Technical note

Business function specification
of commercial applications

Commercial application development projects
frequently take longer and cost more than their
sponsors would wish. One problem area is an
uncomfortable “join” between the work of
business analysts, responsible for understanding
and specifying the business function required,
and programmers, responsible for designing and
building the implementation on a particular
hardware or software platform. Proposed here is
a small set of analysis constructs that can be
used to specify precisely the business function
that a commercial application must implement.
The constructs cover data, processes, and user
interfaces, but are free of platform-dependent
implementation detail. The set of constructs is
based on a common structure shared by
commercial applications regardless of the
business function being implemented. Instances
of the constructs can be created to completely
specify the business function of a particular
commercial application. A separate
transformation process can then take place to
implement the business function specified on a
target platform. The transformation required
does not depend on the business function
specified, but on which construct is being
transformed, on nonfunctional requirements
such as performance and security, and on the
architecture of the target platform. The
constructs allow a better separation of design
concerns and provide more precise and complete
communication between business analysts and
programmers.

uring the 1980s and 1990s, most large- and me-
dium-sized enterprises built a set of commer-
cial applications that are critical to the day-to-day
running of their businesses. These applications cover
fundamental business functions, such as customer
records, order entry, billing, inventory control, and

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000

0018-8670/00/$5.00 © 2000 IBM

by D. Bevington

financial records. They started as simple productiv-
ity aids but have steadily expanded in scope and func-
tion. Today these systems are frequently in urgent
need of replacement for the following reasons:

* They are inflexible and severely limit the ability of
the business to enter new markets, develop new
products, and transform themselves in various ways
that are appropriate to the environment in which
they now find themselves.

* They are very expensive and difficult to maintain.

* They are based on obsolete technology and can-
not easily exploit new technology, such as graph-
ical user interfaces and the Internet.

Despite the promise of new approaches such as ob-

ject technology, many of the attempts by enterprises
to replace these critical legacy systems have not been
successful. This has led to an increasing use of pack-
aged solutions and to reusable frameworks such as
SanFrancisco, IBM’s set of commercial frameworks.
While this is an appropriate direction in many cases
for many enterprises, most enterprises will still re-
quire the ability to develop their own customized ap-
plications for some areas. They must therefore ad-
dress the problems of commercial application
development.

Although there are a number of reasons for appli-
cation development projects being less successful

©Copyright 2000 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

BEVINGTON 315



than developers would wish, just one particular prob-
lem is addressed here. This is a significant problem
and successful resolution of it will have benefits
across the application development life cycle. How-
ever, it should be emphasized that there are many
other aspects of commercial application develop-
ment that must be managed correctly to ensure suc-
cess.

Commercial applications

Commercial applications follow a very specific pat-
tern, whatever their particular business function.
They are based around one or more databases, which
are shared by many users. Each database reflects the
current state of some business domain, and serves
as the primary set of business records for the domain.
Function is provided to users to support business op-
erations, and this function is dependent upon the
state of the domain databases. As business opera-
tions progress, the databases are in turn updated to
reflect the old state that is now history, the current
state of the business domain, and planned future
states.

The databases involved are the fundamental records
of the business, and their integrity and correctness
are vital. Concurrent update by multiple users has
the potential to destroy this integrity, so controls to
guarantee integrity are a fundamental part of such
applications. Note that this requirement has noth-
ing to do with computers. It is a fundamental logical
requirement, caused by allowing multiple users to
update a single shared master record. The same is-
sues arise with systems based on shared folders or
ledger cards. Fundamentally the business has to
make a decision as to when some updates to a record
by one user cease to be restricted to a private copy
that can be discarded, and instead are reflected in
the shared master record. The updates then become
visible to all users and can be the basis for further
actions by them. In other words, the business must
define logical units of work (LUW), and this defini-
tion is a key part of the definition of the business
function of a commercial application.

The analysis problem

Typically there are two main groups of people in-
volved in the building of a commercial application:
the business analysts whose skills are in understand-
ing the business requirements and designing the bus-
iness function to meet them, and the technical ex-
perts whose skills lie primarily in system architecture

316 BEVINGTON

and programming. In an ideal world everyone in-
volved in building an application would have both
skill sets, but in practice this is seldom possible.

Problems frequently arise because business analysts
make two critical mistakes: (1) they fail to fully de-
fine the business function required, and (2) they ex-
press some business function design in terms of a
particular implementation design. As a result, the
technical experts attempt to resolve these problems
by: (1) completing and reworking the business func-
tion design, without the necessary wider business
awareness to fully understand the implications of
their decisions, and (2) reworking much of the im-
plementation design done by business analysts. The
result is systems that are not as flexible as the bus-
iness requires, and that take much longer to build
than necessary.

Surveys done by IBM as part of the Enterprise So-
lutions Structure (ESS) project' indicate that this
problem is both common and a major cause of ap-
plication development projects not delivering sys-
tems that meet the expectations of their sponsors.
The problem is illustrated graphically in Figure 1.

The business function specification
requirement

The characteristics of a commercial application mean
that an analysis model comprising an undifferenti-
ated collection of classes and their methods is not
sufficient to describe the business function required.
The implemented systems comprise a diverse set of
objects—user interface objects, persistent database
objects, workflow procedures, database managers,
transaction managers, etc. Accordingly the defini-
tion of the business function of an application needs
amore extensive set of constructs that are platform-
independent abstractions of the very different com-
ponents found in the implementation.

The constructs proposed here provide the necessary
abstractions. They could be considered metaclasses,?
classes whose instances are themselves classes. In the
following sections they are defined informally and
illustrated with informal diagrams.

The constructs incorporate the notion that it is pos-
sible to abstract the business function of an appli-
cation to a level where data, processing, and user in-
teraction are specified in a way that is independent
of technology. Business function can be implemented
using pencil and paper, ledger cards, and the like,

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000



Figure 1  Breakage in the application development process

ANALYSIS
.
»  DESIGN
PREDOMINANTLY DISCOMFORT PREDOMINANTLY
BUSINESS FOCUS ZONE TECHNOLOGY FOCUS
PROBLEM SOLUTION
STATEMENT

INTERACTION

BUSINESS MODELS OF BUSINESS TECHNOLOGY MODELS
AND TECHNOLOGY
MODELS

as well as with computer systems. The constructs cap-
ture the business function specification, and presume
a separate activity that is the mapping of the bus-
iness function onto a specific hardware or software
platform. This is illustrated in Figure 2, which also
highlights that they are two further major inputs to
the final platform implementation. The first set con-
sists of nonfunctional requirements (performance,
availability, security, etc.), and the second of tech-
nical considerations that arise from the particular
characteristics of the implementation platform cho-
sen.

The proposed constructs help to resolve the prob-
lems covered earlier. They can provide much better
communication between business analysts and plat-
form implementers. They also provide a template
that encourages completeness of the analysis. While
the template does not force full definition of the very
fine detail of some behavior, it does force the bus-
iness analysts to properly consider many areas that
are typically neglected. Most critically, it forces the
business analysts to define the LUWs, which are fun-
damental to the design of this class of applications.
It also prevents analysts from getting involved in plat-
form design that may be inappropriate. Analysts do
so because they have no other way of expressing some
of the function required. With the abstractions pro-

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000

vided by the proposed constructs they can express
this function in a platform-independent form. This
provides a much better separation of design con-
cerns, leaving the platform design to be done by the
appropriate specialists, and easing implementation
of the same function on multiple platforms.

