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In an earlier paper, “Techniques for Data Hiding,”
the overall goals and constraints of information-
hiding problem space and a variety of
approaches to information hiding in image,
audio, and text were described. In this sequel,
information-hiding goals and applications are
expanded beyond watermarking to encompass
the more general concept of information tagging.
As a framework for illustrating these concepts,
multiple-bit and midlevel image-representation
information-hiding techniques are described. A
range of applications, including anticounterfeiting
and authentication, is explored.

Information (or data) hiding, a form of steganog-
raphy, embeds data into digital media for the pur-

pose of identification, annotation, and copyright. (As
defined at the first international workshop on infor-
mation hiding,1 cryptography protects the content
of messages while steganography conceals their very
existence.) Several constraints affect this process: the
quantity of data to be hidden, the need for invari-
ance of these data under distortion of the cover sig-
nal, and the degree to which the data must be im-
mune to interception, modification, or removal by
a third party.

In “Techniques for Data Hiding”2 the information-
hiding problem space was characterized by a trade-
off between robustness and bandwidth. By constrain-
ing the degree of cover-signal degradation, an
information-hiding method can operate with either
high embedded data rate or high resistance to mod-
ification, but not both. As one increases, the other
must decrease.

Trends such as the growing popularity of MPEG (Mo-
tion Picture Experts Group) Audio Layer 3 (MP3)
have created a climate of corporate vigilance regard-
ing the protection of intellectual property. This cli-
mate has spawned a corresponding digital-water-
marking imperative, driving the engineering
community to focus on one segment of the informa-
tion-hiding problem space—developing more secure
methods of embedding watermarks in sound, image,
and video files. The metric of success driving this ef-
fort is resistance to attack. This narrow focus on wa-
termarking has an analogy in the development of dig-
ital-television systems in the 1980s. The research
community defined the problem space in terms of
efficient use of bandwidth at the expense of consid-
eration of “out-of-topic” features such as scalability
that broaden the potential application domain.

Some exceptions to this focus on watermarking in-
clude Anderson and Lee’s Jikzi system,3 which ad-
dresses secure document publication as opposed to
copy control. Other researchers, such as Kundur and
Hatzinakos4 and Quelez,5 are examining the prob-
lem of image authentication. And a few researchers
are exploring information hiding within the context
of privacy. For example, Demuth and Rieke’s JANUS
system6 uses information hiding to provide anonym-
ity for content providers on the World Wide Web.
Anderson et al.’s steganographic file system7 is an-
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other example of an unexpected, but practical ap-
plication of information hiding.

There are some efforts to use information hiding to
create general-purpose data channels. Gerasimov
and Bender8 use information hiding as a mechanism
for device-to-device communication. Adelson9 uses
information hiding as a means of embedding arbi-
trary meta-data into images. Schreiber et al.10 use
information hiding to embed alternative channels
into television broadcasts. But the volume of research
on watermarking, e.g., hidden copyright messages,
is an order of magnitude greater than that of other
applications of information hiding, as reflected in the
literature and in compilations such as Anderson and
Petitcolas’ annotated bibliography on information
hiding.11 (The reader interested in the latest trends
in watermarking should consult References 11–16.)

An expanded information-hiding problem space
should be characterized as a general-purpose data
channel. There are three attributes of this channel
that expand the potential application domain: (1)
techniques that combine strong and weak data em-
bedding offer a flexibility that gives application de-
signers the ability to move fluidly between robust-

ness and bandwidth considerations; (2) embedding
meta-data leads to improved management of assets,
not just for the purposes of intellectual-property pro-
tection, but for general process and application con-
trol; and (3) in a network computing environment,
a small amount of embedded data is not a signifi-
cant limitation. Rather than struggling to embed all
of the information that one would like to associate
with a particular image, a URL (uniform resource lo-
cator), filename, or unique serial number can be em-
bedded, using off-image storage for large amounts
or dynamic updating of information over the net-
work.

In this paper, information hiding is explored in light
of several approaches, multiple-layer and midlevel
vision techniques, and several application domains,
transfer of embedded data to and from nondigital
(physical) media and the authentication and char-
acterization of images. First, we describe a multiple-
layer technique as an exemplar of flexible encoding.
This example is then used to explore two applica-
tions that exploit information hiding, anticounter-
feiting and authentication. Finally, we describe a
midlevel vision technique that, although not yet ma-
ture enough to have applicability beyond authenti-
cation, achieves data embedding outside of the usual
considerations of signal-to-noise ratio.

Multiple-layer encoding

Our interest in multiple-layer techniques lies in their
ability for exchanging robustness with bandwidth, an
orthogonal goal from watermarking (see Figure 1).
The notion of layering multiple watermarks into a
cover signal is not unprecedented. For example,
Mintzer and Braudaway17 analyze the order in which
watermarks are applied, based upon their fragility,
and Fridrich and Goljan18 have described a method
to convert a multiple-bit technique into a one-bit
technique and vice versa. The purpose of the discus-
sion below is to provide an example of a multiple-
layer-encoding technique that is used as the basis of
a later discussion of information-hiding applications.

Patchwork (described in detail in Bender et al.2) is
an information-hiding technique that uses a statis-
tical analysis to detect a single, specific bit in an im-
age. Patchwork imperceptibly embeds in a host im-
age a specific statistic that has a Gaussian
distribution. The basic algorithm is to modify the
original picture by choosing a pseudorandom path
of length n through the image and modifying “patch-
es” centered at sequential pairs of points. By raising
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Figure 1 Conceptual information-hiding problem space
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the brightness in one patch and lowering it in the
other by d, the expected value of the sum of the dif-
ferences between patch pairs is modified. This de-
viation in expected value, Sn , is usually interpreted
as a watermark (see Figure 2).

Patchtrack19 is a variant of the Patchwork algorithm
that addresses a problem inherent in information-
hiding techniques for digital images—that of align-
ment during data extraction. This alignment prob-
lem can be solved using a search approach where a
combination of coarse orientation-detection, ran-
dom-search, and gradient-descent methods are em-
ployed,20 the goal being to reduce the resource over-
head associated with detection of the stego (hidden)
data. When used in conjunction with the Patchwork
algorithm, it is possible to create an information-hid-
ing and retrieval system that is robust toward rota-
tion, cropping, and noise; successful data extraction
can occur with a high degree of certainty from
scanned images, rotated images, and partially ob-
scured images. (For an example of another approach
to affine resilience, see Pereira and Pun.21)

Both Patchwork and Patchtrack are amenable to
multiple-layer extensions. A multiple-bit encoder is
a technique for embedding an ordered sequence of
bits. Multiple-layer encoding is implemented by first
encoding a strong bit (large pseudorandom path
length n0) using the Patchwork method. Additional
bits are then encoded weakly (small pseudorandom
path length ni) with each successive path represent-
ing one bit. A one or a zero is encoded by either a
positive or negative Sni

(the basic Patchwork encod-
ing algorithm has the ability to encode with both pos-
itive and negative ds). After orienting about the
strong bit, it is only necessary to identify the sign of
the following bits. A positive Sni

represents a 1 while
a negative Sni

represents a 0. Data are decoded by
stepping through all of the keys and calculating the
corresponding Sni

.

