
JaViz: A client/server
Java profiling tool

by I. H. Kazi
D. P. Jose
B. Ben-Hamida
C. J. Hescott
C. Kwok
J. A. Konstan
D. J. Lilja
P.-C. Yew

The JavaTM programming language, with its
portability, object-oriented model, support for
multithreading and distributed programming, and
garbage collection features, is becoming the
language of choice for the development of large-
scale distributed applications. Without a suitable
performance analysis tool for Java programs,
however, it is often difficult to analyze the
programs for performance-tuning problems. The
profiler included in Sun’s Java Development Kit
(JDKTM) 1.1 does not provide sufficiently detailed
trace information to address performance issues
in large applications. Also, it does not support
the tracing of client/server applications, which
are very important for analyzing distributed
systems. The JaViz performance analysis tool
generates execution traces with sufficient detail
to determine program hot spots, including
remote method calls, in a distributed Java
application program. JaViz provides a graphical
display of the program execution tree for the
entire distributed application in the form of a call
graph for ease of visualization. A number of
features allow users to analyze the execution
tree for performance-tuning problems more
easily than other Java performance monitoring
tools. The usability and functionality of the JaViz
tool set is demonstrated by applying it to an
example distributed Java application program.

The Java** programming language presents sev-
eral features that appeal to developers of large-

scale distributed systems. Features such as “write
once, run anywhere”** portability, portable support
for multithreaded programming, support for distrib-

uted programming, including remote method invo-
cation, garbage collection, and an appealing object
model have encouraged Java use for systems with a
size and complexity far beyond small applets. Larger
applications, however, encounter performance prob-
lems that may never bother users of small applica-
tions. The developers of these applications typically
encounter four types of problems:

● Distributed applications. Large-scale client/server
applications distribute objects and then execute
across multiple machines. A critical step in per-
formance tuning for these distributed applications
is the identification of hot spots where there is ex-
tensive remote method invocation (RMI).

● Inefficient methods. Methods coded for flexibility
and generality can cause significant performance
problems when used extensively in larger applica-
tions. For example, developers often discover that
an inordinate amount of time is spent in certain
Java String package methods.

● Synchronized methods. Synchronized methods
force mutually exclusive access to protected ob-
jects. Significant contention due to a synchronized
method can cause performance to suffer greatly.

rCopyright 2000 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

KAZI ET AL. 0018-8670/00/$5.00 © 2000 IBM IBM SYSTEMS JOURNAL, VOL 39, NO 1, 200096

● Memory management. Sun’s JDK 1.1 and Java 2
Software Development Kit (SDK), Standard Edi-
tion, v 1.2.2 garbage collectors appear to have been
optimized for applications with a relatively small
memory footprint. As a result, large applications
can experience unacceptably large and unpredict-
able delays during garbage collection.

The JaViz performance visualization tool presented
in this paper is currently designed to address primar-
ily the first two of these problems. However, it can
be extended to address the remaining two problems
as well.

JaViz was developed to supplement, rather than re-
place, existing Java performance analysis tools such
as the profiler included in Sun’s JDK 1.1,1 the Hy-
perProf tool,2 the ProfileViewer tool,3 the JProbe**
tool,4 and the OptimizeIt!** tool.5 Sun’s JDK, for in-
stance, provides a profiling option to count method
invocations both individually and by caller-callee
pairs. It also provides information about average
method execution time. The HyperProf tool can dis-
play these trace files as a hyperbolic tree, allowing
users to look at the time involved in each method,
the methods called by each method, and so forth.
The ProfileViewer tool also uses the profile gener-
ated by Sun’s Java virtual machine (Jvm) to display
the caller-callee relationships with timing informa-
tion. Due to the coarse granularity of the underly-
ing trace, however, it is not possible to determine
whether methods have high or low execution time
variances or whether method execution time varies
based on the caller’s context and parameters. Also,
it is not possible to trace execution threads at all, let
alone across Jvm boundaries, when RMI calls are
made. The JProbe, the OptimizeIt!, and the Visual
Quantify6 profiling tools provide powerful graphi-
cal analyzers to identify performance bottlenecks in
Java programs, but they do not currently support co-
ordinated tracing of client/server activities.

IBM’s Jinsight7 is another performance visualization
tool for Java application programs. Jinsight uses
traces from a modified Java virtual machine (IBM De-
veloper Kit for Windows**, Java Technology Edi-
tion, Version 1.1.x and IBM Developer Kit for AIX*
[Advanced Interactive Executive], Java Technology
Edition, Version 1.1.6) to display performance bot-
tlenecks, object creation, garbage collection, thread
interaction, and object references. It also supports
a feature to identify and solve memory leaks. Jin-
sight, however, lacks the capability of tracing
client/server activities across multiple Jvms. Thus,

while Jinsight is very useful for performance anal-
ysis of Java applications running on a single Jvm, it
cannot be used to identify performance bottlenecks
in distributed Java application programs.

The existing Java profiling tools do not currently sup-
port client/server activities, making them of limited
use in the analysis of distributed application pro-
grams. To extend Java’s existing profiling support for
a distributed environment, JaViz focuses on a de-
tailed method-level trace with sufficient detail to re-
solve RMI calls between traces. Given the extremely
large amount of data that could be traced, it is par-
ticularly important to minimize the tracing overhead
both through careful design and by allowing users
to control the set of methods to trace. Finally, it is
expected that users would be unable to directly per-
ceive and process the large volume of data created
by a set of method-level traces. Accordingly, JaViz
incorporates visualization and statistical analysis
tools to help users understand the trace results.

Several functionality, performance, and usability re-
quirements drove the development of this perfor-
mance visualization tool. Requirements for function-
ality include:

● The ability to trace and record elapsed time for all
method calls executed in a Java virtual machine

● The ability to resolve a method-call trace into an
execution tree, with callers being parents of callees.
This tree should include all threads of execution,
with a thread’s run method appearing as the child
of the method that invoked it.

● The ability to build a tree of execution that spans
multiple Jvms. This tree should be rooted at the
call to main from one Jvm, and should include all
local and remote method calls executed.

● The ability to correctly build each of these trees
from the remaining method calls when certain
method calls are omitted for trace-generation ef-
ficiency

Performance requires:

● An implementation that does not excessively dis-
tort the performance profile of the applications be-
ing traced

● An implementation that allows traces to be gen-
erated as quickly as feasible

● User control over the methods to be traced. For
example, users should be permitted to avoid trac-
ing Java library methods if they are only interested
in performance issues in their own code.

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 KAZI ET AL. 97

Usability requires:

● An easy-to-use tracing and trace-processing envi-
ronment

● An easy-to-use interface for exploring trace results

The remainder of this paper describes the JaViz per-
formance analysis tool set and its implementation
and use. The next section describes the tools in de-
tail, focusing on what they accomplish and how they
work together. The following section describes the
implementation of the tools, including the modifi-
cations needed to the Jvm to generate traces, the al-
gorithms for resolving RMI calls across traces, and
the algorithms for processing traces into execution
trees. It is followed by an example of the use of the
system. Finally, we present conclusions and describe
some future enhancements that are planned for the
JaViz tool set.