The proposed constructs

The constructs are defined here using a simple nat-
ural language definition. Note that there are alter-
native sets of constructs that could have been pro-
posed. The set proposed here is designed to simplify
the transformation from business function specifi-
cation to platform implementation without unduly
compromising the degree of platform independence
of the business function specification.

Accompanying the definitions are some informal di-
agrams designed to illustrate the relationships be-
tween the constructs. A simple application is also
used to provide particular examples of an applica-
tion specification using the constructs. The example
specifications use natural language but with some
consistent syntax and layout to make the specifica-
tion more precise. A more complete specification of
this example application is available.?

BEVINGTON 317




Figure 2

Mapping of requirements to platform as a separate activity

BUSINESS NONFUNCTIONAL
FUNCTION REQUIREMENTS
SPECIFICATION
1 |
PLATFORM PLATFORM PLATFORM
CONSIDERATIONS CONSIDERATIONS CONSIDERATIONS
\ \ v \
ASA/400® INTERNET BROWSER, UNIX® SERVER PC CLIENT, $/390® SERVER
IMPLEMENTATION IMPLEMENTATION IMPLEMENTATION

The example used is a simple education center ap-
plication. The education center teaches a range of
courses, and particular offerings of these courses are
run on particular dates. Students enroll in offerings
of the courses, and then attend them. Each course
offering has an instructor who is responsible for
teaching the course. The application provides for the
recording of courses and course offerings. It allows
students to be enrolled in an offering of a course.
When the course offering has been run, completion
can be recorded along with the grades achieved by
the students. A Unified Modeling Language (UML)*
static object model of the persistent data of the ap-
plication is shown in Figure 3.

Shared persistent business objects and related con-
structs. The constructs include the common notion
of business objects, which are objects representing
the data and behavior of the business entities that
the application is intended to manage. More preci-
sion is added by making it explicit that these objects
are persistent and shared by many users. They are
differentiated from other objects that are local to a
single user or are not persistent. The constructs are
defined as follows.

Database. A database is a collection of shared per-
sistent business objects, events, and transactions,

318 BEvinGTON

where the transactions only access shared persistent
business objects that are part of the database.

Shared persistent business objects. Shared persistent
business objects represent the data and behavior of
the fundamental things, both physical and abstract,
that the business must manage. They are global so
that they represent the requirements of the business
as a whole, not the view of some user group. They
continue to exist regardless of whether the applica-
tion is active or not. A shared persistent business ob-
ject may be part of only one database.

Shared persistent relationship business objects. Shared
persistent relationship business objects are shared
persistent business objects that hold the data and be-
havior of a relationship between two shared persis-
tent business objects. They can be used to navigate
from one shared persistent business object to an-
other.

Property. A property is some characteristic of a shared
persistent business object. A property has no mean-
ing independent of its object.

Data type. A data type defines the nature of a prop-
erty, for example, integer, Boolean, text, etc.

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000




Figure 3 UML model of example application

Course

Person

1

6.

CourseOffering

InstructorQualification

0.*

InstructorAllocation

StudentEnrollment

Method. A method is a function specific to a shared
persistent business object. A method cannot inter-
act with a user via input/output functions; it can only
interact with the external world via its parameter list.

In the example specification, the database is spec-
ified as three lists: a list of the shared persistent bus-
iness objects, a list of the transactions, and a list of
the events. Individual persistent shared business ob-
jects are specified in terms of their parents, their
properties, and their methods. Two shared persis-
tent business object specifications from the exam-
ple specification are shown (Tables 1 and 2). Two
further constructs that are used to specify the da-
tabase and its behavior are now defined.

Transaction. A transaction is a function that trans-
forms the database of which it is a component from
one valid, logically consistent state to another valid,
logically consistent state with no intermediate valid,
logically consistent state. In other words a transac-
tion is a single LUW. A special case is a read-only
transaction. Transactions encapsulate a database,
and are the only way that external components can
access or update a database. A database can be con-
sidered as a large-grain object, and transactions are
the methods that encapsulate it. A transaction can-

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000

Table 1 Course offering

CourseOffering SharedPersistentBusinessObject (a
particular offering of a course, on
given dates, with an instructor and a
set of students)

Parent Course (without a course, a course
offering could not exist)

Properties courseMnemonic: Text (a short text
string that uniquely identifies a course)

courseNumber: Integer (a number to
uniquely identify the particular
offering)

courseOfferingStartDate: Date

status: Code (scheduled, canceled,
completed)

classroom: Text

Public methods courseName( ): Text (returns the name
of the related course)
students( ): List (returns the list of
student enrollments)
instructorName( ): Text (returns the
family name of the instructor, derived
from person, navigated to via instructor

allocation and instructor qualification)

not interact with a user; it can interact with the ex-
ternal world only via its parameter list.

BEVINGTON 319




Table 2 Student enrollment

Table 4 Reschedule course offering

StudentEnroll- SharedPersistentRelationship-

ment BusinessObject (the enroliment
of a person as a student for a
course offering)

Parents Person CourseOffering

Properties personld: Identifier
courseMnemonic: Text (a short text
string that uniquely identifies a

course)

courseNumber: Integer (a number to
uniquely identify the particular
offering)

dateOfEnrollment: Date

enrolledBy: Identifier

status: Code (enrolled, waitListed,
materialsSent, canceled,
canceledAndInformed, completed)

gradeAchieved: Code (A, B, C, D, E, F)

Public studentFirstName( ): Text (returns
methods the first name of the person enrolled)
studentFamilyName( ): Text (returns the
family name of the person enrolled)
studentPhoneNo( ): Text (returns the
phone number of the person enrolled)
studentEmailAddress( ): Text (returns
the e-mail address of the person
enrolled)
courseOfferingStartDate( ): Date
(returns the start date of the course
offering)
courseName( ): Text (returns the name
of the related course)
courseMnemonic( ): Text (returns the
mnemonic of the related course)

Table 3 Search course offering

SearchCourse-  Transaction

Offering

Input courseMnemonic, courseNumber,

parameters date, status

Returns A set of course offerings (possibly an
empty set)

Processing Search for exact match on all
parameters, but with null
parameters ignored; date matches
if course offering start date is equal
to or greater than search date

Event. An event is a record of a significant database
state change that may trigger a workflow procedure.
Events carry data that are available in the context
of the workflow procedure. An event is always due

320 BEVINGTON

Reschedule- Transaction

CourseOffering

Input parameters courseOffering, newDate

Returns True or false, error message list

Processing Set courseOffering start date to
newDate; read all associated student
enrollments and set status to
canceled; check if new date causes
instructor allocation conflict and if so
cancel instructor allocation

Error messages “Course offering not in scheduled
status,” “New date the same as
existing date,” “Technical problem—
please contact the help desk quoting
code xxxx”

Table 5 Course offering rescheduled

CourseOffering-
Rescheduled

Event (generated when the
date of a course offering is

changed)
Database state New course offering start date not
change equal to old course offering
start date
Event data courseOffering,

oldCourseOfferingStartDate,
newCourseOfferingStartDate

to the execution of a transaction, but a transaction
execution need not necessarily result in an event.

