Visual programming:
Perspectives and
approaches

REPRINTED FROM IBM SYSTEMS JOURNAL, VOL28, NO 4, 1989; © 1989, 1999

Visual programming tackles the problem of bringing
computing facilitles to people who do not have exten-
sive computer training by using visual (l.e., nonlinear)
representations in the programming process. In this
paper, we first define visual programming and briefly
discuss its many facets. The purpose Is to lay a con-
ceptual background so that common understanding
can be established and various aspects of visual pro-
gramming can be focused on and examined. We then
concentrate on visual programming languages,
namely, languages that enable the users to “program”
with visual expressions. Examples are used to illustrate
three fundamentally different approaches: diagram-
matic, iconic, and form based. Finally, we show that
FORMAL, a system developed and implemented at the
IBM Los Angeles Scientific Center, not only captures
the spirit of visual programming languages but also
has the capability to automate a wide variety of com-
mon data processing applications.

rogramming can be defined as specifying a

method for doing something a computer can do
in terms the computer can interpret. In order to get
something done on a computer, there is a division
of labor: a human to specify to a computer; the
computer to interpret and execute. The traditional
programming approach requires a great deal of hu-
man effort because programming languages were
designed primarily for efficient interpretation and
execution by computers. Until recently, very little
attention was paid to whether it was easy for end
users to do the specification because it was com-
monly assumed that only those having highly trained
programming skills would write programs.

IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999

0018-8670/99/$5.00 © 1999 IBM

by N. C. Shu

The situation has dramatically changed in the last
few years. The rapid decline of computing costs,
coupled with the sharp increase in the number of
personal computers, has expanded substantially the
population of the user community and its drive for
computerized applications. However, to many peo-
ple, the usefulness of a computer is bound by the
usefulness of the canned application software avail-
able. Those who wish to use the computer to do
something beyond the capabilities of the canned
programs discover that they will have to “program.”

Learning to program, unfortunately, is a time-con-
suming and often frustrating endeavor. Moreover,
even after the skill is learned, writing and testing a
program is usually a labor-intensive chore. Many
people shy away from it simply because they cannot
afford the time and effort required. The challenge is
to bring computer capabilities simply and usefully
to people whose work can benefit from program-
ming, but who are not programmers by profession.

Visual programming represents a revolutionary ap-
proach to meet this challenge. It is stimulated by the
premises that: (1) pictures can convey more meaning
in a more concise unit of expression; (2) pictures can
help understanding and remembering; (3) pictures

© Copyright 1989 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

sHu 199

200 sHu

can make programming more interesting; and (4)
when properly designed, pictures can be understood
by people regardless of what language they speak.
The field is young and fast moving. There are many
interesting proposals and developments within it, but
common understanding is lacking.

This paper is tutorial in nature. Its purpose is many-
fold: to present a framework so that a common
understanding can be established and various aspects
of visual programming can be focused on and ex-
amined; to bring together a wide array of research
efforts within this framework; to illuminate the fun-
damental differences underlying three major cate-
gories of visual programming languages; and to pre-
sent a “programming paradigm” (represented by
FORMAL) that focuses not only on “the ability to
communicate” (which is the predominant driving
force behind all visual programming languages), but
also on “the ability to automate” (which is lacking
in most programming languages).

Although one of the purposes of this paper is to pull
together the multiplicity of ideas that have shaped
the current state of the art in visual programming, it
is not our intention to present a complete survey.
Obviously, within the space of this paper, we can
neither include all the interesting work reported in
the literature, nor cover all aspects of any selected
work. Instead of a comprehensive survey that por-
trays a labyrinth, we strive to present a guide through
the labyrinth. Readers who are interested in more
detail may find the extensive list of references help-
ful. With this in mind, we are now ready to begin
our exposition.

Many facets of visual programming—A frame-
work

Let us begin w1th the definition of visual program-
ming. Myers' classified programming systems into
eight categories using the orthogonal criteria of (a)
visual programming or not, (b) example-based pro-
gramming or not, and (c) interpretive or compiled.
According to Myers’ definitions, “Visual Program-
ming refers to any system that allows the user to
specify a program in a two- (or more) dimensional
fashion,” and “Example-Based Programming refers
to systems that allow the programmer to use exam-
ples of input and output data during the program-
ming process.”

Lookmg at the subject from a broader perspective,
Shu’ uses the term visual programming to mean “the

VOL28, NO 4, 1989, REPRINT

use of meaningful graphical representations in the
process of programming.” Work on visual program-
ming explores the use of graphical (i.e., nonlinear)
representations for all phases of the programming
process. Progress is made along two major directions,
depending on the primary focuses. Along one direc-
tion, graphical techniques and pointing devices are
used to provide a visual environment for program
understanding, construction, and debugging, for in-
formation retrieval and presentation, and for soft-
ware design and maintenance. Along another direc-
tion, languages are designed to handle visual infor-
mation, to support visual interaction, and to allow
programming with visual expressions. The last cate-
gory can more aptly be called the “visual program-
ming languages” and is the pnmary interest of this
paper. Figure 1 (taken from Shu) categonzes the
many facets of visual programming and is used as
the conceptual framework for the following exposi-
tion.

Visualization of data or information about data. In
the visual environment, the first category of work
concentrates on visualization of data or information
about data (e.g., data structures, database schemas).
Two distinct motivations serve as the driving force.
The first is to fulfill the needs of people who want to
access information in data management systems but
are not trained in the use of such systems. Typically,
data are stored internally in conventional databases
but expressed and presented to the user in graphical
forms. Users can access data via graphical forms or
zoom into the data to obtain greater detail with a
joystick or a pointing device. This approach permits
many types of questions to be answered without the
need for a keyboard or the necessity of learning a
query language.

The second motivation is to enhance the understand-
ing of people who have to deal with the intricacies
of programming. Since data structures and database
schemas play a prominent role in programming, and
since graphical depictions found in every good text-
book are known to be extremely helpful, it is natural
that the visualization of data structures and database
schemas is pursued.

Regardless of the motivations, systems of this cate-
gory are mostly devoted to using “direct manipula-
tion™ as a means of information browsing and using
graphical views for visualization of the information
retrieved. Systems such as sDMs, * vGQF,’ KAESTLE, 6
1SIS, AMETHYST," 1BS,” the Metaphor system,' and
“A graphical entity-relationship database browser”'

represent some of the work falling into this category.

IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999

Figure1 Categorization of visual programming

VISUAL PROGRAMMING

VISUAL ENVIRONMENT

VISUAL LANGUAGES FOR...

VISUALIZATION OF... VISUAL
COACHING

DATA OR PROGRAM SOFTWARE

INFORMATION AND/OR DESIGN

ABOUT DATA EXECUTION

PROGRAMMING

HANDLING SUPPORTING
VISUAL VISUAL WITH VISUAL
INTERACTIONS EXPRESSIONS

| INFORMATION

Visualization of a program and its execution. An-
other category in the visual environment provides
graphical support for the visualization of programs
and their run-time states and results. Any person
who writes, tests, debugs, changes, or maintains a
program needs to know why the program solves the
given problem. Visualization of programs and exe-
cution helps to manifest what the programs do, how
they work, why they work, and what are their behav-
ior and effects.

Activities in this area span a wide spectrum, ranging
from (a) pretty-printing the source code; through (b)
displaying traditional programs in diagrams; and (c)
showing multiple views of a program and its execu-
tion states in well-known programming terms (e.g.,
syntax tree, symbol tables, variables, control flow,
execution stacks); to (d) watching execution of a
program in animated forms, The SEE compiler,” a
visual syntax editor for Lisp,"’ “An icon-based design
method for Prolog,”"* CEDAR,"® PECAN,'® GARDEN, "’
PROVIDE,'® “VIPS: A visual debugger,”"” “Visible Pas-
cal,”20 “Animating programs using Smalltalk,”*'
BALSA,” and BALSA-II represent some diversive ac-
tivities in this area.

Visualization of software design. The third category
is aimed at providing a visual environment for the
development and understanding of “programming
in the large” (as opposed to detailed algorithms in a
program). As Lampsonz‘ pointed out, “Designing a
computer system is very different from designing an
algorithm: the external interface—that is, the re-

IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999

VOL28, NO 4, 1989, REPRINT

\

VISUAL PROGRAMMING LANGUAGES

DIAGRAMMATIC | ICONIC FORM
SYSTEMS SYSTEMS SYSTEMS

quirement—is less precisely defined, more complex,
and more subject to change; the system has much
more internal structure—hence, many internal in-
terfaces; and the measure of success is much less
clear.”

Perhaps because of the problems inherited from the
complexity of large systems, work in this area is
represented by two contrasting approaches. The con-
trast reflects two often competing concerns: provid-
ing an effective environment and maintainingzgnath-
ematical rigor. For example, the Pv system,” soft-
ware through pictures,” and many case (Computer
Aided Software Engineering) tools’” focus on the
former: the users are provided with a set of graphi-
cal tools for creatinguviews of their own choosing.
The PegaSys system,” in contrast, concentrates on
the latter: formalism is introduced into graphical
representations with the intention that the consis-
tency between a formal diagram and a program can
be proved or disproved by the system.