The JaViz performance visualization tool set

JaViz provides an execution profile of a Java pro-
gram in the form of an execution tree that shows the
caller-callee relationship of the method calls in the

program, with the callers being the parents of the
called methods in the tree. An execution tree rep-
resents the call graph of a single client or server pro-
gram. Thus, in a client/server environment with n
different client or server Jvms, JaViz will generate
n different execution trees representing the execu-
tion profile of each client or server. The execution
tree shows all method calls that were invoked as part
of the corresponding client’s (or server’s) execution.
Thus, RMI calls that originated from the client pro-
gram to be executed on other server Jvms will be in-
cluded in the client’s execution tree. On the other
hand, incoming RMI calls that executed on this Jvm
are part of another client’s execution. Hence, these
incoming RMI calls will be excluded from its execu-
tion tree.

As shown in Figure 1, JaViz consists of three major
components: an instrumented Jvm that has been mod-
ified to trace method calls, a set of postprocessing
tools that resolve remote method calls and generate
statistics, and a visualization tool. The postprocess-
ing and visualization tools are written in the Java lan-
guage and thus are portable across any platform that
supports the language.

KAZI ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 1, 200098

Java class files are executed by the instrumented Jvm
to generate the execution traces. These trace files
are then processed to generate the dynamic execu-
tion tree. The first step in the postprocessing phase
merges the traces from multiple Jvms to follow the
RMI invocations. These merged traces are further
processed to build the execution call-graph tree,
which can then be displayed by the visualizer. Dur-
ing the merge step, some performance statistics for
each method are gathered and fed to the visualizer
to be displayed along with each method call. The fol-
lowing subsections provide more details about each
of these components of JaViz.

Instrumented Jvm. There are several different tech-
niques for collecting run-time execution information,
including techniques such as sampling and direct in-
strumentation.8 Sampling requires the running ap-
plication to be stopped periodically to obtain infor-
mation on methods that are currently being executed.
The accuracy of the information obtained through
sampling is determined by the sampling frequency.
A higher sampling frequency can provide more de-
tailed information, but this greater detail comes at
the expense of greater perturbation of the execut-
ing program. Direct instrumentation, on the other
hand, adds code to the Jvm to directly measure
method execution times. This approach provides
more precise information than sampling, since no
execution steps are missed. However, the additional
instrumentation code may produce greater pertur-
bations than sampling. Nevertheless, JaViz uses di-
rect instrumentation to provide detailed information
about each method’s execution. To minimize per-
turbation, the Jvm was modified only to the extent
necessary to generate enough trace information to
visualize the execution call graph.

As a Java program is executed by the instrumented
Jvm, three trace files are generated, as shown in Fig-
ure 1. The .prf file contains detailed trace informa-
tion that records call and return time stamps for ev-
ery method executed. Invocations of the same
method executed under different threads are distin-
guished from one another by their unique thread
identifiers. The other two files record the
client/server interaction, if any, that occurs on the
Jvm as the program is being executed. The .clp file
contains information about all of the outgoing RMI
calls from the running Jvm, i.e., identifying informa-
tion for remote methods invoked by this Jvm. The
.svp file records information about all incoming RMI
calls, i.e., all of the methods remotely invoked on
this Jvm by other Jvms. For the purposes of this ex-

planation, the .clp file is referred to as the client pro-
file of remote methods for which the Jvm acts as a
client, and the .svp file is referred to as the server
profile of remote methods for which the Jvm acts as
a server. Note that a server Jvm may also execute cli-
ent-type functions and a client Jvm may also act as
a server to other Jvms.

To reduce the amount of trace data collected, a num-
ber of filtering options are available. One option al-
lows the user to eliminate the tracing of Java library
calls. This option limits tracing to only the top-level
method calls made to any Java library call. The sec-
ond filtering option specifies a list of classes to be
traced. Only method invocations within the objects
of those classes and their subclasses are traced. With
filtering, the direct caller-callee relationship among
the method calls may not be shown in the final call
graph if, for example, the caller method is filtered
out. The execution tree, however, will have all de-
scendents connected properly to their ancestor node
even though some intermediate ancestors may be
missing.

Postprocessing. The information in the trace files
generated by the instrumented Jvm needs to be fur-
ther processed to generate the dynamic execution
tree of the Java program in a form that facilitates
the visualization process. This postprocessing is done
in two separate steps. In the first step, called the
merge step, the client and server profiles are merged
to produce complete traces for each Java virtual ma-
chine. During this merge process, run-time statistics
are gathered for the method calls in the trace files.
These statistics are subsequently displayed by the vi-
sualizer. The tree generation step follows the merge
step to generate the dynamic execution tree for a
given program.

Merge step. Once all of the client and server programs
have completed execution, trace files from each Jvm
involved in a distributed program are available for
further processing. The three trace files generated
per Jvm—the detailed trace, the client profile, and
the server profile—are merged to produce one de-
tailed trace for each Jvm that contains all of the rel-
evant information, including the client/server activ-
ity. Using the client and server profiles of the different
Jvms, the merge process tracks remote method calls
made by any Jvm from the client-side detailed trace
to the server-side detailed trace. At the end of this
step, the merged detailed trace of each Jvm contains
pointers to the merged trace files of the other Jvms

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 KAZI ET AL. 99

such that the path of every remote call from the cli-
ent to the server can be uniquely identified.

Tree generation. The tree generation step analyzes
the merged trace files to create an output file con-
taining the dynamic execution tree for a given client
or server program. This output file is used by the vi-
sualizer to display the call graph. As stated earlier,
each .mrg file contains trace information for a par-
ticular Jvm with links to other .mrg files for the re-
mote calls made to those Jvms. To generate the dy-
namic execution tree for a given client or server, the
tree generation step must follow these RMI links to
the .mrg files of the other Jvms and extract the de-
tailed trace information related to the RMI call to be
merged into the execution profile for the desired cli-
ent or server.

The tree generation step takes the .mrg file corre-
sponding to the desired client or server as its input.
It processes each method call in the trace file and
writes a corresponding record to the output .jta file.
If the current method call being processed is an RMI,
it goes to the appropriate .mrg file and picks up the
corresponding traces from there. Each record in the
.jta file, which corresponds to a single method invo-
cation, contains a pointer to its parent method and
a pointer to its last child method (the last method
invoked by this method). Each child method has a
pointer to its previous sibling method. In addition
to the parent-child links to reflect the call graph, each
record contains such information as the number of
methods invoked by this method, the time when the
method started, the time when it completed, the
thread executing this method, the method identifier
of the method call being represented, and the spe-
cific Jvm on which the method is executed. The in-
formation provided in the .jta file makes it more ef-
ficient for the visualizer to display the call graph. To
allow the visualizer to display the corresponding
method names, a mapping of method identifiers to
method names is provided in a .mth file.

Run-time statistics generation. To facilitate the per-
formance analysis of the call graph, statistical infor-
mation about each of the methods in the program
is gathered in the merge step. Each detailed .prf trace
file is analyzed to gather the total number of calls
made to each method, the maximum, minimum, and
average execution times, and the standard deviation
of the execution time for each method. The statis-
tics for all the methods are written in the jvm.stt file.
The statistics are subsequently displayed by the vi-
sualizer when a node is selected in the call graph.