In the example application about 20 transactions are
specified. These fall into three groups as follows:

e Search transactions, which take in a list of search
arguments and return a set of shared persistent
business objects

* Simple transactions that add or amend a single
shared persistent business object

¢ Complex transactions that read and update a num-
ber of shared persistent business objects

Two transaction specifications from the example ap-
plication specification are shown (Tables 3 and 4).
For each transaction the specification defines the
transaction name, the input and output parameter
lists, the business logic that the transaction must im-
plement, and logical error messages that the trans-
action may return.

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000



Figure 4  Encapsulation of objects in the database

DATABASE

TRANSACTION

TRANSACTION

TRANSACTION

SHARED PERSISTENT
BUSINESS OBJECT

TRANSACTION PROPERTIES

METHODS

SHARED PERSISTENT
BUSINESS OBJECT

TRANSACTION

PROPERTIES

METHODS

SHARED PERSISTENT
BUSINESS OBJECT

SHARED PERSISTENT
BUSINESS OBJECT

SHARED PERSISTENT
BUSINESS OBJECT

TRANSACTION

E:’ROPERTIES ‘

E’ROPERTIES ‘

TRANSACTION

PROPERTIES

E/II:—I'HODS ‘

E/IEI’HODS

‘ METHODS

SHARED PERSISTENT
BUSINESS OBJECT

PROPERTIES
METHODS

TRANSACTION

SHARED PERSISTENT

PROPERTIES TRANSACTION

METHODS

TRANSACTION

TRANSACTION

BUSINESS OBJECT
TRANSACTION

The business logic could be specified precisely using
a formal language, or as is the case here, with a rea-
sonably explicit description.

An example of an event specification is shown in Ta-
ble 5. Events are specified in terms of a state change
of the database and the data associated with the
event. These data may be from either the old state
of the database or the new state.

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000

The relationships between these constructs are il-
lustrated in Figure 4. The form of the diagram is in-
tended to illustrate that a database is composed of
a set of persistent business objects and transactions,
with the transactions encapsulating the persistent
business objects. The fact that the circles represent-
ing the transactions just break the boundary of the
larger circle representing the database is intended
to illustrate that information enters or leaves the da-

BEVINGTON 321




Table 6 Search course

SearchCourse Dialog (assists the user to locate

a particular course)

Input parameters None

Returns Single instance of course

Processing Request search arguments from user;
invoke the SearchCourse
transaction; present results to user;
allow user to select one course or
update search arguments and retry

tabase only by the parameter lists and returned data
of transactions. The only exception is that events
carry data, from the database, that is available to the
workflow procedures that the events trigger.

Process constructs. The constructs that abstract the
various different process types are defined here. All
of these processes can be considered functions in that
they have a statically defined input parameter list,
some processing, and the return of some statically
defined data.

Note that transaction and method were defined pre-
viously, as part of the definition of constructs related
to shared persistent business objects.

Function. A function is a named process that takes
an input parameter list, performs some processing,
and returns some data to the context from which the
data were invoked. A function will have some inter-
nal variables and logic.

Dialog. A dialog is a function that, from a defined
start point, reaches some desired business goal by
interacting with a single user and invoking one or
more transactions. A dialog cannot access the da-
tabase directly; it can only access or update the da-
tabase via transactions. Ideally a dialog is completed
in a single session, but it may be suspended after any
transaction and resumed later. A dialog may also be
abandoned before it is complete. This may leave the
database in an undesirable state, but not in an in-
valid state. (Every transaction always leaves the da-
tabase in a valid state.) Dialogs must always be
started by a user, either directly or via the execution
of a desktop object method.

Workflow procedure. A workflow procedure is a func-
tion that, from a defined start point, reaches some
desired business goal by interacting with multiple

322 BEVINGTON

users and invoking one or more component trans-
actions or dialogs. A workflow procedure may con-
tain nested workflow procedures. In addition to in-
ternal logic specifying the execution sequence of
component dialogs and transactions, a workflow pro-
cedure contains routing rules specifying which user
will execute the next component of the workflow pro-
cedure. Like a dialog, a workflow procedure can only
access or update the database via transactions. Un-
like a dialog, a workflow procedure may be initiated
by an event as well as by a user, and its internal flow
logic may also be controlled by events.

Workflow procedures, dialogs, methods, and func-
tions can be nested; transactions cannot. Note that
each transaction will normally have a matching di-
alog that allows the user to enter the transaction pa-
rameter values, review any error messages returned
by the transaction, retry the transaction if necessary,
and finally receive confirmation that the transaction
has executed successfully. In some cases a single di-
alog will provide these facilities for several transac-
tions.

Dialogs are functions and have an input parameter
list. The prime use of this parameter list is to allow
desktop object methods that invoke dialogs to place
restrictions on the parameter lists of the transactions
invoked by the dialogs. This allows a desktop object
method to provide restricted function without the
need for a special dialog and transaction.

Both dialogs and workflow procedures have a range
of characteristics that are best expressed as catego-
rizations of individual instances rather than as sub-
classes. For instance, both dialogs and workflow pro-
cedures are functions, and as such have internal logic
as well as the ability to invoke component transac-
tions. This logic may interact with a user to deter-
mine the internal flow. At one extreme the internal
flow may be totally fixed—the user can enter data
but cannot affect the execution sequence of compo-
nent transactions. At the other extreme a dialog or
workflow procedure may allow the user complete
control over which transactions are executed and
when they are executed. Most real dialogs and work-
flow procedures lie somewhere between these two
extremes.

Specifications of two dialogs from the example ap-
plication are shown (Tables 6 and 7). The form of
the specification is similar to the transaction spec-
ification in that it specifies the dialog name, input
parameters, return value, and processing.

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000



For a simple application it is difficult to provide re-
alistic examples of workflow procedures, so the ex-
ample shown here is minimal. It defines the proce-
dure to be followed when a course offering is
rescheduled. In the education center, courses can
only be rescheduled by the center administrator, who
uses the “reschedule course” transaction to reset the
course offering start date and set the status for all
student enrollments to “canceled.” The procedure
that the education center follows in this case is for
a course secretary to phone each student. The course
secretary will determine whether the student can ac-
cept the new start date and will either set the stu-
dentstatus to “enrolled” or “canceled and informed.”
Since multiple users are involved, a workflow pro-
cedure is required. In fact, the workflow procedure
itself contains only a single dialog executed by a sin-
gle user, but because the original cancellation trans-
action and the handling of the results are done by
different users, the routing rules of a workflow pro-
cedure are required.

Text is clearly not a very good way to express work-
flow procedures. If workflow procedures are going
to be part of the application, then the normal prac-
tice would be to use the workflow procedure defi-
nition facilities provided by the workflow manager.
One of the example workflow procedure specifica-
tions is shown in Table 8. It is similar to the other
processing specifications, the main difference being
the specification of the event that triggers the work-
flow procedure.

The relationships and defining characteristics of the
various process types are illustrated in Figure 5.

User interface constructs. The user interface defined
by the constructs is inherently multithreaded and may
be either object/action, action/object, or a mixture
of both.” It is defined in terms of desktop objects
and the dialogs and workflow procedures that the
user can invoke. The desktop objects have proper-
ties that the user may view, and methods that the
user may execute. Each desktop object is derived
from a single root, a shared persistent business ob-
ject. Their properties may be properties of the root
shared persistent business object, the results of meth-
ods of the root shared persistent business object,
which may comprise data extracted from other re-
lated shared persistent business objects, or contained
desktop objects whose roots are derived from the
root shared persistent business object.

