messages across address space
boundaries.

The NIL message type family facilitates the defini-
tion of message objects with these characteristics. A
message type is defined by giving a list of field
names and types. Each variable of that message
type will have those fields. In a NIL program,
message variables may be declared with a specific
message type. A message variable is “initialized” by
an ALLOCATE operation or a RECEIVE operation,
receiving it from a queue associated with some
receive port; the RECEIVE waits until a message
object is available on that queue, then dequeues it
and makes it accessible via the message variable
operand. A message variable is “uninitialized” by a
DISCARD operation, or by a SEND operation sending
it through a particular port to some other process.
While a message variable is initialized (but not at
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Figure 7 Examples of correct and incorrect
message-handling code

Segment A - valid program

-- MSGI_TYPE is a message type defined elsewhere with integer field F1
-- APORT is a declared variable of type ''sendport of MSGI_TYPE"

block

declare ( MSG1 : MSG1_TYPE)
allocate MSG1; %
MSG1.F1 = 3;
send MSG1 to APORT;

end block;

Segment B - invalid program

-- MSG1_TYPE is a message type defined elsewhere with integer field F1
-- APORT is a declared variable of type ''sendport of MSG1_TYPE'

block

declare ( MSG1 : MSG1_TYPE)
send MSG1 to APORT;™
MSG1.F1 = 3;
allocate MSG1;

end block;

any other time), any message field qualified by that
message variable name may be read or updated.
The advantage of offering an access-destroying,
nonblocking SEND operation and a blocking
RECEIVE is that copying a pointer to the message
data and copying the actual message data are both
valid implementations, indistinguishable from the
perspective of the NIL programmer. The imple-
menter is therefore free to select whichever strategy
is more efficient in each case. Adopting other
semantics for message communication tends to
force the more expensive data copying implementa-
tion on all sending operations.®

The restriction that gives the message type family
its special flavor and results in system-wide assur-
ance that no message can be simultaneously accessi-
ble to more than one process is the implied rule on
the ordering of operations on each message vari-
able. To see that this restriction cannot be enforced
by type checking rules alone, consider the two
program segments in Figure 7.

Segment A is a valid code segment allocating a
message, initializing its only field and sending it to
some other process. Segment B differs from Seg-
ment A only in that the message operations are
performed in the reverse order. Segment B has
correct syntax, and every operation has operands of
the correct type. Therefore, a conventional strong
type checking compiler will not reject it at compile
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time. However, Segment B presents significant
problems for a secure language implementation and
in NIL would be rejected at compile time. For a
programming language to permit Segment B and
still provide security, the implementer would be
required to choose from one of these approaches:

¢ Detecting and generating a run-time error

» Forcing a message object to be allocated and sent
even though no ALLOCATE operation was issued

» Treating the SEND as a null operation in this case

Following the SEND statement, Segment B initial-
izes a field in an uninitialized message. Once again
if the program has not been rejected at compile
time, nonobvious choices will have to be made by
the language designer either to cope with the prob-
lem as an error at execution time or to invent
semantics that make all operations valid in all
contexts.

The program segments in Figure 7 show that the
operations on messages have simple obvious mean-
ings only when they are performed in the correct
order. The NIL philosophy is that both the semantics
of the programming language and the run-time
system which supports it can be drastically simpli-
fied if rules for correct sequences of operations are
given as part of the language definition and
enforced at compile time—or to be more precise, at
a time when individual modules are processed one at
a time, without the “compiler” having access to the
complete system in which the modules will run.
Even in an interpretive implementation of NIL,

Separate compilation is an essential
property for software systems.

“compilation” will occur, taking the form of a check
of each module before any statements from that
module are interpreted. NIL emphasizes the special
role of compilation in this sense, because separate
compilation is an essential property for software
systems.
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Typestate as a general mechanism for
security

The compilation technique used in NIL to check the
sequences of operations on variables is called type-
state analysis. For each user-defined data type, the
NIL compiler will construct a state machine whose
states (called typestates) determine which subset of
the defined operations on objects of the type are
currently permitted. During compilation of a pro-
gram, a typestate machine is maintained for every
declared variable, tracking its typestate from state-
ment to statement in the program.

