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The JavaTM platform has the potential to
revolutionize computing, with its promise of
“write once, run anywhere”TM development.
However, in order to realize this potential, Java
applications must demonstrate satisfactory
performance. Rapid progress has been made in
addressing Java performance, although most of
the initial efforts have targeted Java client
applications. To make a significant impact in
network computing, server applications written in
the Java language, or those using Java
extensions, frameworks, or components, must
exhibit a competitive level of performance. One
obstacle to obtaining this goal has been the lack
of well-defined, server-specific, Java benchmarks.
This paper helps address this shortcoming by
defining representative Java server benchmarks.
These benchmarks represent server application
areas, including Web-based dynamic content
delivery (servlets), business object frameworks,
and multitier transactional data acquisition.
Where applicable, we present benchmarks
written using both the Java programming model
(i.e., servlets) and the legacy model (i.e., the
Common Gateway Interface) for direct
comparisons of delivered performance. We also
present performance measurements and analysis
from multiple IBM server platforms, including
both uniprocessor and multiprocessor systems.

With its promise of “write once, run any-
where”** portability, the Java** platform has

the potential to revolutionize computing. However,
in order to realize this potential, Java solutions must
demonstrate satisfactory levels of performance. Java
performance has improved rapidly in recent years,

but most of the effort targets Java client applications.
In order to make a significant impact in network com-
puting, Java server applications must exhibit a com-
petitive level of performance. To achieve this goal,
the Java community needs tools and methodologies
to (1) identify and eliminate performance bottle-
necks, (2) compare competing Java platforms, (3)
quantify the performance of Java solutions relative
to legacy programming models, and (4) determine
the impact of the Java language on systems software
and the processor architecture.

This paper reviews our efforts to meet these objec-
tives through server-oriented benchmarks and an as-
sociated methodology for data collection and anal-
ysis. We have developed several benchmarks that
exercise the Java server software environment, in-
cluding the Java virtual machine (Jvm), core class
libraries, the just-in-time (JIT) compiler, and mul-
tiple Java server components such as Java Database
Connectivity (JDBC**) and the servlet environment.

Although a slew of Java benchmarks have appeared,
most focus on performance issues for clients and fail
to provide adequate measurement for the server
environment. For example, CaffeineMark**1 and
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jBYTEmark2 are microbenchmark suites that in-
clude tests for integer arithmetic, method calls, and
graphics. The JMark** suite3 includes similar pro-
cessor targeted tests, as well as a set of tests that
quantify the Abstract Window Toolkit (AWT) graph-
ics performance. Possibly the most often quoted cli-
ent benchmark is the SPECjvm984 suite. The Standard
Performance Evaluation Corporation (SPEC) devel-
oped this suite of medium-sized benchmarks to mea-
sure the efficiency of the Jvm, JIT compiler, operating
system, and hardware working in concert. However,
SPECjvm98 does not address server issues such as mul-
tithreaded object allocation or concurrent resource ac-
cess from hundreds or thousands of threads. Further-
more, it does not utilize any of the major Java server
extensions such as JDBC or servlet support.

In the server realm, a popular Java benchmark is
VolanoMark**,5 a chat server developed by Volano
LLC. This benchmark has been used as a tool to fo-
cus on inefficiencies within the Jvm and to provide
a basis for comparing Java platforms. It has been es-
pecially useful in addressing issues associated with
running thousands of threads. While VolanoMark
does address some issues associated with the Java
platform executing on servers, it does not adequately
reflect the diverse types of Java server applications
written and available today. In addition, the extreme
usage by VolanoMark of the underlying Transmis-
sion Control Protocol/Internet Protocol (TCP/IP) lim-
its its utility. SPEC is currently identifying a suite of
benchmarks that will address the Java server-specific
issues mentioned above. Until it is complete, Java
platform developers need a diverse suite of Java
server benchmarks that are representative of real ap-
plications.

To address this concern, we have developed several
Java server benchmarks that represent current pro-
gramming models and stress key Java server tech-
nologies. They include a business object benchmark
for Java (jBOB), a portable business object bench-
mark (pBOB), and a Web application server bench-
mark (JWeb2). We have also developed several mi-
crobenchmarks and an associated framework for
running, analyzing, and developing future micro-
benchmarks. Whereas the macrobenchmarks serve
as the primary vehicle for quantifying and commu-
nicating Java server performance, the microbench-
marks help isolate performance problems illumi-
nated by the macrobenchmarks.

This paper reviews our Java server benchmarks and
presents performance results on four IBM server plat-

forms. One of the key results of the paper indicates
that the Java servlet paradigm outperforms the Com-
mon Gateway Interface (CGI) paradigm when tested
with functionally similar scripts. In addition, it is
shown that the DATABASE 2* (DB2*) JDBC implemen-
tation is comparable in performance to the call level
interface (CLI) for some key functions, but the JDBC
application programming interface (API) does not
offer as much functional flexibility as the CLI. The
paper also shows that the improvements made to the
core Jvm (e.g., monitor implementation, object al-
location) and JIT compiler by IBM have resulted in
the highest-performing Java server platforms. Fi-
nally, the results also indicate that significant imped-
iments to the performance of the Java platform re-
main. Most notable is the performance of remote
method invocations (RMIs) when compared to
C-level remote procedure calls (RPCs).

The next section presents a detailed discussion of
the macrobenchmarks used in this study and bench-
mark results on several platforms. The subsequent
section discusses the microbenchmarks and accom-
panying results. The conclusion forms the last sec-
tion and summarizes the work presented, the lessons
learned, and suggestions for further work.

Macrobenchmarks

This section presents three Java server macrobench-
marks: the business object benchmark for Java
(jBOB), the portable business object benchmark
(pBOB), and a Web-server benchmark (JWeb2).
These benchmarks model typical commercial server
applications currently available in the industry. We
discuss the implementation of each benchmark and
the workload that it represents. For each benchmark,
we present performance results, comparing the Java
solution to a comparable solution written with a leg-
acy programming language.

Business object benchmark for Java. The jBOB mac-
robenchmark is designed to quantify the perfor-
mance of simple transactional server applications
written in the Java language for a typical electronic
business scenario. The workload consists of a mix-
ture of read-only and update-intensive transactions
that simulate the activities found in complex on-line
transaction processing (OLTP) application environ-
ments. In particular, the application uses the bus-
iness model of the Transaction Processing Perfor-
mance Council’s TPC-C** benchmark.6 In accordance
with the TPC’s fair use policy, we note that jBOB de-
viates from the TPC-C specification and is not com-
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parable to any official TPC result. In addition, the jBOB
application has not been structured to drive the high-
est possible throughput, but instead to reflect a more
typical customer usage of Java. The benchmark is
representative of applications exercising a breadth
of system components characterized by:

● Concurrent transactions
● On-line and deferred transaction execution modes
● Moderate system and application execution times
● Transaction integrity
● Nonuniform distribution of data access through

primary and secondary keys
● Databases consisting of many tables with a wide

variety of sizes, attributes, and relationships

The jBOB and TPC-C benchmarks are designed for
different computational models. TPC-C is designed
to encourage implementers to exploit maximum per-
formance from the hardware and software of the ma-
chine within the bounds of the specification. TPC-C
is an end-to-end benchmark that quantifies the full
transaction response time, including the performance
of the client, the network, and the server. jBOB does
include application drivers that generate and sub-
mit transaction requests from clients to the server;
however, its objective is to quantify the performance
of the server-side application. As a result, the per-
formance of the client and the network is not in-
tended to be part of the metric. In addition, the jBOB
and TPC-C metrics are different. TPC-C only measures
the throughput of new order transactions, whereas
jBOB measures the throughput of all five transaction
types. jBOB was coded using the ACID (atomicity, con-
sistency, isolation, and durability) properties of
TPC-C; however, these properties are not tested as
part of the benchmark. There is no concept of a spe-
cific user transaction request in jBOB, so no trans-
action monitor is required to handle the routing of
requests. Finally, jBOB collects more detailed infor-
mation on its transactions, facilitating a better un-
derstanding of the results.