Visualizer. The visualizer is the last component of
the JaViz tool set. It reads the .jta output file of the
postprocessing step, which contains the dynamic ex-
ecution tree of a program, and graphically displays
it as a tree with detailed node information. The vi-
sualizer provides the user with the ability to navi-
gate through the tree nodes, expand and contract
the tree, search for methods with particular at-
tributes, and map method attributes to graphical dis-
play parameters, such as color, size, and arc width, to
make it easier to identify program areas of interest.

The visualizer consists of two windows, the tree win-
dow and the node information window, as shown in
Figure 2. The tree window displays the graphic rep-
resentation of the execution tree. Initially, the tree
displays only the root node and its immediate chil-
dren. The user then can select any child of the root
and visualize its children, and so on out to the leaf
nodes. At any instance, the tree window shows all
of the open nodes and arcs with the currently selected
node highlighted by a star pattern. Leaf nodes are
displayed with an underscore to indicate that these
nodes cannot be explored further.

The node information window displays data about
the currently selected method node. Table 1 lists the
information displayed in this window.

The visualizer provides the user with a collection of
functionalities, listed in Table 2, that can be accessed
from the tree window through mouse buttons, a
menu bar, pop-up menus, and keystrokes. Besides
allowing the user to highlight nodes with specific at-
tributes, the mapper also allows the user to specify
range queries. Instead of entering all of the differ-
ent parameters for a query, the user can simply spec-
ify the attribute of interest. The visualizer will then
map different values (or value ranges) of that at-
tribute to display attributes. For instance, if the user
wants to highlight the nodes with different thread
identifiers using different node colors, the visualizer
will automatically assign a new color for each iden-
tifier. Without this feature, the user would have to
manually create many individual specific mappings
to have the same effect.

Implementation details

This section describes the implementation details of
the various components of JaViz. Specifically, the
modifications needed to the Jvm to gather the de-
tailed profile traces are described, along with the
client/server traces, the algorithms used to generate

KAZI ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000100

merged traces by resolving RMI calls across Jvms, and
the algorithms used to process traces to build the
dynamic execution tree. The implementation of the
visualizer is also discussed.

Instrumented Jvm. The profiler that comes with
Sun’s JDK 1.1.5 provides limited trace information,9

recording only the cumulative time in milliseconds
for each caller-callee pair. Moreover, the profile data
do not include any client/server activity. The Jvm

used in JaViz is modified to generate more detailed
information for each method call as well as to gen-
erate traces of client/server programs that span across
multiple Jvms. In particular, the Jvm is instrumented
to:

● Generate detailed traces of every method call for
the program it is executing

● Generate traces to track the client/server interac-
tion for the program in a client/server environment

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 KAZI ET AL. 101

Detailed trace generation. The trace generation mod-
ule of the Jvm is modified to record every invoca-
tion of a method using time stamps that show the
start and end times of the method with microsecond
resolution. Additionally, a thread identifier is recorded
to uniquely identify the thread executing the method.
Sun’s JDK 1.1.5 Jvm implementation uses a function
called java_mon to trace method calls. If the “-prof”
profiler flag is set, the java_mon function is called at
every method invocation and exit. JaViz uses a sim-
ilar strategy to trace method calls by invoking its own
profiling function instead of the java_mon function.
The profiling function creates a new trace record in
a buffer for each method entry or exit event. For
faster processing, the trace information is stored in
main memory and written to external files only when
the buffer overflows. Since disk operations are time-
consuming, it is important to minimize the number
of writes to the external file. Consequently, the trace
generation reduces the size of the records stored for

the method calls by storing the time values as 32-bit
integers. A 64-bit reference time is written on the
external file whenever the 32-bit time overflows. Fur-
thermore, the method name associated with each
time value is usually quite large, typically hundreds
of bytes. Instead of storing the entire name, a 4-byte
method identifier is used. To generate unique iden-
tifiers, a hash table in main memory translates the
method names to corresponding identifier values.

Since the number of methods called within a pro-
gram can be quite large, and since each instance of
a method generates a trace entry, the amount of trace
data generated for a large application would be enor-
mous. Filtering options are provided with the instru-
mented Jvm to reduce the amount of trace data col-
lected. When the “exclude Java library calls” filtering
option is enabled, the Jvm checks the caller of the
current method in the execution stack. If the caller
belongs to a Java or Sun package, which indicates
that the caller is a Java library method, the current
method is not traced. The second filtering option
specifies a list of classes to be traced. For this op-
tion, the class hierarchy of the object on which the
current method is invoked is checked to see whether
it belongs to any of the classes specified. If so, the
method is traced. Otherwise, the method invocation
is simply ignored.

Client/server trace generation. One of the unique fea-
tures of JaViz is its ability to track a program’s ex-

Table 1 Information displayed in the node information
window

Method name Name of the method represented
by the node

Caller name Name of the method that called
the current node

Machine name Name of the Jvm on which the
method executed

Thread number A number identifying the thread
that executed this method
instance

This method:
Number of calls

The total number of times this
method is called in the
program

This method: Total
time

The total time this method took
to execute over all its
invocations in the program

This method:
Minimum time

The minimum time this method
took to execute over all its
invocations in the program

This method:
Maximum time

The maximum time this method
took to execute over all its
invocations in the program

This method:
Average time

The average execution time of
this method over all its
invocations in the program

This method:
Standard deviation

The standard deviation of the
execution times of this method
in the program

This call: Call time The time in microseconds when
this method instance started

This call: Return
time

The time in microseconds when
this method instance
completed

This call: Total time The total execution time, in
microseconds, of this method
instance

Table 2 Functionalities provided by the visualizer to
aid performance analysis

Load Loads a new trace file and method file
for display

Mapper Maps a specific data query (thread
identifier, machine name, method
name, and so on) to a particular
display style (node or arc color,
shape, or size)

Find next Finds the next node matching the
given parameters

Zoom Zooms in or out, vertically or
horizontally

Key Displays information about the
applied mappings

Reset Resets the root of the displayed tree
to the original root

Up one level Sets the root of the tree to the parent
node of the current root (disabled if
the root is the original root)

Open level Displays all the nodes in the next level
Refresh Redraws the tree
Exit Exits the visualizer

KAZI ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000102

ecution across multiple Jvms. The Java remote
method invocation (RMI)10 facility allows one Jvm
to execute a method on another Jvm, which may be
executing on a physically distributed processor. In
Figure 3, Jvm 1 and Jvm 2 are Java virtual machines
running on two different physical hosts. In this par-
ticular case, Jvm 2 acts as a server while Jvm 1 acts
as a client. The Factory_Warehouse instance is a re-
mote object created on Jvm 2 that is available to
Jvm 1. RMI invocation procedures allow the client
Customer instance to obtain a reference to the re-
mote Factory_Warehouse instance.

Jvm 1 executes the method place_order within the
Customer object. The place_order method invokes
Warehouse_Instance.lookup where the Warehouse_In-
stance object contains the remote reference to the
Factory_Warehouse object. Internally, this call is
directed to Factory_Warehouse_Class_Stub.lookup,
where the Factory_Warehouse_Class_Stub instance is
a client-side dummy of the remote object. The stub
object then establishes a TCP/IP (Transmission Con-
trol Protocol/Internet Protocol) connection with the
server-side dummy, an instance of Factory_Ware-
house_Class_Skel. The stub object on the client side
communicates with the skel (skeleton) object on the

server side through the object serialization protocol
for remote invocation.9 The skel object finally in-
vokes the remote method lookup on the actual re-
mote instance of Factory_Warehouse and returns the
result back to the client-side stub method. This then
completes the RMI procedure. Note that this RMI pro-
cedure is specific to Sun’s JDK 1.1.