Visual coaching. The fourth category of efforts ex-
plores visual programming with the intention of
narrowing the gap between the mental process and
the programming process of solving a problem. In
the environment provided by these systems, a user
does not mentally visualize the effects of his or her
instructions. The effects take place on the screen
before the user’s eyes. The programming process
relies almost completely on interactions. The style
of interaction, in general, “mimics the informal way
we explain programs, by showing pictures of the data

stu 201

202 sHu

and defining the computation on them by pointing
sequences similar to hand waving.”” We therefore
use the term “visual coaching” to characterize this
category.

Almost all visual coaching systems are inspired by
the programming by examples or programming by
demonstration approach, which has been a field of
study within the arena of artificial intelligence. »
From the user’s point of view, the underlying idea is
quite simple. In essence, the user “writes” a program
(i.e., makes a specification) by giving examples or
demonstrating to the computer what he or she wants
the program to do. The system records, and hope-
fully also generalizes, what has been shown.

Since most people are much better at dealing with
specific, concrete objects than with abstract concepts,
specification by demonstration can indeed be natural
and potentially easy for the user to formulate. How-
ever, from the system standpoint, program synthesis
from examples involves many difficulties.”

First of all, the examples given may be ambiguous.
The system must be able to determine whether the
user’s specification is consistent and whether the
system’s “model” of what the user wants is indeed
the right program. Furthermore, specification by ex-
ample is rarely complete, since a few examples will
not fully describe the behavior of the desired pro-
gram in all cases. The system must be able to work
with partial or fragmented information and must
have the ability to do inductive inferencing in order
to synthesize a program that covers more than the
examples given. In addition, when the process is
attempted in the general case, the system must enu-
merate the set of all possible programs, the cost of
which could be very high.

These difficulties can be circumvented by restricting
the problem domain to a relatively small area, where
the ability of the system to “infer” the general case
is not required or is not crucial. The difficulties can
be further reduced by providing an interactive visual
environment which encourages cooperation between
the user and the system and leads to an increase in
both the clarity and the amount of information that
a user conveys to the system. It is here that visual
coaching comes in.

Visual coaching represents various attempts to cou-
ple the power of examples with the benefits of work-
ing in an interactive visual environment. Represen-
tative examples include AUTOPROGRAMMER,” Pyg-

VOL28, NO 4, 1989, REPRINT

malion,” 4“Programm1ng by Abstract Demon-
stration, »3 Smallstar, ThmkPad PIP kaer,
“Programming by rehearsal,”” ALEX, ¥ Peridot,”
“Visual programmmg with objects and rela'aons,”"l
and Basil.*

To make the problems tractable, most of the visual
coaching systems today (with few exceptions, of
which AUTOPROGRAMMER™ is an example) choose to
limit their applications to a relatively small and
precise domain and attempt to do limited or no
inductive inferencing. At the current state of the art,
visual coaching offers an intuitive environment
which works well when the objects being manipu-
lated have obvious and concrete representations but
the problem domain of each system is rather re-
stricted.

Contrasts between visual environment and
languages

Before we go on, note that the first three categories
of visual programming differ from each other be-
cause they focus on visualization of three distinct
classes of objects, and the problems that they attempt
to solve relate to three different aspects of program-
ming. The fourth category (visual coaching) goes
beyond visualization by using visual signaling as a
means of program construction. Thus, on a close
look, these four represent four distinct categories of
visual programming.

Looking from a higher level, however, we see that it
is clear that all four have the following characteristics
in common: (a) All of them provide a visual environ-
ment for humans to interact with the computer,
where showing is the primary means of communi-
cation. From the user’s point of view, visualization
means “Show me what I have” (in terms of program
or data or system design) or “Show me what is going
on” (in terms of execution states), whereas visual
coaching can be characterized as “Do as I show you.”
(b) None of them provide anything new in terms of
an approach to the language aspects of the program-
ming process. In other words, the emphasis of these
four categories is on interaction in a visual environ-
ment, not on languages. This characteristic marks
the sharp distinction between the two major areas of
visual programming; visual environment and visual
languages.

In contrast to using “showing” as the primary means

of communication, languages are used in telling the
computer what to do. Depending on their objectives,

IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999

visual languages can be classified into three cate-
gories: those for handling visual information, those
for supporting visual interactions, and those for pro-
gramming with visual representations. The distinc-

Many query languages for pictorial
data are implemented as augmented
database query languages.

tions among these three categories become clear
when we take a closer look at the representative
systems.

Languages for handling visual information. The de-
velopment of this category has historical interest. In
the early 1970s, the image processing systems de-
signed for the handling of pictorial data and the
database management systems designed for the stor-
age, retrieval, and management of alphanumeric
data were developed in parallel at different camps.
Image processing systems were mostly designed for
geographical, medical, scientific, or engineering ap-
plications. Each system was tailored for a specific
purpose in a special environment, which makes the
sharing of pictorial data very difficult. Database man-
agement systems, in contrast, were designed for busi-
ness applications, Although they allow effective ac-
cessing and sharing of alphanumeric data, the hand-
ling of pictorial data was not part of their domain.
It was difficult, if not impossible, to use the conven-
tional query languages to express or manipulate spa-
tial relationships.

By the late 1970s, the technologies of pictorial data
processing and database management began to
merge. The growing amount of pictorial data being
generated and analyzed and the ever-increasing need
to share and to make pictorial data readily accessible
have motivated the development of “generalized”
systems. One relatively straightforward approach is
to incorporate picture-processing capabilities into
the conventional database query languages. Conse-
quently, many query languages for pictorial data are
implemented as augmented (or extended) database
query languages. For example, GRAIN (the Graphics-

IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999

VOL28, NO 4, 1989, REPRINT

oriented Relational Algebraic INterpreter)43 is an
extension of RAIN, * Geo-QUEL” is a geographical
extension of QUEL, “ and psQL (Plctonal Structured
Query Language), 7 1sQL (Image SQL), and lDMS
are extensions of SQL (Structured Query Language).”

These languages are often referred to as “pictorial
query languages —a term which may be misleading,
since in most cases the query languages themselves
are not pictorial, even though the data objects that
they deal with are.

Languages for supporting visual interactions. Graph-
ical displays and pointing devices play an important
role in visual interactions. The traditional approach
to creating a graphical display is to write a program
that accepts parameterized input, accesses a data-
base, and then calls a graphics subroutine to create
the desired display. The principal impediment to this
approach is the use of traditional languages which
were not designed for visual interactions.

Thus, as visual interactions are gaining ground, lan-
guages are developed to support the visual interac-
tions. JeoL (the Icon-Class Description Language) of
sDMs," HI-VISUAL (“A Language Supportmg Visual
Interaction in Programmmg”),5 Squeak (“A lan-
guage for communicating with mice”), %2 Coral (Con-
straint-based Object-oriented Relations And Lan-
guages),53 and “An interface description language for
graph editors” are examples of this category. They
support various forms of visual interaction, but the
languages themselves are textual.

Visual programming languages. The third category
of visual languages, visual programming languages,
allows users to actually program with graphical
expressions. Informally, a visual programming lan-
guage can be defined as a language which uses some
visual representations (in addition to or in place of
words and numbers) to accomplish what would oth-
erwise have to be written in a traditional one-dimen-
sional programming language.

Note that this definition imposes no restrictions on
the type of data or information. It is immaterial
whether the object being operated on or being pre-
sented to a user is textual, numeric, pictorial, audio,
or a combination of these forms. What is important
is that, in order to be considered a visual program-
ming language, the language itself must have some
meaningful (i.e., not merely decorative) visual rep-
resentations as a means of programming. Programs
using visual programming languages are constructed

stu 203

204 shu

from the language components in the traditional
sense. The language primitives (e.g., icons, lines,
boxes, arrows, form constructs) have well-defined
syntax and semantics. The “sentences” expressed in
these languages (e.g., icons connected with flow
paths, nodes connected by arrows, structured charts,
stylized forms) can be “parsed” and “interpreted.”

Based on the principles of design, most of the visual

programming languages reported in the literature fall
into three broad categories. At one end of the spec-

Some aspects of programming
can best be represented
in diagrammatic forms.

trum, flowcharts and diagrams that are already in
use on paper are either incorporated into program-
ming constructs as extensions to conventional pro-
gramming languages, or made into machine inter-
pretable units to be used in conjunction with con-
ventional programming languages. They can be
characterized as diagrammatic programming lan-
guages.

At the other end, icons or graphical symbols are
deliberately designed to be the programming lan-
guage primitives. The primary objective is to teach
and to carry out programming concepts by pictorial
representations. The rationale behind the iconic ap-
proach is the premise that pictures provide an incen-
tive to learn. Challenge, fantasy, and curiosity (the
three most important factors that make computer
games so captivating)® are all there when we deal
with pictorial systems. These languages can be char-
acterized as iconic programming languages. They are
often misleadingly equated with visual programming
languages, but strictly speaking, they represent only
one type of the latter.