The jBOB implementation contains three logical tiers.
The first tier, the clients, generates data access re-
quests modeled after TPC-C transaction types. The
second tier, a thin layer of Java code, acts as a front
end to the third tier database server. The benchmark
exercises the JDBC or the Structured Query Language
(SQL) embedded in the Java (referred to as SQLJ)
interface, Java communication using either RMI or
Java sockets, core Jvm and class-level synchroniza-
tion, data conversion, multithreading, object serial-
ization, object creation, and garbage collection. The

benchmark reports performance metrics of through-
put and transaction response time.

In order to compare jBOB with equivalent bench-
marks using established technologies, we have de-
veloped a number of benchmarks that use C11 and
C with the Open Database Connectivity (ODBC) API,
embedded SQL, and stored procedures for access-
ing data. This collection of Java, C11, and C bench-
marks allows us to address a number of issues as out-
lined above.

Architectural and design issues. jBOB follows the
client/server model with the user terminals as clients
and the transaction logic as server. jBOB is typically
run in one of two modes: (1) a logical two-tier, phys-
ical one-tier mode, and (2) a logical three-tier, phys-
ical two-tier mode, where the second and third tiers
representing the application server and database re-
side on the same physical tier. The benchmark im-
plementation supports several mechanisms for da-
tabase connectivity, communication, and a family of
application configurations.

Database connectivity. jBOB has the flexibility to use
either JDBC or SQLJ to access the third-tier database
from Java. To keep jBOB portable across platforms
and database products, the benchmark uses ANSI/ISO
(American National Standards Institute and Inter-
national Organization for Standardization) standard
SQL statements to access the database. jBOB has been
successfully run on a number of IBM platforms and
current versions of DB2.

Communication. The communication between the
first and the second tiers in jBOB can occur using ei-
ther an RMI or sockets-based implementation. Sock-
ets allow for more flexible designs than RMI, because
sockets can support asynchronous communication.
Additionally, the sockets mode allows for reuse of
sockets to a greater extent than RMI mode does and,
hence, is likely to scale better.

Application configuration. In addition to database con-
nectivity and communication, jBOB parameters con-
trol the application configuration, such as two-tier
versus three-tier, think times, asynchronous deliv-
eries, and the number of processes and threads in
each tier. Wherever possible, we have used default
values to correspond to the TPC-C specification.
These default values allow for cross-platform result
comparisons.

We have developed equivalent benchmarks for jBOB
in C11 and C using ODBC and embedded SQL to
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facilitate a comparison with Java and static and dy-
namic SQL. Table 1 shows a summary of the vari-
ations of this benchmark, where Java, C11, or C
is used as a primary language. Within the database
connectivity row, the valid alternatives to run the
benchmark are listed, along with the name used to
refer to that version shown in parentheses.

jBOB results. Of the variations listed in Table 1, we
present results for jBOB (JDBC) and the C Enterprise
Benchmark (CEB) (ODBC). The jBOB configuration
uses JDBC in the logical three-tier mode on two phys-
ical tiers. A single Jvm is used for the second tier,
and the physical tiers communicate through sock-
ets. The CEB results presented are from an analo-
gous logical three-tier, two physical tier configura-
tion.

jBOB was run on four different Jvms: the Jvm in the
IBM Developer Kit (DK) for Windows NT**, Java
Technology Edition, version 1.1.6, the Jvm in the
IBM DK for Windows NT, Java Technology Edition,
version 1.1.7, the Jvm in Sun’s Java Development
Kit (JDK**), version 1.1.7, and the Jvm in the Syman-
tec Development Kit, version 1.1.6. Both physical
tiers, client and server, ran on Windows NT with Ser-
vice Pack 3.0. DB2 version 5.0 Fixpack 9014 served
as the underlying database. Figure 1 summarizes the
data collected on both one-way and four-way 200-
MHz Netfinity* systems with 1 GB of memory and
48, 2-GB disks. Four to six client machines were used
to drive the server. All data are presented relative
to one-way results on Sun JDK 1.1.7 (i.e., this result
is shown as one).

The first point of interest that leaps from the chart
is that the underlying Jvm employed does not have
a major impact on jBOB performance using the
DB2 JDBC drivers. All Jvms tested show comparable

performance. We have determined that the under-
lying JDBC implementation dominates the jBOB per-
formance, and the JDBC implementation is held con-
stant across the Jvms measured. To isolate JDBC
performance factors, we have developed ODBC/JDBC
microbenchmarks, which are presented in the next
section.

It is also interesting to note that multiprocessor
speedup reaches only 1.7 out of 4. Although this re-
sult shows some speedup, it does not approach the
2.5 speedup that one would normally hope for on
this type of benchmark on this platform. The most
interesting piece of data to be gleaned from the chart
is the comparison between jBOB and CEB. This com-
parison provides a reliable quantification of the per-
formance penalty paid for the benefits of Java. CEB,
based on a mature machine-dependent standard, is
only 20 percent faster than Java on a one-way sys-
tem. Note that since the server spends significant
time in the third tier, which is common for both work-
loads, the 20 percent difference can be regarded as
a lower bound on Java and JDBC versus C11 and
ODBC performance differences. Nevertheless, the end
user observes a 20 percent difference on the appli-
cation performance, which is the most relevant fig-
ure for this Java vs C comparison. By analytically iso-
lating the second tier of the benchmark, we found
the C11 and ODBC combination to be approxi-
mately 35 to 40 percent faster than the Java and JDBC
implementation. The difference is attributable to a
combination of JDBC architecture, implementation,
and Java and C11 differences.

In addition to the results based on Windows NT
shown here, AS/400* jBOB results have been published
in Reference 7. Also note that, although not avail-
able in time to include in this paper, initial results

Table 1 E-business benchmark options

Language Java C11 C

Number of possible tiers 1 2 2
2 3
3

Database connectivity JDBC (jBOB(JDBC)) ODBC (CEB(ODBC)) ODBC with stored
procedures (OEB)

SQLJ—no stored
procedures
(jBOB(SQLJ))

Embedded SQL—no
stored procedures
(CEB(ESQL))

Embedded SQL with
stored procedures
(C(TPC-C))

Available communication
between 1st and 2nd tiers

RMI
Sockets

Sockets Sockets
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measured from DB2 Version 6.1 show impressive
JDBC performance improvements.

Portable business object benchmark. The pBOB mac-
robenchmark provides a pure Java implementation
of a typical transaction-oriented workload. Like jBOB,
pBOB is inspired by the business model of the TPC-C
benchmark specification but is not a TPC benchmark.
pBOB was designed to analyze the processor-mem-
ory subsystem, and associated software, for typical
server-based business applications. This use is in con-
trast to jBOB, which is used to study the complete
server configuration.