To trace client/server activities through RMI, every
object to be exported to a remote Jvm is given a
unique identifier automatically by the server Jvm.
Similarly, each method that can be remotely invoked
in an exported object is also given a unique (within
a class) identifier by the RMI module. For every re-
mote method invoked through RMI, JaViz’s modi-
fied Jvm records these identifiers at both the client
side and the server side. For example, in Figure 3,
the Factory_Warehouse instance may be identified as
Object 25 on the server. This number will be unique
on the server so that the performance analysis tool
knows that every remote call to Object 25 is always
directed to this Factory_Warehouse instance. Simi-
larly, if the remote method lookup is identified as
Method 5, the combination of Object 25 and Method
5 will identify Factory_Warehouse.lookup on the
server.

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 KAZI ET AL. 103

To match corresponding entries in the server and
client profiles, the modified Jvm also records the ma-
chine (Jvm) names. On the client side, the server ma-
chine name on which the call was invoked is re-
corded. On the server side, the client machine name
from which the call originated is also recorded. The
client-side port number of the TCP/IP connection used
for the remote call is recorded in both the server and
the client profiles. The port number is needed to dis-
tinguish between remote calls made to the same
server from different client Jvms residing on the same
physical machine.

The identifier of the thread that invoked the remote
call is recorded on the client side in order to map
the detailed trace entry of the remote method in-
vocation to the corresponding client profile entry.
Similarly, the identifier of the thread where the re-
mote call is received is recorded on the server side.
Finally, the time stamps—the time at which the re-
mote call was invoked on the client and the time at
which the call was received on the server—are also
recorded.

The trace entries in the client and server profiles are
shown in Figure 4 for the RMI call Warehouse_In-
stance.lookup¼ from the client on Jvm 1 to the server
on Jvm 2 in the example in Figure 3. The client en-
try indicates that it is an RMI call to Object 25 for

Method 5 on the server running on Machine
cslp62b.cs.umn.edu, which in this particular exam-
ple is the Factory_Warehouse.lookup method on Jvm
2. The trace information also records the identifier
of the thread invoking the RMI, which is “30144624,”
the port number “4667” of the TCP/IP connection,
and the time stamp “1022150658651.” The corre-
sponding entry in the server profile indicates that it
is an incoming RMI call from the client on Machine
cslnt3.cs.umn.edu through Port 4667 for Method 5
on Object 25. Thus, the server-side record links back
to the entry in the client profile. The entry also rec-
ords the thread identifier “29740592,” and the time
stamp, “1033151850258.”

Note that the time-stamp values at the client and the
server are not the same since the clocks in a distrib-
uted system are not guaranteed to be synchronized.
JaViz does not depend upon having synchronized
clocks on the various client and server machines. This
design decision reflects the real-world likelihood that
distributed applications, particularly those with
shared servers, may be unsynchronized and may in-
deed be managed separately and therefore hard to
synchronize.

The lack of synchronized clocks requires some ad-
ditional processing and has only minimal conse-
quences. The major additional processing is needed

KAZI ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000104

because only chronological time-stamp order, not
time stamps, is used to resolve client/server calls. In-
deed, because of variance in network overhead, such
times could not be uniquely used in applications with
more than one thread or process making RMI calls
to the same server. The technique used in JaViz re-
solves the calls without needing a synchronized clock.
A second consequence of unsynchronized clocks is
the apparent lack of time continuity when tracing
execution across RMI calls. The time displayed in the
server might precede the call time, or follow the re-
turn time, displayed in the client. This discrepancy
can be addressed by rescaling times to create a “plau-
sible global time.” Thus far, this discontinuity has
not been found to be a significant distraction, par-
ticularly since elapsed time is displayed and each call
has both call and return time measured on the same
clock. A third consequence is a minor limitation on
the ability to measure network overhead. It is pos-
sible to measure total network overhead by subtract-
ing elapsed time on the server from elapsed time on
the client (this measure includes time in the RMI call
on both ends). It is not possible, however, to break
this down further into call and return time, since the
server time cannot be placed within the client win-
dow. No user has requested this ability, however, in
part because network overhead is predictable, and
in part because it is out of the control of the opti-
mizer (except at the granularity of RMI invocations).

Trace generation with the Java 2 environment. JaViz
was designed to instrument and profile applications
running in the widely used Sun JDK 1.1 Java virtual
machine. Java execution environments frequently in-
clude just-in-time (JIT) compilers to enhance Java
performance.11 Some changes in the JaViz trace gen-
eration module will be needed to retain the accu-
racy of the tool when used in such execution envi-
ronments. JaViz already provides the proper hooks
into RMI to trace RMI calls, whether the initiator is
JIT compiled or bytecode interpreted. Tracing
method calls in JaViz requires only that they not be
compiled inline. If JIT compilers do compile meth-
ods inline, however, we expect declarations to be
available to prevent the inline compilation of the par-
ticular methods being traced.

Sun’s Java 2 SDK, Standard Edition, v 1.2.2 provides
extended trace generation support that will allow
JaViz to trace JIT-compiled methods. All the detailed
tracing information currently captured by the instru-
mented Jvm of JaViz can also be obtained through
the new Java Virtual Machine Profiler Interface
(JVMPI)12 provided in Sun’s Java 2 SDK. JVMPI will

be able to provide trace information on JIT-compiled
methods as well as object instances—two key pieces
of information that are missing from the current im-
plementation of JaViz. The only problem is that the
resolution will still be milliseconds. As we extend
JaViz to the Java 2 SDK, we intend to use JVMPI as
much as possible to remove JaViz’s dependence on
a modified Jvm. The tracing of client/server activity,
however, will still need to be done by modifying the
RMI library implementation.

Future enhancements to Sun’s RMI support will al-
low IIOP (Internet Inter-Orb [object request broker]
Protocol) to be used as a transport protocol, giving
interoperability with CORBA** (Common Object Re-
quest Broker Architecture**) -based applications
and services.13 Since the Jvm instrumentation of
JaViz is restricted to the underlying TCP/IP layer for
network connection identification and higher-level
object, method, and thread identification, the RMI
enhancement to support IIOP is not expected to have
any impact on our client/server tracing mechanism.

Postprocessing. The postprocessing step takes the
detailed .prf profile of each Jvm, along with the .clp
and the .svp files, as input. The merge and tree gen-
eration substeps process these input files to produce
a dynamic execution tree for the desired client or
server. The details of these steps are described in
the following subsections.

Merge step. The main part of the merge process is
to link client calls recorded in the client profile of
a client Jvm to the appropriate entry in the server
profile of the remote server Jvm where the method
was actually executed. To see how the correspond-
ing client- and server-side entries are matched, con-
sider a simple scenario where there is one client Jvm
interacting with one server Jvm. In a single-threaded
application, multiple calls made from the client to
the same remote object and method on the server
can easily be matched using remote object and re-
mote method identifiers recorded in the client- and
server-profile entries. The entries with the same re-
mote object and remote method identifiers on both
sides can be aligned in chronological order and the
entries matched in that order. Note that the clocks
on the two machines need not be synchronized for
this matching to succeed. Instead, the matching pro-
cess relies only on the relative order of calls within
each Jvm. Since the Jvm is multithreaded, however,
there could be a second call made to the server from
the client through another thread before the first call
even begins, if Java threads are mapped to different

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 KAZI ET AL. 105

native threads in the Jvm implementation. Thus, the
second call may arrive at the server before the first
one. The remote object and remote method iden-
tifiers are not sufficient to unambiguously link the
appropriate calls in this case. Consequently, the port
number of the TCP/IP connection is used to resolve
this ambiguity.

