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Today there is a wide range of choice for configuring the data
processing facilities of an organization—centralized systems, de-
centralized systems, small computers, and networks of communi-
cating computers—for distributed data processing. This paper
considers the factors that relate to organizations and their data
processing requirements and to the various possible data pro-
cessing configurations. Price-performance ratio, organizational
needs, and other factors that recommend the flexibility of distrib-
uted data processing are discussed in detail. Also discussed are
possible distributed data processing architectures, choice cri-
teria, communications, and application and operating system de-
sign principles.

Distributed data processing

by A. L. Scherr

For the past several years, there has been an increasingly strong
trend in large enterprises toward the distribution and/or decen-
tralization of data processing. There are virtually no large corpo-
rations in which the data processing capacity is focused in a single
large computer system, and there are very few organizations that
operate in a single geographic location. There are a variety of
causes for this phenomenon. Multiple distributed data processing
locations may have occurred as a result of corporate mergers,
because of security considerations, for organizational reasons,
because the capacity of a single location was inadequate, or for
other business reasons. Whatever the cause, distributed data
processing has become a fact of life. Most of the factors that have
led to the present data processing situation are themselves be-
coming more important; and thus, it appears that the distribution
of data processing will become even more common in the future.

This paper first defines ‘‘distributed data processing’’ and con-
trasts it with what is called ‘‘decentralized processing.’’ Next, the
potential motivations for going to the distributed approach are
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enumerated. Implementation techniques are then described. A
set of parameters for describing the various approaches is devel-
oped that leads to a classification scheme for distributed process-
ing techniques. An example is given of the addition of a new ap-
plication to an existing distributed system and its effect on the
overall balance of the system. Finally, there is a discussion of the
general question of application design, the management of the
overall system and its growth, and the required characteristics for
system facilities in support of distributed data processing.

Throughout this discussion, the general theme is that the form of
distributed processing used is determined primarily by the char-
acteristics of the applications to be implemented and the particu-
lar motivations for selecting distributed data processing, rather
than by abstract or theoretical considerations.

Distributed data processing is defined as the implementation of a
related set of programs across two or more data processing cen-
ters or nodes. The programs are related in that they share or pass
data between them. Each node is generally capable of performing
data processing applications independently, and thus would nor-
mally have data storage and program execution facilities.

The communications required for the sharing or passing of data
between programs can be accomplished either synchronously or
asynchronously. Synchronous communication implies that both
programs are in execution simultaneously and that messages pass
in both directions, with one program waiting for the other to re-
spond to its last message. Asynchronous communication implies
that the sending program does not wait for a response and the two
programs may not be in execution at the same time. Often, in the
asynchronous mode of operation, the messages that comprise the
communications are queued and processed in a batched mode.

The means of communication may be a shared direct-access stor-
age device or a telecommunications link. In the asynchronous
case, portable storage media, such as a tape reel or a diskette,
may be used. This paper emphasizes the use of teleprocessing
links, although many of the conclusions are valid for the broad
spectrum of communication mechanisms.

The key element in the definition that has been given for distrib-
uted data processing is the communication that goes on between
the programs. If two or more nodes are executing applications
programs that do not communicate, then the overall system is an
example of what is called decentralized processing . There can be
a spectrum of degrees of communication among nodes, and a
threshold exists where the level of communication reaches a
point at which the factors to be discussed in this paper become
important.
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Motivations for distributed processing

There are a variety of reasons for the selection of distributed
processing to implement a set of data processing applications. Ul-
timately, they all offer economic advantages of one kind or an-
other. However, the assignment of value to at least some of the
factors must be done in terms of the user’s overall enterprise, not
just as an optimization of data processing. The ultimate economic
value to a particular establishment requires the assigning of dollar
values to such factors as response time, reliability and availabil-
ity, and the ability of the organization to manage data processing
in the context of its business. The following are descriptions of
the major motivations for selecting distributed data processing as
the method for implementing a set of applications.

One motivating factor in moving to distributed processing is that
of better overall system availability. The two complementary ap-
proaches to achieve this are the following:

e Limiting the scope of the impact of failures by partitioning the
workload among several processors.
e Reducing the impact of failures by providing redundancy.