Each of these three benchmarks, pBOB, jBOB, and
TPC-C, focuses on a different component of the com-
puting solution; however, all are associated with
transactional business applications. pBOB measures
scalability, performance, and throughput of the Java
environment. jBOB measures scalability, perfor-
mance, and throughput of the Java environment
when it interacts with the underlying hardware and
software stack. TPC-C measures the maximum scal-
ability, performance, and throughput of the entire
system, including network and client performance,

in addition to the hardware and software stack of
the application.

To achieve a pure Java implementation, pBOB re-
places third-tier database tables with in-core Java
classes and records. There is no persistence or trans-
action control; instead, all transaction domain in-
stances live only for the duration of the Jvm instance.
pBOB does not perform terminal emulation or com-
munication. Instead, Java threads represent termi-
nals in pBOB, where each thread independently
generates random input before calling transaction-
specific logic. pBOB has no external dependencies and
is portable to any compliant Jvm.

The pBOB workload is controlled by varying the num-
ber of warehouses, the object population per ware-
house, the number of threads (representing termi-
nals) per warehouse, keying and think times, number
of order lines per order, and whether initial and
transaction result screens are displayed. pBOB also
supports a “steady state” mode where the creation
of new objects is balanced by the removal of old ob-
jects. This mode allows long-duration tests to run in
finite heap space.
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The pBOB application supports various configura-
tions. Key application parameters include:

● Object populations—pBOB supports company and
warehouses at 1 percent, 10 percent, and 100 per-
cent of the benchmark-specified populations. Pop-
ulations of 100 percent (approximately 2.4 million
Java objects requiring 200 MB of heap for the com-
pany and first warehouse) are impractical for most
systems and testing without a persistence frame-
work. Populations of 1 percent and 10 percent are
practical for most client PCs and any server plat-
form. Smaller (1 percent) populations and ware-
house counts minimize the impact of garbage col-
lection, whereas larger (10 percent) populations
and warehouse counts illuminate the behavior of
a garbage collection implementation. A 1 percent
population contains approximately 27000 objects
requiring 2.2 MB of heap for the company and first
warehouse. Each additional warehouse generates
20000 objects requiring 1.8 MB of heap. A 10 per-
cent population is approximately 244000 objects
requiring 20 MB of heap for the company and first
warehouse. Each additional warehouse generates
197000 objects requiring 17.5 MB of heap.

● Threads per warehouse—The number of threads
(terminals) per warehouse can be varied from 1
to N. The total number of threads for a measure-
ment is Terminals per warehouse p Warehouse
count 1 1. pBOB is currently limited to 2048 threads
plus the main thread. Running a single terminal
per warehouse minimizes contention at the appli-
cation level and focuses on the Jvm run-time be-
havior. Running “single terminal” with zero think
times and multiple warehouses focuses on hot-
locks in the Jvm run time (heap management and
class lookup) as well as the overhead for uncon-
tended monitors. Running with “multiple termi-
nals” with think times varying from 0 to 100 per-
cent controls the contention at the application level
and stresses the implementation of Java monitors.

● Keying and think times—Per-transaction keying and
think times can be toggled on (100 percent) or off
(0 percent) or set to a specific percentage of the
specified values. Zeroing keying and think times
maximizes throughput for a given Jvm/OS/system
by driving it to saturation. Setting a specific (non-
zero) percentage establishes an upper bound on
the transactional throughput (max tpmBOB 5
1.27 p Warehouse count p Terminals per ware-
house p 100/percent wait time).

● Order lines per order—Order line processing is the
inner loop of the new order, order status, deliv-
ery, and stock level transactions. The number of

order lines may be set to a random number be-
tween 5 and 15 order lines per order, or set to a
fixed value between 1 and 20. The setting affects
both the per-transaction path length and the heap
storage requirement.

● Transaction screens—If “screen write” is enabled,
formatted initial and result screens are written to
System.out, otherwise the screens are formatted,
then discarded without display. Most testing is per-
formed with “screens disabled” (the default) to
maximize throughput and focus on the perfor-
mance (not the specific display adapter and driver)
of the Jvms.

A pBOB run consists of the following steps: (1) Run
finalization and force garbage collection. (2) Cre-
ate (Warehouse count p Terminals per warehouse)
threads. (3) Run transactions for each thread inde-
pendently to progress through the following phases:
ramp-up, measurement, ramp-down, and accumu-
late terminal results to warehouse results. (4) Ac-
cumulate and display warehouse results.

Figure 2 shows a typical pBOB output for a run with
one warehouse and one terminal.

pBOB supports “minimal” and “full” runs, where a
minimal run has a 30-second ramp-up and a two-
minute measurement period, and a full run has a two-
minute ramp-up and 10-minute measurement pe-
riod. Minimal runs are useful for taking a quick
measurement or to make a measurement free of gar-
bage collection by setting the heap large enough to
eliminate garbage collection events from the mea-
surement period. Results are fairly repeatable from
run to run, at least for small thread counts and 0 per-
cent think times. However, if nonzero think times
are used, a two-minute measurement period may be
too short for repeatable results. A full run is advis-
able whenever nonzero think times are used. Full
runs are also useful when measuring the impact of
garbage collection.

These options create a multitude of possible “mea-
surement profiles.” Two profiles are widely used
within IBM: autorun and autoserver. The autorun pro-
file provides a “single terminal, 1 to 10 warehouse
ramp.” This profile runs a single thread per ware-
house series from 1 to 10 warehouses with 1 percent
population and minimum run time per measurement.
Think times and screen displays are disabled to max-
imize throughput and saturate the CPU(s).
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This profile illuminates Java symmetric multiproces-
sor (SMP) scalability as it provides a direct com-
parison between single-thread/CPU and multiple-
thread/CPU results. The ratio between the first ware-
house result and the peak (presumably multiple
warehouse) result provides a crude “SMP scale fac-
tor” for the system under test. For most systems the
performance peaks where the warehouse count
matches the number of CPUs, then degrades as con-
tention in the run time and garbage collection load
increases. An application server should minimize this
degradation. To measure this factor, another figure
of merit is the “final SMP scale factor,” which is the
ratio of one warehouse and the last (tenth) ware-
house results. Figure 3 shows a typical profile from
a pBOB autorun, comparing three hypothetical Java
environments (A, B, and C).

The autoserver profile targets large application serv-
ers running on mid- to high-range systems. Although
the autorun profile will run on most desktop work-
stations, large multiuser object-oriented application
servers such as the IBM SanFrancisco* product and
future Enterprise JavaBeans** (EJB) servers will re-
quire larger systems and memory configurations. For
the SanFrancisco product, large multiuser workloads
require hundreds of threads accessing a shared ob-
ject cache of multiple 100 MBs. The autoserver pro-
file measures the Jvm performance in this stressful
“Java application server” environment. A primary
goal is to foster the implementation of more ad-
vanced garbage collection technology (e.g., gener-
ational and concurrent).

Since the autoserver profile stresses the garbage col-
lection subsystem, the performance results depend

strongly on the size of the Java heap and the quality
of garbage collection. To further highlight garbage
collection performance, the profile uses nonzero key-
ing and think times. This sets an upper limit on
throughput for a given warehouse and terminal
(thread) count (recall that max tpmBOB 5 1.27 p
Warehouse count p Terminals per warehouse p
100/percent wait time). With keying and think times
and fixed thread count per warehouse, the through-
put grows linearly with the number of warehouses.

The current autoserver profile runs 25 threads per
warehouse and keying or think times set to five per-
cent of that TPC-C specification. We adjust other ap-
plication parameters to balance CPU loading and
memory footprint. Increasing the order lines per or-
der up to 20 brings the CPU loading up nicely but
also increases the memory requirement. Full 10-
minute measurements are used to force larger mem-
ory configurations and to stress the garbage collec-
tion subsystem. As various groups within IBM use the
autoserver profile, the choice of parameters will con-
tinue to evolve as we converge to a configuration that
stresses garbage collection and achieves high CPU uti-
lization without an explosion in memory footprint.

