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SanFrancisco
performance: A case
study in performance
of large-scale

Java applications

This is a study of the performance progress of
the SanFrancisco™ project from the time the
decision was made to base it on the Java™
language up to the time SanFrancisco
applications were successfully deployed in the
marketplace—from February 1997 until late 1999.
We document the challenges, decisions, and
technologies that were encountered during the
three-year development period that saw
performance improve by orders of magnitude.
Key areas that allowed us to achieve this
improvement were intelligent object caching,
improved object access strategies, use of
commands (function shipping), efficient mapping
of objects to the underlying database,
appropriate usage of Java, programmer
education, and acquiring (or building) needed
tools. We also discuss several areas where
challenges remain and more progress is needed.

he SanFrancisco* product establishes a new par-

adigm for building business applications. Tar-
geted at independent software vendors (ISVs),
SanFrancisco provides a distributed object infra-
structure, common business objects, and business
process components. Together these prebuilt com-
ponents provide a platform-independent application
structure designed for extension by ISVs to produce

0018-8670/00/$5.00 © 2000 IBM

by R. Christ
S. L. Halter
K. Lynne
S. Meizer
S. J. Munroe
M. Pasch

end-customer applications. The overall objective is
to provide the 1SVs with at least 40 percent of an over-
all business application in prebuilt content designed
to be extended.

The SanFrancisco product is written almost entirely
in Java®* and is believed to be one of the largest Java
development efforts at this time. This paper focuses
on the performance concerns the SanFrancisco proj-
ect faced and how we addressed them.

The SanFrancisco architecture consists of three lay-
ers of reusable code that can be extended by appli-
cation developers (see Figure 1). The highest layer,
the core business processes (CBPs), provides business
objects and default business logic for various “ver-
tical” application domains. These are sometimes also
referred to as “towers.” The second layer, the com-
mon business objects (CBOs), provides general-pur-
pose business objects, interfaces for interoperabil-
ity across core business processes, and reusable
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Figure 1  SanFrancisco framework architecture
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design pattern implementations. The lowest layer,
the foundation, provides the infrastructure and ser-
vices that are required to build industrial-strength
applications using distributed, managed objects,
across multiple platforms and relational databases.
Application developers can use the prebuilt content
at any of the three layers.

Background and history

The SanFrancisco project came into existence ap-
proximately five years ago as a result of independent
software vendors coming to IBM seeking a solution
to problems they were encountering. An increasingly
large percentage of their development budget was
being spent on multiple platform support, technol-
ogy infrastructure, and business logic that was not
unique to their industries. This resulted in insuffi-
cient resources remaining to react to changing cus-
tomer requirements and to implement new features
that differentiate each vendor from its competitors.
They were also facing the need to update their ag-
ing application bases to handle issues like Year 2000
preparation and European currency conversion.
Most 1Svs wanted to update their programming
methodologies and skills from procedural to object-
oriented development, for increased flexibility to
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adapt quickly to new requirements and for reduced
maintenance costs. Many ISVs realized they could not
afford the risk to proceed on their own, and needed
to join forces with other companies to deliver com-
petitive solutions. Thus the SanFrancisco project was
conceived, and IBM worked with a key set of these
ISVs to define a comprehensive solution to address
their concerns.

When we chose the Java technology as our imple-
mentation environment in early 1996, it was not yet
mature, and we knew that it would present signif-
icant technical challenges for the SanFrancisco proj-
ect. Soin November 1996 we established a dedicated
SanFrancisco performance team to focus on creat-
ing meaningful benchmarks and goals, measuring,
analyzing, prototyping, documenting, and driving
performance improvements into the final product.
Since our initial path-length benchmark measure-
ment in late 1996, SanFrancisco performance has im-
proved by a factor of 500.

Many benchmarks are available for small or numer-
ically intensive Java client applications, and these
show great results when just-in-time (JIT) compiler
technologies are used. However, the SanFrancisco
product workload of server-oriented business appli-
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cations did not match the workload measured by
these benchmarks. As a result the performance team
wrote various Java server benchmarks that were in-
spired by the industry-standard TPC-C** benchmark.
Using our benchmarks, we have found only about
a 40 percent gain from JIT technology, which is far
short of the results obtained with other benchmarks.?
This is due to the greater complexity of SanFran-
cisco frameworks over simple program loops on
which most Java benchmarks are based.

This complexity includes database 1/0, contention for
shared resources (objects), and some native code.
At this time, we continue to explore new JIT tech-
nology as well as the benefits of static compilation
technology.

Performance tools are always critical in developing
serious business applications, and Java-based per-
formance tools have not been adequate up to this
point. However, the existing tools did allow us to find
numerous bottlenecks in SanFrancisco code, Java
virtual machines, and Java class libraries and to track
memory allocation problems. The performance team
created several lock contention analysis tools to aid
in discovery of improvements for higher concurrency
and overall throughput.

While SanFrancisco currently supports good
throughput with subsecond transaction rates and
continues to make significant advances, it has not
yet reached its aggressive goal of matching traditional
procedural applications, which still have at least a
50 percent performance advantage.

We continue to work with others in IBM and in the
industry to ensure that the next generation of Java
technology works well for this emerging class of new
applications.