Consider the following sample trace entries from a
client-side Jvm (top) and a server-side Jvm (bottom).
The entries are listed in chronological order.

port1:myserver:object3:method4
port2:myserver:object3:method4

port2:myclient:object3:method4
port1:myclient:object3:method4

In the first two entries, port1 and port2 are the client-
side port identifiers of the TCP/IP connection. Rely-
ing only on time ordering to match machine name,
method identifier, and object identifier, the first en-
try on the client side would be matched to the first
entry on the server side. However, since their port
numbers do not match, the first entry on the client
side is matched to the second entry on the server
side. Because there cannot be more than one con-
nection active at a time through a single TCP/IP port,
all RMI calls going through the same TCP/IP connec-
tion are guaranteed to be time-ordered. Further-
more, the TCP/IP port numbers active at the same
time on the same physical machine for different cli-
ent Jvm processes are guaranteed to be unique. Even
though this situation may be rare in a single-client
scenario, it is not unusual when there are multiple
clients running on the same physical host interact-
ing with the same server.

In addition to the matching of corresponding client-
and server-side entries, the entries in the client pro-
file must be linked to the correct method entries in
the detailed profile of the client Jvm. As shown in
Figure 3, all client calls originate from an instance
of a stub class. All method calls in any stub class are
picked up from the detailed profile and matched with
entries in the chronologically ordered client profile
using the method name, the class name, and the
thread identifier. Matching the thread identifiers is
necessary since multiple threads could be active at
the same time in a Jvm on a multiprocessor machine.

The entries in the server profile also must be linked
to the correct method entries in the detailed profile
of the server Jvm. Server-side execution of a remote

method is initiated by an instance of a skel class (re-
fer to Figure 3) with the invocation of a dispatch
method. This dispatch method in turn invokes the
desired remote method in the remote object. All dis-
patch method calls in any skel class are extracted
from the detailed profile and matched with entries
in the chronologically ordered server profile based
on the class name and the thread identifier. Note
that the actual method name on the detailed profile
entry will always be dispatch.

Tree generation. The execution traces in the .mrg files
cannot be directly used to display the call graph since
the trace data do not provide any explicit parent-child
links among the method calls. However, the infor-
mation included in the traces is sufficient to build
the call graph. The main goal of the tree generation
step is to make the parent-child relationships among
the different methods in a given .mrg file explicit in
order to build a dynamic execution tree that can
readily be used by the visualizer to display the call
graph. The .mrg file lists the start time, end time, and
thread identifier of each local method in time or-
der. For remote methods, it also lists the name of
the Jvm on which the RMI was executed. The .mrg
file for this remote Jvm must be analyzed to build
the portion of the execution tree corresponding to
the remote method’s execution. The input .mrg file
may also contain traces of remote methods invoked
by other Jvms but executed on the local Jvm. Since
these RMI traces are part of a different client pro-
gram’s execution, they must be ignored while build-
ing the execution tree. Thus, the tree generation al-
gorithm deals with three main issues:

● Making the parent-child relationship among
method calls explicit

● Incorporating any RMI processing performed for
the input .mrg file that appears in other .mrg files

● Excluding the traces for remote methods in the in-
put .mrg file that come from other Jvms

These algorithms are now discussed in detail.

Determining parent-child relationships. A stack-based
algorithm is used to determine the parent-child re-
lationship among the method calls in the merged
traces. Except for one special case involving new
thread creation, a method that calls child methods
completes its execution only after all of its called
methods complete. Since the methods in the merged
trace appear ordered by their start times or end
times, a method that calls other methods encloses
the start and end times of all its children within its

KAZI ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000106

own start and end times. Thus, a stack of methods
is maintained where a node is pushed onto the stack
each time its start time is found and is popped off
the stack and written in the output file when its end
time is encountered. The order of the methods ap-
pearing in the .mrg file ensures that a parent method
is not popped off before all of its child methods are
pushed onto the stack. This ordering also guaran-
tees that the parent of the most recently inserted
method (i.e., the top method) is immediately below
the inserted method on the stack.

This single stack of methods works correctly to de-
termine parent-child relationship as long as the pro-
gram has a single thread of execution. In a mul-
tithreaded application, however, the methods of
different threads of execution are interleaved in the
trace. Thus, it cannot be guaranteed that the parent
of the topmost method on the stack is immediately
below it. However, with a separate stack for each
unique thread of execution, the above algorithm ap-
plies to each stack independently. Thus, the com-
plete stack-based algorithm actually uses multiple
stacks, one for each newly created thread, to deter-
mine the parent-child relationships of the methods.

In the example shown in Figure 5(A), Methods B
and C are called by Method A and consequently be-
come the children of Method A. Method P is the
child of Method B. Assuming that all four methods
belong to the same thread (Thread 1), the corre-
sponding .mrg file will have the entries shown in Fig-
ure 5(B). Figure 6 shows the application of the stack
algorithm to the trace in Figure 5(B). Since the ex-
ample has only one thread, only a single stack is
shown.

The stack-based algorithm assumes that a parent
method does not complete until all its children com-
plete. This assumption is valid for all cases except
for one special case involving the creation of new
threads of execution. In the Java Thread class, two
methods are defined that are used for initiating new
threads—the start method and the run method. To
start a new thread object, the caller invokes the
thread object’s start method. Start then invokes the
thread object’s run method, which carries out the ac-
tual execution of the new thread. In this situation,
the initiating thread is the parent of start while start
is the parent of run. However, start merely initiates
the run method and often returns before run even
begins executing. As a result, the previously described
stack-based algorithm cannot determine that start is
the parent of run since start will be popped off the
stack before run is even pushed on to the stack.

To remedy this problem, the start methods are put
into a special queue and linked to their correspond-
ing run methods. When the start time of a start
method is encountered, it is inserted in the queue,
in addition to the other stack processing. When the
start time of a run method is encountered, it is pushed
on to its newly created stack, since this is a new thread
of execution. Furthermore, instead of the preced-
ing element link, it is linked to the head element of
the start queue as its parent. Thus, even if start fin-
ishes before its corresponding run and so is popped
off the stack, the parent-child relationship is still
maintained since the queue holds the parent.

The following is a portion of an execution trace where
Method A, in Thread 1, spawns a new thread T
(Thread 2), by invoking T.start¼. T.start¼ subse-

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 KAZI ET AL. 107

quently invokes T.run¼, which creates the new
thread.

A S100 1
T.start S109 1
T.start E115 1
B S145 1
B E167 1
T.run S204 2
C S220 2
C E254 2
T.run E300 2
· · ·

Figure 7 shows how the stack-based tree generation
algorithm handles this special case of linking run
methods to corresponding start methods when the
start returns before run even begins. Since the ex-
ample deals with two different threads, the process-
ing uses two stacks, one for Thread 1 and the other
for Thread 2.