Figure 3B shows the result of a typical autoserver
run. The result is a heavier warehouse ramp series,
which initially follows the max tpmBOB line, until
hitting some resource limit (e.g., CPU, total heap
space) or the garbage collection overhead starts to
dominate. Following TPC-C, there is also a minimum
(min tpmBOB 5 0.90 p Warehouse count p
Terminals per warehouse p 100/percent wait time)
threshold below which response times are not being
met. This min tpmBOB line can be used as a “stop
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criteria” for the profile. Heap space also limits the
number of warehouses, since the profile will not run
if it cannot fit the required warehouse data in the
heap.

pBOB results. The autorun profile was the first and
most widely used pBOB profile within IBM. Figures
4 and 5 show pBOB autorun results on five different
Jvms from IBM, Sun, and Microsoft. The results are
scaled to Sun JDK 1.1.7 running with one warehouse
(thread) on one CPU. Results are presented from one
to ten warehouses (threads). Figure 4 presents re-
sults from a single processor box, whereas Figure 5
plots the four-way results. For example, four threads

running on the Jvm in the IBM DK for Windows NT,
v 1.1.7 on a four-way system drives approximately
3.6 times more throughput than a single thread on
a one-way system using the Sun JDK 1.1.7. For com-
parison, four threads on Sun JDK 1.2 on a four-way
system drives less than 1.2 times more throughput
than the Sun one-way configuration. All results ran
on a 400-MHz Netfinity system with 4 GB of mem-
ory. The Java heaps were set to 1 GB where pos-
sible, in order to require a certain amount of gar-
bage collection during the runs. For the Jvms in the
DK for Windows NT, NT 4.0 Service Pack 3.0 is em-
ployed. For the Jvm in the IBM DK for OS/2, Warp
SMP Fixpack 36 is used.
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The results show that the IBM Jvms exhibit better
performance in highly contended multithreaded
workloads. This performance results from IBM’s em-
phasis on core Jvm performance for server workloads
(see other papers in this issue). In particular, the IBM
Jvms employ efficient monitor and object allocation
implementations, which are especially important for
good performance on this benchmark. The IBM Jvms
allow a high degree of parallelism in object alloca-
tion, which results in higher pBOB performance.

The Jvm in the IBM DK for OS/2* (Operating/System
2*), v 1.1.7 closely trails the Jvm in the IBM DK for
Windows NT. The OS/2 implementation lags the IBM
implementation for Windows NT because it lacks
some locking enhancements added to the Jvm in the
IBM DK for Windows NT. The Microsoft Jvm does
especially poorly on this benchmark because it suf-
fers from poor heap management. An unexpected
result is the significant degradation in performance
seen from the JVM in Sun’s JDK 1.1.7 to Java 2 ver-
sion 1.2. This degradation most likely results from

extra security checks in the Class.newInstance¼
method implemented as part of the Java 2 security
model. pBOB exercises a significant number of these
methods to allow more flexible, dynamic object al-
location.

The multiprocessor scaling numbers (ratio of
throughput on a four-CPU system compared to a
single-CPU system) also show IBM Jvm implementa-
tions exhibiting better performance. For instance, the
Jvm in the IBM DK for Windows NT is nearly three
times faster on four CPUs than on one. This scalabil-
ity rivals mature operating systems on similar work-
loads. At ten threads, the IBM implementation is six
to seven times faster than the others. For non-IBM
Jvms, scaling falls off when many threads are exe-
cuted. This trait is especially devastating on server
workloads where it is expected that hundreds, if not
thousands, of threads will run in a single Jvm.

Web server benchmark. At present, the most com-
mon technology for dynamic Web page creation is
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CGI.8 Other mechanisms include FastCGI,9 server-
specific APIs such as ISAPI,10 Microsoft Active Server
Pages,11 and Java servlets.12 Each of these technol-
ogies is server- or platform-specific except for Java
servlets. Since servlets can execute on any platform,
they are an attractive choice for developing porta-
ble Web applications that deliver dynamic content.

JWeb2 is a dynamic Web-serving benchmark spec-
ification designed to quantify the relative perfor-
mance of the programming alternatives listed above.
The benchmark characterizes the behavior of a sim-
ple e-commerce application whose clients are Web
browsers based on HyperText Transfer Protocol
(HTTP). The JWeb2 specification has been imple-
mented using Java servlets and CGI. In addition to
comparing programming models, the benchmark
helps compare the relative performance of Jvm im-
plementations.

JWeb2 is derived from the SPECweb994 benchmark
in which simulated clients access a series of HTML

(HyperText Markup Language) pages specified by
URL (Uniform Resource Locator). JWeb2 has en-
hanced this by defining an e-commerce application
and supplying implementations of this application
as a servlet and a CGI application. JWeb2 exercises
Web server-based Java program execution, multiple
threads, session management, file I/O, and the ca-
pability of a server to handle high HTTP traffic and
memory access bandwidth.

Design of the JWeb2 benchmark. Designing a Java
Web server benchmark requires balance between
two conflicting objectives. First, we want a bench-
mark that measures how typical e-commerce Web
servers behave. Second, we are primarily interested
in how Java performs in a server environment. There-
fore, it may not make sense to model a Web server
too closely. In particular, most Web servers serve a
majority of static pages. To study how Java performs,
we model a Web server with higher dynamic con-
tent.
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JWeb2 tries to balance these two objectives in the
following ways. First, it uses 50 percent dynamic con-
tent and 50 percent static content, based on the as-
sumption that each dynamic page will typically refer
to at least one image. Second, the sizes of the static
files and the results of related dynamic requests fol-
low a distribution similar to that expected on a typ-
ical Web server. In particular, distributions were
chosen to match those used by the SPECweb99
benchmark.4 Last, the activities of a typical e-com-
merce program are abstracted and developed in the
benchmark servlet.

A typical e-commerce Web site uses “cookies” or
URL rewriting to maintain session state information
about each user. If passwords or cookies are used,
the Web server may rely on a database of individual
preference. Typical Web server application activi-
ties include text manipulation, page development,
data lookup (either via a database or file access) and
table generation. Communication with clients may
or may not be encrypted. Most interactions with an
e-commerce Web site involve a number of steps. The
user first logs on, creating a new session. Second, the
user may search the Web site, access information,
or engage in a transaction. Finally, the user logs off.
Each of these activities may be carried out by a dif-
ferent dynamic program.

The JWeb2 benchmark abstracts the above activi-
ties into a single Java servlet. This servlet first man-
ages session information: it uses a cookie to identify
the session, creating a new one if necessary. Second,
the session state, a record of all previous accesses

during the current session and the number of rows
in the reply, is read, and the contents output to a
newly created HTML page. Third, the parameters to
the dynamic request are used to access a file. The
file is read and is used to generate a summary table.
Finally, if the session is to be terminated, all session
state information is invalidated. Otherwise, informa-
tion about the current request is added to the ses-
sion. These steps are illustrated in Figure 6.

Note that information in the response is derived from
a file, not a database. Most e-commerce Web serv-
ers will probably obtain their data from a database.
However, we made the decision to access files be-
cause we independently investigated the behavior of
database accesses with the jBOB benchmark. In ad-
dition, the file-based access is representative of the
solution IBM provided at the Winter Olympics held
in Nagano in 1998.