Each bit extracted from the stego image has an as-
sociated certainty. By adjusting path lengths and
patch depths, these statistics can be adjusted. Mul-
tiple-bit encoding uses ECC (error-control coding)
to adjust decoding accuracy relative to the magni-
tude of d. An ECC scheme can be used in conjunc-
tion with decreasing d (and consequently decreas-
ing certainty of the embedded data). Or redundant
coding could be used to ensure a higher degree of
certainty at a fixed d. An example of multiple-bit er-
ror-control coding is shown in Table 1. (An inter-
esting subject for further study is the design of ECC

methods that are optimized for variable but known
certainty associated with individual bits.)

The quantity of data that can be stored by the mul-
tiple-bit encoding described above depends on the
frequency content, the size of the image, and the de-
sired robustness of the encoding. In a typical 640 3
480 continuous-tone image, this value ranges from
64 to 256 bits prior to any postprocessing for error
correction. This small amount of data is not a sig-
nificant limitation given the availability of network

Figure 2 A schematic of multiple iterations through the 
Patchwork method. At each iteration, two
patches (Ai and Bi) are chosen 
pseudorandomly in the image. Ai is lightened 
by δ while Bi is darkened by δ.
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Table 1 Sni
values under ECC scheme

Seed Decode Value (Sn) Decoded Bit

Strong bit 39896 —
1 23470 0
2 23154 0
3 213794 0
4 7322 1
5 2588 1
6 5894 1
7 9762 1
8 5252 1
9 7076 1

10 27950 0
11 211270 0
12 28568 0
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access. Rather than embedding all of the informa-
tion that one would like to associate with a partic-
ular image, a URL, filename, or unique serial num-
ber can be embedded, allowing for the off-image
storage of dynamic information.

One way to put off-image storage into practice would
be to implement it as a service on the Internet. A
client application can be used to extract the data-
base pointer. A 64-bit database pointer can be bro-
ken down into a 32-bit Internet Protocol (IP) address
and a 32-bit pointer sent in a single User Datagram
Protocol (UDP) packet to a service bureau. UDP has
minimal overhead since it is connectionless. Data are
sent without any overhead of negotiation.

The following two sections detail two applications
of multiple-layer encoding and off-image storage: (1)
anticounterfeiting exploits multiple-bit encoding in
order to exchange data between virtual and physical
instances of an image; and (2) tunable image char-
acterization (authentication) exploits multiple-layer
encoding to embed both database pointers and mark-
ers in images.

Anticounterfeiting

Recent advances in the technology for ink-jet print-
ers and scanners have created a new way for com-
puter users to inexpensively create high-quality color
reproductions of any original document. One obvi-
ous problem that arises from these advances is the
ability to casually create counterfeit currency (or
some other valuable document) that looks real
enough to fool anyone who does not inspect it care-
fully. The embedding of a digital signature into a se-
cure document that can be recognized by a printer
as it prints the document is a potential deterrent to
casual counterfeiters. If a secure document is rec-
ognized, the printer can refuse to complete the print
job and issue an appropriate warning. For this de-
terrent to serve as a viable solution, however, it must
provide a high level of security while requiring only
a minimal addition to a printer. Potentially, such an-
ticounterfeiting methods could be used to protect
currency, stock certificates, bank checks, or airline
tickets from illicit reproduction. These methods are
of particular applicability when unsuspecting indi-
viduals are exchanging documents for something of
value.

To serve as an example, the implementation of
an encoding and detecting algorithm, Tartan
Threads,20,22 based upon multiple-layer encoding, is

detailed and evaluated regarding its ability to address
the casual counterfeiting problem. (The name Tar-
tan Threads was chosen because the method uses
striped patterns that are reminiscent of the security
threads found in U.S. paper currency.) Tartan
Threads is designed to hold information in a fixed-
size linearly contiguous space to allow for time-ef-
ficient decoding with a high degree of certainty.
When used in conjunction with a system that marks
continuous-tone printouts with a unique digital sig-
nature, it provides ink-jet printers copy protection
commensurate with color copiers.

Marvel et al.23 have implemented a blind digital steg-
anography system called Spread Spectrum Image
Steganography (SSIS) built upon a two-dimensional
spread-spectrum method. Through the use of image
restoration techniques, an estimate of the original
image is recreated and then subtracted from the en-
coded document to reveal the encoded information.
As compared to Tartan Threads, SSIS yields a higher
encoding bandwidth and a lower perceptibility. The
encoding, however, is not intended to survive a print-
ing and scanning image cycle, nor is it amenable to
quick decoding.

Herrigel et al.24 and Fridrich et al.25 both describe
image watermarking methods built on spread-spec-
trum techniques combined with a public-key encryp-
tion system for authentication of both the author and
purchaser of digital images. Herrigel’s technique, like
Tartan Threads, redundantly encodes several small
areas of the image with identical watermarks, al-
though Herrigel et al.’s watermark is in the Fourier
transform domain rather than the spatial domain.
The technique is intended to survive cropping, as the
areas are tiled and encoded in the single orientation.
Rotation and scaling transformations are handled
through the analysis of these encoded blocks in a po-
lar coordinate space. By calculating the Fourier
transform of the entire image, it is possible to char-
acterize any rotation or scaling that had been applied
to the image. Fridrich et al. combines global and lo-
cal encoding schemes. As an additional security mea-
sure, encoding patterns are generated using a secret
key. Since these techniques involve two-dimensional
encoding methods, decoding requires extensive pro-
cessing times for larger images.

These methods focus primarily on marking images
that are intended to be distributed in digital form.
They may tolerate some loss but they are not in-
tended to survive the combination of sampling and
quantization errors introduced by a printing and
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scanning cycle, the nonlinear effects produced in var-
ious printing processes, etc. Tartan Threads are in-
tended for images that will be distributed in printed
form. The encoding survives even at low scanning
resolutions (100 dpi [dots per inch]) and can be de-
coded without complicated analysis of the encoded
image—only a small contiguous area of the image
needs to be processed.

Any encoding on an actively circulated document,
such as currency, must be detectable even after wear
from usage. (An interesting area for further work
would be to create a model for how such documents
typically wear over time—it is unknown if such a
model publicly exists.) Since different users—with
different equipment—will potentially be scanning the
protected document, the encoding must also survive
any nongeometric transformations and lossy image
transformations that may result from the use of dif-
ferent image file formats, compression methods,
slight rotations, imperfect color sampling, and re-
sampling at varying resolutions and offsets. Ideally,
the encoding would also survive any transformation
a user is likely to apply to the digitized image data
that does not call attention to the human eye.

Because an ink-jet printer renders images line-by-
line and often has only enough memory to buffer a
few image lines (typically between 16 kilobytes to 1
megabyte of buffer memory for even the more so-
phisticated models), all decoding must rely on only
a small portion of the document data. Ideally, the
decoder would be created with inexpensive hardware
capable of affordable searching for encoded infor-
mation in every print line. Any solution must also
have extremely low probabilities of false triggering
to prevent disrupting consumers who are using their
printers for legitimate purposes.