The typestates of message variable MSG1 intro-
duced in Figure 7 are

S1 = MSGI1 uninitialized
MSGI1.F1 unaccessible
S2 = MSGI initialized
MSG1.F1 uninitialized
S3 = MSGI initialized
MSGI1.F1 initialized

and the typestate transition graph for this variable
is

S1 S2 S3

ALLOCATE INITIALIZE F1

DISCARD UNINITIALIZE F1

RECEIVE

SEND

Every valid sequence of operations on a message
variable corresponds to a valid transition sequence
on the above graph. In reading this diagram, it must
be remembered that typestate is a property of
variables and not of values; when a message is sent,
the message value continues to hold its fields and
flows to some other process, whereas the message
variable on which the send was performed becomes
“uninitialized” since the sender has lost access
rights to that message. Note also that a SEND
operation is permitted only when the fields in a
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Figure 8 Example of a typestate error

Segment C

block
declare ( X: integer
MSG1: MSGI_TYPE )
X = AFUNC; -- initializes X
Cl: if X =1

then

allocate MSG1;
end if;

C2: 5w

€3: if X =1
then
MSG1.F1 = 3;
send MSG1 to APORT;
end if;

end block;

VOL22, NOS 1/2, 1983, REPRINT

message are all initialized, and similarly the
RECEIVE operation assumes that it will always
receive a fully initialized message. It is technically
possible to relax this pair of restrictions. However,
preventing processes from exchanging partially ini-
tialized messages simplifies coding and fosters the
design of systems with clearer interfaces.

Given typestate transition graphs for every declared
variable in a module, a complete checking algo-
rithm can be defined.” Although run-time checking
of typestate is possible, it carries a performance
overhead and prevents code generation from
exploiting typestate knowledge. Compile-time de-
termination of typestate is not possible for general
programs. In NIL, a compile-time determination of
typestate becomes practical because of the addition
of the following critical requirement: the typestate
of all variables must be a program invariant at
every statement in a program; i.e., the typestate of a
variable at a given statement must be independent
of how that statement was reached. The NIL type
families, control structures, and exception-handling
mechanisms are designed specifically to ensure that
the invariance of typestates can be maintained
without loss of power or flexibility for the program-
mer. The typestate invariance principle is an impor-
tant new program structuring concept that gives
NIL its unique flavor.

Program Segment C in Figure 8 illustrates the
effect of requiring the typestate of variables to be a
program invariant. Even though all paths through
the program are meaningful, this segment would be
rejected by a NIL compiler as having a typestate
error even if Block C2 does not alter the value of
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Figure 9 The typestate error example corrected

Segment D
block
declare ( X: integer,
MSG1: MSGI_TYPE )
X = AFUNC; -- initializes X
Cle if:Xo=11

then
allocate MSGI1;
call BODY_OF C2;
MSGV SR =u3 s
send MSG1 to APORT;

else
call BODY_OF_C2;
end if;

end block;

Figure 10 Routing table lookup with an exception flow

Segment E

E1: block
E2: block
declare ( AROW : row in ROUTTAB )
find AROW in ROUTTAB key(MSG1.DEST FIELD);
send MSG1 to AROW.LINK; i

allocate MsG2;
MSG2.F1 = 3;
send MSG2 to APORT;

on(NOT_FOUND) ..
-- error action for unknown address
end E2;

on(DEPLETION)
-- recovery action from allocate failure

-- AROW will be uninitialized and use counts
-- in ROUTTAB cleared at this point
end E1;