Problems

Given the complexity of the SanFrancisco environ-
ment (see Figure 1), it should be no surprise that
there are numerous opportunities for performance
bottlenecks and problems. There are of course the
time-honored pitfalls that can ensnare any applica-
tion: inefficient or badly coded algorithms, excessive
contention for shared resources, system configura-
tion errors, communication bottlenecks, etc. Added
to these “ordinary” problems are SanFrancisco-spe-
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cific problems because of its architecture— cross-
platform, distributed, object-oriented, component-
based—and new Java technology. These problems
stem from some combination of (1) being a frame-
work that can be used (or abused) in many ways by
the end application, (2) being written in Java, thus
requiring a separate run-time environment that uses
a specific set of run-time library routines, and (3)
providing data persistence via a relational database
(RDB) in an object-oriented environment. The per-
formance problems the SanFrancisco team faced
were of both the ordinary and “extraordinary” kind,
and we categorize them as follows:

1. Excessive code path. Too much code was being
generated and executed for the amount of under-
lying logic. Sometimes this was just due to bad
choices of algorithms or poor coding practices,
but more often it was due to some aspect of the
Javalanguage or run-time library that was not well
understood. And of course because Java is often
executed interpretively, these problems are a lit-
tle worse. Additionally, the C+ + skills many Java
programmers already have can unknowingly lead
to inefficient coding practices. In C++, for ex-
ample, “strings” (null-terminated arrays of char-
acters) are quite efficient, while the analogous
“String” class in Java is much less so, and should
be avoided in performance-sensitive situations.

2. Inefficient framework usage. SanFrancisco provides
programmers with many choices in developing ap-
plications. For example, there are multiple ways
to organize collections of objects (arrays, lists,
maps, sets, and extents) and many ways to access
and lock them. While at a high level they all ac-
complish basically the same thing, they have rad-
ically different performance characteristics, and
the performance penalty for choosing incorrectly
can be severe.

3. Configuration problems. Because of the added
complexity of both the Jvm (Java virtual machine)
and additional configurable structures in the San-
Francisco frameworks themselves, proper config-
uration of the resources on the host machine be-
comes more complex as well. Besides the obvious
things—making sure the system has enough vir-
tual memory (paging space) and the database has
enough buffer space—there are the size of the Jvm
heap, the SanFrancisco object caches, and the
schema-mapping caches to consider as well. An
imbalance in the allocation of resources among
these can create performance bottlenecks that
may be hard to spot without special tools and
knowledge.
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Figure2 Performance methodology
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4. Jvm idiosyncrasies. Most SanFrancisco code runs
within some Jvm (the exception is a small amount
of C+ + code for database connectivity). But San-
Francisco runs on a number of different platforms,
and each platform hasits own Jvm. Although each
of these Jvms is functionally equivalent, the Java
specification does not guarantee performance
characteristics, and some of these characteristics
have profound ramifications. In particular, the
garbage collection algorithms, the efficiency of the
supplied JIT compiler and run-time libraries, and
the availability of tuning and configuration param-
eters are all factors. The SanFrancisco project has
had to deal with all of these in order to under-
stand and address specific performance problems
across the various platforms it supports.

5. Object persistence. The efficient mapping of Java
objects to relational database structures has been
a particularly daunting challenge within the San-
Francisco project. SanFrancisco uses native C++
code (via the Java Native Interface) to store and
retrieve the contents of persistent SanFrancisco
and Java objects within an RDB. This was done,
rather than using Java Database Connectivity
(JDBC**), to give us the ability to use two-phase
commit techniques and control more precisely the
database mapping. Doing this efficiently so that
the query capabilities of the underlying RDB can
be effectively utilized is absolutely required in or-
der to ensure acceptable performance over large
numbers of objects.

The next sections detail how the SanFrancisco team
confronted and ultimately prevailed (at least par-
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tially) over most of these problems. Particular atten-
tion will be paid to those problems that were caused
or made worse by the object-oriented Java language
and the Java run-time environment.

Methodology

The first step to solving the performance problems
was to identify a methodology to use. Figure 2 rep-
resents the performance focus areas in the SanFran-
cisco project.

The top level represents simple changes that can be
made while coding or doing low-level design. Most
of these types of problems can be averted by simply
being performance-aware, making them topics for
developer education on the performance character-
istics of Java technology.

The middle section of the diagram represents the
SanFrancisco programming model’s effect on per-
formance. A designer needs to understand the ca-
pabilities of the programming model. For instance,
the designer must make a proper choice of what col-
lection to use, and what objects to use in general.
The designer or implementer must also make good
decisions on what access model to use when access-
ing the data.

Finally, the lowest level of the diagram represents
the fundamental limitations of the underlying hard-
ware, data store, and Jvm (efficiency of JIT compil-
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ers, garbage collection, etc.). These are areas that
we were not able to significantly change. The San-
Francisco performance team has been working with
Jvm and garbage collection providers to improve the
Jvm performance for applications. This effort is be-
ginning to bear fruit with the improved garbage col-

One of the first steps
in improving the performance
of a program is to identify
where the time is being spent.

lection behavior of the IBM Developer Kit for 0S/400*
(Operating System/400*), Java Technology Edition,
Version 1.1.7.

Solutions

One of the first steps in improving the performance
of a program is to identify where the time is being
spent. A good set of tools can help this process enor-
mously. When we first began the SanFrancisco proj-
ect, there were really only two tools available.

The first, and crudest, method of timing a piece of
code is to bracket the code with calls to System.cur-
rentTimeMillis( ). This has the advantage of not in-
terfering with the bracketed code. However, this re-
quires that the tester either know what specific code
may be causing performance inefficiencies or go
through a tedious process of gradually narrowing the
scope of the bracketed code.

The second tool available to us was the profiling ca-
pability of the Jvm itself. To invoke this profiling,
the Java program is called with java_g -prof. By de-
fault, this produces a file called java.prof. (The file
can be named something other than the default by
specifying java_g -prof: name.) The profile file is ba-
sically a view of the amount of time spent in all of
the methods a program is calling. The raw file is fairly
hard to work with, but there are various tools that
make this much simpler. Unfortunately, new versions
of the Jvm often cause these tools to fail.

While not specific to Java, both the Windows NT**
and 0S/400 systems provide various tools for measur-
ing the performance of code running on them. On
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Windows NT, the performance monitor and task
manager tools can be used to measure different as-
pects of the system, such as CPU and disk utilization.
On 0s/400, the performance explorer (PEX) tool can
be used.