CGI program. For comparison purposes, we imple-
mented a CGI program written in C that implements
the same functionality as the Java servlet. In the CGI
model, each new request results in the initiation of
a new process to handle the request. This model dif-
fers from the servlet model, in which a set of Java
threads is always running and any thread can han-
dle new requests. Thus, the servlet implementation
reduces the overhead of process initiation. However,
a CGI program has the advantage of expecting a C
program to run faster than a Java program.

Since a new process starts for each request, a CGI
program cannot, by itself, implement session man-

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 BAYLOR ET AL. 67



agement. Instead, some form of state needs to be
maintained, either through the file system or in a da-
tabase. We chose to implement a session server to
manage session requests and to ensure consistency.
This session server maintains an in-core database of
the session state. CGI programs communicate with
a set of stateless commands over TCP. We believe
that this activity closely resembles the implementa-
tion of the Java servlet session API. We attempted
to minimize the cost of the C program. For exam-
ple, all fixed text strings are hand-coded in raw ASCII
codes to ensure that no conversion will be necessary
on any platform; when conversion is necessary, it is
done once and cached for future reference. Also,
memory is largely preallocated. Additional memory
is allocated only when sessions grow very large. In
these cases, the additional memory is not released;
it can be reused by other sessions.

However, efforts at efficiency were countered by a
desire to execute the same program, with minimal
changes, on several server platforms. In the inter-
ests of portability, we accepted the following imple-
mentation choice:

● TCP was used for communication instead of native
inter-process communication (IPC) mechanisms.

● Blocking sockets were used as the interface to TCP.
● The session server is single threaded.
● The sprintf¼ and printf¼ commands are used

more than might be necessary on any one platform.

JWeb2 results. In order to compare the efficiency of
the software stack on the server, we made certain
that the benchmark would drive the server CPU to
saturation in all runs. We did this by providing a suf-
ficient number of physical client drivers and suffi-
cient network bandwidth. Although the JWeb2 dy-
namic code performs a significant amount of file read
I/O, we made certain that the server was not I/O bound
by providing a large file system cache and using a
RAID-0 array of four physical disk drives. (A RAID
is a redundant array of independent disks.) Finally,
we equipped our server with sufficient physical mem-
ory to prevent any swapping.

We report results on an IBM PC Server 704, 4 3 200-
MHz Pentium Pro**, with 512K L2 cache and 1 GB
RAM. The JWeb2 file set data resided on a 4 3 4 GB
RAID-0 drive. Two dedicated 100 Mb/s Ethernet seg-
ments were used. Three 333 MHz Pentium** II cli-
ents were used to drive the server and were distrib-
uted across both segments.

The server ran Windows NT 4.0 Server SP4, with Mi-
crosoft IIS** (Internet Information Server) 4.0 (MS
Option Pack 4.0) as the underlying Web server, and
WebSphere* Application Server 2.0 Standard Edi-
tion as the servlet engine. The servlet engine was con-
figured to run out of process, i.e., in a process sep-
arate from the Web server. The Java heap sizes were
set to 200 MB initial, 450 MB maximum. Three Jvms
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were used to run the servlet engine: IBM DK 1.1.7,
Sun JDK 1.1.7, and Sun Java JDK 1.2-V.

We present results for the cases where the JWeb2
logic ran as a CGI application launched by IIS 4.0, as
well as where it ran as a servlet within the WebSphere
Application Server. In both cases, the total offered
load was held constant while the total number of sim-
ulated clients varied. This arrangement tested the
ability of the server to maintain throughput in the
presence of an increasing number of clients. Exper-
iments ran both with the server running as a unipro-
cessor and as a four-way SMP. In all cases, the mea-
sured throughput (JWeb2 operations per second) is
displayed relative to the throughput of Sun JDK 1.1.7
at three clients.

Figure 7 shows the performance results on a unipro-
cessor. Several conclusions emerge. In general, Java
servlets outperform CGI implementations. This con-
clusion validates the advantage of Java servlets for
dynamic Web serving. Moreover, there are signif-
icant differences between Java implementations.
Clearly this benchmark exposes differences in the ef-
ficiency of Jvm implementations. The superior per-
formance of the IBM DK 1.1.7 is consistent with re-
sults on other benchmarks. The poor performance
of Sun JDK 1.2 was, however, unexpected.

Further investigation revealed an interesting find-
ing. WebSphere implements a security manager that
is enabled by default. Disabling this security man-
ager left the 1.1.7 results unaffected, but led to a pro-
nounced improvement in the JDK 1.2 results as shown
in Figure 8.

Figure 9 shows the results of running the workload
on a four-way SMP configuration. The conclusions
from the uniprocessor case still hold. In addition, the
effects of lock contention at larger numbers of cli-
ents now become apparent. Throughput drops sig-
nificantly after six clients on the JDK 1.1.7 for the Sun
JVM, whereas the Jvm in the IBM DK 1.1.7 displays
good scaling. This is consistent with the fact that the
Jvm locks and Java monitors in the Jvm in the IBM DK
1.1.7 have been highly optimized. As in the unipro-
cessor case, the throughput of the JVM for the Sun
JDK 1.2 is significantly lower because of the effect of
the WebSphere security manager. We did not mea-
sure the effect of removing the security manager in
this case.

Microbenchmarks

Macrobenchmarks are designed to model realistic
application workloads. Although this design offers
the best measure of system performance, large pro-
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grams comprising multiple interacting systems can
complicate performance analysis. To simplify per-
formance analysis, microbenchmarks can isolate and
identify specific system bottlenecks. However, mi-
crobenchmarks cannot capture complex system in-
teractions and offer most value when used in con-
junction with more realistic workloads.13 This section
describes several microbenchmarks developed to fa-
cilitate a focused analysis of Java server performance.
They include jMocha, a microbenchmark suite de-
signed to assess the performance of the portable op-
erating system services of Java, SockPerf, a net-
working microbenchmark, and a collection of
microbenchmarks designed to evaluate the perfor-
mance of JDBC and ODBC connectivity.

The jMocha microbenchmark suite. Server applica-
tions depend heavily on operating system (OS) ser-
vices, such as file systems, network protocols, and
remote procedure calls. The performance of these
services may constrain the performance of the ap-
plication. To promote portability, the standard Java
libraries provide a common API to system services.
To understand server application performance, we
must understand the performance of the Java inter-
face to system services.

The jMocha microbenchmark suite assesses the cost
of the portable operating system services of Java. The

following subsections describe previous work on Java
and OS microbenchmarks, present our microbench-
mark methodology, and discuss a few implementa-
tion details.

Previous work. Prior to the introduction of the Java
language, a few projects developed microbenchmark
suites to evaluate OS performance. Ousterhout14 de-
veloped a set of microbenchmarks to help evaluate
the Sprite operating system. His work exposed mem-
ory system performance, disk cache structure, and
network protocols as crucial factors in OS perfor-
mance. McVoy and Staelin15 developed lmbench, a
portable set of operating system benchmarks focus-
ing on issues, including memory system, IPC, cached
I/O, system call, signal handling, network, and pro-
cess and thread performance. Brown and Seltzer16

built further on this work with hbench:OS, which im-
proved some methodological and practical issues of
lmbench.

Saavedra and Smith17 present microbenchmarks to
evaluate memory system performance, exposing per-
formance at the various levels of the memory hier-
archy of a computer system. In addition to the above
work, the system performance team of the IBM Net-
work Computing Software Division in Austin have
used another Java microbenchmark development
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and execution framework called DecafMark that was
utilized within IBM to evaluate Java performance.