Between the two extremes (i.e., chart or diagrams,
and iconic systems) we have visual programming
languages of the third kind: the forms-oriented lan-
guages. In this category, like all other visual program-
ming languages, graphical representations (typically,

VOL28, NO 4, 1989, REPRINT

stylized form constructs) are designed as an integral
part of the language. However, unlike the icons in
the iconic systems, these graphical representations
are not designed to induce a sense of excitement.
They are adopted mainly because they represent
familiar notions. Yet, unlike the diagrammatic sys-
tems, these languages are not attempts to make the
“paper and pencil aids” executable.

We now discuss these three types of visual program-
ming languages in more depth.

Diagrammatic programming languages

For many years, charts, graphs and diagrams of
various sorts have been used as visual aids for the
iltustration or documentation of one or more aspects
of programs. But these graphical aids, by and large,
did not comprise the executable programs them-
selves. The high cost of graphic terminals and the
large data storage needed for graphic representations
have kept the graphing and diagramming techniques
on paper and on blackboards. Only recently have
efforts been made to make the paper and pencil tools
executable. The motivation behind these efforts is
not hard to understand if we look at the conventional
process of programming, Traditionally, program-
ming involves several distinct phases: problem analy-
sis, charting (i.e., using some kind of diagrammatic
depictions for program abstraction), coding, trans-
lation (compiling/interpreting), and testing. And,
more often than not, these processes would have to
be reiterated at various points. A serious problem
with this approach has to do with the need to keep
both the charts and the code (which are basically two
representations of the same program) up to date. It
is not surprising that somewhere along the process,
the chart (which is also part of the documentation)
no longer represents the actual code that gets exe-
cuted.

Making charts executable is an attempt to collapse
the two separate processes (program abstraction and
coding) into one, thus not only making programs
easier to comprehend, but easier to document and
maintain.

In addition, some aspects of programming can best
be represented in diagrammatic forms. For example,
state transition diagrams are found to be suitable for
the user interface description.” By giving the tran-
sition rules for each state, they make explicit what
the user can do at each state and what the effects will
be. As another example, the interrelationship be-

IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999

tween concurrent processes can be more vividly de-
scribed with diagrams than with text. Thus, graphics
is exploited for those aspects of programming where
diagrammatic forms are appealing. The basic nota-
tions for these diagrammatic forms follow fairly
widely used conventions. They include data flow
diagrams (e.g., FGL, GPL™), state transition dia-
grams (e.g., USE,” Jacob’s state transition diagram
langiuages‘), and Petri Nets (e.g, VERDL™ GsDL,”
PFG "), as well as various forms of flowcharts (for
example, FPL," Pascal/usp,” GAL,” “A graphics-
based programming support system,”® piGs,” and
Pigsty/1-PIGS™).

To give some of the flavor of these diagrammatic
languages and to show the trend in which some of
them are evolving, we discuss “A graphics-based
programming support system” (hereafter referred to
as the Programming Support System),* piGs,” and
Pigsty/1-PIGs" in more depth. These three systems
comprise a series of efforts that evolved over the last
ten years.

The Programming Support System was a pioneering
work in using charts as the graphical extension of a
conventional programming language. In order to
make charts executable, the Programming Support
System extended the structured diagrams proposed
by Nassi and Shneiderman® to include “headers”
and called the extended forms NSDs.

Each NSD consists of two parts. The (declarative)
header part includes the diagram name, a comment
about its function, and definitions of its local vari-
ables and parameters. The (imperative) body part
consists of NSD constructs (SIMPLE, i.e., sequential,
IF, CASE, and DO-LOOP) with embedded base language
statements (in this case, a subset of pL/1). The NSD
constructs specify the control flow, and the base
language statements specify the operations to be
performed. Figure 2 shows an example of an NsD.

Drawing or modifying charts is normally a cumber-
some process and is often a deterrent to using chart-
ing techniques. To make the task easier, the Pro-
gramming Support System provides an interactive
graphic editor to serve as a charting device. Editing
in general involves pointing to a location on a screen
and typing in a single letter to indicate the desired
action. For example, typing the letter “S,” “I,” “C,”
or “L” causes the system to embed a SIMPLE, IF, CASE
or DO-LOOP construct at the pointed location. Typing
the letter “T” allows text to be entered within a
pointed NSD construct.

IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999

VOL28, NO 4, 1989, REPRINT

To execute an NSD program, a pPreprocessor is in-
voked to translate the charts into PL/1 source pro-
grams, which are then compiled by a regular PL/I
compiler and executed.

The extra layer of software imposed by the pre-
processor approach prevents interactive execution
which is useful at the program development stage.
The desire to provide a more flexible environment
led to the development of PIGs, which stands for
“Programming with interactive graphical support. »57
It is a direct descendent of the Programming Support
System. A PIGS program is built with NsDs developed
by the Programming Support System as the execut-
able chart form, but uses a subset of Pascal (instead
of pPL/1) as the base language.

The emphasis of PIGS is on the interactive support
for testing and debugging at execution. An inter-
preter, rather than a compiler, is used to allow the
user to interact with the program and make changes
during execution. As execution proceeds, the user
can watch and follow the logic flow of an NsD
program. The construct outline and the embedded
text are displayed and brightened at the graphics
terminal when an NSD construct is executed.

More recently, the concept of PIGS was extended to
support concurrent programming in Pigsty/l-l’IGs.68
Pigsty is the language based on Pascal and Commu-
nicating Sequential Processes (Csp),” and 1-PIGS is
the programming environment that supports Pigsty.

Like PIGS, Pigsty uses a combination of text and
diagrams to represent a program. The sequential part
of Pigsty is based on Pascal. The control constructs
are represented in chart form. Dijkstra’s alternative
1F-F1 and repetitive DO-0D guarded commands’ be-
come the ALT-/ALT and the *ALT-/*ALT, respectively.
A Pigsty program consists of one or more sequential
processes, each represented by a box. Processes may
communicate with each other via one-directional
links. The communication and synchronization
mechanism between Pigsty processes is the same as
the csp communication mechanism. I-PIGS can exe-
cute the chart programs via a simulated concurrent
execution mechanism and detects deadlock during
execution of a concurrent program.

These three examples show the evolution of a species
of diagrammatic systems—a species that has its root
in the structured diagram of Nassi-Shneiderman.
The evolution has widened the horizon but has not
changed the fundamental characteristics of diagram-

sHu 205

206 sHu

Figure 2 An NSD program

PRIME : PROCEDURE;
SPEC : this program computes the first n (>2)

prime numbers

PARAMTERS :

NAME SIZE TYPE (I/R/C/CV) USE (I/0/M)
LOCAL / GLOBAL VARIABLES :

NAME SIZE TYPE (I/R/C/CV) USE (L/G)
bo) 1000 integer local

v 35 integer local

n, x, lim; square, pr integer local

P(l) /= 2; xi='1; " lim'=1; wsquare = 4;

/*initialization*/

get ‘list (n); put skip edit (p(l)) (£(10));

IOOP 1 = 2 to n

LOOP while (pr = 0) /*loop while not prime*/

X =X+ 23

TF: square < = x
TRUE 2 FALSE
v(lim) = square;
lim = 1lim + 1;
square = p(lim) * p(lim);
pr = 1;
LOOP 'k =2 to lim - luwhide (pr = 1)
IF vi(k) i<
TRUE 2 FALSE
v(k) = v(k) + p(k); ’
IF x = v(k)
TRUE 2 FALSE
pr = 0; '

P =x; iput skipidedit () (F (1.0)8)7

matic languages: Diagrammatic depictions that are
useful on paper are made into machine interpretable
units and used as extensions of or in conjunction
with conventional programming languages.

Iconic programming languages

Iconic systems use icons (pictograms) to7 2represent
objects and actions. Xerox’s Star system ~ is often
credited as the forerunner of the iconic systems. Star

VOL28, NO 4, 1989, REPRINT

uses icons and pointing devices as a means to com-
municate with the computer. Every user’s initial
view of Star is the “desktop” on the screen. Docu-
ments, folders, file drawers, in and out baskets, etc.
are displayed as small pictures (or icons) on the
desktop. A user can “open” an icon by selecting it
(with a mouse) and pushing the OPEN key on the
keyboard. When opened, an icon expands into a
larger form called a “window.” Contents of an icon
are displayed in the window, enabling a user to read

IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999

documents, inspect the contents of folders and file
drawers, send and receive mail, etc., by “seeing and
pointing” versus “remembering and typing.” Star
has a powerful editor for document creation on the
screen. The much talked about wysiwyG (What You
See Is What You Get) refers to the situation in which
the display screen portrays a rendition of a printed
page. : .

As far as the computational capabilities are con-
cerned, “calculators” (modeled after pocket calcula-
tors) exist to let a user perform arithmetic calcula-
tions. Arithmetic computations for “records process-
ing” (i.e., traditional data processing)” can be
embodied in the “fill-in rules,” specified as a property
of fields. Figure 3 shows an open property sheet for
a field with a fill-in rule.