Encoding. A version of linear direct sequence spread
spectrum (DSSS)26 was chosen as an encoding method
that meets the criteria outlined. Traditional linear
DSSS involves creating a carrier wave of length data
rate at a known frequency and phase, multiplying it
by a chip signal and adding it onto a host (or cover)
signal.

The Tartan Threads method uses a carrier wave that
is created in the brightness plane of an image. The
carrier wave is summed with a row of pixels of length
data rate in the cover image. The phase of the car-
rier wave in this region is set to either 0 or 180 de-
grees in order to encode a single bit of stego infor-
mation. The chip signal is a pseudorandomly

generated sequence with value of 21 or 1, alternat-
ing at a given chip rate. Multiplying the carrier wave
by the chip signal spreads the signal so it appears as
random noise on the image (see Figure 3).

Five parameters define Tartan Threads encoding:
(1) the data rate, the number of pixels in one line
of the image used to encode a single bit; (2) the am-
plitude of the carrier wave; (3) its frequency, theta,
which is measured in number of cycles per data rate;
(4) the chip rate; and (5) the spatial frequency of
the encoding in the host document, i.e., the dpi at
which the host image is encoded. These parameters
must be permanently set for decoding, with the ex-
ception of the amplitude, which can vary depending
on characteristics of the cover image.

The overarching consideration in designing the en-
coding parameters is to determine how many bits are
sufficient to provide certain identification. If the Tar-
tan Threads system is to be installed in all ink-jet
printers, it is important that it not prevent consum-
ers from using their printers for a legitimate pur-
pose—the probability of false triggering should be
infinitesimal. Assuming that an unencoded image is
equally likely to decode a 1 or 0 in any bit position
(an assumption that is made all the more reason-
able by the fact that a pseudorandom chip signal is
used in decoding), false triggering can be analyzed
as a series of Bernoulli trials27 with probability, P,

Figure 3 Synthesized spread-spectrum information
encoded by the direct-sequence method
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of 0.5. When attempting to decode an n-bit thread
in an unencoded image, the probability of decoding
exactly k0 bits correctly is:

Pk~k0! 5 Sn
k0
DP k0~1 2 P! n2k0 5 Sn

k0
DS1

2D
n

(1)

The probability of false triggering with a threshold
of k0 equals the probability of decoding k0 or more
bits correctly, which is:

Pk$k0
~k0! 5 O

j5k0

n Sn
j DS1

2D
n

(2)

Figure 4 shows the probability of false triggering for
a given accepted error-rate tolerance for a single
thread at levels of 200, 150, or 100 bits of encoding.
A threshold for acceptable false triggering proba-
bility of approximately 1 in 1015 is derived by cal-
culating the number of placement possibilities of a
thread while keeping the expected probability of trig-
gering below 1 in 109. With a 175-bit thread, a 20.0
percent error rate (35 bit errors) or less is sufficient
to show reasonable mathematical certainty that an
image is marked.

Robust encoding. Some bandwidth potential of the
linear DSSS must be allocated to robustness. In a ras-
ter-scanned image, an increased chip length will ac-
commodate for alignment errors along the raster (or
horizontal axis). Vertical alignment errors can be ac-
counted for by repeating an identical carrier-signal
encoding for a number of raster lines equal to the
chip length.

In order to ensure robustness to resampling and lossy
image file formats, a low spatial resolution, 200 dpi,
is chosen for the encoding. Experiments show that
when encoding at this resolution, a chip length of 4
is adequate for accurate sampling. Since carrier
waves require two samples per cycle for accurate ren-
dering, theta was chosen simply as one half the num-
ber of chips in one data rate (see Figure 5). Choos-
ing an appropriate data rate involves balancing the
need for accurately decoding each bit with the
amount of certainty provided by the overall encod-
ing. Tables 2 and 3 show experimentally derived er-
ror responses for varying data and chip rates. In sub-
sequent experiments, using a 2.24-inch by 0.5-inch
space (the width of U.S. bills times the width of a print-
head buffer) for each thread, a data rate of 64 pixels
was chosen. This rate resulted in bit-error rates of
15 percent or more, but allowed for the encoding of
175 bits of raw information per thread.

The physical size of each thread, when compounded
with sparse printing in many of the target documents
(currency, for example), leads to limited placement
options. Also, the high-amplitude signals needed for
the encoding cannot overlap without disrupting one
another and rendering their intersection visible. For
all of these reasons, the actual number of threads
that can be placed into a typical security document
is limited.

Visibility masks. To prevent the encoding from be-
coming too noticeable, a visibility mask is created
and used to scale the stego-signal amplitude. Since
in the human visual system a signal may be masked
by the presence of other high-frequency signals,
effective information hiding may utilize the presence
of high-frequency areas in the image.28,29 A visibility
mask provides an estimate of contrast sensitivity by
plotting the relative amount of high-frequency ac-
tivity in each region of an image. A simple visibility
mask is made by subtracting low-frequency values
from an image and rescaling the resultant image from
zero to one. When Tartan Threads are embedded
in an image, the amplitude of the stego signal is

Figure 4 Odds of false triggering as a function of the 
number of bits

1:1.E+60

1:1.E+50

1:1.E+40

1:1.E+30

1:1.E+20

1:1.E+10

1:1.E+ 0
0.0 0.1 0.2 0.3 0.4 0.5

THRESHOLD

100 BITS

150 BITS

200 BITS

O
D

D
S

 O
F 

FA
LS

E
 T

R
IG

G
E

R
IN

G
 (L

O
G

 S
C

A
LE

)

ERROR RATES

BENDER ET AL. IBM SYSTEMS JOURNAL, VOL 39, NOS 3&4, 2000552



scaled by a corresponding visibility-mask value. This
is to ensure strong but “invisible” encoding.

Rotation resistance. In order to be properly decoded,
a Tartan Thread has to fit entirely within the print-
head buffer. Threads, as described above, can only
be decoded in a limited range of orientations, since
any small rotation will result in a sampling misalign-
ment. In order to be detected when counterfeiters
print at arbitrary orientations, multiple threads are
imbedded.

How many threads should be placed in a document
to achieve an optimal level of protection? On a very
small scale, the modified linear DSSS technique has
some built-in robustness to rotation variance. For
example, a chip rate of 4 along a 2-inch-wide thread
in a 200-dpi image can be decoded with a 4-pixel off-
set in the corresponding 400 pixels. Rotation toler-
ance amounts to an offset of 1 percent of the thread
length—the equivalent of only slightly more than one
degree. This result would imply that a minimum of
180 threads at varying orientations would be required
to completely protect an image.

To maximize resistance to rotation, several modi-
fications to the chip signal generation were at-
tempted. Resistance to 180-degree rotation is accom-
plished by forcing a rotational symmetry to the chip
signal. The use of the identical chip signal for all lines

in a thread provided for rotation tolerance of seven
degrees. Unfortunately, this increased the visibility
of threads to such an extent that they resembled con-
tiguous streaks. As a compromise, each chip line was
set to repeat twice, resulting in rotation tolerance of
three degrees—six degrees when accounting for the
180-degree rotation (see Table 4).