variable X. The problem is that the compiler has to
decide on a typestate for variable MSG1 on entry to
Block C2 so that it can determine whether access to
MSG1.F1 should be permitted inside that block. To
ensure that the typestate of MSG1 at that point does
not depend on the path taken through the preceding
IF BLOCK, the compiler will actually generate a
DISCARD operation on MSG1 at the end of the then
path and issue a warning message on the listing.
Automatically generated typestate coercion opera-
tions may be generated at any point where control
flows converge and will always force objects to the
“least initialized” of the states on the different
flows. When Block C2 is later encountered, MSG1 is
therefore in the uninitialized typestate (S1), and
hence, the access to MSG1.F1 is a typestate error.
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A correct NIL implementation of the intentions of
the program in Figure 8 is given in Figure 9. The
correction is to collapse the two IF blocks with the
same test into a single IF block. We claim that the
resulting program is more readable because it does
not rely on inferring that an identical test is repeat-
ed. Also, the correct version is more robust because
it prevents some program maintainer who only
partially understands the system design from insert-
ing code into Block C2 which would alter the value
of X and hence invalidate the original program
logic.

Typestate coercions and exception handling. The
typestate coercions mentioned in the preceding
example become beneficial in the presence of excep-
tion flows. One consequence of the level of abstrac-
tion of the NIL type families is that many of the
defined operations can raise exceptions. The lan-
guage reference manual defines for each operation
the names of the exceptions that may be raised, as
well as the effect on the values and typestates of
each operand. When an exception is raised, control
flows outward through the static block structure to
the nearest exception handler which lists that excep-
tion name. If no handler is found in the current
procedure, the exception name is converted to an
exception name known by the caller of the proce-
dure as part of its call interface.

Figure 10 contains an example of exception flow
and an automatically generated typestate coercion
to clean up after it. One of the defined exceptions of
the ALLOCATE operation is DEPLETION. The tempo-
rary variable AROW used to access the routing table
has Block E2 as its scope. So if the DEPLETION
exception causes control to flow from the ALLO-
CATE operation to the DEPLETION exception han-
dler, a DISCARD operation will be coerced on AROW,
This automatically generated operation is necessary
since some implementations of ROUTTAB may have
unpacked records or set use-counts when AROW was
initialized to a particular row in this table. In other
table implementations, discarding a row variable
may have no execution time effects (discarding a
row variable does not delete the underlying row
object from the table—it merely makes it unacces-
sible until some subsequent FIND retrieves it).

The effect of typestate coercions is to provide auto-
matically generated recovery code after an excep-
tion, which will “clean up” to the state expected by
the recovery handler. Writing this recovery code
explicitly after every possible exception would clut-
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ter up the normal path through algorithms and
make the system design hard to read. Graceful
backout from exceptions also tends to be extremely
difficult to program correctly without automated
assistance. It should be noted that the NIL recov-
ery—forcing uninitialization of program objects as
necessary to enter a common exception handler—is
considerably simpler than the problem of backing
off a partially completed transaction, in which case
all value changes caused by the transaction have to
be reversed. See Reference 10 for a classic paper on
this more difficult topic.

The general aliasing problem: other aspects
of typestate

So far in this paper, typestate mechanisms have
been described and illustrated entirely in terms of

The effect of typestate coercions is
to provide automatically generated
-recovery code after an exception.

message allocation. Each of the different NIL type
families has its own set of typestate transition rules
achieving security in a slightly different way. For
each family, it must be shown that the typestate of
variables of the family can always be statically
determined, and at the same time shown that the
typestate restrictions are powerful enough to ensure
that a wide range of implementations of the family
is possible.

The typestates of variables with no contained fields
(e.g., integers, booleans, etc.) are

e unaccessible — The variable is a field inside a

compound variable which is itself either uninitial-

ized or unaccessible.

uninitialized — The variable has no defined val-

ue.

e initialized — A defined value exists, which may
be read, modified, or destroyed.
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e constant — The variable’s value may be read but
not modified: in this state it is safe for an imple-
mentation to choose to share the variable’s storage
with that of other variables of the same value.
Because updating is not permitted, this potential
for aliasing cannot be detected.

» permanent — The variable may be read or
updated, but not destroyed. Fields in compound
objects that are required to be in an all-initialized
state will have this typestate.