Figure 1 illustrates a simple example of the technique for limiting
the scope of failures. Assume that an on-line terminal system is
implemented in two computers, one servicing the West Coast and
the other one the East Coast. The scope of failures is reduced in
that if one of the two machines fails (gray), only half the terminal
users are affected. This statement is true to the extent that the
terminals on the operational machine can function without access
to the data in the other machine. In the case of n machines parti-
tioned to particular sets of terminal users, the scope of failures
can typically be reduced to 1/nth the terminal users. This is in
contrast to a single centralized processor failure, wherein all ter-
minals would be affected.

Figure 2 shows terminals connected to a front-end configuration
that, in turn, uses a centralized system to perform functions that
require increased capacity and/or access to a centralized data
base. In the event of failure of this centralized system (gray) or
the communication facilities required to gain access to it, the
front-end machine could be programmed to perform essential
functions, albeit at a reduced level.

An example is point-of-sale terminals in a retail store operation
with the application being the processing and approval of credit
requests. A large central system handles credit authorization
based on individual customer records. In the event of a central
system failure or communications failure, the front-end system
could perform this operation by using a list of known bad risks

VOL17, NO 4, 1978, REPRINT IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999



Figure 3 Organizational imbalance
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and credit limits established for use in this particular situation. In
many cases, the economic advantage of keeping the retail store
operational would offset the additional costs associated with pos-
sible increased credit risks.

Figure 2 can also be configured for multiple front-end machines,
wherein each machine would be assigned to a particular retail
store or group of stores. The failure of a front-end machine would
affect only the operation of the particular terminals connected to
it. Thus, it is possible to achieve a reduction in failure scope while
providing for a fail-soft capability.

It should be noted, however, that there is a possibility for a reduc-
tion in availability by the addition of redundancy simply because
the aggregate failure rate of any system is increased when more
hardware is added. Thus, proper use must be made of redun-
dancy, alternate paths to critical hardware, hardware designed
for high availability, etc., so that higher availability can, in fact,
be achieved.

These techniques of partitioning and redundancy are applicable
to different degrees in particular business organizations. There-
fore, it is necessary to know the application characteristics in or-
der to evaluate the full potential for reliability and availability ad-
vantages.

Distributed data processing is often a means to manage computer
usage more effectively. Over the years, the size of the classic
centralized data processing organization has grown significantly.
This growth has occurred as data processing has become an in-
tegral part of doing business. Figure 3 suggests a business organi-
zation in which operations functions have gradually been sub-
sumed by the data processing organization. In many cases, as
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growth has occurred and as a particular business has become
more automated, line management has experienced a loss of con-
trol. More and more costs derive from the data processing organi-
zation; more and more problems seem to result from computer-
related factors. Thus, line managers have felt the need to play a
more active role in data processing, and have sometimes success-
fully gained control over their own computer resources. While in
some cases this has meant going to decentralized processing,
more often it has resulted in distributed processing because of the
inherent relationships among the line organizations.

Another element leading to distributed processing is that as a cen-
tralized data processing organization becomes large enough and
critical enough it requires more structuring, using the same theo-
ries and techniques used to structure line organizations. Thus,
there are examples of data processing organizations that are high-
ly divisionalized to create the classic contention system among
line organizations as well as between line and staff functions.

Coming from either direction, the result is the same—a divisional-
ization of the control of the computing resources among several
management chains. It is often possible to match this kind of or-
ganization with a network of related computer systems in a dis-
tributed processing environment. Doing so allows for a level of
independence in the management of the individual computer re-
sources while at the same time providing for essential communi-
cation among areas and providing for appropriate degrees of cen-
tralized management control.

Over the years, both communications and computing costs per
transaction have decreased, but the author sees indications that
the former costs may decrease at a slower rate than the latter. By
moving computing capability nearer the end user, both decentral-
ized and distributed processing offer the possibility of eliminating
or at least reducing communications costs. Therefore, as time
progresses, a move to either method should become easier and
easier to justify economically. There are many applications that
can justify such a move today, and the trend indicates that it is
becoming easier for more and more applications.

One of the basic techniques used to accomplish a reduction in
communications costs includes partitioning and isolating particu-
lar functions to local areas, so that communications to a central-
ized or remote system are unnecessary. For example, it might be
possible to use a local computer to do inventory control, etc., in a
warehouse rather than having a centralized computer for all ware-
houses. Depending on values associated with the application, dis-
placed communications costs may outweigh possible increases in
computer costs due to redundancy. In this case, the decentralized
approach would be attractive if the value of computer-assisted
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communications between warehouses or between a particular
warehouse and a central location were insignificant or could be
effectively handled by using other forms of communication.