Methodology. Java presents the illusion of a porta-
ble operating system, which adds another layer of
software to the OS services. To evaluate the perfor-
mance of OS system services in Java, we build on the
line of research culminating in hbench:OS. We have
developed jMocha, a set of Java versions of relevant
hbench:OS tests, relying on calls to the standard Java
APIs where needed. We compare the performance
of the native hbench:OS tests, written in C with di-
rect system calls, to the jMocha Java versions.

In order to obtain accurate timing information, we
utilize on-chip hardware cycle counters when avail-
able. Only timing information is presented in this pa-
per; however, the infrastructure also supports instru-
mentation of various hardware events such as cache
misses, instruction counts, etc. We restrict our at-
tention to fine-grained single-threaded benchmarks
and present results on cached file read bandwidth
and remote procedure call and remote method in-
vocation (RPC-RMI) performance.

jMocha results. We use jMocha to compare Java per-
formance with native OS services on Windows NT.
The Windows NT platform is an IBM IntelliStation*
Z-pro machine (6899-120), with an Intel 200-MHz
Pentium Pro processor, having 256 MB of RAM, run-
ning Windows NT version 4.0, service pack 4. On this
platform we compare results using an IBM enhanced
port of the Sun JDK 1.1.7 (release 12/07/1998 with
IBM just-in-time [JIT] compiler version 3.0), and
C tests compiled with Microsoft Visual C11**
version 3.1 using the following compiler flags:

/O2 /Oa /G6 /GD /GM /MT -DNO PORTMAPPER
-D WIN32 WINNT5030400.

In each trial, we repeated each test for a number of
iterations chosen so that the total running time ex-
ceeded one second. Each trial included a warm-up
stage, not timed, so initial paging and JIT activity do
not influence the reported results. The results pre-
sented are the 10 percent trimmed mean of ten tri-
als for each data point. Trimmed mean values were
collected by running the benchmark ten times, sort-
ing the results in ascending order, removing the max-
imum and the minimum values, and then taking the
mean of the remaining eight. Standard deviations
for all results were negligible (less than 5 percent of
mean). Of the Java platforms, we could examine the
JIT-produced code for the IBM DK, but not for the
other JITs.

We present results from a representative subset of
the full jMocha suite. The following subsections eval-
uate Java performance for a cached file system and
remote procedure call. The C implementations of
these tests, derived from hbench:OS, are described
in Reference 16. We describe the corresponding Java
implementations in the following subsections.

File read bandwidth. Figure 10 shows a code frag-
ment for a jMocha test that reads from a cached file
using a FileInputStream. We chose fileSize 5 4 MB,
which on Windows NT, ensures that the file fits in
the file buffer cache and avoids disk access. For these
benchmarks, we read the entire file only once for
each trial.

Figure 11 shows the results of this test. Java perfor-
mance on these benchmarks is competitive with C.
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Java also provides classes to perform formatted file
I/O. Figure 12 shows a version of the file read bench-
mark, using a FileReader class, which reads a file as
a sequence of characters. Figure 13 shows the re-
sults of this test. The figure shows that Java perfor-
mance suffers drastically when using the formatted
I/O. Every file read (using the Reader classes) must

convert the native byte-size characters to the Java
two-byte Unicode** representation. The perfor-
mance of the Java byte-to-Unicode conversion rou-
tine dominates this test. For Java formatted I/O to
compete with native services, Java developers must
address this problem.

The results show that the native implementation sig-
nificantly outperforms Java.

RMI performance. We compare the performance of
a simple Java RMI call to an equivalent RPC. The Java
kernel for this microbenchmark appears in Figure
14. The figure shows code for a client that invokes
a method, xact, on a server via RMI. The method sim-
ply returns the integer value 123.

During the benchmark runs, the RMI call always suc-
ceeded, and the client never threw the exception in
Figure 14. Figure 15 shows the performance of this
program and the corresponding RPC program on
Windows NT. The RMI performance lags the TCP RPC
performance by a factor of 3.12.
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The object-based RMI protocol entails more overhead
than the function-based RPC protocol, which helps ac-
count for the Java performance penalty. In future work,
we will extend the jMocha suite in an attempt to pin-
point bottlenecks in the RMI protocol. Furthermore,
we will also compare RMI to CORBA** (Common Ob-
ject Request Broker Architecture), a more germane
object-based communication protocol.

SockPerf microbenchmarks. We used an IBM sock-
ets microbenchmark called SockPerf to measure
the cost of the Java sockets API. SockPerf is a peer-
to-peer socket benchmark written completely
in the Java language. The benchmark is multi-
threaded, and concurrent sessions can be run over
the same network interface or over multiple net-
work interfaces.
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The user may specify characteristics including: (1)
the use of a connection-oriented (TCP) or connec-
tionless (UDP, or User Datagram Protocol) protocol,
(2) the type of traffic to be measured (request/
response, connect/request/response/disconnect or
bulk throughput), (3) message size characteristics,
and (4) test duration and statistical convergence
(confidence interval) characteristics.

For comparison with native sockets, we present re-
sults gathered with an internal IBM socket benchmark
that runs on OS/2, Windows 95, and Windows NT
called XMPT. XMPT is functionally identical to Sock-
Perf and indeed formed the template for SockPerf
when it was created.

Methodology. For this study, we used the following
four tests:

1. TCP RR 1: The client sends a one-byte message
(request) to the server over a TCP socket, which
echoes it back (response). The result of the test
is reported as a throughput rate of transactions
per second, which is the inverse of the round-trip

time for request and response, as well as the CPU
utilization of the client and server.

2. UDP RR 1: The client sends a one-byte message
(request) to the server via a UDP datagram, which
echoes it back (response). The reported result is
transactions per second and client and server CPU
utilization.

3. TCP Stream 8k: The client sends continuous
8-KB messages to the server, which continuously
receives them. The reported result is bulk
throughput in KB/s and Mb/s and client and server
CPU utilization.

4. CRR 64 8k: The client sends a 64-byte message
(request) to the server over a TCP socket; the
server sends back an 8-KB response. The CRR
(connect, request, response) test includes the con-
nection set-up and tear-down costs in the timing
loop and is designed to simulate an HTTP 1.0 trans-
action.

We used internal versions of the SockPerf and XMPT
benchmarks that had access to OS/2 kernel instrumen-
tation for CPU utilization. Since CPU utilization could
be very accurately collected, we defined a metric
called scaled throughput as the figure of merit for each
test. Scaled throughput was computed by dividing
the raw throughput by the average of the client and
server CPU utilization. By dividing the Java scaled
throughput for a given test by the corresponding na-
tive scaled throughput, we finally arrived at a metric
of Java performance as a fraction of native perfor-
mance. In addition to each of the individual tests
above, we also computed an overall score for both
Java and native performance. This was the geomet-
ric mean of the scaled throughputs in each case.

Scaled throughput estimates software efficiency or
path length. Thus the ratio of Java to native scaled
throughput is a measure of the additional path length
imposed by Java on top of the native sockets API.

Results. Figure 16 shows SockPerf and XMPT results
gathered between a pair of IBM PC Server 704 sys-
tems, each with a 200-MHz Pentium Pro processor,
1 GB RAM running OS/2 Warp Server SMP with TCP
4.1 and the IBM DK 1.1.4 and 1.1.7 releases. The ma-
chines were connected to an isolated 100-Mb Eth-
ernet network. Each of the tests listed above is shown
as well as an overall geometric mean. The native re-
sults are normalized to one, and the Java SockPerf
results are shown relative to the native results.