The possible typestates of a compound variable are
generated by defining the structure tree showing the
relationship of all fields in the variable, and labeling
each node in the tree with one of the five basic
typestates.

The particular type families used in NIL and the
associated typestate rules combine to achieve a total
separation of the variable spaces of each module.
Specifically,

e There is no detectable aliasing—within a module,
every distinct variable name has an independent
value. Changes to one variable have no effect on
values of other variables.

o There is no sharing—every variable is local to
some module. Values of accessible variables of a
process cannot be altered by actions of other
processes. The only way in which a process sees
the interaction of other processes is via the ability
to receive messages and accept calls on ports.

Aliasing and sharing impede modularity, since
understanding how a particular module can be
affected from the outside requires the analysis of

‘not only that module but also of all others coresident

in the system. Sharing and aliasing are endemic in
languages that permit uncontrolled pointer copying
or that allow modules to inherit shared access to
variables in statically containing scopes. NIL
resolves these problems by

¢ Avoiding shared scopes

 Having a limited set of type families and thereby
avoiding direct visibility of pointers

» Using typestate to prevent references to fields in
messages already sent away or not yet allocated

e Forbidding a variable from being bound to two
different formal parameters of a single procedure
call unless the formal parameters were declared
as read-only (CONSTANT typestate)

o Using a combination of compile-time and run-
time checking to guarantee that two different row

PARR AND STROM 191



Figure 11 Functional layers In a communications

architecture

End user A

Logical Unit (LU)
Half-session (HS)

Virtual Route (VR)

Explicit Route

Link manager

End user B

Logical Unit (LU)

Half-session (HS)

Virtual Route (VR)

Explicit Route

Link manager
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Physical medium

Figure 12 Examples of options within a layered
architecture

SESSION full- half- half-
LAYER: duplex duplex duplex
flip-flop contention
VIRTUAL
ROUTE current back-level
LAYER: version version

variables may not access the same row of the same
table, unless they are both requesting read-only
access

In summary, by combining type families that hide
direct memory access operations with a new pro-
gramming language concept—typestate invariants,
NIL succeeds in providing security and a more
tightly constrained interaction of modules than
heretofore possible.

Support for open systems: Access control

Communications systems tend to be long-lived and
must frequently have their function extended to
support new protocol algorithms, new communica-
tions media, and new execution environments.
Hence, it is important for NIL to support the design
of modular systems. The fact that a NIL system is
portable increases the need for modularity since
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some users of the software will want to omit some
functions and add others of their own.

The role of modularity in a communications system
is best illustrated with reference to a communica-
tions architecture such as Systems Network Archi-
tecture (SNA). SNA partitions the communications
function into distinct layers. A simplified diagram
of SNA layering is given in Figure 11: the Logical
Unit (LU) layer represents a communications end
user; the session layer captures end-to-end commu-
nications protocols; the Virtual Route layer defines
logical pipes between pairs of end points in a
network; the Explicit Route layer is aware of actual
intermediate nodes in the logical path; and the link
manager is responsible for driving the link at each
step in the path.

According to the NIL methodology, implementa-
tions of SNA products should reflect this layering in
their internal structure. The architecture provides a
useful organization of the various communication
functions, and end users can write software inter-
facing to the communications layers—thus insulat-
ing themselves from the details of lower layers.

If one looks in detail at each individual layer in an
architecture, a finer structure becomes visible. Fig-
ure 12 illustrates how within the SNA session layer
there are several permissible “flavors” of a session,
and within the virtual route layer options exist
either for historical reasons or because particular
products wish to extend or to subset the standard
virtual route functions. Any particular communica-

Communications systems must
frequently be functionally extended.

tions thread must choose which flavor of protocol to
use at each layer. The decomposition of communi-
cations function into layers derives its usefulness
from the fact that the choices of which flavor to use
at each layer are independent. The two end users of
a communication thread will have to coordinate
their choices so that at each layer they have agreed
on matching protocol sets, but they should in gen-
eral be able to make any session type work over any
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logical routing protocols using any physical link
medium. The problem of selecting a total protocol
between end users is factored in this way into a
small number of independent choices.