Other examples of communications cost reduction techniques in-
clude the use of remote computers to concentrate the communi-
cations with a number of low-speed terminals into a single high-
speed line, and the use of a local processor to perform portions of
the application without requiring interaction with a centralized
machine.

One of the more common reasons for moving toward distributed
data processing, or at least decentralized processing, is the fact
that a single computer system with adequate capacity is not avail-
able. Even though the performance of high-end systems has
grown dramatically over the past decade, this growth is still less
than the capacity required by a number of computer users. Many
enterprises that use digital computers as an integral part of their
business have found that the capacity of a single machine has
been exceeded simply as a result of increased business volumes.
For example, consider a manufacturing plant that is controlled by
a data base system that receives orders, controls inventory lev-
els, and schedules manufacturing operations and the shipping of
finished goods. Here, the need for computer system capacity is
directly proportional to the business volumes of the manufactur-
ing operations. Thus, a doubling in business for the manufacturer
would require a proportionate increase in capacity of the com-
puter system.

Another limitation that arises from the use of a single system oc-
curs as a result of the operational complexity associated with
ever-increasing workloads. As applications are added over the
years to a central system, the cost grows for migration to a larger
capacity system and/or new operating systems software. Thus,
when a new operating system is installed to support new appli-
cations, the old application programs must be at least tested on
and possibly converted to the new software. Even if new soft-
ware is not introduced, adding major new applications often re-
quires the rescheduling of existing workloads and the retuning of
the system. In addition, there may be disruptions due to pre-
viously unencountered bugs in the operating system that are trig-
gered by the new application. In any case, partitioning the work-
load across two or more nodes can serve to reduce these prob-
lems and allow for more manageable growth.

Another motivating factor in the use of distributed processing is
that by partitioning applications across several machines, it is of-
ten possible to use specialized minicomputers or micro-
processors. Such machines can have price-performance advan-
tages over a large, general-purpose system. A simple example il-
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Figure 4 Price-performance ratio as a function of price for three computer architectures and
application complexities
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lustrates this point. Suppose that a particular application program
requires only eight-bit arithmetic, and the benchmark program to
measure the performance of various candidate processors is a
stream of instructions doing eight-bit arithmetic. This benchmark
could be executed on virtually any computer ranging from a
simple microprocessor to the most powerful large system. The
fact is that microprocessors now available at the corner electron-
ics store can execute this type of program with a price-perform-
ance ratio more than a thousand times better than the central
processor of a modern large-scale system.

Figure 4 shows the relationship between processor price-per-
formance ratio and processor price for a variety of architectures
and degrees of application complexity. The price-performance ra-
tio is optimized when the application complexity matches the ar-
chitecture. The variation in price-performance ratio can be as
much as three orders of magnitude between a microprocessor and
a large-scale computer, and as much as one or two orders of mag-
nitude between a microprocessor and a minicomputer.

The characterization of applications as either simple or complex,
with respect to processor architecture, is relatively straight-
forward at a detailed level. For instance, data items and instruc-
tions used to implement an application should closely match the
architecture of a machine that optimizes the price-performance
ratio. This machine would have little or no unused functional ca-
pability, and when the /0 and terminal devices are added to the
picture, these same considerations apply. However, because the
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price-performance differentials for main storage, direct-access
storage, and terminals are less dramatic between micro-
processors and large-scale computers, the price-performance dif-
ferences tend to be diluted when a total system view is taken.
Nevertheless, there are applications that show significant advan-
tages in price-performance ratio, when they are optimized against
a machine architecture that is appropriate to the application.
Overall configuration costs, depending upon the approach taken,
can vary by factors of from two to ten. Obviously, if the capacity
requirements of an application are large enough, and if there isa
close match to a minicomputer or a microprocessor implementa-
tion, the price-performance advantages of selecting such an ap-
proach could lead to a substantial dollar savings. Furthermore, if
a number of these simpler machines were required to achieve the
needed capacity, a distributed processing network configuration
would be required.

There are several additional advantages obtained by the use of
smaller, simpler machines in a distributed environment. The first
is that it is usually more economical to do a pilot version of an
application. As an example, consider pilot implementation alter-
natives for an application whose ultimate implementation would
require a single large-scale computer or one hundred mini-
computers. These alternatives are the following: (1) the ultimate
large-scale computer or a smaller version of it, or (2) a small num-
ber of minicomputers. Depending on the price of a smaller ver-
sion of the large machine, the differences in pilot hardware costs
can be substantial. Obviously, pilot studies could be done by us-
ing a portion of the resources of the large machine, but this is
often not practical from a technical and/or operational point of
view.