Decoding. Decoding the modified DSSS signal is a
challenge due to a variety of potential distortions.

Figure 5 (A) Characterization response for varying theta 
values, chip length = 4, and data rate = 128; 
(B) characterization response before printing
and after 200- and 300-dpi scans 
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Table 2 Error rates for varying samples, theta values, chip
lengths, and data rate 5 256

Samples Chip Length Theta Error Rate
(%)

128 2 64 4.58
64 4 32 5.00
32 8 16 11.67
16 16 8 16.67
8 32 4 20.00

Table 3 Error rates for varying samples, theta values, data
rates, and chip length 5 4

Samples Data Rate
(bits/second)

Theta Error Rate
(%)

128 512 64 2.00
64 256 32 50.00
32 128 16 7.50
16 64 8 15.25
8 32 4 21.38
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However, by redundant encoding of sufficient bits,
it is still possible to identify a marked image with
very high probability. To this end extensive image
characterizations are performed in order to find an
optimal balance of encoding parameters.

Decoding requires the recovery of the phase infor-
mation in a given area of the image. First, the bright-
ness values for the encoded region of the image are
multiplied by an identical chip signal, reproducing
the structure of the original carrier wave with the
original image data behaving as random noise. A fast

Fourier transform (FFT) is applied in order to check
the phase at the carrier frequency. (A more com-
plete discussion of DSSS appears later in this paper.)

Decoding is performed by sampling once every chip-
length by chip-length pixels. In effect, this modifi-
cation creates a low-resolution encoding that can be
overlaid on a high-resolution image. This decoding
process is tolerant to the slight alignment errors as
well as small rotational variances that are often in-
troduced in scanning and printing. Also, it is resis-
tant to resampling, since the encoding exists at a low
enough resolution that any sampling likely to create
a satisfactory reproduction of the original will also
capture the encoding detail. This is essential; printed
documents will be digitized with unknown dpi, ori-
entation, etc.

Results. The encoding performed well in robustness
tests. A printed version of marked currency was
rescanned at varying resolutions. The scans were up-
sampled (interpolated between samples to generate
more sample points) to 200 dpi and decoded. Table
5 shows the resulting error rates. The encoding sur-
vives even at very low resolutions: 72 dpi (screen res-
olution) and 50 dpi (the effective chip resolution).

Joint Photographic Experts Group (JPEG) encoding
is a common lossy perceptual-compression method
for image files. Tartan Threads encoding survived
at JPEG quality levels varying from 100 to 1 percent.
The observed error rates are shown in Table 6.

Tartan Threads does not survive geometric scaling.
A change in scale of more than 1 percent pushes the
error rate beyond the triggering threshold. However,
this is not an issue, since it is assumed that potential
counterfeiters will make copies that are identical in
size to the original. Table 7 shows decoded error rates
at varying scale factors.

Table 4 Error rates due to rotation for different chip
patterns

Degrees of
Rotation

Standard
Chip
(%)

Chip
Repeated for

Two Lines
(%)

Chip
Repeated for

All Lines
(%)

0.0 2.29 2.29 0.00
0.5 5.71 4.00 0.00
1.0 21.14 15.43 0.00
1.5 30.85 23.42 2.29
2.0 38.86 31.43 8.00
2.5 38.86 38.29 12.57
3.0 41.71 38.29 15.43
3.5 42.29 41.14 18.29
4.0 42.86 40.57 20.57
4.5 40.57 38.86 22.28

Table 5 Results from image resampling

Scanned dpi Error Rate
(%)

300 14.86
200 14.86
100 16.50
72 20.00
50 18.28
37 20.57
25 27.43

Table 6 Results from JPEG-encoding tests

JPEG Quality
(%)

Error Rate
(%)

100 14.86
75 17.71
50 15.43
25 16.00
1 19.40

Table 7 Results from scaling tests

Scale
(%)

Error Rate
(%)

98.5 38.86
99.0 29.71
99.5 19.42

100.0 12.57
100.5 17.71
101.0 26.28
101.5 37.71
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Secure designs. A limiting factor in the current Tar-
tan Threads implementation is that threads are be-
ing added to images that were not intended to hold
them. The front of the current U.S. dollar bill, for
example, has many areas with sparse printing, which
limits the area available for encoding (the back of
the dollar bill is ideally suited for marking). It is pos-
sible to design security documents around the fact
that they must contain threads in several orientations.
Although watermarking is typically approached as
a process of embedding hidden information into ex-
isting documents, it is routine for organizations in-
terested in creating secure documents (e.g., national
treasuries, banks, airlines, etc.) to engineer their de-
signs to increase security.

While the focus of this section has been on anti-
counterfeiting, the robust encoding necessary to sur-
vive print/scan cycles has uses in a number of ap-
plications. We have also experimented with Tartan
Threads in situations where conventional bar codes
are usually applied. In these applications, the advan-
tage of applying steganographic techniques is not in
increased robustness; it is aesthetic. There is no need
to incorporate an unsightly bar code into the graphic
design.

Tunable authentication

“Picture perfect” is not perfect anymore. While im-
age manipulation is nothing new, the recent rapid
dissemination of digital-image capture and manip-
ulation technologies is creating a need to assure that
the picture seen is analogous to the one that was
taken, i.e., that the picture has not been tampered
with. Authentication seeks to verify that the image
being viewed is the same, in all important ways, to
the image that was originally created for distribu-
tion. “All important ways” should be definable by
the image creator or publisher.

One obvious approach to authentication is the use
of a checksum. By using information-hiding tech-
niques, a checksum can be embedded directly into
an image.30 (The use of checksums long predates
modern computing. The concept comes from double-
entry bookkeeping, where both rows and columns
are added—these two “sums” were then compared.
Allegedly, there is a form of checksums in the
Qur’an31 and they were used in tables of logarithms
that were compiled in the seventeenth century.) This
is challenging, since the process of embedding the
checksum often changes the image statistics used to
generate the checksum. While a checksum provides

a robust method of determining whether or not an
image has changed, this approach is limited in its ap-
plicability. Checksums afford little flexibility regard-
ing their sensitivity—the slightest, perhaps irrelevant,
change will trigger a tamper detector. Also, while a
checksum can be used to determine if an image has
been modified, it usually does not reveal to what ex-
tent the image has been modified. A certain amount
of image manipulation, e.g., framing, tone-scale and
color-balance adjustment, etc., is a routine and be-
nign part of image reproduction. (Sometimes “rou-
tine” manipulation results in unacceptable distor-
tions, as was the case with the O. J. Simpson “mug
shot” on the cover of the June 27, 1994, issue of Time
magazine.) An ideal authentication system would tell
not only that an image has been modified, but also
how and where it was modified. It should not be trig-
gered on manipulations that have been categorized
as acceptable, and detection should not require ac-
cess to the original image.