After several years of Java usage, third-party per-
formance tools started to become available. Two
tools that we found to be useful were JProbe**
(http://www.klgroup.com) and Optimizelt!** (http://
www.optimizeit.com). These tools provide similar
functionality, profiling the run-time activity of Java
code. Both are fairly simple to use with nice graph-
ical representations of time and memory usage.

Another useful performance tool is Intel’s VTune**
(http://developer.intel.com/vtune/index.htm), which
can be used if the code is running on an Intel mi-
croprocessor-based computer. The advantage of this
tool over the Java-specific profiling programs is that
it shows everything that is using the CPU in the sys-
tem, not just the Java code (see Figure 3). This gives
the relative amount of time spent in Java code vs
database code, for example. This can be very useful
in showing where to start devoting performance re-
sources. If only 5 percent of the time is spent in a
particular piece of code, then no amount of optimi-
zation of that piece will give more than a 5 percent
performance gain.

SanFrancisco-specific tools. In addition to figuring
out where the raw execution time is being spent, it
is important to identify where there may be bottle-
necks in the code. Since SanFrancisco maintains its
own object cache and object locking strategies, these
were obvious places to look. To aid in this we de-
veloped a set of SanFrancisco-specific tools that
would show us the caching statistics and an analysis
of locking behavior. The lock tool can be used to de-
termine if there are high-level objects that are being
locked inappropriately and are thus producing bot-
tlenecks. Once these objects are identified, it may
be possible either to change the lock or to decom-
pose the objects into smaller logical pieces that al-
low for more parallelism.

In SanFrancisco, object queries can be performed
on collections of objects. When the object query is
performed, the SanFrancisco infrastructure deter-
mines whether it is able to directly “push down” the
query to the underlying data store or whether it has
to perform the query itself by activating objects. We
call the second form of query a “live object” query.
The push-down form of the query is much faster and
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Figure 3

Total contribution of Java technology to SanFrancisco performance costs
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more desirable. To help determine what queries are
being done and whether they are of the live object
or query push-down form, we developed a “query
trace™ tool. This tool and several other SanFrancisco
performance tools are available with the SanFran-
cisco product or from our Web site.?

Programmer and ISV education. As we started solv-
ing the performance problems, we realized that for
us to be successful, the development team needed
to be educated in the importance of performance.
After our initial beta release, we began a series of
Java and SanFrancisco performance education ses-
sions. Since all of the developers on the SanFran-
cisco project were initially C++ programmers, one
key part of our education was to identify the Java
performance pitfalls that C++ programmers en-
counter. Among these pitfalls are the excessive use
of strings, which in the Java language are immuta-
ble objects, and excessive use of exceptions, which
are more expensive in Java code. In addition to the
Java pitfalls, the SanFrancisco programming model
has its own performance pitfalls. For each of the pit-
falls, we identified one or more alternatives that ex-
hibited better performance. We repeated this edu-
cation on a frequent basis to remind the development
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team of the importance of performance and to
present new discoveries. To supplement the educa-
tion, we developed a set of performance tips and
techniques that were published on the IBM intranet.
These tips covered Java and SanFrancisco coding
tips, as well as system, database, and SanFrancisco
configuration tips.

As the project progressed, and the size and complex-
ity of the product increased, the SanFrancisco per-
formance team determined that it needed the assis-
tance of key developers on each of the development
teams. These key developers became “performance
ambassadors,” serving as liaisons between the per-
formance and development teams. The ambassadors
were given the responsibility of achieving perfor-
mance goals. To make the ambassadors more effec-
tive, the performance team developed more inten-
sive performance education for them.

Since the SanFrancisco product is intended to be ex-
tended by 1SVs, we also concluded that the educa-
tion materials developed internally were fundamen-
tally needed for the ISvs and the SanFrancisco
technical consultants. To achieve this goal, the ed-
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ucation materials were converted into a course and
presentations for our customers. Additionally, the
performance tips and techniques were made avail-
able to the customers. Since new performance tips
are constantly being discovered, we decided to make
this information public via the Internet, updating it
frequently. Also, the performance tips and external
presentations were expanded to contain more de-
tailed information.

Even with the performance information made avail-
able to the customers, we felt that each customer
would have unique problems. To assist the custom-
ers in identifying their own performance problems,
a SanFrancisco “porting and tuning” lab was estab-
lished. This is located in Rochester, Minnesota, and
consists of a large number of server and client sys-
tems running SanFrancisco and staffed by technical
consultants, assisted by the SanFrancisco develop-
ment team.

Jvm infrastructure. The Jvm infrastructure (Jvm, JIT
compiler, and run-time environment) contributes to
the success or failure of a Java application server.
The run-time environment of an application server
is very different from the client (Web content) envi-
ronment where Java normally runs. Application serv-
ers run for many hours, whereas client applications
live for only minutes. Application servers are shared
by many different users, which implies more threads,
more classes loaded, and larger object heaps than
usually encountered in client applications.

Originally the Java language was controversial be-
cause it was interpreted. This is no longer a concern
due to availability of JIT and more traditional com-
pilers for Java. Current JIT compilers are very effec-
tive and can meet or exceed the run-time perfor-
mance of compiled Java code. While we are
expecting additional performance improvements
from compiler technology, this is no longer a major
concern. We should also keep in perspective the fact
that the Java technology is only part of the total per-
formance profile of a complete application server.

From Figure 3 we see that for a well-tuned work-
load, the direct contribution of Java technology is
less than 20 percent. Most of the total CPU load is
in the database (DBMS) or the operating system. Since
80 percent of the CPU load is in the DBMS (here
DATABASE 2* [DB2*]) and operating system, the ef-
ficiency of how the application (and object infrastruc-
ture) uses the DBMS is more important than the lan-
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guage it is written in. Of course this assumes that
developers use language features appropriately.