For more complicated computations, users would
have to “escape” to a conventional language called
cusp (for CUStomer Programming). The Star de-
signers recognized that “the complexity of user ap-
plications is essentially unbounded, which makes
some sort of programming language virtually man-
datory.”” Unfortunately, what is envisioned is:
“Eventually, cusp will become a full programming
language, with procedures, variables, parameters,
and a programming environment.””

In short, Star was primarily designed for office profes-
sionals who create, retrieve, and distribute docu-
ments. The main contribution of Star is making the
system seem friendly by simplifying the human-
machine interface for office workers. It is evident
that its iconic “desktop metaphor” has widespread

Figure 3 A field with a fill-In rule

[FIELD PROPERTIES

lDone | [Defaults l

Display FIELD SUMMARY
Nae = |
Description 'dollar amount billed |

Type ANY \Vels) il DATE |

’REQUIREDAJ

US ENGLISH UK ENGLISH |FRENCH IGERMAN ‘ SWEDISH]

} rSTOP ON SKIP I

Skip if field r

Language

Format I S

Range (}
Length E:‘ characters or less

l is ‘ EMPTY iNOT EMPTY NEVER' SKIP:

Fill-in rule !Rate * Hours

|

[

IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999

VOL28, NO 4, 1989, REPRINT

stu 207

Figure 4 Multiplication by repeated addition: (A) a Pascal program; (B) a Pict program

type SixDigits = 0..999999;

repeated addition¥*)
var Orange : SixDigits;
begin

if Blue > Green then

begin
Orange := Blue;
Blue := Green;
Green := Orange;

end;

Red := 0;

while Blue > 0 do

begin
Red := Red + Green;
Blue := Blue -1;
end;

end;

function Red (Green, Blue: SixDigits) : SixDigits; Fy

(*multiply two natural numbers by means of

S . a0
¥ =
_'H
] :
| Sl
] :
L -l

influence on many of the later commercial products.
User interfaces using icons and windows are now
commonplace in many systems.

The function of iconic programming languages goes
beyond that of iconic user interfaces, since the latter
deals with communication with a computer at the
“command” language level, whereas the former at-
tempts to achieve what the traditional programming
languages are capable of doing.

In the last few years, a significant number of iconic
programming languages have been reported. A-

208 shu

VOL28, NO 4, 1989, REPRINT

mong them, Venntisp,* ICONLISP,75 and Tinkertoy76
are examples of executable graphics based on Lisp,
Dialog.I”” is an iconic programmmg langua 9g

on logic programmlng, 1DEOSY ® and Clara” support
a formal semantics based on Milner’s Calculus of
Communication Systems (ccs);* Pict® and BLOX™
express algorithmic languages, such as Pascal and C,

in graphics; “Show and Tell”™ treats computation
problems as the completlon of puzzles; PROGRAPH, 4
the extended HI-VISUAL,” and the G language of
Labview® fortify data flow concepts with iteration,

CASE, IF (or8 SWITCH”), and other control structures;
PROGRAPH2®' combines data flow and object orien-

IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999

D D
‘V
<
VAN v
VAN |
D
V|

tation; IntercoNs™ implements data flow concepts
w1th dlrect manipulation techmques, and Bridge-
Talk® proposes an approach that is based on how
novices learn to program.

It should be clear, from the above citations (which
by no means cover all of the iconic programming
languages that have surfaced), that there are diversi-
fied approaches to iconic programming languages.
Nevertheless, in spite of the variations in the back-
bones of these languages, most of them are designed
to entice novices or end users into the world of
programming or to make the learning of program-

IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999

VOL28, NO 4, 1989, REPRINT

ming fun. We use Pict" and the G language of
Labview® as illustrative examples.

Pict represents one of the earlier efforts in using icons
for purposes beyond the user interface at the oper-
ating system (or command language) level. It is
designed to aid program implementation. Tradi-
tional programming concepts such as “(sub)program
names and parameter passing modes, data struc-
tures, variables, and program operations are repre- .
sented by icons of various sorts, whereas control
structures such as the Pascal REPEAT-UNTIL Oor WHILE
are represented b Y colored, directed paths that can
actually be seen.”

In writing a program, icons denoting the various
operations needed to perform the calculations are
selected from a predefined set and placed in the
program area of the screen. These icons are ‘then -
connected by paths to denote the flow of control. As
an example, Figure 4A shows a Pascal program for
multiplying integers by means of repeated addition,
and Figure 4B illustrates the essence of a Pict pro-
gram that performs the same function. The corre-
spondence between these two is obvious.

At execution time, Pict uses simple forms of ani-
mation to make the drawing “come to life.” The
run-time stack height is shown at both edges of the
main area of the user program. A white box moves
along a flow-of-control path, showing the progress
through the program as it is run.

The Pict system was intended to serve as an experi-
mental prototype capable of supporting the imple-
mentation of programs similar to those often as-
signed to students in introductory programming
courses. As a programming language, Pict is at a
language level similar to that of BASIC or simple
Pascal. Pict allows recursive and arbitrary chains of
subroutine calls and was found to be suitable for
initiating novices into the world of computer pro-
gramming. However, because of the very restricted
sizes of the user program modules, the limited set of
data types and language constructs, and the ex-
tremely small number of variables to which a module
can refer, the applicability of Pict beyond the class-
room is quite limited. The authors acknowledged
that “To woo the expert user, we must significantly
expand the system’s capabilities.”

In contrast, the G language of LabviEw™ has been
put to use to solve some real-world problems (for
example, mathematical modeling by physiologists %),

stu 209

210 shu

LabvieEw is an acronym for Laboratory Virtual In-
strument Engineering Workbench. It is a software
construction system for scientific applications in-
volving instrument control, data acquisition, analy-
sis, computation, and display. Its intended users are
engineers and scientists with little programming ex-
perience. A LabviEw program can be thought of
metaphorically as a “virtual instrument” consisting
of two parts: a front panel and an executable block
diagram. The front panel contains the graphical rep-
resentations (i.e., icons) of the input and output
controls (e.g., switches, dials, knobs, digital or analog
meters, strip-charts). The block diagram contains the
program that the instrument executes. From various
menus the user obtains the desired icons and places
them in the front panel or in the block diagram.
“Wires” connecting the icons define the path of data
flow from one icon (or node) to the next. A simple
example® is shown in Figure 5. In Figure 5A, the
left half contains the front panel for the scale number
virtual instrument. It has two input variables (or
controls) and one output control. The right half is
the executable block diagram that uses these con-
trols. The program logic of this block diagram is
based on Figure 5B, which shows a way to scale a
number from the range (-1,1) to the range (0,s). The
execution of a virtual instrument is inherently par-
allel and data-driven.

The language used to build the block diagrams is
called the graphical language G. G is based on the
data flow model of programming with extensions
that overcome the difficulties of specifying condi-
tional and iterative operations in the pure data flow
paradigm. Four “flow of control” structures are pro-
vided: (1) a sequence structure that allows the user
to specify a strict sequence of execution steps (to
override the inherent parallelism); (2) an iterative (or
FOR) loop; (3) a case selection structure; and (4) an
infinite (or WHILE) loop. In addition, a set of shift
registers can be attached to the boundaries of the
iterative and indefinite looping structures to enable
the result of one iteration to be used as input to a
subsequent iteration, thus permitting recursive cal-
culations.

The G language of LabviEw supports four basic data
types (i.e., real numbers and arrays of reals, Booleans
and arrays of Booleans, strings and arrays of strings,
and structures) and a rich set of built-in functions
(e.g., array arithmetic, matrix and vector algebra,
statistical functions, and signal-processing routines).
Built-in functions and user’s virtual instruments ap-
pear as icons and can be incorporated into the block

VOL28, NO 4, 1989, REPRINT

diagrams of a larger instrument and executed like a
subroutine.

According to Kiel and Shepherd,” “Before using it,
we had the impression that LabviEw would make
mathematical modeling possible for all life scientists
who are not computer programmers. In most re-
spects, LabviEw lived up to this expectation, but to
some extent it did not. Certainly, the many useful
features of LabviEw, such as the math routines and
the graphic displays, can easily be used by the unso-
phisticated programmer. Similarly, simple diagrams
are indeed self-explanatory programs. In our opin-
ion, an inexperienced programmer could construct

Forms are considered to be a
natural interface between a human
and a computer.

a much more sophisticated model in LabviEw than
in other high-level languages. However, more elab-
orate LabviEw programs can be as difficult to deci-
pher and debug as those in other languages. Simi-
larly, like other computer languages, LabviEw can
demand arcane programming tricks, and the meth-
ods that have to be used to store variable values and
to branch on a particular condition are often not
straightforward. Nevertheless, even the accom-
plished programmer will find much to admire and
use in Labview . ..”