Another positive aspect of using small machines is the finer gran-
ularity of growth increments. Continuing the example of one hun-
dred small machines versus one large one, if additional capacity
were required, the addition of one machine to the array of small
machines might satisfy the demand for additional capacity. On
the other hand, to grow from the large-scale computer might re-
quire a second large machine or a transition to one having sub-
stantially more capacity (e.g., the next larger machine in the line).
Thus, in this example, the growth increment for the smaller ma-
chines would be one percent; for the large machine, the in-
crement could be as much as one hundred percent.

Finally, smaller machines in the minicomputer or microprocessor
categories require, because of their own simplicity, simpler soft-
ware support. Since the price-performance ratio of a simple ma-
chine is dependent on the nature of the programs it is running, the
conclusion is that the operating system software must be corre-
spondingly simple. It is inconceivable that good price-perform-
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Figure 5 Idealized application flow
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ance ratios can be achieved with an operating system whose com-
plexity exceeds the capability of the hardware. This last factor
leads to more tangible advantages in that simpler software allows
for reduced costs of installation, problem determination, tuning,
education, etc.

Techniques for distributed processing

This section categorizes various approaches to distributing func-
tions and data associated with application processing between
two or more processors. The first part of the discussion is at a
very general level, looking at an idealized application flow. Iden-
tified are the advantages and disadvantages of three generic ways
to partition the processing across two separate systems. Then ap-
plication structuring in the distributed environment is discussed
in more detail, with a set of terminology established to describe
each of the techniques for distribution.

Figure 5 shows an idealized high-level flow for an application.
Messages flow from the terminal through elements of the oper-
ating system to the application. The application program, in turn,
processes the incoming message, requests the necessary stored
data records through other portions of the operating system, and
then returns a response to the terminal.

As a way of discussing the various modes of splitting functions
between systems, the following question is addressed. Where is
the best place to split the function flow between two systems so
as to optimize the price-performance ratio? It should be noted at
this point that the primary factor for determining the split of the
application workload across two or more nodes is often not hard-
ware price-performance optimization. Considerations of com-
plexity, management structure, reliability, backup, recovery, re-
sponse time, etc. are often more important. Nevertheless, any
system must have adequate performance, and the following dis-
cussion focuses on this factor.

Assume that two systems are connected via a communication

line. Generally, in obtaining solutions to this problem, the follow-
ing two conditions must hold: (1) the processors are both fully
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Figure 6 Back-end processor configuration
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utilized, and (2) communications between them are minimized.
The added element in going from one to two systems is the addi-
tional communication overhead. Therefore, the delays and pro-
cessing time associated with communication must be small in
comparison to the time between communications. Thus the point
chosen to break the flow must be one that separates it into rela-
tively independent segments. In addition, there must be sub-
stantial amounts of processing done on both sides of the bound-
ary for meaningful utilization of the capacities of both sides.
These principles apply equally well to cases where more than two
processors are participating.

The following are three partitioning points: (1) in the operating
system between the terminal and the application; (2) in the oper-
ating system between the application and the data base; and (3)
within the application itself. Partitioning within the operating sys-
tem part of the flow, (1) and (2), has the general advantage that
applications can be run unchanged in a distributed environment.

Splitting the application flow in the operating system portion be-
tween the application and the data creates a system whose func-
tion is almost exclusively that of managing access to the data
bases. Such a system has been called a back-end processor. In
this configuration, the content of the communications between
the two processors is data access requests and data records. Fig-
ure 6 is a back-end processor view of the application flow.

Generally, the disadvantage of this approach is that there is usu-
ally a very high level of communication between the application
and the data management portion of the operating system. This is
due to the fact that there are typically many calls to the data base
for each incoming message from the terminal. The actual number
of data base calls per incoming message from the terminal could
vary from a handful to several hundred. Thus, the level of com-
munication between the two processors with this distribution ap-
proach is usually much higher than in the other two alternatives.