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000

Table 7 Handle course offering rescheduling (dialog)

HandleCourse- Dialog (prompts the user to call

Offering- each student from a rescheduled

Rescheduling course offering and determine
whether the student will accept the

new date)
Input courseOffering,
parameters oldCourseOfferingStartDate
Returns Nothing
Processing For each student enrollment:

Display user prompt window giving
student and courseOffering details
(including
oldCourseOfferingStartDate and
controls to record call not made)—
student will accept new date or wish
to cancel.

If student will accept new date, issue an
AmendStudentEnrollment transaction
to set status to “enrolled” without
any further user interaction.

If student will not accept new date,
issue an AmendStudentEnrollment
transaction to set status to “canceled
and informed” without any further
user interaction.

Error messages Present transaction error messages to
the user

Table 8 Handle course offering rescheduling (work-
flow procedure)

HandleCourse- WorkflowProcedure (contact
Offering- students when course offering is
Rescheduling rescheduled)

Triggering courseOfferingRescheduled
event
Input courseOffering,
parameters oldCourseOfferingStartDate (from
event)
Returns Nothing

Procedure flow  Invoke the CourseOfferingRescheduled
dialog for any user in the course

secretary user group

The desktop object methods are simple mapping
functions that invoke transactions, dialogs, or work-
flow procedures, optionally supplying some or all of
the input parameters from the desktop object prop-
erties. Desktop objects provide a package of data and
function that is designed to improve the usability of

BEVINGTON 323



Figure 5

Relationships and characteristics of process constructs

WORKFLOW PROCEDURE MULTIPLE MULTIPLE USER
USERS LUW INTERACTION
INVOKES INVOKES
v
SINGLE MULTIPLE USER
DaLce USER LUW INTERACTION
INVOKES
v v
SINGLE SINGLE NO USER
TRANSAGTION USER LUW INTERACTION
INVOKES
v
SINGLE PARTIAL NO USER
METHOD USER LUwW INTERACTION

the application for a particular group of users. The
constructs are defined here.

Application. An application is a collection of desk-
tops defined for management and control purposes.

Desktop. A desktop is an object that allows a user
to interact with certain application components con-
tained within it. It may contain other desktops, desk-
top objects, dialogs, or workflow procedures. A user
may instantiate desktop objects to populate the desk-
top, and may then execute their methods. A user may
also directly invoke and interact with any of the di-
alogs or workflow procedures contained in the desk-
top.

Desktop object. A desktop object is a collection of
desktop object properties, derived from a single root
shared persistent business object, and a set of desk-
top object methods. It provides a particular bundle
of data and function that is designed to make inter-
action with the system easier for some group of users.
A user may view the desktop object properties or
invoke any of the desktop object methods. A desk-
top object may also contain other desktop objects
as properties.

Desktop object property. A desktop object property
is any property of the root shared persistent busi-

324 BEVINGTON

ness object, or the result of the execution of any read-
only method of the root shared persistent business
object. Use of read-only method results allows a
desktop object to contain data derived from any
shared persistent business object that can be nav-
igated to from the root object. It also allows a desk-
top object property to be a complex data structure.

Desktop object method. A desktop object method is
a function that invokes one or more transactions, di-
alogs, or workflow procedures. If all the parameters
required by any invoked transaction or workflow pro-
cedure can be supplied from the desktop object data,
then they may be invoked directly. If further user
input is required to complete a parameter list, then
the desktop object method must invoke a dialog that
will provide the necessary user interaction. The di-
alog will then invoke the transaction or workflow pro-
cedure. The set of desktop object methods can be
viewed as a drop-down menu list associated with the
desktop object.

Note that no windows are defined explicitly. Win-
dows are implicitly defined by the desktop and its
contents, the properties of desktop objects, the func-
tion signatures of transactions, dialogs, and work-
flow procedures, and I/O functions invoked by dia-
logs to communicate with the user. The graphics and
layout of windows are part of the implementation

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000




Table 9 Center administrator desktop

CenterAdmin- Desktop

istratorDesk-
top
Properties courses: [CourseDesktopObject] /* represents an unsequenced collection of course desktop objects */
courseOfferings: [CourseOfferingDesktopObject]
instructors: [InstructorDesktopObject]
students: [StudentDesktopObject]
addCourseDialogs: [AddCourseDialog]
addCourseOfferingDialogs: [AddCourseOfferingDialog]
addPersonDialogs: [AddPersonDialog]
Methods addCourse (invoke the AddCourse dialog and from the returned course instantiate a CourseDesktopObject)

retrieveCourse (invoke the CourseSearch dialog, and from the returned course instantiate a
CourseDesktopObject)

addCourseOffering (invoke the AddCourseOffering dialog, and from the returned course offering instantiate a
CourseOfferingDesktopObject)

retrieveCourseOffering (invoke the CourseOfferingSearch dialog, and from the returned course offering
instantiate a CourseOfferingDesktop object)

addStudent (invoke the AddPerson dialog and from the returned person instantiate a StudentDesktopObject)

retrieveStudent (invoke the StudentSearch dialog, and from the returned person instantiate a
StudentDesktopObject)

addInstructor (invoke the AddInstructor dialog and from the returned person instantiate an
InstructorDesktopObject)

retrievelnstructor (invoke the InstructorSearch dialog, and from the returned person instantiate an
InstructorDesktopObject)

Table 10 Course secretary desktop

CourseSecretary- Desktop
Desktop
Properties courses: [CourseViewDesktopObject]
courseOfferings: [CourseOfferingViewDesktopObject]
instructors: [InstructorViewDesktopObject]
students: [StudentDesktopObject]
addPersonDialogs: [AddPersonDialog]
addStudentEnrollmentDialogs: [AddStudentEnrollmentDialog]
Methods retrieveCourseView (invoke the CourseSearchDialog and from the returned course instantiate

a CourseViewDesktopObject)

retrieveCourseOfferingView (invoke the CourseOfferingSearchDialog and from the returned
course offering instantiate a CourseOfferingViewDesktopObject)

AddStudent (invoke the AddPersonDialog and from the returned person instantiate a
StudentDesktopObject)

retrieveStudent (invoke the StudentSearchDialog and from the returned person instantiate
a StudentDesktopObject)

retrievelnstructorView (invoke the InstructorSearchDialog and from the returned person
instantiate a CourseViewDesktopObject)

design, and are deliberately absent from the busi-
ness function design.

The example application has two desktops. One is

designed for the education center administrator. It
provides access to all the function of the application,

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000

and in particular allows courses, course offerings, in-
structor qualifications, and instructor allocations to
be added. The second is designed for a course sec-
retary. This allows all the application data to be dis-
played, but only allows for persons and student en-
rollments to be added.