Where does authentication fit into the information-
hiding landscape? Authentication from the perspec-
tive of security is a problem that is beginning to in-
terest practitioners from both academia and
industry.32,33 It is well-known that even the best in-
formation-hiding schemes are subject to degradation
or removal of the embedded information if the im-
age is subjected to certain transformations. Trans-
formations that degrade a watermark depend on the
technique used to hide the data. One can imagine
placing markers in an image, or measuring image sta-
tistics, that will be modified by particular transforms.
If the markers disappear, or if the statistics change
noticeably, then the image must have been modified.
Which markers are gone, or which statistics change,
gives some insight into how the image has been ma-
nipulated. This means that watermarking schemes
that do not quite resist all removal attempts can be-
come new, useful authentication algorithms. For ex-
ample, Kundur and Hatzinakos4 have put “fragile”
markers in images at various spatial-frequency bands
in order to detect if there has been any change to
the image at those frequencies. A variety of similar
markers could be designed to detect other classes of
image manipulation.

The ideal authentication system is: (1) imperceptible,
(2) embedded in the image itself, (3) triggered by a se-
lectable and arbitrary set of transforms, and (4) not in-
cumbent on access to the original image (both to re-
duce bandwidth requirements and to avoid circulating
the valuable original image). In keeping with this ideal,
information-hiding techniques that are robust to ev-

IBM SYSTEMS JOURNAL, VOL 39, NOS 3&4, 2000 BENDER ET AL. 555



erything except selected transforms would be de-
signed. This suggests a procedure where markers are
placed in the image. If subsequently a marker was
found distorted or missing, it would indicate that a
specific disallowed transform had been performed.

Such arbitrary resistance is quite difficult to design
in practice.4,21,34,35 For example, if a marker can re-
sist a JPEG transform, then it is likely to resist the
application of a simple low-pass filter. Thus, as a first
step toward building an ideal authentication system,
we looked at what parameters in an image change
when various transforms occur. Multiple character-
istics of images were examined with regard to how
they change under a variety of transforms. These ob-
servations led to the design of markers that resisted
certain transforms.

Tunable authentication is a set of methods for de-
tecting image tampering that localize and character-
ize the changes that an image has undergone. It is

tunable in the sense that different image metrics can
be individually tuned to trigger at different thresh-
olds of change. This enables a detector to ignore or
focus on selected classes of image manipulation.
Thresholds of acceptable change can be chosen in-
dependently for each image feature. The method en-
tails some or all of these encoding steps: (1) the orig-
inal image is characterized along features such as
average luminance and chrominance, standard de-
viation by region, spatial frequency, and entropy; (2)
a database is created to store these image statistics;
(3) a reference to the database is embedded in the
image; and (4) additional markers are embedded in
the image. The detection of tampering involves these
processes: (1) the database pointer is extracted from
the image; (2) the database reference is retrieved;
(3) the modified image is characterized along fea-
tures of interest; (4) statistics are compared with the
reference statistics; and (5) markers are extracted
and scrutinized.

Tunable authentication combines two information-
hiding approaches to achieve a satisfactory level of
both robustness and descriptiveness. Markers are
embedded that are used as indicators of change, and
image statistics are gathered and stored for subse-
quent reference.

Embedded markers. Markers are detectors that are
embedded in the original image. Embedded mark-
ers are the ideal solution for tunable authentication,
but difficult to design. Consequently, their use is sup-
plemented with stored image parameters.

In our experiments, a simple modification to Patch-
work was used to embed markers. The expected
value, Sn , is used to assign a “confidence” as to
whether or not an image has been modified and to
characterize this modification along a predetermined
scale. But instead of choosing a pseudorandom path,
a path is chosen that is designed to distort predict-
ably under various image modifications, such as scal-
ing and cropping.

Several different embedded markers were imple-
mented, each targeting a different image manipu-
lation. Modifications to these markers are used to
localize the occurrences of scaling and cropping (for
implementation details, see Pogreb et al.36).

Parity. This marker is computed by adding up the
values of the first through the seventh most-
significant bits of each pixel of one or more com-
ponents of the image and writing the result, mod-

Figure 6    An image before and after tampering
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ulus 2, into the least-significant bit. (An 8-bit quan-
tization is assumed.) Pixel parity is calculated on a
pixel-by-pixel basis. Plane parity is calculated by bit
plane. For each bit plane, the sum of the bit values
of eight pixels are written modulus 2 in successive
pixels in the least-significant-bit plane. The advan-
tage of the latter method is that it not only reveals
that a change has been made, but also in what im-
age plane the change occurred, i.e., a measure of the
degree of change. The parity marker is sensitive to
neither scaling nor cropping of the image, but is trig-
gered by most other manipulations (see Figures 6
and 7).

Vertical and horizontal stripes. A marker of vertical
and horizontal stripes of 0s and 1s is written into the
least-significant-bit plane. This marker is used to de-
tect scaling of the image.

Expanding pattern. A marker consisting of an ex-
panding pattern of 0s and 1s of the form
10100100010000 . . . is written into the least-signif-
icant-bit plane. The expansion can be repeated af-
ter a short cycle or continued across the entire im-
age. It can be oriented either horizontally or vertically
or both. This marker is sensitive to scaling and also
is used to detect image cropping. This pattern is gen-
erated by the following function:

f~n! 5 sgn(cos~p~Î1 1 8n 2 1!! 2 1) 1 1 (3)

The parity marker is not amenable to use with the
Patchwork method. The expanding pattern marker
is suitable for use with Patchwork. However, since
the nature of the pattern reduces the data space avail-
able for placing patches, this solution is only prac-
tical for relatively large images (repeating the ex-
panding pattern reduces the data space to only 8
percent of the original), on the order of 1000 3 1000
pixels.

Referencing image statistics. The image statistics
method is dependent on data calculated from the
original image. Data are sent, rather than the orig-
inal image itself, since this avoids the necessity of
distributing originals. These data are compared with
statistics calculated directly from the suspect image.
One design decision that needs to be addressed is
where the data from the original should be stored.
Some options are:

● Store the data in the image itself. Embedding data
in the image itself would be ideal. However, this

requires a method of storing a potentially large
number of bits (several kilobytes) in the image
without visibly affecting it, i.e., a solution to the
core information-hiding problem. While there are
numerous techniques for embedding large quan-
tities of data in images, there is no known tech-
nique for embedding these data in a manner that
is robust in light of the variety of manipulations
that may occur during image manipulation. Thus
we felt that, while storing data in the image is help-
ful for detecting a change when it occurs, we need
an alternative method of storing data in order to
be able to estimate the significance and the nature
of the change.

● Store the data in the form of a file header. Another
option is to attach data to the image in the form
of a file header (e.g., treating the header as the
cover). This method can be used to store an ar-
bitrary quantity of data while not changing the ap-
pearance of the image. However, meta-data in a
file header is fragile—it can easily be removed or
replaced with meaningless data.

● Store a pointer to a database record in the image.
Yet another option is to put data into an external
database and store a pointer to the database record
in the image. This option also allows an arbitrary
quantity of data to be stored. It also minimizes sus-
ceptibility to attack since there are methods of se-
curely embedding database pointers (less than 100
bits). A disadvantage of this method is that it re-
quires access to the external database in order to
utilize the data. However, given access to the In-
ternet, this is not an insurmountable problem.