In a Java application program, execution usually be-
gins with the invocation of the main¼ method, which
in turn invokes other methods. Thus, the call graph
of such an application program would have main as
the root of the dynamic execution tree with other
methods spawning from main. However, the Java
run-time system often invokes a number of meth-
ods that are not spawned from main or from any
methods within the program itself. Also, in a
client/server environment, it is possible to have a
method spawned by a client in the server process.

A tree rooted at main will not include such methods
since they are not spawned by main. The concept of
the virtual root, which is the root node of any dynamic
execution tree, is introduced to handle such cases.
This node ties together main and any other methods
that are spawned by the run-time system or by a dif-
ferent client or server.

RMI processing. For RMI calls invoked by the input
client program, the merged trace for a particular Jvm
contains an entry with a link to the remote Jvm that
executed the RMI. This entry, which is identified by
a stub method call, contains the server machine
name, the remote object name, the remote method
name, the identifier of the thread that executed the
remote method, and the RMI time stamp. The server
machine name can be used to identify the corre-
sponding .mrg file that needs to be processed. Within
the remote trace file, the appropriate RMI entry is
identified by matching the remote object name, the
remote method name, the thread identifier, and the
time-stamp values obtained earlier from the client
profile. The RMI traces are collected from the remote
file until the end time stamp of the remote method
is encountered. However, any methods that started
before the RMI began and finished before the RMI
returned are not included since these are part of the
profile of the server executing the RMI call.

Figure 8 shows the .mrg file entries for an RMI call
from a client on Machine 1 to a server on Machine
2. The RMI call on the client machine, which is iden-
tified by the StockApplet_Stub.update call, is deter-

KAZI ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000108

mined to be served by the StockApplet_Skel.dispatch
method on Machine 2. Thus, the tree generation pro-
cess jumps to the .mrg file of Machine 2 and finds
the appropriate RMI entry, which is identified by the
StockApplet_Skel.dispatch call and by matching the
thread identifier and the time stamp. Once in this

file, it processes all entries until the end time stamp
of StockApplet_Skel.dispatch (Method 1664) is found.
However, Method A on Machine 2 started before
Method 1664 and, hence, cannot be part of the RMI.
Thus, when the RMI traces are processed, the entry
corresponding to Method A is ignored.

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 KAZI ET AL. 109

Excluding traces of other programs. In the input cli-
ent trace file, there may be entries for RMI traces,
identified by skel method entries that were remotely
executed on this Jvm. Since these traces are part of
an RMI call for another client, they belong to the ex-
ecution tree of that other client program. Hence, they
should be excluded when building the execution tree
for the current program. However, there may be
method calls that started after the execution of the
RMI but did not end before the RMI returned. These
methods are part of the current profile and so should
be included. Thus, when a skel method call is en-
countered, the method calls that started before, but
finished within its boundary, are included in the call
graph. The other method calls within the boundary
of the skel call are excluded. In the example shown
in Figure 8, if Machine 2 is the client being processed,
then the entries corresponding to the RMI call within
the boundary of Method 1664 will be ignored. How-

ever, Method A, which started before the RMI but
completed within its boundary, must be included as
it is part of the input client.

Run-time statistics generation. Each detailed .prf trace
file is analyzed to generate statistical information for
each method. The statistical data are stored in a hash
table keyed by method identifiers for faster access.
The statistics generation step reads the entries in the
.prf file and updates the hash table entry for the cur-
rent method. The number-of-times-called value is in-
cremented each time a method entry is encountered.
The maximum and minimum execution time values
are updated with the current execution time values,
if needed. For the average and standard deviation
calculation, the appropriate execution time values
are accumulated. Once all of the entries are processed,
the average and the standard deviation of the execu-
tion time for each method are calculated and stored

KAZI ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000110

in the hash table. Finally, the statistics are copied from
the hash table to the jvm.stt file (see Figure 1).

Visualizer. The visualizer takes the .jta file and the
corresponding .mth file as its inputs. Since it processes
the execution tree in the .jta file in a top-down man-
ner, it needs to retrieve the root node first. The root
node, which is the virtual root that ties together all
of the first level calls, is stored at the end of the .jta
file since it is the last method to finish. Thus, the vi-
sualizer opens the .jta file and jumps directly to the
last record in the file to retrieve the root node in-
formation. Each node in the .jta file contains point-
ers to its last child and its previous sibling, and a count
of the number of children it has. After reading this
root node, the visualizer knows the location of the
last child of the root and the total number of chil-
dren it has. The visualizer then initiates a loop to
jump from child node to child node following the
previous-sibling links. While traversing the nodes, it
gathers all the pertinent information for each node.
Once all the children of the root are traversed, they
are displayed.

The visualizer initially displays only the first level of
the tree since the .jta file may contain a large num-
ber of nodes. Traversing all of them while keeping
each node’s information in memory could be quite
time consuming and may overload the memory. Once
the root and its children are displayed, the visualizer
allows the user to expand and explore the tree by click-
ing on the displayed nodes or by using a keyboard nav-
igation technique developed for this purpose.

To minimize the I/O overhead between the visual-
izer and the .jta and .mth files, flags are added to the
nodes to differentiate, for instance, between a node
that is not loaded in memory and a node that is al-
ready loaded but not yet displayed. In the latter case,
the flag will indicate that an I/O to the .jta file is not
necessary if the user clicks on its parent to open the
node. This feature thus saves processing time.

The visualizer’s mapper function offers the user the
ability to manually construct queries through a con-
trol panel. The visualizer maintains a list of queries,
to be processed, in memory. When the user enters
a query through the control panel, it is added to this
query list. When a query is applied, the visualizer
scans the list of queries to check whether a query
matches the node’s data. If a match is found, the node
is displayed with the parameters specified by the
query. The process is repeated for each node until
all matching nodes are displayed.

The visualizer also provides a “find-next” capability
to allow the user to search through the dynamic ex-
ecution tree for a specific node matching some given
characteristics, using either a depth-first or a breadth-
first search to locate and select the nodes. This func-
tion moves from node to node comparing the node’s
data with the given query and stopping when it lo-
cates a node that matches the user’s request. It re-
sumes when the user again clicks the “find-next” but-
ton. The find-next function can start from either the
current node or from the root node. When the cur-
rent node is selected as the starting point, only the
subtree below the node is searched. Otherwise, the
entire tree is searched.

Example

An RMI-based example Java client/server program
is used to demonstrate how JaViz works. The pro-
gram uses multiple servers with each server invok-
ing a remote call to the next server. As shown in Fig-
ure 9, a client initially invokes a remote method
(remoteFoo) on Server 1. Server 1 in turn invokes
the remote method on Server 2. This process con-
tinues until the remote call reaches a termination
server. While this example is overly simplified, it
clearly demonstrates the possibilities of more com-
plex visualizations.

The example Java code consists of two classes—Bea-
conClient and BeaconServer. BeaconServer contains

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 KAZI ET AL. 111

the code necessary to make the RMI bindings, as well
as the code needed to start the daemon thread. It
also contains the remote method remoteFoo. When
the server is started, two parameters must be given—
the name of the current server and the name of the
server to which the remote call should be forwarded.
If “end” is specified as the second parameter, the
server is marked as a termination server to ensure
that no remote method calls are made from that
server. A typical setup might include the following

steps. (It is assumed that the path and class path are
set properly and that the platform used is Microsoft
Windows NT**.)