Another factor that tends to increase the level of communication
across the intersystem link is that in transaction-oriented sys-
tems, where data base recovery is an essential capability, com-
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Figure 7 Front-end processor configuration

FRONT-END
PROCESSOR

munication must occur between the terminal side and the data
side of the operating system. This additional communication is
required to create an environment where recovery is possible.
For instance, in the event of an application failure, the incoming
message must be requeued and the partial data base changes must
be backed out. To be able to accomplish such a restart, records
must be created that contain both data base and communication
status information.
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Still another factor is that it is difficult to achieve a reasonable
load balance between the two systems. In data base-data commu-
nication systems like IMS and CICS, the communcation and appli-
cation parts of the processing often represent a comparatively
small fraction of the total required capacity. Also, it is relatively
difficult to separate the two sides of the operating system support.
Nevertheless, this back-end processor approach to partitioning
has appeal in cases where multiple nodes use the back-end pro-
cessor for access to common data. In this way, contention for
access between systems can be managed at a central point and
the usual problems of preventing simultaneous access for update
can be handled easily. The author is not aware of any practical
situations where a back-end processor that is used exclusively for
data access provides a price-performance advantage. Generally,
the overhead of communications between the two systems domi-
nates any advantage. As was pointed out, however, there are
functional advantages.

Splitting the flow in the operating system elements between the
terminal and the application yields a partitioning that creates a
front-end processor. In this case, the communications between
the two systems take the form of incoming messages (or requests)
and outgoing responses. This approach has the advantage that the
communication required in this leg of the flow is relatively small
compared to the back-end processor situation. Generally, the
problem with this approach is to find enough work for the front-
end processor so that the load on the processor running the appli-
cation is significantly reduced from the single-processor case.
Such a reduction occurs in the two special cases that are dis-
cussed below. Figure 7 is a front-end processor view of the appli-
cation flow.
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Consider first a front-end processor that is managing a significant
network of terminals and, perhaps, routing messages to multiple
systems that are running applications. In this situation, the pro-
cessor load could become substantial. Other reasons for prefer-
ring this kind of arrangement include the ability to separate net-
work management from systems that are running applications and
the controlling data. The second case that provides for a signifi-
cant front-end processor load is the formatting of data for dis-
play terminals and the handling of the interactions that are re-
quired to create input for an application program. Such an inter-
action could include the checking of input variables for the
correct range and syntax, etc. There are cases where the work
needed to create complex input messages is adequate to load a
front-end processor and substantially reduce the amount of inter-
processor communication by localizing the simple, high-frequen-
cy interactions with the user. In addition, the complexity level of
this type of processing is well matched to a small, simple system.

Both the back-end and front-end processor approaches described
thus far have the advantage that they do not disturb the structure
of the application. Their disadvantage, of course, is that they do
not provide a general solution to the problem of distributing a
workload across a variety of nodes. What remains, then, is a need
to consider the structure of the applications with respect to where
they can be split so as to minimize communication and allow for
the balancing of processing among several nodes in a network.
Generally, it is necessary to identify points in the flow of the ap-
plications programming and their associated data where the level
of communication is low. The placement of both data and pro-
grams in the two nodes must also be examined from this point of
view.

The next sections of this paper describe two generic ways that
applications can be split across two or more systems in a distrib-
uted environment. These two techniques can be used in combina-
tion in much the same way that series and parallel connections of
electrical components can be used to implement any electrical
circuit. The distinction to be drawn has to do with whether two
systems relate as peers or in a master-slave combination. Peer
distribution is termed horizontal distribution, and master-slave
distribution is termed vertical distribution.

Horizontal distribution is typically characterized by the fact that
each of the nodes performs essentially the same functions. Usu-
ally the differences between the functions are in the instances of
data stored on each of the nodes and the particular set of termi-
nals to which they are connected.

Communications between the systems take the form of program-
to-program requests and responses in both directions. These
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communications are minimized because of relationships that exist
among the terminals connected to a particular system and the
data stored there. As an example, consider two nodes used for
retail credit authorization. Assume that each node is assigned to
cover a particular geographical area. Terminals for each area are
connected to their corresponding node, along with the stored data
that reflect the account status of the card holders for that area.
The level of communications between the two nodes would be a
function of probability that a card holder from one geographical
area is shopping in a retail establishment in the other node’s geo-
graphical area.

The state of California is an example in which the geography is
ideal for this type of split because the major population centers,
San Francisco and Los Angeles, are separated by a large zone
with relatively little population. Therefore, it would be relatively
easy to balance the load between two nodes with the probability
of communications between them being quite low. In contrast, in
a single-center geographical region such as the one that is domi-
nated by New York City, this approach would not be practical.