Figure 7    The results of the parity markers (triggers are 
shown in red)
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The third option, storing a pointer, was chosen due
to the relatively large amount of information to be
stored and the need to protect the data from tam-
pering. The choice of an information-hiding method
for storing the file pointer was Patchtrack. An im-
age can be encoded with a desired piece of infor-
mation (a reference number, URL, or an IP address
and a database reference) with Patchtrack by way of
pseudorandom, imperceptible alterations of inten-
sity throughout the image. This information can then
be extracted by the intended parties with a decoder.
It is important to note that the encoding must be ap-
plied before the detectors are applied—otherwise,
embedding the reference itself could be miscon-
strued as tampering.

Any number of tamper detectors can be used with
the image statistics method, and since the detectors’
output is stored externally, they may be used simul-
taneously. In our experiments, the detectors were
designed based on an image decomposition into lu-
minance and chrominance components. The detec-
tors that we implemented include average luminance
by region, standard deviation by region, histograms,
edge detection by region, average Fourier transform
of luminance by region, and entropy by region.

The detectors are applied to the original image and
the results are stored in the database. The majority
of the detectors operate on regions of the image, in
which case a matrix of values is stored in the data-
base. In implementing these “region” detectors, we
divided the image into small regions (8 3 8 pixels
corresponds to the block size used in JPEG compres-
sion).

When the “potentially tampered with” version of the
image becomes available, the detectors are applied
again and the results are compared to those stored
in the database. For each of the regional detectors,
a copy of the original image is displayed and the re-
gions in which the value of the detector has changed
significantly (where “significantly” is expressed as a
tunable threshold) are highlighted.

Inferences are made about whether the image has
been modified and if so, what the location and na-

ture of the changes were likely to have been. More
detailed descriptions of the individual detectors fol-
low.

Average luminance by region. These detectors track
the average luminance and chrominance of an im-
age by region. Average luminance of a region is cal-
culated by summing up the values of the luminance
component of the image in a region, dividing by the
number of pixels in the region (in our case, 64), and
normalizing by the average luminance of the entire
image. A normalized value is used in order to min-
imize the impact of global changes, such as a change
in overall image brightness. These regional charac-
teristics can be used to detect modifications such as
addition, deletion, and movement of objects. A
threshold can be used to localize any modified areas.

Standard deviation by region. This detector tracks the
standard deviation of the image. The calculation is
performed region by region. These measurements
are not normalized, and thus provide slightly differ-
ent information from that of the average luminance
measurements. The standard deviation in a region
is calculated according to the formula in Equation
4:

s 5
1
n O

i51

n

~ x@i# 2 x#! 2 (4)

where n is the number of pixels in the regions, x[i]
are the individual luminance pixel values in the re-
gion, and x is the average per region. Since the de-
tectors are calculated for each small region, they are
not suitable to characterize modifications involving
dimension changes. However, they react to global
changes such as gamma37 correction.

Edge detection by region. This detector tracks the
edges in the image, by region. It is computed by suc-
cessively convolving the luminance component of the
image with the four 3 3 3 edge-detecting kernels (see
Table 8). While these kernels are used to find hor-
izontal, vertical, and left and right skew edges, any
set of kernels can be used. The absolute value of the
resulting image is then rescaled to the 0–255 range,
and average value by region is calculated. The edge
detector behavior is similar to that for average lu-
minance by region except that it is not triggered by
negation. This detector is not applicable to modi-
fications that involve changes in the dimensions of
the image.

Table 8 Edge-detecting kernels

21 2 21 21 21 21 21 21 2 2 21 21
21 2 21 2 2 2 21 2 21 21 2 21
21 2 21 21 21 21 2 21 21 21 21 2
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Histograms. The histogram detectors track the dis-
tribution of the luminance values of the image. Our
implementation calculated distributions in eight in-
tervals roughly corresponding to the three most sig-
nificant bits of each component. While the histogram
detectors do not reveal anything about the location
of any modification, they help to recognize that a
change has occurred and to infer its nature. The his-
togram detectors are immutable to modifications in-
volving a change in scale (Table 9).

Average Fourier transform of luminance by region. This
detector is calculated by taking the real value FFT
of the luminance component of a small region and
computing the average. It behaves similarly to the
average luminance by region detector in most cases.
The detector is not suitable for modifications involv-
ing a change in image dimensions.

Entropy by region. This detector keeps track of the
likelihood of occurrence of different values of the
luminance component of a region. The entropy of
a region is calculated according to the formula38 in
Equation 5:

H~ x! 5 2O p~ x! ln@ p~ x!# (5)

This detector is not triggered either by changes in
gamma or by negation. It is not suitable for mod-
ifications involving a change in the image dimensions.

Discussion. The real power of tunable authentica-
tion is in the ability to combine detectors. Table 10
aggregates all of our results. From this table it is pos-
sible to see patterns of redundancy and significance
from which inferences can be made about the char-
acter of any image modifications. Interesting and use-
ful combinations abound, e.g., a modification that
triggers histogram but not entropy detection would
indicate a change to gamma, and a modification that
triggers standard deviation but not histogram detec-
tion indicates scaling. Consideration of the embed-
ded markers adds to the ability to characterize
changes. For example, there is no apparent differ-
ence between the triggering due to adding objects
and image cropping. The parity marker can be used
to distinguish between these modifications. Either
the Fourier transform detector or the expanding pat-
tern marker can be used to characterize the direc-
tion and magnitude of image scaling. Reading the
columns in Table 10 as a binary code, each of the
modifications can be associated with a unique bit pat-
tern. For example, adding objects results in a pat-

tern of 1 1 1 1 1 1 1 1, while moving an object results
in a pattern of 1 1 1 1 1 1 0 1. The statistical redun-
dancy of the various methods leads to further char-
acterization of any modifications.

Tunable authentication provides a characterization
of the modifications to which an image may have
been subjected (and in many cases this character-
ization is localized to a particular region in the im-
age). There are many image characterizations that
may be more useful or efficient than the ones just
described. Also, there is an opportunity to explore
in more detail how markers change as a result of im-
age modifications and how to detect these changes.
Nonetheless, the work described is sufficiently ma-
ture to be applied to many current problems of im-
age tampering.

Tunable authentication might find broader applica-
tion in areas outside the domain of verification and
authentication. There are many production and pub-
lishing applications that could benefit from a system
of image characterization that is independent of any
single vendor’s solution. Here the goal is not to in-
crease security, but to facilitate auditing and process
control.

Midlevel vision techniques

As described in the previous section, techniques for
authenticating images seek to exploit naturally oc-
curring “markers” to generate unique, descriptive
keys. These keys should be easy to recover and should
be robust in the presence of image manipulations
common to production environments (e.g., cropping,
changes in color composition, gamma and tone-scale
correction). These techniques rely on manipulation
of low-level image statistics built upon the raw pixel

Table 9 The results of the histogram detector. Note that
scaling does not trigger the detector.