Forms-oriented programming languages

Forms are considered to be a natural interface be-
tween a human and a computer because a large
number of users are familiar with forms. The success
story of spreadsheet programs testifies to the appeal
of the table- or form-oriented approach. Spread-
sheets are designed for special purposes. They have
succeeded admirably in letting users do the table-
oriented computations, but their functions are lim-
ited. As Rich and Waters’' put it, “a spreadsheet is
a concise domain-specific interface that makes it
remarkably easy to write certain kinds of programs
and startlingly hard to write other kinds of pro-

IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999

Figure 5 The scale number virtual instrument (A is from G.M. Vose and G. Williams, *‘LabVIEW: Laboratory Virtual Instrument
Engineering Workbench,” BYTE, 11, No. 8, September 1986. Reprinted with permission.)

IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999 VOL28, NO 4, 1989, REPRINT sHu 211

212 shu

grams.” Exploring the strength and the weakness of
spreadsheets is an interesting topic in itself and is
outside the scope of this paper.

Other applications that take a forms-oriented ap-
proach generally involve data entry and display, as
well as database query and maintenance. Forms-
oriented languages that support these apphcatlons
1nclud9e6 QBE,” QBE/OBE, ~ QBE/PC, * QpE,? FORMAN-
AGER," IDEAL, I“Flll-m-the-fgrm programmm§,
FILLIN, Forms, =~ PICQUERY, and FORMAL,
name a few. Most of these languages are designed to
support relational databases. In contrast, FORMAL, a
system developed and implemented at the 1BM Los
Angeles Scientific Center, supports hierarchical data
structures of arbitrary complexity, and thus can per-
form more complex data manipulations than oper-
ations on the flat tables. More importantly, FORMAL
differs from other forms-oriented languages in an-
other respect: It offers users a greater degree of flex-
ibility for a much wider range of applications. Its
focus is on data processing applications of a broad
scope. Data entry, display, and query are merely side
benefits. In the following, we discuss FORMAL in more
depth.

FORMAL: A nonprocedural visual programming
language

FORMAL'? is an acronym for Forms ORiented MA-
nipulation Language. It is implemented at the 1BM
Los Angeles Scientific Center as an experimental
application development system for end users. The
language is not designed to teach the would-be pro-
grammer the concepts of traditional programming,
nor is it aimed at incorporating the existing “paper
and pencil tools” as graphical extensions to conven-
tional programming languages. Rather, it is designed
for people to computerize many fairly complex data
processing applications without having to learn or to
labor over the intricacies of “programming.”

FORMAL capitalizes on the user’s familiarity with
forms in several ways: First, stylized form headings
are used as visual representations of data structures
(which could be quite complex). As an example,
Figure 6 shows the form heading and a few instances
of PERSON data.

Note that the form heading serves as an unambigu-
ous description of a data structure. The form name
is placed on the top line of a form' heading. The
names of the first-level components (i.e., fields or
groups) are shown in columns under the form name.

VOL28, NO 4, 1989, REPRINT

The names of components of groups, in turn, are
placed under the associated group names. Groups
can be either repeating or nonrepeating. A nonre-
peating group refers to a collection of consecutive
fields (e.g., DATE as a nonrepeating group over
MONTH, DAY, and YEAR). A repeating group may
have multiple instances and is denoted by a pair of
parentheses over the group name. Repeating groups
can be nested (representing several levels of a branch)
or in parallel (representing several branches of a tree).
A double line signals the end of a form heading. To
view the data, values are displayed under the form
heading. The compactness of the form heading en-
ables the visualization of many instances at a time.

Second, data processing activities are viewed as form
processes (or a series of form processes), where each
form process takes one or two forms as input and
produces another form as output. For example, a
Christmas party for employees’ children is being
planned. Gifts will be given to children under 11
years of age and whose parent works either at ‘LA’
or ‘sF’. Different gifts are planned for each age group.
The party organizer wishes to list by age for each
location, the names of the children (KIDS) who are
eligible for gifts (along with their parents’ names).
Figure 7A shows the desired GIFrLIST form, The
process of transforming the existing information in
the PERSON form into GIFTLIST is viewed as a form
process.

Third and most important, programs are also rep-
resented in forms. Since data processing activities are
viewed as form processes, a program, then, is a user’s
way of telling the computer what is desired as the
result of a form process. In using FORMAL, one starts
with the visual representation of an output form and
completes a program by specifying a few relevant
properties (SOURCE, MATCH, CONDITION, ORDER) un-
der the form heading.

Briefly, SOURCE defines where to obtain the relevant
data for the operation. MATCH specifies the fields to
be matched if the output instances are constructed
from two input sources. If specified, CONDITION de-
scribes the criteria for selecting instances from the
input, and ORDER depicts the desired sequencing of
instances within a form or within a group.

For example, a FORMAL program used to create the
GIFTLIST form is shown in Figure 7B. The desired
output (GIFTLIST) data structure is depicted in the
form heading. SOURCE specifies that the instances of
LOC, AGE, and KNAME are to be taken from the

IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999

Figure 6 A PERSON form

corresponding fields of the PERSON form, and PAR-
ENT__NAME taken from the NAME field of the PERSON
form. As a rule, CONDITIONS specified in two or more
rows under the same field (column) are “ORed.”
Conditions specified under different fields are then
“ANDed.” In this example, only those having LOC
equal to ‘LA’ or ‘SF’, and AGE less than 11 will be
extracted, restructured, and placed in the output.

Note that the basic concepts underlying FORMAL are
so simple that its power and scope of applications
may not be immediately obvious. For example, writ-
ing a program equivalent to the GIFTLIST program in
a procedural language would reveal that, in addition
to data extraction and selection, algorithms must be

IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999

(PERSON)
ENO | DNO NAME PHONE dJc (KIDS) (SCHOOL) SEX Loc
KNAME AGE SNAME (ENROLL)
YEARIN YEAROUT
05 D1 SMITH 5555 05 JOHN 02 PRINCETON 1966 70 E SF
MARY 04 1972 76
05 D1 SMITH 5555 05 JANE 01 E SF
07 D1 JONES 5555 05 DICK 07 SJs 1960 65 F SF
JANE 04
BERKELEY 1965 69
Akl D1 ENGEL 2568 05 RITA 01 UCLA 1970 74 1 LA
12 D1 DURAN 7610 05 MARY 08 M SF
BOB 10
JOHN 12
19 D1 HOPE 31550 07 MARYLOU 10 M SJ
MARYANN 07
02 D2 GREEN Jel414: 01 RON 15 M SE
DAVID 04
20 D2 CHU 3348 10 CHARLIE 06 HONGKONG 1962 66 E LA
CHRIS 09
BONNIE 04 STANFORD 1967 69
1972 75
21 D2 DWAN 3535 12 Usc 1970 74 B SJ
43 D2 JACOB 4643 09 PAULA 07 BERKELEY 1962 66 M SJ
PAUL 16
: el
//

VOL28, NO 4, 1989, REPRINT

developed, coded, and debugged for the required
data restructuring. Similarly, a wide range of data
processing applications of a much more complicated
nature can be programmed in FORMAL. In most
cases, the applications seem simple because data
restructuring, often an integral but nontrivial part of
an application, is implied in the differences in the
output and input form headings, and executable code
for the desired processing is automatically generated
by the compiler.

Figure 8 shows a program that creates a DEPTMENT
form from the PERSON and PROJECT forms. For doc-
umentation purposes, the structures of the two in-
puts are included in the program as comments.

sHu 213

214 shu

Figure 7 GIFTLIST form: (A) desired output; (B) a FORMAL program to create GIFTLIST from PERSON

(GIFTLIST) GIFTLIST: CREATE GIFTLIST
LOC | (RECEIVER) = : :
" (GLETETESE)
AGE | (KID)) =
- — “LOC. | (RECETIVER)
KNAME | PARENT NAME e :
- e . IDGE i (KID)
LA 04 BONNIE CHU e T e
RITA ENGEL ‘| KNAME © | PARENT NAME:
06 CHARLIE | CHU SOURCE PERSON PERSON . NAME
09 CHRIS CHU CONDITION | 'LA' | LT 11
ISFI
SF 01 JANE SMITH
ORDER ASC
02 JOHN SMITH
END
04 MARY SMITH
JANE JONES
DAVID GREEN
07 DICK JONES
08 MARY DURAN
10 BOB DURAN

Normally, an instance of DEPTMENT will be produced
only when a MATCH of input instances (where PER-
SON.DNO equals PROJECT.DNO) is found. However,
when the PREVAIL option is specified (as in this
example), an instance of output will be produced for
each instance in the prevailing form, regardless of
whether there is a matching instance or not. In case
of no match, “NULL” values will be assigned to the
missing values. Unlike comments, <n> (where n
denotes a digit) is a note meaningful to the compiler.
Following the notation <1> used in Figure 8, we
observe that BUDGET in DEPTMENT is to be derived
by PROJECT.PROJ.COST TIMES 1.5 (for cases where
PROJ.COST is less than 50 000), or by PROJ.COST TIMES
1.6 (for other cases).

An experienced programmer would realize that the
creation of the DEPTMENT form from the PERSON and
PROJECTs forms requires not only extensive data
restructuring as shown in Figure 9 (which involves

VOL28, NO 4, 1989, REPRINT

“projection,” “restriction,” and “outer-join” of hier-
archical data, and increasing hierarchical levels along
one branch of a two-branch tree) but also the case-
by-case assignments of new values, sorting of form
instances within a form, and sorting of group in-
stances within parent instance. Traditionally, algo-
rithms for this rather complicated process must be
carefully developed and tested by application pro-
grammers.