Garbage collection issues. The more important is-
sue with Java technology is its fundamental object-
oriented nature and garbage collection-based stor-
age management. All objects are dynamically
allocated from a heap, where garbage collection is
automatically done either when the heap is exhausted
or based on a timer. Since Java String instances are
immutable, this results in radically different perfor-
mance characteristics from strings in other languages.
The same is true for arrays and structures, which are
allocated dynamically.

Application servers differ from clients in heap us-
age. Servers cache persistent shared objects to im-
prove throughput and response time. This means the
Java heap contains significantly more long-lived ob-
jects than are found for client applications.

The large object caches (and large Java heaps) re-
quired for SanFrancisco application servers signif-
icantly increase the time required for the garbage
collector (GC). With Java object heaps of 100-500
megabytes (MB), GC times of 5-20 seconds are com-
mon (twice that if heap compaction is required).
Most current Jvms use a simple “mark-and-sweep”
GC algorithm that suspends all user threads while it
is running. This creates noticeable pauses for all cli-
ents attached to the server, affecting both through-
put and response times.

The heuristics used to drive the garbage collector
are also important. Heuristics are the rules for de-
ciding:

* When to expand the heap

* When to trigger heap compaction

* When to force finalization

* When to clear weak references (and how many to
clear)

A Jvm with inappropriate heuristics can cause se-
rious performance problems. For example, the GC
shipped with the Sun Java Development Kit (JDK**),
v 1.1.7 has a heuristic that performs multiple GC
passes through the object heap whenever the free
heap is below 25 percent of the total size. For a Jvm
running applets in a 4 MB heap, this may be appro-
priate. However, for SanFrancisco’s use of the Java
heap, these heuristics are not particularly effective.
A multiuser application server running in a 256 MB
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heap will be stopped cold for minutes. We call this
“garbage collector hell.”

Fortunately we are seeing improvements in the gar-
bage collectors and heuristics. The 1BM Developer
Kit for Windows, Java Technology Edition, has sig-
nificantly improved the performance of the garbage
collector and heuristics. Jvms in the IBM Developer
Kits for 0s/400 and 08/390* (Operating System/390)
implement a concurrent GC that can run in parallel
with user threads. This requires the addition of a
“write barrier” so that the GC is aware of all object
reference updates. This causes a slight increase in
run-time overhead, but the user threads run with-
out pause. This “pauseless” behavior is important
to application servers since it maintains consistently
good response times at higher CPU loads.

Threading and synchronization. An important fea-
ture of Java is the built-in threading and synchro-
nization support. Thread safety dictates that general
utility classes be synchronized to ensure correct op-
eration. For example, objects of StringBuffer, Hash-
table, and Vector classes are synchronized for most
methods, but we found that most usage did not re-
quire synchronization.

Specifically, objects of the StringBuffer class are cre-
ated implicitly (by the Java compiler) for string con-
catenations. As these StringBuffer instances are tem-
porary and local to the invocation, they are never
shared and do not require synchronization. In this
case the only recourse is for the programmer to limit
String usage and use StringBuffer instances explic-
itly for concatenation and formatting.

As another example, the SanFrancisco infrastructure
uses various hash tables internally, but we found that
most of the hash tables are part of a larger structure
that was already synchronized. So in this case using
objects of the synchronized Hashtable class was un-
necessary. For SanFrancisco we developed our own,
unsynchronized hash tables specific to our needs.

The SanFrancisco program model provides a gen-
eralized locking mechanism integral with transac-
tional support. This locking mechanism obviates the
need for application programmers to do explicit syn-
chronization in their implementation. In fact the pro-
gram model documentation clearly discourages the
use of synchronization for application code. This
minimizes the use of synchronization in general and
isolates synchronization and monitor usage to the
SanFrancisco foundation layer and the Jvm itself.
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However, not all synchronization problems can be
resolved at the application level. The Jvm uses mon-
itors internally to synchronize class lookup, heap al-
locations, etc. Also, the core Java libraries java.lang.*,
java.io.*, andjava.net.* are heavily synchronized and
cannot be practically avoided. Fortunately, over the
evolution of Sun’s JDK v 1.1.x we have seen improve-
ments in both the implementation of monitors and
avoidance of contention within the Jvm. For exam-
ple, IBM Jvms have optimized the monitors for the
uncontended case.* The internal run-time structures
of the Jvms have also improved to limit contention
in high thread-usage cases: for example, improved
class look-up algorithms and thread local subheaps.

Each thread requires memory for the thread itself
and for both Java and Cstacks. The defaults for Sun’s
JDK 1.1 are 100 kilobytes (KB) for the C stack and
400 KB for the Java stack. This is 0.5 MB per thread,
which is allocated from the C heap of the Jvm in-
stance. For 10 to 15 threads this is not an issue, but
for a Java application server supporting hundreds
of clients, this can add up to a significant memory
requirement. Remote method invocation (RMI) re-
quires several threads per attached client, so 200 to
1000 threads would be nominal for a large Java ap-
plication server. This is a significant virtual memory
requirement (100-500 MB). This is also a signifi-
cant real memory requirement, because the stacks
must be scanned by the garbage collector and, as
mentioned earlier, it is critical to avoid paging in a
“stop-the-world” garbage collector.

Both the JDK 1.1 and the Java 2 Software Develop-
ment Kit, Standard Edition, v 1.2.2 support command
line options -ss and -oss to change the default C and
Java stack sizes. Unfortunately, these parameters ap-
ply to all threads in the Jvm instance, so the settings
must support the maximum requirement. It would
be useful for application servers to be able to set the
stack sizes at thread create time. The only recourse
at this time is to manage the total number of threads
and attempt to run the Jvm with the minimum stack
size that will support the application.