The features of NIL that support this sort of layered' h

and open design are

¢ The security mechanism, which permits user-
written layer options to coexist with “system-
supplied” options without the risk that an errone-
ous user-written layer will corrupt the private
data of other layers, and without reliance on
special hardware.

e The strong typing of interfaces allows the pro-
grammer to specify how a particular layer com-

Access control in NIL allows the
creator of a layer process to
determine its potential set of port
bindings.

municates with adjacent layers, without requiring
him to know any of the internals of those adjacent
layers.

e The dynamic binding concept, which permits
layer options to be added or removed and con-
nected to their adjacent layers, while the system is
running. The combination of statically typed
interfaces and dynamic binding supports execu-
tion time selection from among a set of “plug-
compatible” modules.

¢ The access control functions of NIL, which allow
the creator of a layer process to determine that
layer’s access rights by restricting its potential set
of port bindings.

In an implementation of a layered communications
architecture, the software components that are most
critical in getting any choice of function at one layer
to operate with any choice of function in adjacent
layers are the management functions responsible
for creating new process instances and binding their
ports to other already-existing software compo-
nents. This management function is often the most
complex part of a reconfigurable system. We shall
illustrate why with an example of a simplified
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Figure 13 Virtual route to half-session interface

Virtual Route Half-session

VR: process HS: process
""HSS_TO_VR'': PlUs unknown
(queue) algorithms
unknown (queue)
algor i thms PIUs ""WR_TO_HS"'

T call: ADD_HS

call: DELETE_HS

SESSION_MGR

manager to create half-sessions in a communica-
tions system.

A half-session (HS) is the collection of functions at
one end of a communications thread which, when
balanced by a matching half-session at the other
end, implements the session protocols. A new half-
session is created when a particular end user (LU)
requests a new communications path to some other
LU. We may assume that there is one process per
network node called SESSION_MGR responsible for
creating new half-sessions. That process, on being
presented with a new session request from an LU in
its node, will select a particular logical path (VR) to
the correct destination on which the session will
flow. SESSION_MGR will also determine the type of
half-session to install since we assume that several
session flavors are available. It then creates new
instances of the processes and procedures for that
session type. Now before these new programs can
start executing, they must be bound to the particu-
lar LU component that requested the session and the
particular VR component over which the session will
flow. The binding actions will typically comprise

» Connecting sendports to receiveports across the
layer interface so that messages can be sent
between adjacent layers

o Connecting call interfaces across the layer so that
synchronous requests can be made to adjacent
layers

» Possibly binding the newly installed program to
node-wide services

» Initializing other local variables in the newly
installed programs

The nature of the connection between an arbitrary
VR process and an arbitrary half-session process is
illustrated in Figure 13. We are assuming that

PARR AND STROM 193



194 PARR AND STROM

half-sessions belong to a single VR at any time, and
have one message queue in each direction between it
and the VR, while a VR must be capable of “fan-in”
of data from many half-sessions and “fan-out™ of
data into many half-sessions.

In Figure 13, it is shown that all flavors of half-
session and virtual route control protocols must
share a common interface. Specifically, each HS has
a sendport over which it sends messages (called PIUS
or “path information units” in SNA) to a VR queue
which we call “HSS_TO_VR.” For each half-session
using the VR, the VR will have a sendport to that
half-session’s receive queue, which we may call
“VR__TO_HS.” Since the number of half-sessions per
VR varies during the life of the VR, the VR supplies
procedures to be invoked to add and delete half-
sessions.

If a language is to support the writing of a session
manager, it must (1) allow new bindings between
half-session and VR processes to be created without
exposing the private data structures of either VRs or

Every NIL module can be compiled
and proofread in isolation.

half-sessions, and (2) allow calls to the add and
delete functions even though the specific code being
executed is not known until the VR identity is
established at run-time.