In summary, the data processing capabilities sup-
ported by FORMAL include: (1) data restructuring
implied by the differences in the input and output
form headings, (2) automatic iteration, (3) arithmetic
and string operations, (4) case-by-case assignments,
(5) supplying of field values by the user at execution
time, (6) sorting of instances within a form or within
a parent instance, and (7) aggregation (COUNT, SUM,
AVG, MAX, MIN) progressively up the hierarchical
path.

IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999

Figure 8 Program to produce DEPTMENT from PERSON and PROJECT forms

5

IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999 VOL28, NO 4, 1989, REPRINT stu 215

216 sHu

Figure 9 Structural transformations associated with producing DEPTMENT from PERSON and PROJECT

PERSON FORM PROJECT FORM
‘ ENO ’ DNO , NAME ’ PHONE ' Jc ‘ SEX ‘ Loc I l DNO MGR l
l KNAME AGE ‘ SNAME l PUNO COST ‘
“YEARIN YEAROUT I l NAME USAGE ‘
DEPTMENT FORM
- " PUNO BUDGET
NAME ' PHONE I Loc
SNAME
YEAROUT

With these capabilities, a wide range of fairly com-
plex data processing applications can be accom-
plished. Yet, FORMAL is nonprocedural. There are
no prescriptive or control constructs in:- FORMAL.
Users do not tell the computer what steps to follow
in order to achieve the results. As far as users are

VOL28, NO 4, 1989, REPRINT

concerned, no algorithms are to be designed and
coded. Results are obtained automatically by run-
ning the compiler-generated code. This is made pos-
sible because the FORMAL compiler is able to take
over, from the user, the “thinking and coding™ proc-
ess normally associated with writing algorithms for

IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999

data {(gstructuring and data manipulation opera-
tions.

The “thinking and coding” process carried out by
the compiler is accomplished in two stages. In the
first stage, the differences in the input and output
data structures are recognized, and the applicability
of various transformation rules are analyzed. The
result is a plan for mapping the specified input to

FORMAL has succeeded in doing
automatic programming for a
wide range of fairly complex

applications.

the desired output. In the second stage, construction
begins. Embedded knowledge on the target language
and the run-time efficiency considerations are uti-
lized to implement the plan. The result is an execut-
able program tailored for the task at hand.

In short, FORMAL has succeeded in doing automatic
programming for a wide range of fairly complex data
processing applications. Its success is made possible
because of the visual expressions (form outlines)
incorporated as an integral part of the language. The
natural tendency of people to draw pictures to show
what they want is exploited in this approach. The
result is a new style of programming that combines
the “naturalness” of visual programming languages
with the power of automatic programming tech-
niques: “What you sketch is what you get!”

Summary

The programming process is a many-phased en-
deavor. Work on visual programming explores the
use of visual representations for all facets of the
programming process. In this paper, we have first
shown the diversity of activities in this rapidly grow-
ing area and categorized the activities according to
their prominent characteristics. We then focused our
attention on one facet of visual programming,
namely, visual programming languages.

IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999

VOL28, NO 4, 1989, REPRINT

The work on visual programming languages has
gained momentum in recent years primarily because
the falling cost of graphics-related hardware and
software has made it possible to employ visual
expressions as a means of programming. However,
aside from the fact that they all use some sort of
visual expression as language components, visual
programming languages differ significantly from
each other in their goals, their approaches, their
design philosophies, and their appearances. The di-
versity is not really surprising since the examples of
visual programming languages have come into exis-
tence from various backgrounds and were designed
for different audiences and purposes.

Generally speaking, diagrammatic systems use charts
and diagrams either as graphical extensions to con-
ventional programming languages, or as machine-
interpretable units used in conjunction with conven-
tional programming languages. The diagrammatic
forms used by these systems are based on the kinds
of program abstractions already used on blackboard
or paper as visual aids for some aspects of program-
ming concepts which can be better expressed in
diagrams than in text (for example, flow of control,
flow of data, time dependence of concurrent systems,
transitions of states, etc.).

With iconic programming languages, icons are spe-
cifically designed to be the essential language ele-
ments playing a central role. A programming process
essentially involves selecting or composing icons, or
both, placing them in proper juxtaposition on the
screen, and connecting the icons by paths to indicate
the desired flow of control. Iconic systems appear to
be more fun. They provide a more interesting way
for novices to learn programming than conventional,
text-based programming languages.

It is interesting to note that in spite of the significant
differences in the goals and approaches taken by the
diagrammatic and the iconic programming lan-
guages, they have some things in common. Concep-
tually they both are engaged in algorithmic program-
ming. To use these languages other than for play,
one must understand the basic concepts of tradi-
tional programming languages such as variables, op-
erations, flow of data, flow of control, iterations,
subprograms, recursions, run-time stacks, parameter
passing, time dependencies, etc. And, one must work
out the procedural aspects of programming. In order
to produce an executable program, a user must
develop and specify the algorithms in sufficient de-
tail.

stu 217

218 shu

In contrast, the form-based language FORMAL is de-
signed for people who need to computerize their
applications but have no desire to learn to program
or no time to program in step-by-step instructions.
There are no pretty pictures in FORMAL, only simple,
stylized form outlines. Consequently, FORMAL does
not appear to be as exciting as iconic languages. But
with FORMAL, a user can accomplish a wide range of
data processing applications without the need to
understand any programming concepts, and without
the necessity to develop algorithms and make de-
tailed specifications. With FORMAL, automatic pro-
gramming plays a vital supporting role to visual
programming.

Obviously, however innovative visual programming
may be, it is by no means a panacea, let alone the
best solution for all programming problems. It has
advantages in some areas and limitations in others.
The framework established by the categorization
enables us to look at the advantages and limitations
in a more focused fashion.

Historically, major new developments have come
from the intersection of a multiplicity of ideas. As a
new field, visual programming shows a lot of poten-
tial, but we are just at the beginning. In the last few
years, we have seen rapid and diversified growth. It
is hoped that in the next few years we will witness a
new type of quest: maturation with scientific and
engineering discipline and cross-fertilization with
other areas of learning.

Acknowledgment

The author wishes to thank John Kepler and Jim
Jordan for their management support.

Cited references

1. B. A. Myers, The State of the Art in Visual Programming
and Program Visualization, Technical Report CMU-CS-88-
114, Carnegie Mellon University, Pittsburgh, PA (February
1988).

2. N. C. Shu, Visual Programming, Van Nostrand Reinhold
Company, New York (1988).

3. B. Shneiderman, “Direct manipulation: A step beyond pro-
gramming languages,” Computer 19, No. 8, 57-69 (August
1983).

4. C. F. Herot, “Spatial management of data,” ACM Transac-
tions on Database Systems 5, No. 4, 493-514 (December
1980).

5. N. H. McDonald, “A multi media approach to the user
interface,” in Human Factors and Interactive Computer Sys-
tems, Y. Vissiliou, Editor, Ablex Publishing Corp., Norwood,
NJ (1984), pp. 105-116.

10.

1.

12.

13.
14,

15.

16.

21.
22,
23.
24,
25.

26.

27.

VOL28, NO 4, 1989, REPRINT

. H.-D. Boecker, G. Fischer, and H. Nieper, “The enhance-

ment of understanding through visual representations,” Pro-
ceedings of CHI'86 Conference, Human Factors in Comput-
ing Systems (August 1986), pp. 44-50.

. K. J. Goldman, S. A. Goldman, P. C. Kanellakis, and S. B.

Zdonik, “ISIS: Interface for a Semantic Information System,”
Proceedings of ACM SIGMOD International Conference on
the Management of Data (May 1985), pp. 328-342.

. B. A. Myers, R. Chandhok, and A. Sareen, “Automatic data

visualization for novice Pascal programmers,” Proceedings
of the 1988 IEEE Workshop on Visual Languages (October
1988), pp. 192-198.

. M. Erradi and C. Frasson, “Interaction with IBS: An icon-

based system,” Proceedings of Computer Graphics Confer-
ence, Tokyo (1986), pp. 159-171.

P. B. Sevbold, “Metaphor computer systems: A quiet revo-
lution,” Office Computing Report 11, No. 8, 1-15 (August
1988).

L. M. Burns, J. L. Archibald, and A. Malhotra, “A graphical
entity-relationship database browser,” Proceedings of the 21st
Annual Hawaii International Conference on Systems Sci-
ences 2, 694-704 (1988).

R. Baecker and A. Marcus, “Design principles for the en-
hanced presentation of computer program source text,” Pro-
ceedings of CHI'86, Human Factors in Computing Systems
(April 1986), pp. 51-58.