This microbenchmark suite was used to detect and
improve the performance of Java sockets in the
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IBM DK for OS/2 following the 1.1.4 release. The per-
formance improvement from an initial low in DK 1.1.4
to DK 1.1.7 is very clear. In DK 1.1.4, Java socket per-
formance was only 60 percent of native. The set of
improvements that took performance up to 95 per-
cent in DK 1.1.7 is beyond the scope of this paper.
For details, please refer to the paper in Reference
18, which appears elsewhere in this issue. It is worth
noting here, based on the OS/2 results, that Java sock-
ets have the potential to be a very thin layer above
the native sockets API of the platform. SockPerf is
currently being used for similar Java-to-native com-
parisons and performance enhancements for the Jvm
in the IBM Developer Kit for Windows NT, Java Tech-
nology Edition, and the Jvm in the IBM Developer
Kit for AIX* (Advanced Interactive Executive).

JDBC/ODBC microbenchmarks. The benchmarks
jBOB (JDBC) and CEB (ODBC) provide a macro-level
view of the efficiency of Java dynamic access to da-
tabases as compared to the dynamic access of a C
or C11 application (ODBC/CLI). From the stand-
point of a user, or the designer of a three-tier so-
lution, this view is crucial. However, from the stand-
point of the JDBC architect or developer, a finer-
granularity view of performance is also useful. To
this end, we created a suite of microbenchmarks fo-
cused on the performance of a number of key JDBC
methods and their equivalent ODBC/CLI variants.

To determine the important database access meth-
ods, we traced the frequency of JDBC calls for each

transaction type of jBOB while running on the AS/400.
Table 2 provides the results for the new order
transaction. Note the high frequency of Prepared-
Statement.setInt, Resultset.next-ResultSet.getInt, and
ResultSet.next-ResultSet.getString calls. The other
transaction types, payment, orderline, delivery, and
stock, were found to have similar distributions of
JDBC method usage. Although the frequency of a call
is not always indicative of its role in performance,
for the case of jBOB, time-based profiles affirmed the
importance of the get and set methods. In addition,
anecdotal customer data highlighted ResultSet pro-
cessing as being an especially performance-sensitive
area of the JDBC specification. For these reasons, we
created a suite of microbenchmarks to focus on the
ResultSet.getXXX and the PreparedStatement.setXXX
family of methods.

The microbenchmarks serve several purposes. First,
they provide an easy-to-run suite of tests that can
magnify and validate JDBC implementation enhance-
ments. Second, they allow performance comparisons
between multiple Jvm and JDBC implementations.
Third, they allow an easy comparison to similar calls,
such as ParamData, Fetch, and GetData, written in
the more familiar ODBC/CLI framework. Finally, the
benchmarks are useful for performance regression
testing as function, and robustness is added to Jvm
and JDBC implementations.

Content of JDBC/ODBC benchmarks. The Prepared-
Statement.setXXX method sets the IN parameter in
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a precompiled statement where XXX corresponds
to the data type of the variable being set. The mi-
crobenchmark suite contains set tests for the data-
types listed in Table 3. The corresponding function
is handled in one of two ways for ODBC/CLI appli-
cations. Either a user memory location is bound to
the PreparedStatement and then assigned, or the
ParamData/PutData calls are used. The former case
is the most common and high-performing method.
After a location is bound, the user is only required
to do a simple variable assignment to perform the

equivalent of the JDBC set. The JDBC architecture
does not allow this common high-performing alter-
native because of its aversion to pointers. The set
method is most akin to the ParamData/PutData com-
bination. For the API microbenchmark suite, there
are corresponding bind and ParamData timed tests
for each of the data types used in the set¼ suite.

The ResultSet object is a table that contains the re-
sults of an executed query. The ResultSet.getXXX
methods retrieve the specified data from the current

Table 3 set( )/get( ) methods tested

SET Methods
Tested

Underlying Data
Type

GET Methods
Tested

Data Stored As:

setShort SMALLINT getShort SMALLINT
setInt INTEGER getInt INTEGER
setLong BIGINT getLong BIGINT

setFloat REAL getFloat REAL
SetDouble DOUBLE getDouble DOUBLE
setBoolean SMALLINT getBoolean SMALLINT

setByte SMALLINT getByte SMALLINT
setDate DATE getDate DATE
setString CHAR(6) getString CHAR(6)

setString VARCHAR(10) getString VARCHAR(10)
setTime TIME getTime TIME
setTimeStamp TIMESTAMP getTimeStamp TIMESTAMP

setBigDecimal NUMERIC getBigDecimal NUMERIC
setFloat NUMERIC getFloat NUMERIC

Table 2 New order JDBC call frequency

Executing Average Calls per
Transaction

Detailed Calls per
Transaction

executeQuery¼ 23 3 1 2 per orderline
executeUpdate¼ 34 4 1 3 per orderline

Prepared Statement
Processing

Average Calls per
Transaction

Detailed Calls per
Transaction

setBoolean¼ 1
setDouble¼ 10 1 per orderline
setInt¼ 232 22 1 21 per orderline
setString¼ 11 1 1 1 per orderline

ResultSet Processing Average Calls per
Transaction

Detailed Calls per
Transaction

getDouble¼ 10 1 per orderline
getFloat¼ 3
getMetaData¼ 3
getInt¼ 21 1 1 2 per orderline
getShort¼ 20 2 per orderline
getString¼ 42 2 1 4 per orderline
next¼ 23 3 1 2 per orderline
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row of the ResultSet instance. The ResultSet.next
method updates the logical cursor to the next row
in the ResultSet object. A ResultSet is processed by
stepping through the table (next calls) and retriev-
ing data (get calls). The microbenchmark suite con-
tains get tests for the datatypes listed in Table 3.
Again, there are two ways to achieve the correspond-
ing function with a dynamic ODBC/CLI application.
As before, memory can be bound, and a Fetch can
be performed, or the GetData function can be used.
The microbenchmarks contain tests for both types
of ODBC access for comparison purposes. It should
be noted that in practice the Fetch dominates in pop-
ularity.

Matching the data type of how data are stored and
how they are retrieved is crucial for performance.
In most of the microbenchmarks, the type retrieved
from the database is the same as the type stored (e.g.,
ResultSet.getInt is done on integer types). The nu-
meric type is an exception. One test retrieves it as
a BigDecimal, whereas another retrieves it as a float.
This test highlights the expense of retrieving data and
casting to an inefficient type. It may be of interest
to note that work is currently underway to improve
the performance of the BigDecimal class in IBM Java
implementations.

Implementation of JDBC/ODBC benchmarks. The
microbenchmarks were implemented to ensure re-
peatability, accuracy, and precision. A small data-
base was created to be queried, and the same da-
tabase was used for both the ODBC and the JDBC
versions of the benchmarks. Each call executed in
a loop with many iterations. The time to run all it-
erations of the call was measured; this run will be
referred to as a trial. Before the start of the trial, the
API or method under test executed a number of times
to “warm up” the caches and memory. The intent
is to drive the CPU to 100 percent utilization and mea-
sure the best case execution time (best memory and
cache characteristics) for the method or function.
Multiple trials ran until the observed mean time to
complete a trial converged to within 5 percent of the
theoretical actual mean at a 90 percent confidence
level. The time for a single execution was then found
by dividing the converged, mean trial time by the
number of iterations.