1. Start rmiregistry_g
2. Start java_g -um:s1 BeaconServer s1 s2
3. Start java_g -um:s2 BeaconServer s2 s3
4. Start java_g -um:s3 BeaconServer s3 end
5. java_g -um:client1 BeaconClient s1

KAZI ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000112

Step 1 simply starts the RMI registry service. Step 2
creates a BeaconServer instance named s1 that for-
wards all calls to the BeaconServer instance named
s2. Server s2 is set to forward all calls to BeaconServer
instance s3 in Step 3. Step 4 creates s3 and marks
it as a termination server. Finally, Step 5 executes
the BeaconClient instance to start the remote call on
s1. Note that the modified JaViz Jvm and RMI reg-
istry are used to execute the Java code. The -um op-
tion on the Java command line enables the trace gen-
eration by the instrumented Jvm.

After the completion of Step 5, four .prf files are gen-
erated, one for the client and one each for the three

servers. These .prf files are then merged to create
the corresponding .mrg files. To visualize the call-
graph profile of the client process client1, the exe-
cution tree must be generated by applying the tree
generation step on the client’s merged trace file
client1.mrg. The tree generation step creates the
client1.jta file, which contains the execution tree rep-
resentation of the client process. Once the tree is
generated, it is ready for visualization.

Loading the client1.jta file into the visualizer displays
the call graph for the client. Figure 10 shows the top
portion of the call graph as displayed by the visu-
alizer. The root of the tree, as discussed earlier, is

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 KAZI ET AL. 113

a virtual node that is used to tie together the roots
of all of the call trees generated by a particular Jvm.
Below the virtual root is the node representing the
method main¼. This node has four nodes stemming
from it representing four method calls invoked by
main. The first two deal with RMI security. The third
calls the Naming.lookup method to find the server and
initialize the appropriate stub.

The fourth method invoked by main¼ is the remote-
Foo¼ method, which is the currently selected node
in Figure 10. The method name field in the node in-
formation window indicates that this method is in-
voked on the BeaconServer_Stub object. The Bea-

conServer_Stub object itself invokes several other
methods that set up the RMI connection to the server.
The fifth method called by remoteFoo¼ is the Uni-
cast.invoke¼ method; its node information is shown
in Figure 11. This method creates the actual invo-
cation on the remote machine. Following the call
graph down leads to the child node of Unicast.invoke
named BeaconServer_Skel.dispatch¼, which is the
node corresponding to the method call in Figure 12.
This node contains a different thread number than
its parent since the method was invoked on a sep-
arate Jvm running a different thread. This difference
can be seen by applying the “Jvm ID” option in the
visualizer’s mapper, which results in method calls on

KAZI ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000114

different Jvms to be displayed in different colors, as
shown in Figure 10.

The dispatch method calls four methods to obtain
the parameters that are passed to it. It then invokes
the BeaconServer.remoteFoo method located on the
current server. The remoteFoo method eventually
calls the BeaconServer_Stub.remoteFoo, which is the
remoteFoo method of the next server. This process
is repeated two more times until it eventually reaches
the last (i.e., termination) server. A total of four Jvms
are used, one for the client and one for each of the
three servers. These four unique Jvms can be dis-
tinguished by the four different node colors used to rep-
resent them in the full call graph (not shown here).

To visualize how the RMI calls are handled on the
server side, we need to apply the tree generation step
on the merged trace file of the particular server (e.g.,
s1.mrg) and then load the corresponding .jta file in
the visualizer. In the example used, each server
merely executes the RMI call that was initiated by
the client and then forwarded to each successive
server. Thus, most of each server’s execution be-
comes part of the client profile. The call graph for
a server itself contains two method calls correspond-
ing to the RMI in addition to the execution tree un-
der its main¼ method.

Viewing the first server’s execution tree (correspond-
ing to the file s1.jta) shows the calls handled by the
server for the client’s RMI call. The server call graph
is shown in Figure 13. The first two nodes correspond
to the client’s RMI call. Notice that each contains its
own separate thread number, which is shown as a
different color in Figure 13. The third node is the
main¼ method executed when the server is first
started. The RMI call was invoked by the client on
the server and, hence, the nodes related to the RMI
call are shown as the children of the virtual root and
not as part of main¼’s tree. The ordering of the called
methods (from left to right) under a caller in the call
graph is determined by the time the callee finishes.
Even though main¼ started before the methods re-
lated to the RMI began, the RMI calls finished before
main¼. Thus, the RMI nodes appear before main¼
in the call graph.

Conclusion

The JaViz performance analysis tool has been de-
veloped primarily to address the performance tun-
ing problems encountered when developing large-
scale distributed Java application programs. In

addition to generating traces for each individual
method instance in a program, JaViz has the unique
ability to trace multiple threads of execution and
method calls (i.e., RMIs) that span multiple Jvms. Be-
sides identifying program hot spots, the “per in-
stance” traces allow program developers to deter-
mine whether method execution times have high or
low variances and whether method execution times
vary with the caller’s context and parameters. The
traces for different threads provide a means for an-
alyzing multithreaded applications, while RMI traces
make it possible to identify hot spots in client/server-
based applications. Thus, JaViz appears to be very
useful as a performance analysis tool for the devel-
opment of large-scale client/server-based Java ap-
plications, such as those built on the IBM SanFran-
cisco* framework.14 JaViz provides an easy-to-use
interface with some useful capabilities, such as ap-
plying specific queries and finding method calls with
specific parameters, to analyze the execution tree.
It also provides the user with the ability to control
what method calls are to be traced through a filter-
ing interface.

We are currently enhancing the features available
in JaViz to make it more powerful. To provide users
with more control over what to trace, we are design-
ing other filtering options, such as specifying what
not to trace (as well as what to trace) and specifying
wild-card options, such as “trace all com.ibm.sf.gf.*
method calls.” With more filtering options available,
we can further reduce the size of the trace data gen-
erated. This reduction improves the processing time
of later steps in the JaViz tool set to reduce the per-
formance perturbation introduced by JaViz. We also
plan to add a visual interface to JaViz that will allow
the users to specify tracing options more easily.

To speed up the trace generation process, we will
compress the trace file size by writing the trace out-
puts in a binary format. Currently, the traces are con-
verted to text format before being written to the out-
put file. This text conversion requires a substantial
amount of CPU time, which causes perturbations to
the execution of the application program. Using a
binary format for the traces will reduce the amount
of perturbation. While we do not have detailed in-
formation about the perturbation overhead of JaViz,
nor the time required to generate and visualize a
trace, we do have some anecdotal experience. In one
instance, for example, we found that a trace file of
17 megabytes required approximately 30 minutes to
process and display on a Pentium** II processor, with
Windows NT, Version 4.0, running at 400 megahertz.

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 KAZI ET AL. 115

Additional information will be incorporated into the
visualizer window to enhance the visualization pro-
cess. For example, a feature that would be useful in
a large tree is to pop up the call graph for a selected
node so that the user can readily visualize the path
taken from the root to reach the current method call.
This feature is planned for the next version of JaViz.
With further enhancements, we hope to broaden the
utility of JaViz as a performance analysis tool for
large-scale Java application program development.