SanFrancisco code path fixes. When talking about
performance, path length is an important concept.
The path length of a task, or a business process, is
the number of instructions that are executed in the
CPU and the 1/O subsystem in order to complete a
business process or a set of transactions. Obviously,
the goal is to keep the path length as short as pos-
sible, and it can be achieved by using programming
techniques such as object caching or object reuse.
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High-use paths need to be identified, analyzed, and
optimized. Actual steps in this process are:

* Implementing a benchmark application that is rep-
resentative of “real life” applications

e Identifying benchmark application “hot spots” and
developing solutions for them

* Prototyping and measuring significant perfor-
mance changes

* Performing code inspections with the help of a list
of known performance problems

This process was applied to the SanFrancisco frame-
work and the findings in both framework code and
benchmarks are applicable to SanFrancisco-based
applications as well. Some apply to distributed ap-
plications in general. The most significant of those
findings are presented here.

Communication. Communication, i.c., data transfer
between client and server, or between two servers,
is very expensive. Therefore the number of commu-
nication requests as well as the actual amount of data
transferred should be reduced as much as possible.

Basically, there are three choices in working with ob-
jects in a distributed environment:

e The remote object can be transferred to the cli-
ent’s address space so that method calls against it
run locally.

* The remote object can remain at its home loca-
tion; all method calls against it will be remote calls.

* The business process function can be shipped to
the remote object’s home location where it runs
locally (see subsection on SanFrancisco com-
mands).

Making the right choice is critical for performance,
yet the best choice in a specific scenario depends on
multiple factors, which are discussed later.

In SanFrancisco most objects represent shared, per-
sistent data and operations. These will be referred
to as business objects. It is important to know where
a business object to be processed is located. In San-
Francisco this information is encapsulated by in-
stances of the Handle class: every shared business
object has a unique identity within the logical San-
Francisco network. A Handle instance encapsulates
this unique identity and can be stored for later ac-
cess to the business object.
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How persistent business objects are accessed has a
large impact on performance. In SanFrancisco this
is controlled by instances of the AccessMode class,
which are used to determine the access character-
istics. One access characteristic is the access loca-
tion. The two options for the location are (see Fig-
ure 4):

Local—The business object is transferred from its
owning server process to the requester’s process.
Subsequent method calls are local calls and are
therefore fast. If the business object is updated, it
will be transferred back to its server process when
the transaction is committed.

* Home—The business object remains in its server
process. A proxy object is created in the request-
ing process. Subsequent method calls are remote
method calls and will go through the local proxy
to the remote business object.

The choice between local and home is a trade-off
between the overhead of transferring the business
object back and forth between client and server (lo-
cal), and the cost of having each method call flow
back and forth (home). It depends on a number of
factors:

The size of the object

The number of method calls

The data flow associated with those method calls
The communication link overhead

The computing power of the server vs the com-
puting power of the client

To make the proper choice, these different factors
and how they interrelate must be well understood.
It is not a trivial task, but the SanFrancisco perfor-
mance team has found very few situations where lo-
cal access is advantageous. The SanFrancisco default
is to access remote objects at home, which is gen-
erally a good choice for an application.

As an alternative to remote method calls, SanFran-
cisco provides instances of the Command class. A
command bundles a number of method calls, against
one or more objects, that can be performed at a des-
ignated target location. The set of method calls im-
plements a (business) task. The target location can
be the local process or a remote server process, and
it is specified as the handle of the business object
that is the primary target of the command. When a
command is being performed, a single (remote)
method call triggers the execution of the task. Nec-
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Figure 4 Local vs home access
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essary input and resulting output data are passed as
part of the state of the Command instance.

The following list summarizes the rules of thumb that
the SanFrancisco performance team has established
for choosing the right business object access:

o If there are very few requests (method calls), use
home access.

e Ifthere are many requests, and the object transfer
cost is greater than the command transfer cost, use
a command executing at the home location.

e If there are many requests and the object transfer
cost is low, use local access.

Caching. Caching is especially important in a distrib-
uted environment like SanFrancisco, where each
method call is potentially a remote method call or
invokes remote methods internally. Frequently and
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repetitively used information should be cached in the
local process space instead of being retrieved over
the network or from a persistent data store over and
over again as needed. Several types of caching exist:

e [ntramethod caching. If the result of a method call
will not change and will be used more than once,
the result of the initial call should be cached in a
local variable for later usage. In Java code, a local
method call is at least three times more expensive
than referencing a local variable. Caching method
results is particularly important if the method will
retrieve a business object.

e Intermethod caching. Another common coding
problem, which is aggravated in a distributed envi-
ronment, is the situation where two or more meth-
odsin a series of calls need to access the same data.
In this case, the method that first accesses the com-
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mon data should store it and pass it on to subse-
quent methods. This technique may require inter-
face changes, i.e., additional parameters to pass
the data.

* Process/distributed process scoped caching. Another
opportunity for caching involves global data. These
data can be cached within the scope of a process
(in a static variable), or, in SanFrancisco, within
the scope of a distributed process.

A distributed process is like a normal process in
that it is an anchor point for one or more threads
that are actively working under it. The threads of
a distributed process can be spread across one or
more Jvms. The distributed process has a context,
or shared information space, that each thread in
the distributed process can access and modify. This
context is an instance of the DistributedProcess-
Context (DPC) class. Changes made to the DPC ob-
ject by one thread are available immediately to
other threads in the distributed process.

Object selection. Often developers have a choice
among different types of objects to accomplish a par-
ticular task. Selecting a type of the right “weight” is
a critical issue for good performance. The most prim-
itive choice meeting the requirements is generally
the best choice. Choosing a type that is “heavier”
than needed typically implies increased path length
and storage requirements. If the appropriate type is
not available, it should be created. Using an inap-
propriate type just because it is the only one avail-
able may cause performance problems that are dif-
ficult to correct.