Bin Original Modified Scaled
Nearest

Neighbor

Scaled
Bicubic

0–30 26.50 10.81 26.50 26.44
31–60 22.21 23.82 22.21 22.23
61–90 9.65 21.97 9.64 9.72

91–120 6.18 9.70 6.18 6.20
121–150 8.08 10.20 8.08 8.04
151–180 10.36 10.02 10.35 10.34
181–210 10.71 6.91 10.71 10.68
211–255 6.31 6.58 6.31 6.35
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data (e.g., local entropy, histograms, etc.). These sta-
tistics are not reflective of how groups of pixels are
perceived as objects—they are limited in both their
resilience and descriptive capacity.

Machine-vision techniques for midlevel visual anal-
ysis can produce image representations that are more
descriptive and are robust against distortion, are im-
age specific, can be compactly parameterized, and
can be altered with minimum perceptible effect on
the image. These properties can be exploited to sup-
port the recovery of inherent identification (ID)
markers useful for authentication.

While it seems natural to focus attention on high-
level vision, machine emulation of human visual per-
formance is not yet up to the task. Machine-vision
systems cannot recognize most objects in the sense
that humans do. And for cases when they can (e.g.,
faces), the computational load is prohibitive, the rec-
ognition too fragile, and the number of recognizable
objects is too small.

As an alternative, we turn to midlevel vision where
the “objects” are simpler constructs such as layers,
oriented surfaces, and regions grouped in accordance
with some metric of coherence. In all cases, these
midlevel objects are “blobs” of arbitrary shape. While
not objects in the human sense, the constructs of
midlevel vision are regarded as intermediary sym-
bols. On the one hand, they are built on top of prim-
itive transformations performed on the rasterized
photosensor data. On the other hand, they serve as
building blocks for high-level symbols that humans
commonly regard as objects.

We next examine methods for using these constructs
as a vehicle to robustly identify images. Details for

a representative set of midlevel vision routines for
use in the subsequent analysis are presented. How
these routines are applied to read a “fingerprint” is
described.

Analysis using midlevel vision. Image analysis us-
ing midlevel vision routines differs from low-level im-
age analysis in a number of important ways—one
important difference being granularity. In low-level
vision, transform values are computed on a uniform
pixel raster. In midlevel vision, the transforms are
computed over an arbitrarily shaped region. As an
example, while computation of a pixel-by-pixel mo-
tion-vector field would be considered a low-level rou-
tine, grouping of those vectors to identify a planar
patch undergoing affine motion would be considered
a midlevel routine. In low-level routines, sensor noise
can cause substantial fluctuation of the output. How-
ever, the blobs produced by midlevel routines can
be increasingly robust against distortion in the un-
derlying pixel values.

Common examples of midlevel visual analysis include
techniques for segmentation based on coherence of
motion, texture, or normalized color. Other exam-
ples are routines that group pixels based on depth,
lighting, or observed surface patterns. In all cases,
the output of a midlevel routine is a blob—a data
structure consisting of: (1) a description of the re-
gion (often an alpha mask); and (2) a functional de-
scription of the activity within this region. (In this
context, our use of the word “blob” derives from its
more common use in the computational vision com-
munity—the tokenized bases of the 21⁄2-dimensional
sketch.39

Midlevel visual routines are increasingly popular in
systems for scene analysis and for image coding. In

Table 10 Aggregate results (“triggered” may be false trigger)

Average Standard
Deviation

Histogram Edge FFT Entropy Parity Expand

Adding Objects triggered triggered triggered triggered triggered triggered triggered triggered
Moving Objects triggered triggered triggered triggered triggered triggered none triggered
Adjusting Gamma slight triggered triggered none triggered none triggered none
Desaturating triggered triggered triggered none none none none none
Cropping triggered triggered triggered triggered triggered triggered none triggered
Scaling triggered triggered none triggered triggered triggered triggered triggered
Blurring triggered triggered slight triggered triggered triggered triggered none
Rotating triggered triggered none triggered triggered triggered none triggered
Displacing triggered triggered triggered triggered triggered triggered none triggered
Mirroring triggered triggered none triggered triggered triggered none triggered
Negating triggered triggered triggered none triggered none triggered none
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data hiding the advantages of midlevel techniques
are that the blobs can often be compactly described
by a few parameters, that these parameters are re-
coverable, and that they are somewhat robust to
changes, such as scaling and rotation, in the under-
lying pixel statistics.

For this work, an analysis technique is chosen that
characterizes the difference between an image and
a predefined model employing a vocabulary of five
distinct types of blobs: (1) coherent motion, (2) oc-
clusion, (3) lighting, (4) multiplicative gain, and (5)
additive bias. This technique was originally demon-
strated in the context of an object-based image cod-
ing application.40 There, the goal was to deconstruct
an image into a constituent set of visual events, rep-
resent these events as blobs, and compactly code
these blobs separately for transmission. The current
application also begins with a predefined model and
current image. The iterative analysis routine succes-
sively approximates the image as a series of trans-
formations performed on the model. Each transfor-
mation is expressed as a blob, with each iteration
producing only one blob. The analysis is adaptive in
that there are no biases on the type or position of
a blob for any given iteration.

Table 11 lists the blob types and the corresponding
formula for the functional approximations. For the
lighting blob, the change in lighting is modeled as
a multiplicative gain approximated by a 2nd order
polynomial—one for each of the three color chan-
nels. For the motion blob, the displacement is mod-
eled as an affine warp of a planar surface, and the
estimate is a six-parameter affine description. In the
occlusion blob, the new pixels are JPEG encoded. In
the gain and bias blobs, the change is modeled (re-
spectively) as a uniform multiplicative gain and ad-
ditive bias.

Figure 8 illustrates the analysis procedure applied
to real images. Starting with an image and the pre-
defined model, the first iteration recovers the global
background motion (in this case, a translation of 18
pixels horizontally and two pixels vertically). In the
second iteration, the shadow is approximated as an
arbitrary region over which a single scalar gain is ap-
plied. Later, in the 17th iteration, much of the per-
son is approximated as an occluding object.

Computing the characteristic vector. The previous
example suggests how midlevel vision analysis can
be applied to characterization. Various properties
of the blobs, such as the position, shape, and param-

Figure 8 Selected bids from a coding iteration

ORIGINAL IMAGE

ROUND 1

ROUND 2

ROUND 17

ORIGINAL MODEL

BID IMAGES UPDATED MODELS

Table 11 Models of blob behavior

Blob Type Functional Model

Lighting Rgain 5 R0 1 a0x 1 a1y
Ggain 5 G0 1 a0x 1 a1y
Bgain 5 B0 1 a0x 1 a1y

Motion Vx 5 A0 1 Axx 1 Ayy
Vy 5 B0 1 Bxx 1 Byy

Occlusion All pixels JPEG encoded
Gain Rgain, Ggain, Bgain

Bias Rbias, Gbias, Bbias

IBM SYSTEMS JOURNAL, VOL 39, NOS 3&4, 2000 BENDER ET AL. 561



eters of the functional models, can be assembled into
vectors that are unique to the image. Ideally, a char-
acteristic vector would be: (1) easy to compute, (2)
of reasonable size, (3) unique to the image, yet (4)
robust against changes that a human would regard
as immaterial.