In a vertical arrangement, the terminals or other sources of work
are placed on one node, usually the smaller one, with another
node being placed upstream. In such a configuration, data for the
relatively simple and/or more common functions would be main-
tained on the nodes that are connected to the terminals. Further,
the application would be designed so that the bulk of the transac-
tions that originate in these terminals would be handled by the
local system. Only in the event of a more complex request, or one
that requires data stored on the upstream node, is a request sent
to the remote node. Thus the form of the communications in a
vertically distributed system is that of requests flowing in one di-
rection and responses in the other.

An example of vertical distribution is an application wherein the
inventory of a local warehouse is maintained in a machine at that
site. If, during order entry, a particular item is not in stock lo-
cally, an inquiry might be sent automatically either to the ma-
chine that is servicing another warehouse or to a central location
to determine whether the item is available elsewhere.

The discussion so far has focused on the form of the communica-
tion between two systems and their request-response relation-
ship. That is, the forms of communications can be as follows:

® Front-end processor: Terminal input message-output mes-
sage.

® Back-end processor: Data access request-data record.

® Vertical and horizontal distribution: Application-to-appli-
cation communications.
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The next sections describe additional choices regarding distribu-
tion techniques. These choices are primarily centered around the
choices for the placement of data in the overall system, data pro-
tection, and the frequency of data updating.

The particular form chosen for the communications necessary to  interactive
synchronize data copies across two or more nodes is a function of  versus batch
the following two goals: (1) minimizing reprocessing at each  communication
of the nodes that contain data copies; and (2) minimizing the level

of communication overhead. There are also two choices of com-

munication mode: (1) communicate immediately as changes oc-

cur, or (2) communicate changes all together in a batch, period-

ically. The batch approach has the potential for the greatest effi-

ciency, but it does not provide data currency. The choice must be

made on the basis of the need to have access to up-to-the-second

information.

Given that access to constantly current data is a requirement,
there are two further alternatives. Multiple copies of the data can
be kept in synchronization by immediate communication among
nodes; or a single copy of the data, kept in one node, can be
shared by all users. In the latter case, requests that require the
use of these data flow to this node. The single-copy alternative
can be more efficient than the multiple synchronized-copy ap-
proach if there is a high level of record updates relative to read-
only access and if the access time to the data for remote appli-
cations is fast enough for acceptable response times.

Thus, the essential new parameter when considering data place-
ment, update, and synchronization is the timing of the request-
response communication. A way to characterize this timing is to
consider whether a response is returned to the requester. In the
case of immediate communication, the requesting program waits
for the result or confirmation. In the batch case, there is no syn-
chronization with the requesting program. In the following dis-
cussion, these cases are termed interactive and batch, respec-
tively.

Table 1 summarizes the important combinations of parameters  summary of
for the distributed processing configurations that have been de-  techniques
scribed. The two parameters used describe the nature of commu-

nications to nodes in the network and are the following:

1. The form of communications used:
e Batch (asynchronous)
e Interactive (synchronous)
2. The request-response content of the communications:
o Input messages-output messages
e Data requests—data records
e Application-defined messages (i.e., any communication not
in the pure forms of the first two types)
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Table 1 Summary of distributed processing configurations discussed in this paper

Form of Content of Examples
communication communication

Remote Job Entry (input and output)

Input

messages Conversational Remote Job Entry
Output

messages Transaction tape to be processed

against data base

Changed-record tape to update
Data requests data base copy
Batch

(asynchronous) Datarecords Requests to send a copy of a data set

Partially preprocessed bulk input
Application data from data entry application
defined
Summary statistics (daily, hourly)
for remote operation forwarded
to central system

Input Message routing (front-end processor
messages to multiple destinations)

Input message checking and assembly
Output
messages Processing output variables from
application programs using locally
stored formats and fixed data

Datarequests  Application requests (GET/PUT) sent to
Interactive remote node for data access
(synchronous)
Data records Communications required to maintain
synchronization of two identical
data bases in two nodes

Multinode transactions, e.g., inventory
searches in multiple locations;

Application update of customer balance in one
defined node, teller cash drawer balance
in another drawer (check-cashing

application)

Although the terminology of ‘‘front-end processor’® and ‘‘back-
end processor’’ implies a static assignment of function to particu-
lar processors, this is not necessarily the case. Two or more of
the forms of communications can occur between any two pro-
cessors in the system as different aspects of the application pro-

‘grams are activated. Therefore, the alternatives shown in Table 1

can be considered on a communication-by-communication basis
rather than as a static choice. The major considerations that lead
to preferring the assignment of a static role to a node in the net-
work are the availability of data and operating system functions in
that node, both of which are static choices in themselves.
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Transaction-based data recovery