Object reuse. The creation of a simple Java object is
a relatively expensive operation in terms of system
resources, and the creation of a SanFrancisco ob-
ject even more so. Thus, creating unnecessary ob-
jects should be avoided, especially if the object’s con-
struction involves complex operations or the object
is composed of many other objects. Reusing objects
once they are no longer needed should always be con-
sidered. Object reuse not only saves object creation
costs; it also saves garbage collection costs. The
downside of reusing objects is that it may create con-
tention points and may impede garbage collection
if too many objects are reused.

Objects available for reuse can be collected in a re-
use pool by type. They may also provide a reinitial-
ize method that corresponds to the constructor for
that type.
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In some cases an object can be created as a copy of
an existing one instead of being created “from
scratch.” The state of the new object may need to
be updated, unless the new object is intended to be
a clone of the original one. Copying will save some
of the initialization cost, but the performance ben-
efit may vary considerably depending on the com-
plexity of creation logic and the amount of state that
differs between the two instances.

Exceptions. Java exceptions and exception handling
provide an elegant way to deal with exceptional con-
ditions. With regard to performance, this support is
not free. It costs to create an exception object, it costs
to “throw” it and to “catch” it, and eventually it costs
to reclaim its space through garbage collection.
Therefore, exceptions should be reserved for very
rare, truly abnormal conditions. In cases that are con-
sidered normal, return values should be used instead.

Object persistence changes. One of SanFrancisco’s
strengths is the ability to store persistent objects in
an RDB. As with 1/O in any product, efficiently stor-
ing these data to disk is critical to performance.

The process of transforming objects to rows in a da-
tabase is known as schema mapping. The mapping
information is provided by the application developer,
giving the SanFrancisco schema mapping facility the
knowledge of how to map complex object attributes
to columns in a database. Without this information,
the schema mapping facility will not always make op-
timal decisions regarding this mapping.

These decisions can even result in having to store
the persistent object in a self-defining data stream.
Of course, the more data written to the database,
the poorer performance will be. Because of this, we
have applied resources to ensure that objects can be
optimally mapped to the database, with a primary
focus on reducing the size of the data to be stored.
Among the critical objects we have focused on are
those of the DDecimal and DTime classes, both of
which have specific counterparts in databases. Where
persistent state is critical, we have moved away from
complex Java classes, such as BigDecimal and Gre-
gorianCalendar, to primitive data types such as long
floating point and integer.

Another critical part of SanFrancisco’s persistence
support is its object cache. Since 1/0 can cause per-
formance problems, we wanted to avoid database ac-
cess whenever possible. Because most RDBs do not
“understand” objects, we could not rely on the da-
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tabase caching capabilities. So SanFrancisco added
an object cache that contains the most recently ac-
cessed objects. This object cache minimizes the num-
ber of database reads that a SanFrancisco applica-
tion will perform.

One of the primary strengths of databases is pow-
erful query functionality. For object-oriented pro-
gramming, it is natural to have a query syntax that
is based on objects and object method calls, which
is unnatural for RDBs. To provide object-oriented de-
velopers with an object-oriented query function that
performs and scales well, SanFrancisco provides a
mechanism to perform object queries in an RDB. This
function, query pushdown, allows the SanFrancisco
applications to take advantage of the powerful da-
tabase query capabilities. We located queries occur-
ring in the SanFrancisco code, changing the query
or configuring the schema mapping for the object
being queried to ensure that the query occurred in
the database for optimal performance.

Scaling improvements. Scalability is a complex topic
covering all facets of running a SanFrancisco appli-
cation. These facets include:

The application itself

The SanFrancisco towers and CBOs

The SanFrancisco foundation layer

* The supporting software products, including the
Jvm and RDB

* The supporting system platform, hardware, and op-

erating system

All of these pieces interact in complex ways to effect
scalability.

A scalable implementation can support a wide range
of workloads. The workload is defined in terms of:
number of concurrent users, throughput (e.g., bus-
iness transactions per hour), and response time cri-
teria (e.g., 90 percent of client requests complete in
one second). Scalability is defined by the range, from
the smallest configuration that will support the ap-
plication, to the configuration that supports the high-
est throughput (or user count) without wasting re-
sources.

This is all very much application-dependent. A sim-
ple application programmed directly to the SanFran-
cisco foundation layer will require fewer resources
than a complex application making full use of fea-
tures provided by one or more SanFrancisco tow-
ers. The scalability of an application tends to be in-
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versely proportional to the complexity of the logic
and the complexity of the data.

Data complexity contributes to scalability in multi-
ple areas: the cost of schema mapping, the cost of
object streaming, and the additional bandwidth re-
quired to read and write extra (meta) data. Tech-
niques for managing code complexity and path length
have been described. In addition, SanFrancisco pro-
vides extended schema mapping (ESM) tools for im-
proving the schema mapping. Improved schema
mapping can improve efficiency of data transforma-
tions and reduce the total data volume transferred
to and from the RDB.

Another important scalability issue is the interaction
between the path length and the application’s lock
strategy. To avoid deadlocks the application must
develop and adhere to a totally linear lock order. A
lock ordering strategy assigns each key resource (in-
stance, class, or collection) in the application to a
slot in the lock-order list. Each business transaction
will follow this lock ordering for all the resources it
uses. Observing a consistent lock ordering across the
application avoids deadlocks, but may increase the
duration of locks held for resources high on the list.
This lock strategy affects the number, strength, and
duration of locks. Excessive locking can severely limit
throughput and scalability.

In SanFrancisco, locks are granted by the getEntity( )
method on the Factory class. SanFrancisco uses ac-
cess modes to control lock strength and scope. Since
AccessMode is a class, instances can be defined and
used at any level of the application or framework.
Access modes can also be passed as parameters to
“get” methods so the returned object is locked at
the appropriate strength.