A preliminary version of the JaViz performance anal-
ysis tool can be downloaded for experimental pur-
poses.15 Using this version, the largest program that
we have attempted to trace consisted of approxi-
mately 130 unique methods with 521410 unique in-
stances of these methods. This program is a
client/server application for stock updates. There is
a single server and one or more clients. Each client
application requests the server for a stock update
notification. The server sends the update informa-
tion back to the requesting client for display. The
execution time for this program increased by a fac-
tor of approximately 1.5 due to the overhead of the
tracing process. The merging and postprocessing
steps required about 30 minutes before the final trace
could be visualized.

Acknowledgment

The SanFrancisco Performance Team at IBM Roch-
ester has been very helpful in providing feedback for
improving the performance and usability of the JaViz
tool. Their comments and suggestions are greatly ap-
preciated.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Sun Microsystems, Inc.,
Microsoft Corporation, KL Group, Inc., Intuitive Systems, Inc.,
the Object Management Group, or Intel Corporation.

Cited references and note

1. Java Development Kit Version 1.1, http://java.sun.com/
products/jdk/1.1.

2. HyperProf(v.1.3)—Java Profile Browser, http://www.
physics.orst.edu/˜bulatov/HyperProf.

3. ProfileViewer, http://www.inetmi.com/˜gwhi/ProfileViewer/
ProfileViewer.html.

4. JProbe Profiler, http://www.in-gmbh.de/english/tools/java/
jprobe.htm.

5. OptimizeIt! The Ultimate Java Performance Profiler,
http://www.optimizeit.com.

6. Visual Quantify, http://www.sys-con.com/java/reviews/
quantify/index.html.

7. Jinsight, http://www.alphaworks.ibm.com/formula/jinsight.

8. R. Jain, The Art of Computer Systems Performance Analysis:
Techniques for Experimental Design, Measurement, Simulation,
and Modeling, John Wiley & Sons Inc., New York (1991).

9. This also applies to JDK 1.1.7.
10. Remote Method Invocation Specification, http://java.sun.

com/products/jdk/1.1/docs/guide/rmi/spec/rmiTOC.doc.html.
11. I. H. Kazi, H. Chen, B. Stanley, and D. J. Lilja, “Techniques

for Obtaining High Performance in Java Programs,” to be
published in ACM Computing Surveys.

12. Java Virtual Machine Profiler Interface (JVMPI), http://
www.javasoft.com/products/jdk/1.2/docs/guide/jvmpi/jvmpi.html.

13. Java-Based Distributed Computing: RMI and IIOP in Java,
http://www.javasoft.com/pr/1997/june/statement970626-
01.html.

14. R. Christ, S. L. Halter, K. Lynne, S. Meizer, S. J. Munroe,
and M. Pasch, “SanFrancisco Performance: A Case Study in
Performance of Large-Scale Java Applications,” IBM Systems
Journal 39, No. 1, 4–20 (2000, this issue).

15. JaViz: A Client/Server Java Profiling Tool, http://www.cs.umn.
edu/Research/JaViz.

Accepted for publication September 28, 1999.

Iffat H. Kazi Department of Electrical and Computer Engineering,
University of Minnesota, 200 Union Street SE, Minneapolis, Min-
nesota 55455 (electronic mail: ihkazi@ece.umn.edu). Ms. Kazi is
a Ph.D. candidate in electrical engineering at the University of
Minnesota, where she received an M.S. degree, also in electrical
engineering, in 1998. She received a B.Sc. degree in computer
science and engineering in 1994 from the Bangladesh University
of Engineering and Technology, Dhaka, Bangladesh, and later
was a lecturer in its Department of Computer Science and En-
gineering. Her main research interests include parallel process-
ing, dynamic program optimization, and high-performance com-
puter architecture. She is a student member of the IEEE
Computer Society.

Davis P. Jose Department of Computer Science and Engineering,
University of Minnesota, 200 Union Street SE, Minneapolis, Min-
nesota 55455 (electronic mail: jose@cs.umn.edu).

Badis Ben-Hamida Inxight Software, Inc., 3400 Hillview Avenue,
Palo Alto, California 94304. Mr. Ben-Hamida received an M.S.
degree in computer science from the University of Minnesota in
1998.

Christian J. Hescott Department of Electrical and Computer En-
gineering, University of Minnesota, 200 Union Street SE, Minneap-
olis, Minnesota 55455 (electronic mail: hesco001@ece.umn.edu).
Mr. Hescott received a B.S. degree in computer engineering from
the University of Minnesota in 1999. He is currently pursuing an
M.S. degree in computer engineering at the University of Min-
nesota. His research interests include dynamic and adaptive re-
configurable hardware as well as bio-inspired solutions for com-
puter architecture.

Chris Kwok 6429 City West Parkway, Eden Prairie, Minnesota
55344. Mr. Kwok graduated from the University of Minnesota
in June 1999 with an M.S. degree in computer and information
sciences. His areas of interest include object-oriented program-
ming, Java development, and e-commerce.

KAZI ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000116

Joseph A. Konstan Department of Computer Science and En-
gineering, University of Minnesota, 200 Union Street SE, Minneap-
olis, Minnesota 55455 (electronic mail: konstan@cs.umn.edu). Dr.
Konstan is associate professor of computer science and engineer-
ing at the University of Minnesota. Since earning the Ph.D. de-
gree in user interface toolkit technology from the University of
California, Berkeley, in 1993, Dr. Konstan has worked on a va-
riety of human-computer interaction projects focused on visu-
alization, multimedia, and information filtering. He is an ACM
lecturer and currently serves as editor of the ACM SIGCHI Bul-
letin.

David J. Lilja Department of Electrical and Computer Engineer-
ing, University of Minnesota, 200 Union Street SE, Minneapolis, Min-
nesota 55455 (electronic mail: lilja@ece.umn.edu). Dr. Lilja re-
ceived Ph.D. and M.S. degrees in electrical engineering from the
University of Illinois at Urbana-Champaign and a B.S. degree in
computer engineering from Iowa State University in Ames. He
is currently an associate professor in the Department of Elec-
trical and Computer Engineering and a Fellow of the Minnesota
Supercomputing Institute at the University of Minnesota. He also
is a member of the graduate faculty in the program in computer
science and the program in scientific computation, and was the
founding director of graduate studies for the program in com-
puter engineering. He has served on the program committees of
numerous conferences, is an associate editor for the IEEE Trans-
actions on Computers, and is a distinguished visitor of the IEEE
Computer Society. His main research interests include high-per-
formance computer architecture, parallel processing, and com-
puter systems performance analysis, with a special emphasis on
the interaction of software and compilers with the architecture.
He is a senior member of the IEEE Computer Society, a mem-
ber of the ACM, and is a registered professional engineer.

Pen-Chung Yew Department of Computer Science and Engineer-
ing, University of Minnesota, 200 Union Street SE, Minneapolis, Min-
nesota 55455 (electronic mail: yew@cs.umn.edu). Dr. Yew has been
a professor in the Department of Computer Science and Engi-
neering at the University of Minnesota since 1994. Previously, he
was an associate director of the Center for Supercomputing Re-
search and Development at the University of Illinois. He is an
IEEE Fellow. His research interests include computer architec-
ture, high-performance multiprocessor system design, and per-
formance evaluation.

Reprint Order No. G321-5718.

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 KAZI ET AL. 117