Another consideration regarding data placement is the ability of
the node that contains the data to provide protection in the event
of a failure. For the purposes of this discussion, an atomic unit of
work called a transaction is used. This means that the data base is
never allowed to reflect anything other than successfully com-
pleted transactions. Thus, if a transaction program fails during its
execution, any data changes up to that point are removed. Fur-
ther, no data changes are available to other programs until the
successful completion of the transaction. To implement this con-
cept, audit trails and checkpoint records must be recorded, and
care must be used in synchronizing and sequencing all the events
that occur at the end of a transaction. Although this definition is
consistent with the notion of a transaction usually held by a user
at a terminal, it should be noted that a transaction may require
actions in several nodes, with the work in each node tied together
by a complex protocol that gives the effect just defined.

In any node that has transaction-based data recovery, all in-
coming requests for processing, regardless of their form, must be
considered as transactions. In situations wherein transactions are
being executed in two or more nodes, the data bases in all the
participating nodes simultaneously reflect the successful com-
pletion of the transaction. If there is a failure in any of the nodes
during the process, changes in all nodes are removed. The provi-
sion of this multinode synchronization capability increases the
level of communication overhead between participating nodes. In
this paper, the term transaction mode is used to describe the type
of data base recovery just discussed.

By considering whether the requester and the responder in a com-
munication are operating in transaction environments, other im-
portant distinctions can be made. In the trivial case, neither the
requester nor the responder is operating in a transaction mode.
The second case is where the requester is not in a transaction
mode, whereas the responder is. In this latter case, the request
triggers the start of the transaction and the final response signals
the end. Intermediate communication may occur. An example of
such intermediate communication is when the requesting pro-
gram is providing an interface to the terminal user and doing input
verification and output formatting, i.e., functions that are not usu-
ally related to any data base. However, the node in transaction
mode may have to participate in input verification when access to
the data base is required or the input is inconsistent with the data
base content.

The third case is one in which both the requester and responder

are operating in a transaction mode. Here, it must be presumed
that protected data are being simultaneously updated in two
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nodes, and, if the communication between nodes is synchronous,
a multinode transaction is being performed. That is, all data base
changes in all nodes are synchronized, and an error in any node
causes any change in all nodes to be removed.

In the final case, the requester is operating in a transaction mode
and the responder is not. This combination is reasonable only
when the communication is asynchronous and the requested
function is not modifying protected data.

Application growth

This section describes some of the complications that are in-
troduced when new applications are added to a distributed sys-
tem. Generally, new applications create new uses for and new
relationships among existing data. As a result, the system’s over-
all design may have to be changed to remain viable. An example
is presented to illustrate such a situation.

The example consists of a three-stage application growth scenario
in which the third stage establishes a relationship between the
first two. The first stage is a horizontally distributed system to
support on-line bank tellers. The second stage involves the use of
a separate system to do credit card authorization. The third stage
is the connection of the preceding two systems to accomplish
electronic funds transfer.

Figure 8 shows the configuration for the on-line bank teller appli-
cation. The approach selected for this implementation is a hori-
zontal distribution, where the terminals for branches are con-
nected to a particular machine that holds the data associated with
the accounts in those branches.

Generally, branch banking can be managed so that branches are
roughly the same size and have roughly the same traffic. There-
fore, all terminals can be made to have very similar traffic pat-
terns. This homogeneity, plus the fact that people tend to bank
where they have an account or in a branch that is nearby, allows
the communication overhead to be low enough for the system to
be viable. The probability that a transaction requires access to
data in another node is a key parameter in the design. This proba-
bility is referred to later as the miss ratio. One of the techniques
used to minimize the miss ratio is to place the data and terminals
for a set of branches in adjacent geographical areas in the same
machine.

The second application to be implemented is the authorization of

credit. Assume that the same banking establishment requires a
system with terminals in retail establishments to perform the
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credit authorization for its bank credit card. This application has
little homogeneity. There is a wide variance in traffic among ter-
minals, and there is a skewed distribution of terminals on a geo-
graphical basis. Since these characteristics do not lend them-
selves to a distributed implementation, assume that this appli-
cation is placed on a single node system.

The third stage of growth of the example on-line banking system
is electronic funds transfer. When customers make purchases in a
retail store using the second application system, the charges are
reflected against the customer’s checking account balance in the
first application system. This new application obviously will place
a significant additional load on the combined system.