BEVINGTON

325



Table 11 Desktop objects in the example application

Course Derived from Course persistent business object and contains CourseOffering and
InstructorQualification desktop objects
CourseOffering Derived from CourseOffering persistent business object and contains course data, instructor name,
and StudentEnrollment desktop objects
StudentEnrollment Derived from StudentEnrollment persistent business object and contains data from Person,
CourseOffering, and Course persistent business objects

Student Derived from Person persistent business object (with no instructor qualification for this course),
and contains person data plus StudentEnrollment desktop object
Instructor Derived from Person persistent business object with instructor qualification for this course, and

contains person data plus InstructorQualification and InstructorAllocation desktop objects
InstructorQualification Derived from InstructorQualification persistent business object and also contains data from
Person and Course persistent business objects
InstructorAllocation Derived from InstructorAllocation persistent business object and also contains data from Person,
Course, and CourseOffering persistent business objects

Table 12 Course offering desktop object

CourseOffer- DesktopObject
ingDesktop-

Object

Root shared persistent CourseOffering

business object

All properties of CourseOffering persistent business object, plus

courseName ()

instructorName ()

list of StudentEnrollment desktop objects, for which roots are provided by students( ) method of
CourseOffering persistent business object

Properties

Methods amend (allows certain course offering properties to be directly amended by the user, though in this
simple example the only property that can be directly modified is classroom)

enrollStudent (invokes the AddStudentEnrollment dialog, supplying the courseOffering parameter
from desktop object data. From the returned StudentEnrollment shared persistent business
object it instantiates a StudentEnrollment desktop object, and adds it to its set of
StudentEnrollment desktop objects)

allocatelnstructor (invokes the AddInstructorAllocation dialog)

rescheduleCourseOffering (invokes the AmendCourseOffering dialog, which will issue a
RescheduleCourseOffering transaction, which will generate a CourseOfferingRescheduled event,
which in turn will trigger the HandleCourseOfferingRescheduling dialog)

cancelCourseOffering (invokes the CancelCourseOffering dialog, which will issue a
CancelCourseOffering transaction, which will generate a CourseOfferingCanceled event, which in
turn will trigger the HandleCourseOfferingRescheduling dialog)

recordCourseOfferingCompletion (invokes the CourseOfferingCompletion dialog)

The desktops are themselves objects, and their
classes are specified in terms of their data and meth-
ods. The desktop data are collections of desktop ob-
jects, dialogs, and workflow procedures. Desktop
methods allow the user to invoke the dialogs and
workflow procedures. These methods are trivial and

326 BEVINGTON

can be assumed from the presence of the dialogs and
workflow procedures in the desktop data. Desktop
methods also allow the user to add desktop objects
to the desktop, giving the user access to the desktop
objects’ data and methods. These methods are not
trivial, so they are specified explicitly. For the exam-

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000



ple application, the specification of the center ad-
ministrator desktop is shown in Table 9 and the spec-
ification of the course secretary desktop is shown in
Table 10. The desktop objects in the example ap-
plication are shown in Table 11.

In addition there are “view” versions of Course,
CourseOffering, and Instructor desktop objects.
These have the same data as the normal versions but
do not have the methods that allow the underlying
persistent shared business objects to be updated.

Desktop objects can contain lists of other desktop
objects, so they provide a hierarchical, denormalized
view of the persistent shared business objects. Via
their methods they give access to the application
workflow procedures, dialogs, and transactions. They
can appear on screen in a number of different visual
forms. One is as an expandable indented tree struc-
ture, with pop-up windows for individual object de-
tails, as used for viewing file directory structures. An-
other is a “forms” style with a header section and
with scroll boxes for the next level down in the hi-
erarchy. Multiple scroll boxes can be used to cover
multiple hierarchical levels. Desktop objects are
specified in terms of their properties and methods
as shown in Table 12.

The major relationships between the user interface
constructs and the key related constructs are illus-
trated in Figure 6. The arrows indicate that execu-
tion of a desktop object method will invoke a trans-
action, dialog, or workflow procedure.

Dialogs are logically part of the desktop—dialogs
interact with users, and the desktop is defined as the
object that contains the application’s components,
with which the user may interact. Instances of the
dialogs are particular executions, and the desktop
allows for multiple instances to be available at the
same time. Dialogs may take some period of time
to complete, so it is important to have multiple in-
stances available. This supports the ability to suspend
the execution of one dialog, due to an interruption,
and start the execution of another dialog of the same
type. Once a dialog has completed execution, the in-
stance in the desktop provides a client-side log. How
long completed dialog instances are kept in the desk-
top is an implementation design choice. They may
be discarded immediately, or kept for some period
of time.

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000

Logical application structure

The constructs proposed give rise to a logical appli-
cation structure that can be represented diagramati-
cally as shown in Figure 7. It is a highly layered struc-
ture. A set of persistent shared business objects and
their methods provide the basic components. Trans-
actions are built from methods and functions. Da-
tabases are large-grained objects built from the
shared persistent business objects and their trans-
actions. Dialogs are built from transactions and func-
tions. Workflow procedures are built from other
workflow procedures, dialogs, transactions, and func-
tions. Desktop objects are built from data defined
from existing persistent object properties and meth-
ods, and from desktop methods that are mapping
functions onto already-defined transactions, dialogs,
and procedures. Desktops are composed of already-
defined dialogs, procedures, and desktop objects.
This highly layered structure maximizes reuse dur-
ing the analysis activity. It also maximizes the flex-
ibility of the implemented system. It allows rapid im-
plementation of dialogs and workflow procedures
built from existing transactions. User interfaces can
also be assembled rapidly using already-defined
shared persistent business objects, transactions, di-
alogs, and workflow procedures.

Within the constructs there is no inherent duplica-
tion of business logic. Business logic is expressed only
once. This minimizes analysis effort, and eliminates
possible errors and ambiguity. This absence of du-
plication at the analysis level does not imply that
there is no duplication of business logic in the im-
plemented application. There are sound reasons for
duplicating some business logic in the implemented
application. These reasons are covered later.

There is, however, duplication of data in that the
desktop objects contain copies of data derived from
the persistent shared business objects. This dupli-
cation provides a hierarchical view of the underly-
ing persistent data contained in the database. The
database will normally be in third normal form® and
the desktop objects are a denormalization designed
to improve usability for a particular user group. Mul-
tiple desktops may be defined, and each may con-
tain a different set of overlapping desktop objects,
so multiple denormalizations are possible, each tar-
geted at a different user group. Note that these de-
normalizations are quite different from the single de-
normalization that will be part of the implementation
of the shared persistent business objects on a par-
ticular database platform. The platform implemen-

BEVINGTON

327



Figure 6

Desktop methods in user interface invoke high-level process constructs.

MI:—I'HODS

DESKTOP OBJECTS
(TYPE A)

DESKTOP
DESKTOP METHODS
ADD DESKTOP OBJECT (TYPE A) ADD DESKTOP OBJECT (TYPE B) EXECUTE DIALOG X
RETRIEVE DESKTOP OBJECT (TYPE A) RETRIEVE DESKTOP OBJECT (TYPE B) EXECUTE DIALOG Y
DESKTOP DATA [
DESKTOP OBJECTS
(TYPE B)

\

PROPERTIES

METHODS

0]

DIALOGS

WORKFLOW
PROCEDURES

\

TRANSACTION

DATABASE

tation denormalization is a single global denormal-
ization, primarily aimed at providing acceptable
database performance.