JDBC/ODBC results. Data collected with the
JDBC/ODBC microbenchmarks are summarized by
Figures 17 and 18. Each bar in the charts corresponds
to a Jvm-version/database-version combination. In
addition, there are bars representing the correspond-

ing ODBC calls Fetch, GetData, ParamData/PutData,
and Bind. Five Jvms are represented: the Jvms in the
IBM DK version 1.1.6 and DK version 1.1.7, and the
Jvms in Sun JDK versions 1.1.6, 1.1.7, and Java 2, Ver-
sion 1.2. Each Jvm (grouping of bars) was measured
on five DB2 versions: DB2 5.0 UDB, 5.0 FP9014, 5.2
FP7, and a recent prototype. The enhancements re-
alized in the prototype code are currently targeted
for release with DB2 version 6.1. All data were col-
lected on a 333 MHz Pentium II running Windows
NT 4.0 with Service Pack 3.

Figure 17 indicates that the core Jvm implementa-
tion is not a key factor in the performance of the get
access to the ResultSet. However, it is interesting to
note that the Jvm in the IBM DK v 1.1.7 is the highest
performing Jvm, with the JVM in the Sun JDK 1.2 a
close second. In all cases the performance difference
is not great. IBM obtains its performance advantage
through more highly optimized JIT-produced code.
The Sun JVM gets a slight edge with a faster Java
Native Interface (JNI) implementation. More impor-
tant to the performance of the get method is the da-
tabase level and corresponding JDBC implementa-
tion. It can be seen that impressive gains were made
in the ODBC/CLI level for GetData and Fetch perfor-
mance in FixPack 9014. The DB2 JDBC implemen-
tation is built on top of the CLI layer; as a result, these
performance gains also appear in the JDBC calls.

The large boost in performance with the prototype
DB2 code (last bar of each grouping) was realized by
avoiding multiple JNI calls between the JDBC and CLI
layers of the implementation. In general, transitions
from Java to native code and data movement be-
tween this barrier are slow. The DB2 performance
improvements were achieved by limiting the num-
ber of JNI transitions to one per next or get method
call, and passing all data as arguments to the native
method (instead of using JNI methods to reach back
into the Java space). In addition, gains were real-
ized by using the Get, .ArrayRegion family of meth-
ods as opposed to the Get, .ArrayElements when-
ever possible. The underlying implementation of the
Get, .ArrayElements call requires objects to be
pinned on the heap, whereas the Get, .ArrayRegion
passes a copy of data by value.

Most interesting from Figure 17 is the difference in
performance between the ODBC Fetch calls and the
get methods. This comparison is useful to a devel-
oper moving from the mature ODBC/CLI API to
the JDBC API. The performance advantage of the
ODBC specification is made clear by these data.
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From a performance point of view, it may be ad-
vantageous to enhance the JDBC specification to
allow bind type operations. Currently, there are
a number of proposals being considered to address
this concern.

Also interesting is the performance advantage the
Fetch call has over the GetData call. For this reason,
the Fetch is the preferred method of data access for
ODBC/CLI applications. However, if an application
has been written using the GetData call, nearly com-
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parable performance can be obtained using the JDBC
interface.

The DB2 5.2 implementation of the get methods is
in actuality binding memory locations in native space.
This allows multiple next or get methods to be done
quickly but comes at the cost of an expensive first
next call on a ResultSet Object. On the first next call,
all the binding is done.

The set comparisons (Figure 18) clearly delineate
both Jvm and JDBC implementation performance dif-
ferences. As in the previous chart, significant per-
formance improvements exist in the CLI layer of DB2
in FP9014. These can be seen in bind calls but are
not realized in the ParamData/PutData pair. How-
ever, these changes result in only a slight improve-
ment in the corresponding JDBC set calls because the
set calls are not built on top of the bind interface.
Fortunately, improvements in the JDBC implemen-
tation have resulted in significant performance im-
provements in the latest release when compared with
the original implementation. As with the get meth-
ods, JNI calls (both method invocation and data) were
reduced by passing needed data as arguments on the
native method call. In addition, the native method
return code was overloaded in cases in which more
than one return code was required. Finally, the im-
plementation actually binds the memory location
to the PreparedStatement object. This location is
passed down to the native code, and if it has not
changed since the last use, a simple assignment can
be made.

As noted in the benchmark description section, the
true comparison to the set method in the bound
ODBC world is a simple variable assignment. This is
illustrated by the bars in the chart that stretch to the
top of the graph. It puts JDBC at a decided disad-
vantage. However, we believe the disadvantage is not
serious because the cost of all these calls is small.

The last point to notice in Figure 18 is the superior
performance exhibited by the Jvm in IBM DK 1.1.7.
It is especially evident on the prototype version of
DB2, which has removed a number of JNI calls. The
advantage for these tests comes from better opti-
mized code generation from the IBM JIT.

Conclusion

There has been significant activity on Java perfor-
mance; however, much of the work has focused on
Java client performance. IBM has a significant inter-

est in servers and, although there has been some work
on Java server performance, there is currently no ad-
equate set of tools to facilitate the analysis of Java
server applications. To address this concern, we dis-
cussed the design, implementation, and analysis of
several Java server benchmarks, including a Web ap-
plication serving dynamic content, two on-line trans-
action processing benchmarks, and several families
of microbenchmarks.

Overall, the results show that Java server perfor-
mance is competitive with legacy environments; how-
ever, some areas require more attention. Java serv-
lets outperform CGI, and the Java platform is
competitive with C or C11 for several areas, includ-
ing unformatted file I/O, sockets, and certain areas
of dynamic database access. IBM’s Jvm optimizations
such as efficient monitor and object allocation im-
plementations have led to significant performance
improvements, including better scalability that is vi-
tal for server workloads. In contrast, RMI is not yet
competitive with RPC, and formatted I/O requires per-
formance improvements. Furthermore, our experi-
ence shows that to understand Java performance for
server applications, one must examine more than just
pure Java performance. Many performance issues
arise at the boundaries between programming mod-
els, as demonstrated by the jBOB and JWeb2 bench-
marks.

Additional benchmarks are needed to provide a
more comprehensive assessment of Java server per-
formance. One possible avenue for future work in-
cludes extensions to JWeb2. With modifications, the
benchmark could stress the Jvm more by increasing
the degree of dynamic content or running with a Java
Web server such as Java Web Server19 or Jigsaw.20

In addition, more work is needed in the area of server-
side database access using Java stored procedures.

A second approach would be to use even more re-
alistic Web applications as benchmarks. A set of
shopping servlets or banking servlets are good can-
didates. This approach would provide a more gen-
eral view of Java server performance, whereas our
approach has more successfully abstracted and fo-
cused on the typical events of these types of work-
loads.

Yet another approach would be to alter the dynamic
component of the benchmark to separate the logic
of the servlet from the creation of the resulting page.
This approach, separating content from formatting,
can be achieved via JavaServer Pages. We expect
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many adopters of Java servlets to also adopt JavaSer-
ver Pages because of this cleanness of separation.
Hence, we plan to develop an implementation of
JWeb2 using JavaServer Pages.

We believe that various network services (such as
secure sockets layer, Internet Inter-ORB Protocol
[IIOP], remote method invocation over IIOP, and di-
rectory services based on the Java Naming and Di-
rectory Interface) will be used in developing future
Java server applications. Similarly, Enterprise Java-
Beans and IBM’s Enterprise Java Server will serve as
the backbone for a diverse set of applications in the
future. In future work, we will consider repre-
sentative benchmarks incorporating these services.
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