R. Levien, “Visual programming,” BYTE 11, No. 2, 135~
144 (February 1986).

G. M. Karam, “An icon-based design method for Prolog,”
IEEE Sofiware, 51-65 (July 1988).

W. Teitelman, “A tour through CEDAR,” IEEE Transac-
tions on Sofiware Engineering SE-11, No. 3, 285-302 (March
1985).

S. P. Reiss, “PECAN: Program development systems that
support multiple views,” IEEE Transactions on Sofiware
Engineering SE-11, No. 3, 276-285 (March 1985).

. S. P. Reiss, “Working in the GARDEN environment for

conceptual programming,” IEEE Sofiware 4, No. 6, 17-27
(November 1987).

. T. G. Moher, “PROVIDE: A Process Visualization and

Debugging Environment,” IEEE Transactions on Sofiware
Engineering 14, No. 6, 849-857 (June 1988).

. S. Isoda, T. Shimomura, and Y. Ono, “VIPS: A visual

debugger,” IEEE Sofiware 4, No. 3, 8-19 (May 1987).

. C. D. Hughes and J. M. Moshell, “Visible Pascal: A graphics-

based learning environment,” Proceedings of Computer
Graphics 86, National Computer Graphics Association (May
1986), pp. 401-411.

R. L. London and R. A. Duisberg, “Animating programs
using Smalltalk,” Computer 18, No. 8, 61-71 (August 1985).
M. H. Brown and R. Sedgewick, “Techniques for algorithm
animation,” JEEE Software 2, No. 1, 28-39 (January 1985).
M. H. Brown, “Exploring algorithms using Balsa-I1,” Com-
puter 21, No. 5, 14-36 (May 1988).

B. W. Lampson, “Hints for computer system design,” JEEE
Software 1, No. 1, 11-28 (January 1984).

G. P. Brown, R. T. Carling, C. F. Herot, D. A. Kramlich,
and P. Souza, “Program Visualization: Graphical support for
sofiware development,” Computer 18, No. 8, 27-35 (August
1985).

A. Wasserman and P. Pircher, “A graphical, extensible inte-
grated environment for software development,” ACM SIG-
PLAN Notices 22, No. 1, 131-142 (January 1987).

V. Vemuri, Editor, Software Development: Computer Aided
SE (CASE), Technology Series, IEEE Computer Society
Press, Los Angeles (1988).

IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999

28. M. Moriconi and D. F. Hare, “Visualizing program designs

29.

30.

3L

32.

33.

34.

35.

36.

3%

38.
39.

through PegaSys,” Computer 18, No. 8, 72-85 (August 1985).
G. Raeder, Programming in Pictures, Ph.D, dissertation,
Department of Computer Science, University of Southern
California, Los Angeles (November 1984).

A. Barr and E. A. Feigenbaum, The Handbook of Artificial
Intelligence, Vol. 2, William Kaufmann, Inc., Los Altos, CA
(1982), Chapter X.

A. W. Biermann, “Automatic programming: A tutorial on
formal methodologies,” Journal of Symbolic Computation 1,
119-142 (1985).

A. W. Biermann and R. Krishnaswamy, “Constructing pro-
grams from example computations,” JEEE Transactions on
Software Engineering SE-2, No. 3, 141-153 (September
1976).

D. C. Smith, Pygmalion: A Creative Programming Environ-
ment, Ph.D. dissertation, Technical Report STAN-CS-75-
499, Department of Computer Science, Stanford University,
Stanford, CA (1975).

G. A. Curry, Programming by Abstract Demonstration, Ph.D.
dissertation, Technical Report 78-03-02, University of Wash-
ington, Seattle, WA (March 1978).

D. C. Halbert, Programming by Example, Ph.D. dissertation,
Computer Science Division, University of California, Berke-
ley (1984).

R. V. Rubin, E. J. Golin, and S. O. Reiss, “ThinkPad: A
graphical system for programming by demonstration,” IEEE
Software 2, No. 2, 73-79 (March 1985).

H. Lieberman, “An example based environment for begin-
ning programmers,” Instructional Science 14, 277-292
(1986).

W. Finzer and L. Gould, “Programming by rehearsal,” BYTE
9, No. 6, 187-210 (June 1984).

D. Kozen, T. Teitelbaum, W. Chen, J. Field, W. Pugh, and
B. V. Zanden, “ALEX—An alexical programming lan-
guage,” Proceedings of the 1987 IEEE Workshop on Visual
Languages (August 1987), pp. 315-329.

40. B. A. Myers, “Creating dynamic interaction techniques by

41.

42.

Demonstration,” CHI + GI 1987 Conference Proceedings
(April 1987), pp. 271-278.

G. Rogers, “Visual programming with objects and relations,”
Proceedings of the 1988 IEEE Workshop on Visual Lan-
guages (October 1988), pp. 29-36.

D. L. Maulsby and I. H. Witten, “Inducing programs in a
direct-manipulation environment,” Proceedings of CHI'89,
Human Factors in Computing Systems (1989), pp. 57-62.

43, S. K. Chang, J. Reuss, and B. H. McCormick, “Design

45.

46.

47.

48.

IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999

considerations of a pictorial database system,” International
Journal on Policy Analysis and Information Systems 1, No.
2, 49-70 (January 1978).
. S. K. Chang, M. O’Brien, J. Read, R. Borovec, W. H. Cheng,
and J. S. Ke, “Design considerations of a database system in
a clinical network environment,” Proceedings of the National
Computer Conference (1976), pp. 277-286.
R. Berman and M. Stonebraker, “GEO-QUEL: A system for
the manipulation and display of geographic data,” Computer
Graphics 11, No. 2, 186-191 (Summer 1977).
G. D. Held, M. Stonebraker, and E. Wong, “INGRES: A
relational database system,” Proceedings of AFIPS, National
Computer Conference 44, 409416 (1975).
N. Roussopoulos and D. Leifker, “An introduction to PSQL:
A Pictorial Structured Query Language,” Proceedings of the
1984 IEEE Computer Society Workshop on Visual Lan-
guages, Hiroshima, Japan (1984), pp. 77-87.
K. Assmann, R. Venema, and K. H. Hohne, “The ISQL
language: A software tool for the development of pictorial

49.

50.

S1.

52

53.

54.

55.

56.

57.

58.

59.

61.

62.

63.

64.

VOL28, NO 4, 1989, REPRINT

information systems in medicine,” in Visual Languages, S.
K. Chang, et al., Editors, Plenum Publishing Corporation,
New York (1986), pp. 261-284.

G. Y. Tang, “A logical data organization for the integrated
database of pictures and alphanumerical data,” Proceedings
of the IEEE Workshop on Picture Data Description and
Management (August 1980), pp. 158-166.

D. D. Chamberlin, M. M. Astrahan, K. P. Eswaran, P. P.
Griffiths, R. A. Loroe, J. W. Mehl, P. Reisner, and B. W.
Wade, “SEQUEL 2: A unified approach to data definition,
manipulation, and control,” IBM Journal of Research and
Development 20, No. 6, 560-575 (1976).

M. Hirakawa, N. Monden, 1. Yoshimoto, M. Tanaka, and
T. Ichikawa, “HI-VISUAL: A Language Supporting Visual
Interaction in Programming,” in Visual Languages, S. K.
Chang, et al., Editors, Plenum Publishing Corporation, New
York (1986), pp. 233-259.

L. Cardelli and R. Pike, “Squeak: A language for communi-
cating with mice,” Proceedings of ACM SIGGRAPH °85 (July
1985), pp. 199-204.

P. A. Szekely and B. A. Myers, “A user interface toolkit
based on graphical objects and constraints,” Proceedings of
OOPSLA ‘88 Conference (September 1988), pp. 36-45. (Also
special issue of ACM SIGPLAN Notices 23, No. 11, Novem-
ber 1988.)

F. J. Newbery, “An interface description language for graph
editors,” Proceedings of the 1988 IEEE Workshop on Visual
Languages (October 1988), pp. 144-149.

T. W. Malone, “Heuristics for designing enjoyable user in-
terfaces: Lessons from computer games,” in Human Factors
in Computer Systems, Thomas and Schneider, Editors, Ablex
Publishing Corp., Norwood, NJ (1984).

R. J. K. Jacob, “A state transition diagram language for
visual programming,” Computer 18, No. 8, 51-59 (August
1985).

R. M. Keller and W-C. J. Yen, “A graphical approach to
software development using function graphs,” Digest of Pa-
pers, Compcon Spring 81 (February 1981), pp. 156-161.

A. L. Davis and S. A. Lowder, “A sample management
application program in a graphical data driven programming
language,” Digest of Papers, Compcon Spring 81 (February
1981), pp. 162-167.

A. 1. Wasserman, P. A. Pircher, D. T. Shewmake, and M. L.
Kersten, “Developing interactive information systems with
the USE software engineering methodology,” JEEE Trans-
actions on Sofiware Engineering SE-12, No. 2, 326-345
(February 1986).

. M. Graf|, “A visual environment for the design of distributed

systems,” Proceedings of the 1987 IEEE Workshop on Visual
Languages (August 1987), pp. 330-344.

S. Coote, J. Gallagher, J. Mariani, T. Rodden, A. Scott, and
D. Shepherd, “Graphical and iconic programming languages
for distributed process control,” Proceedings of the 1988
IEEE Workshop on Visual Languages (October 1988), pp.
183-190.