Probably the most attractive solution to the problem of handling
this additional load would be to add more nodes to the first appli-
cation system and redistribute the terminals and data so that each
node would handle fewer branches than before. In this way,
additional capacity would be made available to handle the new
application. Because each node has fewer branches, however,
the miss ratio would increase, with a corresponding increase in
communication overhead. This increased overhead would add to
the load of the system, and still more capacity might be required.
If more nodes were added to solve this problem, the resulting
increase in communication overhead might totally offset the in-
creased capacity. In this way, the situation might degenerate to
the point where no number of nodes would be able to handle the
required load.

Another simple solution to the problem would be to use machines
that have greater processing capacity in each node. This alterna-
tive is sometimes not attractive because of the economics of re-
placing existing equipment.

If neither faster equipment nor the simple extension of the distri-
bution techniques already used yields viable configurations, the
only other approach would be to redesign the system. Generally,
this would involve redistribution of data and programs between
nodes, including the node for credit authorization along with the
addition of equipment to augment capacity. In many application
growth situations, this approach is the only one that can be used.

The lesson to be learned from this example is simply that growth
of applications must be carefully planned and managed. New ap-
plications typically create new relationships among existing data
and application programs. As a result, the balance of the system
design, which is based upon having particular values for certain
interaction probabilities, may be upset. Thus the system may
have to be rebalanced. As was just discussed, this rebalancing
could be done by increasing the number of nodes in a straight-
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forward way, by increasing the power of each node, or by selec-
tively redistributing data and/or particular application programs.
In order to maintain maximum flexibility and keep every possible
alternative open, it is desirable to design the applications initially
from the point of view that redistribution may be necessary as a
result of unforeseen and unforeseeable requirements placed on
this system by the implementation of new applications.

None of these problems is new. They have all been present in
applications in centralized processing environments. Only the
emphasis is different. The overall goal is to obtain the benefits of
distributed processing while preserving the management control
and flexibility of the centralized approach. In particular, the fol-
lowing are needed:

e Centralized design of the system data base and control over its
content, level of usage by particular elements of the applica-
tion programming, synchronization, recovery, and distri-
bution.

e The structuring of the application program itself into distrib-
utable pieces and the definition of the unit of distribution. The
transaction, as defined in this paper, can be used as an ex-
ample of such a unit. Other definitions could be used that
would more precisely fit the needs of the application itself.

® Once a distributed application is up and running, it is neces-
sary that the level of the programs, the data bases, and the
operating systems themselves be centrally controlled. This
usually requires a central library control and distribution
package that is operating in a central node of the system.

Neither are the tools needed to implement this centralized control
new. Such tools include a data description directory that could be
used to record the content of data records and where-used infor-
mation, plus overall performance measurement facilities. The mea-
surements could be used to relate transaction frequency, data usage,
and network utilization. This information is essential in the process
of identifying performance bottlenecks and predicting effects of
new applications and/or redistribution of data and programs.

Most importantly, perhaps, there has to be a level of compatibil-
ity between the nodes of the system to allow for both data and
program redistribution to support growth. Compatibility must ex-
ist, even between dissimilar nodes, for the following items:
source programs, communication protocols, transaction defini-
tions, portable media, and data structures.

Conclusions

This paper has discussed some theoretical aspects of systems de-
sign as well as the pragmatic motivations for seeking distributed
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processing solutions to application implementations. Theoretical
considerations do not usually dictate where or how to distribute.
They can only assist in maximizing the efficiency of decisions
based upon such criteria as system reliability and availability,
data security, organization needs, and response time. If, for ex-
ample, a machine is being placed near a manufacturing line to
provide insulation from central system failures in the area of work
scheduling, there are very few degrees of freedom with respect to
the placement of certain data and where certain programs must
execute.

The overall importance of the factors that determine the form of
processing (distributed, centralized, or decentralized) to be se-
lected begin with such motivations as have been described here.
Considerations proceed to the structural requirements of the ap-
plication data and programs, and continue to the various choices
described in the techniques sections of this paper. Distributed
processing offers an unprecedented level of flexibility in the de-
sign of application systems. Because flexibility is inevitably a
two-edged sword, however, it is more necessary than ever before
to proceed with understanding and with deliberate, manageable
plans. It is for this reason more than any other that the corner-
stone of any effective distributed processing system must be the
ability to implement a high degree of centralized control.
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