In an assembly language or PL/S implementation,
the binding actions are done by giving SES-
SION_MGR access to control blocks in all three
involved components and having it initialize point-
ers to make the desired connections. This approach
relies on the self-discipline of SESSION_MGR to
access only the intended variables in these control
blocks. In practice, it usually results in the manager
having considerable awareness of which flavors of
each of the three layers are actually running. It is
then not surprising that SESSION_MGR becomes
complex since it has to be able to bind all possible
flavors of VR with all possible flavors of half-
session. The architectural decomposition of func-
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tions into layers will go to waste if management
modules in the implementation have to consider all
possible combinations of function in adjacent
layers.

Higher-level (but still memory-model) languages
such as Pascal and ADA, although they make many
advances in other areas, actually make the problem
of implementing the SESSION_MGR module for the
above example more difficult rather than easier.
When CALL statements or abstract SEND operations
appear in a program, these languages have a prop-
erty that requires an answer to be given at compile
time to the question of which program will be
executed in response to that command. But SES-
SION_MGR’s problem is that it must establish a
binding so that code in a VR component can send
messages up to the half-session component without
knowing which of the possible session algorithms is
actually running for that half-session. It is the
exclusion of procedure-valued variables and the
interpretation of abstract operations on the basis of
type alone in these languages which creates the
problem. In practice, communications systems writ-
ten in languages such as ADA will probably “es-
cape” and use an underlying operating system prim-
itive whose semantics are not defined in program-
ming language terms to make dynamic connections.
Because of the need for escapes, the languages with
static binding cannot offer strong guarantees of
security.

In NIL the problem is solved by providing both
facilities for abstraction and a complete set of
language primitives that support all essential opera-
tions such as dynamic connections. Processes with
private local memory and the ability to accept
synchronous calls from other programs allow arbi-
trary abstractions to be defined and implemented.
At the same time, the sendport, receiveport, call-
port, and acceptport type families permit programs
to have statically defined interfaces for ports which
can be dynamically connected to ports with match-
ing interfaces in other program instances—a type
compatibility check being made at connection time.
Every NIL module can be compiled and proofread in
isolation without knowing which other modules it is
going to be connected to. The language operations
in NIL that provide the creation and binding func-
tions are

o publish — Makes a receiveport (queue of mes-
sages) or acceptport (queue of rendezvous calls)
available in a catalog for other program instances
to connect to.
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e connect — Connects a sendport or callport vari-
able to a receiveport or acceptport of matching
type using a published entry in a catalog.

¢ create — Creates a new instance of a named
module (possibly loading the code), exchanges
some creation parameters, and then (if no excep-
tions have been raised) allows the creator to
continue and the created module to start execut-
ing independently with its own private memory
only; all sharing of objects is achieved by estab-
lishing bindings during the exchange of creation
parameters. The installed module has access to
these parameters for the duration of its “installa-
tion” phase.

Figure 14 shows how the part of the SESSION_MGR
program responsible for creating a new half-session
would be written in NIL. This program sketch deals
only with the creation of the half-session and its

It is the integration of these system
building constructs into a secure
high-level programming language
that is the basis for NIL’s claim to
support modular system design.

connection to a virtual route—the connection to a
logical unit is similar and is omitted. It is assumed
that SESSION_MGR maintains a table of half-
sessions. A new row in that table will be created for
the new half-session. By some means, the program
will have initialized THIS_VR to identify the par-
ticular virtual route on which the session will
flow. THIS_VR.CAT! is a field of type catalog in
THIS_VR. This catalog will contain an entry with
key “HSS_TO_VR” which is the receiveport on
which the virtual route receives messages from all
its half-sessions. THIS__VR.ADD_HS is a second field
of type callport. When a call is made on this port,
the virtual route will connect to the port it will use to
send messages to the newly created half-session
(Figure 15).
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Figure 14 Code in SESSION_MGR to create new
half-session

HS_FLAVOUR_A: module interface(INTF1_TYPE)
== this interface makes formal parameters EXPORT_CAT
-- and VR_CAT accessible during publish and init phases

MAIN: process
static -- the ports to and from VR are declared here
( MSGS_TO VR : MSG1 TYPE sendport,
MSGS_FROM_VR: MSGT_TYPE receiveport)

publish phase .
-- this '"phase'’ is executed when an instance of MAIN
-- is created; it has access to the creation parameters.