P. D. Stotts, “The PFG environment: Parallel programming
with Petri Net semantics,” Proceedings of the 21st Hawaii
International Conference on System Sciences (January 1988),
pp. 630-638.

N. Cunniff, R. P. Taylor, and J. B. Black, “Does program-
ming language affect the type of conceptual bugs in beginners’
programs? A comparison of FPL and Pascal,” Proceedings
of CHI'86, Human Factors in Computing Systems (April
1986), pp. 175-182.

J. L. Diaz-Herrera and R. C. Flude, “Pascal/HSD: A graph-
ical programming system,” Proceedings of IEEE COMPSAC

stu 219

6S.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

71.

78.

79.

80.
81.

82,

83.

84.
8s.

220 sHu

‘80 (1980), pp. 723-728.

M. B. Albizuri-Romero, “GRASE—A graphical syntax di-
rected editor for structured programming,” ACM SIGPLAN
Notices 19, No. 2, 28-37 (February 1984).

H. P. Frei, D. L. Weller, and R. Williams, “A graphics-based
programming support system,” Proceedings of ACM SIG-
GRAPH °78 (August 1978), pp. 43-49.

M. C. Pong and N. Ng, “PIGS—A system for programming
with interactive graphical support,” Sofiware Practice and
Experience 13 (1983), pp. 847-855.

M. C. Pong, “A graphical language for concurrent program-
ming,” Proceedings of the 1986 IEEE Workshop on Visual
Languages (June 1986), pp. 26-33.

I. Nassi and B. Shneiderman, “Flowchart techniques for
structured programming,” ACM SIGPLAN Notices 8, No. 8,
12-26 (August 1973).

C. A. R. Hoare, “Communicating sequential processes,
Communications of the ACM 21, No. 8, 666-677 (Augus
1978).

W. W. Dijkstra, “Guarded commands, nondeterminancy,
and formal derivation of programs,” Communications of the
ACM 18, No. 8, 453-457 (August 1975).

D. C. Smith, C. Irby, and R. Kimball, “The Star user inter-
face: An overview,” Proceedings of the National Computer
Conference (1982), pp. 515-528.

R. Purvy, J. Farrell, and P. Klose, “The design of Star’s
records processing: Data processing for the noncomputer
professional,” ACM Transactions on Office Information Sys-
tems 1, No. 1, 3-24 (January 1983).

F. Lakin, “Spatial parsing for visual languages,” in Visual
Languages, S. K. Chang, et al., Editors, Plenum Publishing
Corp., New York (1986).

G. Cattaneo, A. Guercio, S. Lavialdi, and A. Tortora,
“ICONLISP: An example of a visual programming lan-
guage,” Proceedings of the 1986 IEEE Workshop on Visual
Languages (June 1986), pp. 22-25.

M. Edel, “The Tinkertoy graphical programming environ-
ment,” IEEE Transactions on Sofiware Engineering 14, No.
8, 1110-1115 (August 1988).

T. Kurita and K. Tamura, “Dialog.I: An iconic programming
system based on logic programming,” Bulletin of the Electro-
technical Laboratory (Japan) 48, No. 12, 966-975 (1984).
A. Giacalone, M. C. Rinard, and T. W. Doeppner, Jr.,
“IDEOSY: An ideographic and interactive program descrip-
tion system,” ACM SIGPLAN Notices 19, No. 5, 15-20
(May 1984).

A. Giacalone and S. A. Smolka, “Integrated environments
for formally well-founded design and simulation of concur-
rent systems,” IEEE Transactions on Sofiware Engineering
14, No. 6, 787-802 (June 1988).

R. Milner, 4 Calculus of Communication Systems, Springer-
Verlag, New York (1980).

E. P. Glinert and S. L. Tanimoto, “Pict: An interactive
graphical programming environment,” Computer 17, No.
11, 7-25 (November 1984).

E. P. Glinert, “Towards ‘second generation’ interactive
graphical programming environments,” Proceedings of the
1986 IEEE Workshop on Visual Languages (June 1986), pp.
61-70.

T. D. Kimura, J. W. Choi, and J. M. Mack, 4 Visual
Language for Keyboardless Programming, Technical Report
WUCS-86-6, Washington University, St. Louis, MO (June
1986).

S. Matwin and T. Pietrzykowski, “PROGRAPH: A prelimi-
nary report,” Computer Languages 10, No. 2, 91-126 (1985).
M. Hirakawa, S. Iwata, I. Yoshimoto, M. Tanaka, and T.

»

86.

87.

88.

89.

90.

91.

92.

93.

94.

9s.

96.

97.

98.
99.

100.

101,

102.

103.

Ichikawa, “HI-VISUAL iconic programming,” Proceedings
of the 1987 IEEE Workshop on Visual Languages (August
1987), pp. 305-314.

G. M. Vose and G. Williams, “LabVIEW: Laboratory Virtual
Instrument Engineering Workbench,” BYTE 11, No. 9, 84-
92 (September 1986).

P. T. Cox and T. Piertrzykowski, A Very High-Level, Picto-
rial, Object-Oriented Programming Language for Computer
Science Education, School of Computer Science, Technical
Report TR-1-1988 (September 1988).

D. N. Smith, “Visual programming in the interface construc-
tion set,” Proceedings of the 1988 IEEE Workshop on Visual
Languages (October 1988), pp. 109-120.

J. G. Bonar and B. W. Liffick, 4 Visual Programming
Language for Novices, Technical Report LSP-5, University
of Pittsburgh, PA (September 1987).

J. W.Kieland A. P. Shepherd, “A graphic computer language
for physiology simulations,” Computers in Life Science Ed-
ucation 5, No. 7, 49-56 (July 1988).

C. Rich and R. C. Waters, “Automatic programming: Myths
and prospects,” Computer 21, No. 8, 40-51 (August 1988).
M. M. Zloof, “Query-by-example,” AFIPS Conference Pro-
ceedings, National Computer Conference (1975), pp. 431-
438.

M. M. Zloof, “QBE/OBE: A language for office and business
automation,” Computer 14, No. 5, 13-22 (May 1981).

K. T. Huang, A. Bolmarcich, S. Katz, and R. Li, “QBE/PC:
The design of an integrated software system for a personal
computer,” Proceedings of 1986 ACM SIGSMALL/PC Sym-
Dposium on Small Systems (December 1986), pp. 92-100.

N. S. Chang and K. S. Fu, “Picture query languages for
pictorial data-base systems,” Computer 14, No. 11, 23-33
(November 1981).

S. B. Yao, A. R. Hevner, Z. Shi, and D. Luo, “FORMAN-
AGER: An office forms management system,” ACM Trans-
actions of Office Information Systems 2, No. 3, 235-262 (July
1984).

N. A. Rin, “An interactive applications development system
and support environment,” in Automated Tools for Infor-
mation System Design, H. J. Schneider and A. 1. Wasserman,
Editors, North-Holland Publishing Company, Amsterdam
(1982), pp. 177-213.

L. A. Rowe, “Fill-in-the-form’ programming,” Proceedings
of VLDBSS5 (August 1985), pp. 394-404.

S. P. Wartik and M. H. Penedo, “FILLIN: A reusable tool
for form-oriented software,” IEEE Sofiware 6, No. 3, 61-69
(March 1986).

A. L. Ambler, “Forms: Expanding the visualness of sheet
languages,” Proceedings of the 1987 IEEE Workshop on
Visual Languages (August 1987), pp. 105-117.

T. Joseph and A. F. Cardenas, “PICQUERY: A high level
query language for pictorial database management,” JEEE
Transactions on Sofiware Engineering 14, No. 5, 630-638
(May 1988).

N. C. Shu, “FORMAL: A forms oriented visual directed
application development system,” Computer 18, No. 8, 38~
49 (August 1985).

N. C. Shu, “Automatic data transformation and restructur-
ing,” Proceedings of the IEEE Third International Confer-
ence on Data Engineering (February 1987), pp. 173-180.

Nan C. Shu IBM Los Angeles Scientific Center, 2525 Colorado
Avenue, Santa Monica, California 90404. Ms. Shu joined the IBM
Thomas J. Watson Research Center in 1964 as a member of an

VOL28, NO 4, 1989, REPRINT

IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999

experimental programming group responsible for the development
of the first IBM virtual memory system. In 1972 she joined the
IBM San Jose research laboratory where she was active in data
translation, database design, and office automation. She is cur-
rently a senior scientific staff member at the Los Angeles Scientific
Center, where she is responsible for the design and implementation
of a forms-oriented and visual-directed application development
system for end users. A patent on an Automatic Data Restructurer
(based on her work) was issued by the U.S. Patent and Trademark
Office. Ms. Shu has received several IBM awards and has been the
author of numerous published technical papers as well as a book
on visual programming. She is a senior member of the IEEE.

IBM SYSTEMS JOURNAL, VOL38, NOS 2&3, 1999 VOL28, NO 4, 1989, REPRINT

stu 221