Managing CPU and memory resources is an impor-
tant topic for scalability. This applies for any appli-
cation server, independent of language. However,
the Java language can magnify some resource re-
quirements. Dynamic memory allocation and gar-
bage collection seems to increase the memory work-
ing set. Supporting persistent objects also inflates the
record size and bandwidth required from the RDB
and disk storage. SanFrancisco is perhaps an extreme
example of this, since it assumes full polymorphic
behavior from persistent objects, and this requires
additional storage for the meta-data.

Jvm scalability. Complications include the interac-
tion between the Jvm’s garbage collector, available
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real memory, and multiprocessor configurations.
Garbage collector technology covers a wide range,
from “stop-the-world” to concurrent.

In overcommitted memory situations, a “stop-the-
world” garbage collector exhibits poor throughput
and response time characteristics if the Jvm’s object
heap pages more than trivially. “Stop-the-world” gar-
bage collectors also exhibit poor utilization of mul-
tiprocessor configurations. More sophisticated gar-
bage collectors exhibit greater tolerance of paging
and better utilization of multiprocessors.

For JDK v 1.1.x Jvms, it is critically important that
the application server process (or processes) does
not page. So an important tuning activity is adjust-
ing the available tuning parameters so that paging
is minimized. If the RDB server is running on the same
processor as the Java server, it is important to con-
strain the RDB buffer allocation to avoid competing
with the Java server for real memory pages. A good
rule of thumb is:

* One third for application server heap space (San-
Francisco object cache)

* One third for RDB buffers

* One third for the operating system, file caches, run-
time environment, etc.

Once the SanFrancisco server heap size is estab-
lished, the container object cache sizes need to be
adjusted. A good rule of thumb is to adjust the con-
tainer cache threshold so that the Java heap is 60 to
70 percent utilized (30-40 percent free space) for
steady-state operation. The heap space for each San-
Francisco entity (Entity is the class from which all
persistent business objects inherit) is application-de-
pendent and can be derived empirically by running
the application server with Java parameter -verbo-
segc and observing the running application.

Depending on the Jvm and platform, there are prac-
tical limits to how large (the size of the heap and
number of objects cached) a SanFrancisco server can
be. For development using “stop-the-world” GCs, the
practical limit seems to be 128-256 MB and 100 000 -
150 000 Entity instances cached. Beyond these em-
pirically derived values, the GC overhead of scanning
the large heap offsets any advantage of the larger
entry cache. This effect is magnified on SMP (sym-
metrical multiprocessing) configurations for “stop-
the-world” garbage collectors. Jvms with concurrent
GC support larger Java heaps and entity caches. For
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example, on the AS/400* (Application System/400%),
entity caches up to 400 000 have proven effective.

The total number of threads required to support a
given number of attached clients can also become
alimit. Each thread requires memory for thread con-
trol objects and stack space. How this is managed
varies from Jvm to Jvm, but most implementations
support command line options (-ss and -oss) to
change the default storage allocation. However, the
stack requirement is application-dependent and can
only be determined empirically (the smallest stack
size that does not throw the StackOverflowError ex-
ception!).

For large application servers it is better to manage
the total thread count by multiplexing a large num-
ber of client connections over a smaller pool of
threads. This is complicated by requirements en-
forced by most RDBs that transactions be bound to
a specific thread. So once a client initiates a trans-
action, the server thread is bound to that client until
the transaction completes (commits or is rolled
back). Statistically only a subset of clients have an
active transaction at any given time, so the server’s
thread pool needs to be large enough to cover the
average number of “in-flight” transactions, plus a bit
more. The total should be sufficient so that some per-
centage (90-95 percent) of the transactions can com-
plete within a reasonable response time.

SanFrancisco servers support “thread throttling,”
which allows the administrator to control the size
and behavior of the server’s thread pool. In most
cases setting the thread limit to twice the average
number of “in-flight” transactions is adequate. This
handles the steady-state load while controlling and
smoothing out the peak loads that often occur after
a GC event.

Multiserver configurations. 1f the application is par-
titionable, dividing the work across multiple San-
Francisco processes (separate processes, each with
its own Java heap) can be an effective “work-around”
solution for these problems. It is important that most
object interactions are local (in the same server pro-
cess). Objects with strong interactions must be placed
on the same server, while unrelated objects and
weakly interacting objects can be placed in separate
servers. SanFrancisco provides the Container and
AccessMode class mechanisms to support and man-
age partitioning. SanFrancisco’s access mode mech-
anism strikes an effective balance between control
and transparency.
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Each SanFrancisco container represents a separate
database instance and is the unit of distribution in
SanFrancisco. Spreading an application’s data across
two or more containers is a prerequisite for multi-
ple server partitioning. Once the container partition-
ing is established, assignment (or reassignment) of
containers to server processes is easily configured.
The LocationHandle class allows the application to
ensure that new objects are created within the cor-
rect container. Since any object handle is also a lo-
cation handle, the application can create new objects
“near” (in the same container as) an existing object.
This allows the application to correctly place the ob-
jectwithin a container, without being concerned with
the specific server and container configuration.

The location handle is also used to direct SanFran-
cisco commands to the appropriate server (that man-
ages the container for the target object) for process-
ing. Again, this allows clients to direct requests to
the correct server process without knowing the spe-
cifics of the server/container configuration.

This optimizes the performance of each server while
increasing the total system capacity. Of course, this
complicates system tuning. While multiple server
processes mitigate some of the effects of a “stop-the-
world” garbage collector, it is still critical that the
sum of all Java heaps (and the RDB data buffers) fit
into the available real memory.

There are also practical limits to the number of serv-
ers an application or system configuration can use
effectively. Each Jvm process must replicate its run-
time data structures and the loaded classes required
by the application. So two SanFrancisco processes
with 128 MB heaps will require 16 to 32 MB more
storage than a single process with a 256 MB heap.