Analysis activity

The constructs proposed do not imply any one ap-
plication development method. While the deliver-
ables from analysis are consistently defined, there
are various possible methods for producing them.
Some application development methods are more
focused on process decomposition, while others are

328 BEVINGTON

data- or object-based. Some application development
methods are based on very short iterative develop-
ment cycles, while others use a more traditional “wa-
terfall” approach. Whatever method is used, the
analysis constructs proposed can guide the analysis
activity of commercial applications, and can provide
deliverables that are more precise and thus provide
better input to subsequent development activities.

Use of the constructs will also ensure that logical

units of work are defined as an inherent part of the
analysis, and not as a separate additional activity.

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000




Figure 7 Logical structure of proposed constructs

WORKFLOW MANAGER

oo ®

DATABASE

TXN = TRANSACTION
SPBO = SHARED PERSISTENT BUSINESS OBJECT

WORKFLOW
»| EVENT »| PROCEDURES <4 EVENT |4
DESKTOP DESKTOP

DESKTOP DESKTOP
OBJECTS OBJECTS
DATA DATA
METHOD 1 METHOD 1
METHOD 2 »| DIALOGS DIALOGS < METHOD 2
METHOD 3 < METHOD 3
METHOD 4 METHOD 4

Neither traditional structured analysis” involving top-
down process decomposition, nor the use-case-driven
approach® normally identifies logical units of work
as an inherent part of the business analysis activity.
In commercial applications the logical units of work
are central, and their identification should therefore
form an inherent part of the analysis activity.

Use cases can be useful in commercial applications
for the initial unstructured capture of user require-
ments for business processes. However, they must
be further decomposed to explicitly identify the
workflow procedures, dialogs, and transactions in-

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000

volved. Top-down process decomposition has been
bedeviled by the lack of any sound definition of the
various subclasses of process. While “manage 1BM”
and “update quantity in stock” were clearly rather
different kinds of process, it was never clear what
intermediate kinds of process were required through
the decomposition process, and how these should be
defined. The constructs proposed provide a semanti-
cally sound set of process subclasses based on logical
units of work. These enable process decomposition to
be awell-defined, well-structured activity, which directly
produces deliverables that can be mapped to an im-
plementation platform in a straightforward way.

BEVINGTON 329




Similarly the user interface constructs allow a user
interface to be designed at a logical level. The data
that a user can view and the processes that can be
invoked are well-defined, while details of screen de-
sign and layout are left to the platform design stage.

Relationship to business modeling

These constructs are proposed for application spec-
ification. Application specification is quite distinct
from business modeling and business process re-en-
gineering, which seek to understand and redesign
fundamental business processes without regard to
the automation of information processing. The re-
cent paper by McDavid® provides an approach to
the description of fundamental business architec-
tures, and the book by Scheer!” provides a current
approach to business modeling. Business modeling
and re-engineering should precede any application
specification and should be followed by definition
of the scope of any applications that automate part
or all of the information processing involved. Once
an application’s scope has been defined, its detailed
business function can then be specified using the con-
structs proposed here.

Communication with business users

The proposed constructs are designed to improve
communication between business analysts and imple-
menters. However, the obvious question arises as to
what extent the specification of an application using
these constructs can be used to communicate its func-
tion back to business users. Some further help
beyond the application specification delivered to
implementers is certainly required. This could be
supplementary documentation and informal dia-
grams, specifically targeted at business users. The au-
thor’s preference would be to develop a prototype
that is the simplest possible single-machine imple-
mentation of the application, effectively an execut-
able form of the business function specification. This
would allow users to exercise and verify the business
function specified. It would also facilitate the devel-
opment of test cases for the full implementation of
the application.

Mapping to a platform

The constructs provide a template for structuring the
deliverables from analysis. This makes the task of
the business analysts easier, but more importantly
it also makes the task of the platform designers much
easier too. Instead of a large number of undiffer-

330 BEVINGTON

entiated analysis classes, and use cases that do not
address the fundamental business issues surround-
ing units of work, platform designers are presented
with well-structured input that has addressed the key
issues and can be mapped to a suitable platform in
a straightforward way.

The key point about the platform mapping is that
it does not depend on the particular business func-
tion of the application. The mapping depends on the
construct being mapped, and nonfunctional require-
ments, such as performance. So a transaction will
map to a platform in a particular way because it is
a transaction, and because it has a particular response
requirement, a particular pattern of database ac-
cesses, a particular volume, etc. Whether the bus-
iness function is general ledger or order entry is com-
pletely irrelevant. This means that much platform
design can be done at a generic level, in parallel with
business analysis. Standard mappings can be defined
and reused depending on the nonfunctional require-
ments of each construct instance.

In general it is desirable to map the analysis con-
structs onto a platform in the simplest possible way,
so that as much as possible there is a one-to-one
correspondence between analysis constructs and
classes in the implementation. The constructs have
been designed to map easily to a client/server plat-
form. The shared persistent business objects and as-
sociated transactions naturally map to an object
database with proper concurrency control, or a
transaction manager and relational database such
as CICS*/DB2* (Customer Information Control
System/DATABASE 2), or an object request broker us-
ing a relational database manager to provide per-
sistency. The dialogs and user interface constructs
naturally map onto an object-oriented client. If work-
flow procedures are defined, then a global workflow
server is also required. Particular platforms will of-
ten require somewhat more complex mappings,
which are outside the scope of this technical note.
There are also some platforms onto which the full
set of constructs cannot easily be mapped, because
these platforms lack capabilities that are inherent
in the constructs. For instance, a mainframe with
“dumb” terminals lacks the ability to support a mul-
tiwindow user interface, which is inherent in the con-
structs proposed.

Whatever the platform, there are a number of areas
where platform designers will usually need to sig-
nificantly transform the analysis model defined by
the constructs. These are described here.

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000



Database design. The analysis model database, de-
fined by the set of shared persistent business objects,
should be in third-normal form in terms of the bus-
iness domain that it covers. This maximizes the in-
herent flexibility of the system and avoids duplica-
tion of data. However, with current technology, a
straightforward implementation leads to unaccept-
able performance. It can also make the coding of da-
tabase accesses unnecessarily complex. Appropriate
physical database design is required to ensure ad-
equate performance. This is a well-established dis-
cipline® and the constructs do not require anything
new.

As mentioned earlier, two rather different denormal-
izations are required. One is the denormalization to
arrive at the physical database design. This is a sin-
gle denormalization that is part of the platform map-
ping and is driven by the requirements across all
users. It represents a global compromise. The other
denormalization is the denormalization represented
by the desktop objects, which is part of the business
function design. Here the denormalization is tar-
geted at a particular group of users, and many dif-
ferent and overlapping denormalizations are possi-
ble. These denormalizations are concerned with ease
of use, not with performance. One of the problems
with some application architectures is that they pro-
vide only a single denormalization to meet these two
quite different requirements.

Logical unit of work consolidation. The definition
of a transaction, and thus of an LUW, is very precise.
It needs to be in order to provide a solid foundation
for all the other constructs that are built around it.
However, it will tend to result in rather fine-grained
transactions. This may give performance problems,
caused by heavy network traffic and many small da-
tabase updates. Fine-grained transactions can also
affect usability by forcing dialogs to involve many
small transactions, rather than a few transactions with
larger scope. Another factor is that a business may
make a policy decision to combine two LUWs, even
though the analysis has shown that they can be sep-
arated. For instance, adding a person object and add-
ing the link to a previously known address are log-
ically two separate LUWs. However the business may
make a policy decision not to keep personal details
unless an address is also recorded. It may therefore
decide to roll up the two LUWs into a single LUW.