“

publish MSGS_FROM_VR in HS_FLAVOUR_A.EXPORT_CAT key(''VR_TO_HS');

-- builds a "potential'’ connection in EXPORT_CAT for
-- the receiveport from VR into this half session

init phase iy
-- this ''phase' is executed just after the publish
-- phase and has access to the module creation parameters

connect MSGS_TO_VR in HS_FLAVOUR_A.VR_CAT key(''HSS_TO_WR'');

-- actually connects the sendport out of the half-
-- session to a potential connection in VR_CAT

main phase
-- code executed after creation is complete
-- to handle the session traffic

end m‘\ll‘i; ;
end HS_FLAVOUR_A;

Figure 15 Codoe in half-session to bind to a virtual route

SESSION_MGR:

block
declare (NEW_HS: row in HALF_SESSIONS)

allocate NEW_HS in HALF_SESSIONS key(THIS HSID);
-- start a new entry in the HALF_SESSIONS table

create NEW HS.COMP1
module( "HS_FLAVOUR A”,in(erface(INTE]_T;‘PE)

(NEW_HS.EXPORT, THIS_VR.CAT1

-- ""HS FLAVOUR A' is a string expression naming the module
-- to be instaTled (in general not a manifest constant.

== INTF1_TYPE is the type of the list of create parameters.
-- ActuaT parameters are (i) NEW_HS.EXPORT in which the

-- half-session will publish potential connections (ii)

-- THIS_VR.CATI which passes potential connections into

-- the virtual route

call THIS_VR.ADD_HS(NEW_HS.EXPORT);
-= this call will cause VR to define a new sendport for
-- feeding messages to this half session. VR will
-- "connect'' this sendport to potential connection
== ""WR_TO_HS'" in NEW_HS.EXPORT.
insert NEW_HS;
-- new entry in HALF_SESSIONS table is complete

end SESSION_MGR
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Each of these operations has typestate effects and
possible exceptions defined by the NIL language
reference. It is the integration of these system
building constructs into a secure high-level pro-
gramming language that is the basis for NIL’s claim
to support modular system design.

Concluding remarks

Experience with NIL. A draft NIL reference manual
is available'' describing all the type families, the
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operations on them, the exceptions which may be
raised by these operations, and their typestate
effects. A compiler for the full language is in use at
the I1BM Thomas J. Watson Research Center; this
compiler generates PL/S code which can be executed
in run-time systems under OS/VS2 (MVS), and the
Conversational Monitor System (CMS). In the lan-
guage tool area, work is under way to generalize
pragma support in the compiler and to explore an
interpretive execution scheme so that NIL systems
can run on small machines. NIL is being used by its
developers to implement prototype systems for SNA
intermediate network node functions and for a set of
higher-level intelligent workstation protocols. Al-
though several thousand lines of NIL source code
have been written and tested, it is not yet possible to
offer any quantification of the software productivity
gain achieved.

Other related work. The ideas in NIL are in many

ways influenced by current trends in high-level
programming languages, particularly ADA, Pascal,

The ideas in NIL are in many ways
influenced by current trends in
high-level programming languages.

and PL/I. The use of type families rather than a
memory-model-based encapsulation scheme seems
to be quite new and philosophically different from
ADA. Although some authors have proposed analy-
sis of typestate-like properties of programs for error
detection, to our knowledge there is no previous
attempt to formalize typestate and require it to be a
general program invariant. The emphasis on
dynamic connection primitives in NIL is influenced
by the structure of SNA architecture and the meta-
implementation with which it is formally specified.
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