These are all empirically derived results from San-
Francisco’s application benchmark (general business
object benchmark [GBOB]) and any given applica-
tion must use these values as guidelines for its own
tuning. Much of this is simply working around the
inherent limitation of the current development Kits.
While we have had some success with this, we still
need to push for improvements in Jvm scalability.
It is simply easier to manage (and tune) one server
process than many, and easier to tune a single sys-
tem (node) than a distributed system.

Performance results

Performance has always been a key concern for the
SanFrancisco team. From the earliest days when the
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transition to Java was just beginning, we have been
tracking performance. Figure 5 shows one of the
foundation benchmarks (a transaction-processing
benchmark similar to TPC-C) and the performance
improvement from the very first alpha release
through SanFrancisco v 1.4.0, which is the second
deployment release. The chart shows the number of
business transactions per hour achieved by a bench-
mark (single client) written on the foundation layer
of SanFrancisco running a 200 megahertz Pentium™**
processor with 1 gigabyte of main memory on a da-
tabase of over 60 000 persistent objects. It shows the
dramatic improvement from the earliest days, when
a single transaction took over 30 seconds to com-
plete, to today, where the same hardware can pro-
cess nearly 20 transactions per second. This repre-
sents an improvement of over 500 times! Of course,
the large factors of improvement early in this time-
frame (from February 1997 through February 1998)
were mostly due to rapid improvements in Java tech-
nology (for example, the introduction of JIT com-
pilation) and the early SanFrancisco program model
(for example, the use of commands for function ship-
ping). However, the latter part of the chart shows
performance almost doubling after both Java and
SanFrancisco technology had already significantly
matured.

The March 1999 (1.4.0) release of SanFrancisco is
particularly noteworthy in that improving perfor-
mance was the primary focus of the release, and
much of the methodology mentioned earlier was in-
cluded here. Besides the existing foundation bench-
marks, additional benchmarks were developed for
the towers code, specifically for the general ledger
and order management towers. These benchmarks
were tracked across the entire 1.4.0 release on a
weekly basis. Figure 6 shows the improvement in the
transaction rates for the key benchmarks of this re-
lease. These benchmarks all measured multiclient
workloads on large (hundreds of thousands to mil-
lions of persistent object) databases, and we believe
they are typical of the performance of deployed San-
Francisco applications. The foundation benchmark
is based on a derivation of the TPC Benchmark**
(though for legal and technical reasons it cannot be
directly compared) that involves five types of trans-
actions typical of an OLTP (on-line transaction pro-
cessing) business workload. The benchmark is built
using only classes from the SanFrancisco foundation
layer. The general ledger benchmark is similar in
structure to the foundation benchmark, but uses bus-
iness objects from the general ledger tower. The or-
der management benchmark models a typical sales-
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Figure 5

Foundation performance over time. Note that the chart is not in scale chronologically.
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and-distribution (SD) application and mimics the SAP
R/3** sD Benchmark (although not rigorously
enough to invite comparisons). The specific numbers
shown are less important than the relative improve-
ment from release 1.3.0 to 1.4.0. Note that the great-
est relative improvement (about 14 times) was in the
(relatively new) order management tower and the
least improvement (about 2 times) was in the (rel-
atively mature) foundation with the (moderately ma-
ture) general ledger tower (with about 3 times im-
provement) in the middle. This matches our
expectations that newer code (with the most “low
hanging fruit”) will show the most dramatic perfor-
mance improvement with more modest— but still sig-
nificant—improvements reserved for code that is at
a later stage of maturity.

Future directions

SanFrancisco has made tremendous strides in bat-
tling some of the performance problems inherent in
object-oriented frameworks and has proven that
commercial applications built from framework com-
ponents written in the Java language can indeed
achieve satisfactory performance. However the war
is not yet won. There are still significant challenges
to overcome and the solutions are not yet in hand.
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Some of the most significant obstacles and possible
approaches to overcoming them are:

o Simplifying the persistence of Java objects. The San-
Francisco solution of platform- and database-spe-
cific C++ code to do this job is too expensive to
maintain across the many databases and platforms
SanFrancisco will eventually support. Either IDBC
support must be improved (i.e., with two-phase
commit transaction support) so that the native
C+ + interfaces are no longer necessary, or an ob-
ject-oriented database engine (written in the Java
language) that interfaces to the Jvm needs to be
developed. In addition, more intelligent tools are
needed for automatically mapping the object data
to those databases; the current approach imposes
too much of a burden on programmers and ad-
ministrators. Obviously the trick is to do all this
without sacrificing performance.

* Automatic configuration. The number of tuning pa-
rameters and configuration options gets much
larger and more difficult to get right given the
added complexity of SanFrancisco and the Jvm. It
should be possible to develop a configurator that
automatically provides near-optimal configuration
parameters, either through explicit knowledge of
the system or through learning and experience.
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e Improved Java technology and tooling. Although
Sun has made tremendous progress over the past
couple of years in terms of JIT technology and Java
implementation efficiencies, there is still a way to
go. In particular, we are looking forward to hav-
ing a nonblocking and generational garbage col-
lector available for Jvms on all platforms. We
would also like to see a standard set of instrumen-
tation interfaces as part of the Java specification
so that third-party tool vendors can develop a con-
sistent set of powerful tools for analyzing complex
(e.g., SanFrancisco-based) Java applications that
will run on Jvms for all platforms. The JVMPI in-
terface for Java 2 and later implementations is a
good start in this direction.

Currently there are cross-industry efforts to address
all the problems mentioned above. Some of the so-
lutions are already being developed. Others will take
longer. However, as the SanFrancisco project has
proved, concerted effort applied to these problems
will eventually bear much fruit; the future of Java
technology and object-oriented frameworks depends
on it.
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