So the implementation may well choose to combine

some LUWs. There are two different mechanisms that
can be used to provide this LUW consolidation. The

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000

first is to define transactions that combine multiple
logical LUWs into a single unit of work in the imple-
mentation. This need not be on an exclusive basis.
For instance, in the previous example two transac-
tions could be provided, one to add a person and an
address link and one to add just an address link. For
a new person the combined transaction is used, but
for address updates the add link transaction would
be used. Proper management of the implementation
should, of course, ensure that source code is reused
and not duplicated.

The second alternative is to define a dialog that
makes use of the facilities provided in transaction
managers—to widen the unit of work to span more
than one transaction. Note that this approach im-
plements business policy decisions to widen the unit
of work, but will not have the same impact on per-
formance as combining transactions.

Business logic duplication. Dialogs, as defined ear-
lier, need contain no business logic other than that
required to ensure the necessary transactions are ex-
ecuted in the correct sequence. If a user enters in-
valid data for a transaction, then transaction error
messages can be shown to the user, who can make
the necessary corrections. However, this is not par-
ticularly user-friendly, and it requires additional
server interactions, which cost time and resources.
Because dialogs are simply client-side programs that
execute database updates via external calls, they may
contain business logic that validates the data entered
before transactions are sent to the server. In this way
validation can be immediate, and load on the net-
work and the server is reduced. In the extreme this
approach can involve a highly sophisticated client-
side dialog that accumulates user input in a scratch-
pad area. Then when all validation is complete and
the user is satisfied with the input, a number of server
transactions are invoked without further user inter-
action. As transactions must contain all the valida-
tion logic necessary to guarantee the integrity of the
database, any client-side validation logic will be a du-
plication of logic in the transactions. There is a trade-
off here between usability and performance, on the
one hand, and the costs of writing and maintaining
duplicate business logic, on the other hand. The im-
plementation design will normally be skewed toward
usability and performance for high-volume business-
critical dialogs, and toward cost saving for low-vol-
ume dialogs.

Window combination. Separate windows are implic-
itly defined by the desktop and its contents, the prop-

BEVINGTON 331



erties of desktop objects, and the dialogs with their
user interaction. A pull-down list is also implicitly
defined by the set of desktop object methods.

To improve usability, the user interface designers
may choose to combine some of these logical win-
dows into a single window. For instance, a desktop
object properties window will usually be combined
with an “amend” dialog window. The combined win-
dow will display the object properties, and the log-
ical amend dialog window will be provided by allow-
ing changes to some of the displayed properties,
along with an error message area and an “amend”
button.

Note that these design transformations do not rep-
resent a deficiency of the analysis constructs. To pro-
vide a proper separation of concerns and a better
understanding of what is fundamental, the constructs
abstract and separate into a layered structure things
that are logically separate. However, the real world
in which the implementation must exist is more com-
plex, with many additional and conflicting require-
ments that are deliberately not considered during
business analysis. Platform implementation must
take these additional requirements into consider-
ation and therefore must further transform the anal-
ysis model.

Internet platforms

Initially Web sites were purely information provid-
ers and therefore not commercial applications as de-
fined here. Now there is a very strong move to in-
corporate user interfaces to commercial applications
into Web sites. The question arises as to whether an
Internet-based implementation of a user interface
is just another platform implementation, with its own
particular technical considerations, or whether there
are some different aspects of an Internet implemen-
tation that need to appear in the business function
specification. The key difference of most commer-
cial application desktops that are part of a Web site
is not that they use Internet technology, but that they
are designed for a user who is a customer or a sup-
plier, not an employee. This means that users are
only allowed to manipulate data that relate to them,
for instance their bank account or their orders. So
the business function specification of a commercial
application with an Internet-based customer inter-
face will usually need to include an additional desk-
top with some slightly different desktop objects from
the normal employee desktop. The desktop objects
will be largely the same, and the main difference will

332 BEVINGTON

be that the desktop methods to add desktop objects
will only allow the creation and retrieval of instances
that are directly related to the user.

Origins and context

The constructs proposed here draw on a number of
sources. The first is the early work on relational da-
tabase theory,!! and experience of the implementa-
tion of relational databases.'? This led to business
analysts defining entity-relationship logical data
models in third normal form. Implementers trans-
formed these into denormalized physical database
designs,® taking into account nonfunctional require-
ments and the specifics of the database software. This
aspect of commercial application development has
worked well for some time. What is proposed here
for persistent data supports a widely used object-ori-
ented form of these ideas, as expressed for instance
by the “specification” static object model defined by
Cook and Daniels. "

A key source for the process constructs was the expe-
rience in the early 1990s of developing major new
customer service systems for a number of utilities in
the United Kingdom. These client/server systems
consisted of a relational database server and a cli-
ent that provided a sophisticated object-oriented user
interface. A key requirement of these systems was
to include workflow management. Initially the de-
velopers had a two-level mental model of processes
consisting of transactions, as implemented by CICS
and other similar software, and workflow procedures
as implemented by the workflow managers that were
then starting to appear. However, it became appar-
ent that the case where the same person executed
successive steps in a workflow procedure required
quite a different implementation and was more than
just a minor special case. This led to the definition
of dialogs as a further important process subclass,
and the recognition by the business analysts involved
that the three-level structure seen in the implemen-
tation was a reflection of a three-level structure that
should also exist in a logical, platform-independent
process model. The process constructs proposed here
provide a more tightly defined version of what was
learned during this period. They form a logical pro-
cess model that can be transformed into an imple-
mentation with a logical-to-physical transformation
similar to that used successfully for data for a long
time.

At the same time object technology, with the encap-
sulation of data and its close binding with process,

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000



was beginning to influence commercial application
developers. Objects seemed useful both for describ-
ing the persistent business entities with their behav-
ior and for the implementation of graphical user in-
terfaces. The appearance of the model-view-
controller (MvC) design pattern'* showed the value
of the separation of the on-screen view from the un-
derlying business data. It led to the idea of a logical
user interface as a collection of objects where the
user could invoke the object methods.

While all these ideas from different sources were use-
ful, initially they did not seem to fit together in a co-
herent way. It was not clear how the notion of a
method fitted in with wider processes, such as work-
flow procedures and dialogs that experience had
shown were a necessary part of commercial appli-
cations. Although work has been done to bring work-
flow and objects together™ this did not include the
notion of a dialog or the user interface aspects of an
application. Also it was not clear whether the model
objects of the MVC pattern seen in the user interface
and the relational tables that usually provide per-
sistence were the same things at the functional spec-
ification level.

What is proposed here represents the author’s at-
tempt to bring together a range of ideas, that have
proved useful in commercial application develop-
ment, into a consistent set of related constructs. In
particular the intention has been to extend the sep-
aration between logical design and physical imple-
mentation—which has worked well for data—to all
aspects of the design of a commercial application;
in other words, to provide a logical specification of
the complete application. What makes this intention
realistic is that only systems comprising a well-de-
fined subclass are covered, namely commercial ap-
plications.

Current status and future directions

These proposals are published to allow scrutiny and
review by the commercial application development
community. They are the result of a period of re-
flection on the lessons learned from a number of
projects, and a preparation for improving the devel-
opment process on future projects. They have not
yet been proved to work on an actual project. As yet
there has been limited opportunity to use the con-
structs during application development. They have
been tested by using them to specify example appli-
cations, and there has been some limited use of the
process constructs on a small project. Rather than

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000

wait until more experience has accumulated, the
ideas are published as a technical note so that the
scrutiny and review of a wider community can more
quickly determine whether what is proposed adds
real value.

Besides their eventual use on a live project, there
are a number of other directions in which these pro-
posals could be further developed. In the examples,
the constructs were specified using natural language
with some additional formatting and layout. Clearly
aprecise formal language, in which all the constructs
could be specified in the simplest possible form,
would be of value. An open issue is whether the con-
structs are sufficiently well-defined that a precise for-
mal language is possible. Many of the constructs al-
ready appear in formal languages but others are new.
The author believes that all of the constructs could
be specified in a precise form, possibly with some
further tightening of the definitions. However, this
has yet to be demonstrated.

Some work has been done in this direction. Another
source of the ideas expressed here was an IBM proj-
ect to develop a tool for the expression of platform-
independent business rules and their compilation
into code that could be dynamically incorporated into
installed applications. This project developed a pro-
gramming language'® in which to specify the busi-
ness rules and a compiler. The programming lan-
guage combined an object-oriented language, a
functional programming language, and a database
query language. It was able to express precisely, in
a platform-independent form, all the constructs re-
quired to specify shared persistent business objects
and their behavior. The author has defined some
straightforward extensions to this language that al-
low the specification of transactions, desktop objects,
events, and most dialogs. Workflow procedures were
not covered, as they require a significantly different
language. Although this experimental language had
some very attractive features, it would make sense
to base any formal expression of the constructs on
a mainstream programming language.

Another possible direction is to produce prototypes
that would provide the simplest possible executable
form of the application. This would have value in
providing a form of the specification that can be uti-
lized to verify that the specification meets the users’
needs. It would be a valuable exercise to determine
how the constructs map into code, and whether in-
formation is being added by the programmer that
should be specified in the constructs. An executable

BEVINGTON 333



prototype of the example application has been pro-
duced using the Java™* language and the Abstract
Window Toolkit (AWT). It is available as a Java ap-
plet along with the .java source files.? It is a com-
plete implementation of the example application
with the exception of the workflow procedures and
events. It maps all the constructs, one-to-one, into
Java classes. The only additional classes required
were those required to define the windows needed
to view the desktop objects, plus some utility classes
to provide parameter lists and error message han-
dling. The prototyping exercise led to some minor
refinement of the construct definitions, and also dem-
onstrated that the constructs are complete enough
to be mapped into an executable application.

Summary

The constructs proposed are intended to provide a
better set of analysis deliverables for commercial ap-
plications. They enable analysts to define a platform-
independent abstraction of:

* The fundamental business objects

» Extended processes involving multiple LUWs and
multiple users

e The interaction of the user with the application

They provide a highly layered model that builds more
complex components from simpler, more basic com-
ponents, providing the maximum reuse during both
analysis and implementation.

For implementers, the constructs can provide input
that is organized and structured in a familiar and use-
ful way. The mapping of the business function onto
the platform can follow a number of standard pat-
terns, based on the constructs, the nonfunctional re-
quirements, and the choice of platform. These pat-
terns can be designed in parallel with business
analysis, leading to a shorter development cycle.

The constructs enable a proper separation of con-
cerns between business analysts and platform design-
ers. They deliberately exclude some aspects of the
final application. What they include is the domain
of the business analyst, and what they exclude is the
domain of the platform implementation designer.

They do not address every problem that has affected
commercial application development, but they do ad-
dress the key problem of handing over, from the de-
velopment team that is primarily business-focused,
to the development team that is primarily technol-

334 BEVINGTON

ogy-focused, a complete and understandable spec-
ification.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Sun Microsystems, Inc.

Cited references and notes

1. The IBM Systems Journal 38, No. 1, provides a number of
papers on the Enterprise Solutions Structure (ESS).

2. I.R. Forman and S. H. Danforth, Putting Metaclasses to Work,
Addison-Wesley Publishing Co., Reading, MA (1998).

3. Contact the author: david_bevington@uk.ibm.com.

4. M. Fowler with K. Scott, UML Distilled: Applying the Stan-
dard Object Modeling Language, Addison-Wesley Publishing
Co., Reading, MA (1997).

5. For an “action/object” interface an action is selected first,
usually via a hierarchical set of menus that offer an increas-
ingly specific action, and then the data are specified that the
action is to be performed upon. This is the usual style for
traditional “green screen” applications. For an “object/action”
interface, an object is selected, then a set of possible actions
that may be performed on it is made available.

6. C. S. Mullins, DB2 Developer’s Guide, Sams Publishing, In-
dianapolis, IN (1997). Pages 115-126 provide a brief defi-
nition of first, second, and third normal forms, and a list of
the denormalizations typically employed by physical database
designers.

7. E. Yourdon, Modern Structured Analysis, Prentice-Hall, Inc.,
Upper Saddle River, NJ (1989).

8. I. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard,
Object-Oriented Software Engineering: A Use Case Driven Ap-
proach, Addison-Wesley Publishing Co., Reading, MA (1995).

9. D. W. McDavid, “A Standard for Business Architecture De-
scription,” IBM Systems Journal 38, No. 1 (1999), pp. 12-31.

10. A.-W. Scheer, ARIS—Business Process Frameworks, Springer-
Verlag, Berlin (1999).

11. E. F. Codd, “A Relational Model of Data for Large Shared
Data Banks,” Communications of the ACM 13, No. 6 (June
1970).

12. C. J. Date, An Introduction to Database Systems, Sixth Edi-
tion, Addison-Wesley Publishing Co., Reading, MA (1995).

13. S. Cook and J. D. Daniels, Designing Object Systems: Object-
Oriented Modelling with Syntropy, Prentice-Hall Canada, Scar-
borough, Ontario (1994).

14. G. E. Krasner and S. T. Pope, “A Cookbook for Using the
Model-View-Controller User Interface Paradigm in Small-
talk-80,” Journal of Object-Oriented Programming 1, No. 3,
26-49 (August/September 1998).

15. R. Prins, A. Blokdijk, and N. E. van Oosterom, “Family Traits
in Business Objects and Their Applications,” IBM Systems
Journal 36, No. 1, 12-31 (1997).

16. IAA Product Builder: Language Reference Manual, 1L.B-14-
0299-00, IBM Corporation (1997).

Accepted for publication December 30, 1999.

David Bevington IBM United Kingdom Ltd., Hursley Park,
Winchester, Hants S021 2JN, United Kingdom (electronic mail:
david_bevington@uk.ibm.com). Mr. Bevington received a B.Sc.
degree in mathematics and physics from McGill University. He
joined IBM’s internal information technology organization and

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000



held a number of technical and management positions. He is cur-
rently working as a business analyst in IBM Global Services in
the United Kingdom, where he has been responsible for the bus-
iness function of a number of major custom application devel-
opments. His interests are in making custom application devel-
opment more of an engineering discipline, and in techniques for
building applications with maximum inherent flexibility.

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000

BEVINGTON 335