These last two properties suggest that the vector
should reflect those properties of the image that the
human viewer regards as both salient and immuta-
ble—a requirement that naturally favors statistics
constructed on higher-image abstractions. The in-
corporation of midlevel vision is a step in this direc-
tion.

Additionally, the particular midlevel analysis tech-
nique employed here has a number of advantages:

● The analysis technique is a component of a larger
analysis-synthesis system. The analysis of the im-
age into blobs is therefore reversible in that the
image can be resynthesized from the preexisting
model and the blobs. This is useful in applications
where the blobs are themselves altered as a vehi-
cle for embedding data.

● The blobs are produced sequentially and for any
given image-model pair, that sequence should be
unique.

● The difference between the image and the model
can be substantial. Changes in lighting, camera po-
sition, or occluding objects can all be estimated
with varying degrees of fidelity.

Figure 9 illustrates how blobs from midlevel vision
can be used to construct a characteristic vector for
an image. The image analysis routine produces a se-
ries of arbitrarily shaped blobs. Blob-specific statis-
tics are built. The data from several blobs are ag-
gregated into a single vector. This process is repeated
at the receiver where the recovered vector is com-
pared with the precomputed one.

For a given blob, a variety of statistics can be com-
puted from the shape of the blob and functional de-
scriptions. The attributes available from the func-
tional estimate depend on the blob type. Here, the
tokens are derived by permuting combinations of the
parameters shown in Table 11. For example, statis-
tics for motion blobs can be derived from the six pa-
rameters of the affine warp model. Useful attributes
of the shape include the size, the centroid, the mo-
ments, the central moments, and the principal com-
ponent axes. Similarly, distinctive features of the
bounding contour include points of extremal curva-
ture and the intervening degrees of convexity and
concavity.

Simple concatenation of all available blob statistics
would produce ID vectors of impractical length. Fur-
ther, any ID vector that is truly characteristic of the
image should incorporate information from several
blobs. In this work, the characteristic ID is defined
as a macro vector, consisting of a separate vector from
each of five blobs. Each blob vector is itself a mix-
ture of statistics from the shape and the functional
approximations.

Figure 9 Computing the characteristic vector for authentication. Midlevel image analysis produces a set of N blobs.
A separate blob vector is computed for each blob and the ensemble is assembled to form the image vector.

IMAGE

IMAGE VECTOR

BLOB N

BLOB 1 BLOB VECTOR 1

BLOB VECTOR 2

BLOB VECTOR N

BLOB 2

ANALYSIS

ENCODE

ENCODE

ENCODE
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The canonical organization of a blob vector is shown
in Figure 10. The blob number refers to the itera-
tion of the analysis that produced the blob. The blob
type indicates from which of the five possible blob
types the current blob is drawn. The region statistics
describe the size and the two-dimensional centroid
of the bitmap that defines the shape of the blob. The
contour statistics are prepared by first subdividing
the contour into a series of segments bounded by
points of extremal curvature. For each segment, the
relative size of the segment is computed, as well as
a flag indicating the convexity or concavity of the con-
tour segment. Finally, a maximum of six 16-bit words
are reserved for statistics built on the functional de-
scription of the blob.

Statistics built on the functional description. The num-
ber of tokens that can be built on the functional
model of the blob depends upon the blob type. Re-
call that each blob has an associated functional model
(Table 11). Entries in the characteristic vector are
built from the parameters of these models as shown
in Table 12.

For lighting blobs, five parameters are extracted—
one multiplicative constant per color channel (red,
green, blue) plus two weights describing the degree
of spatial variation. Data for the motion blobs are
drawn from the six parameters describing the affine
motion model. For the occlusion blobs, the mean
value is computed for each of the three color chan-
nels. The gain and bias blobs also report a single value
of the three color components.

Statistics built on the region mask. Similarly, the re-
gion statistics are computed from the blob’s bitmap
using the simple formulas in Equations 6, 7, and 8:

relative size of region 5
1
N O

i

N

b~i! (6)

normalized x centroid 5

1
width 3 S O

i

N

x~i! 3 b~i! (7)

normalized y centroid 5

1
height 3 S O

i

N

y~i! 3 b~i! (8)

where b(i) equals 1 for a foreground pixel and 0 for
a background pixel, N is the number of pixels, S is
¥ i

N b(i), x(i) is the x coordinate for pixel i, and y(i)
is the y coordinate for pixel i.

Statistics built on the contour. Building the tokens
from the contours is more involved. The basic strat-
egy is to qualitatively characterize a contour by lo-
cating the dominant points of maximal curvature, di-
viding the contour into segments bounded by these
dominant points, and then measuring the degree of
convexity or concavity of these segments. The short-
coming of this approach is the sensitivity to changes
in scale, orientation, and local distortion. To com-
pensate for this, we employ the scale-space filtering
technique advanced by Pei and Lin41 to locate those
dominant points that are stable with respect to scale.

Figure 11 illustrates the representation of the con-
tour for each of four levels of detail. The points of

Figure 10 Organization of blob vector. Descriptive vector 
for a blob contains statistics built on shape and 
on functional model. Shape descriptor is 
subdivided into tokens based on region and 
tokens built on the contour.

HEADER
(FIXED)

REGION
STATISTICS
(VARIABLE)

FUNCTIONAL
STATISTICS
(VARIABLE)

VECTOR LENGTH
BLOB NUMBER
BLOB TYPE

BITMAP SIZE
BITMAP X CENTROID
BITMAP Y CENTROID
CONTOUR NUMBER SEGMENTS
SEGMENT 1 SIZE
SEGMENT 1 CONVEXITY FLAG
...
SEGMENT N SIZE
SEGMENT N CONVEXITY FLAG

FUNCTION DEPENDENT

Table 12 Parameters extracted from the blob’s function
module

Blob Type Functional Model

Lighting R0 , G0 , B0 , a0 , a1
Motion A0 , Ax , Ay , Bx , By

Occlusion Rmean, Gmean, Bmean

Gain R0 , G0 , B0
Bias R0 , G0 , B0
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extremal curvature are superimposed on the con-
tours. As the user traverses the scale space from fine
to coarse detail, the number of dominant points de-
creases. This decrease is variable and often; a fixed
number of dominant points are constant across a sub-
stantial range of scale. For this work, a description
is sought that is stable over the largest range of scale,

with the fewest possible dominant points in a con-
stellation. For instances in which these two require-
ments conflict, the selection is made based on a cost
function that weights the two conditions.

Once the dominant points have been located, the
convexity or concavity of the resulting contour seg-
ments remains to be computed. Here, this is approx-
imated by simply drawing a straight line between the
endpoints of each segment and integrating along the
subtended contour segment as shown in Figure 12.

Comparing vectors. Use of the characteristic vector
for authentication requires defining a distance met-
ric for use in comparing one vector to another. Ob-
viously, identical images will produce identical vec-
tors. However, the methods for computing a vector
are numerically sensitive enough that modest differ-
ences between images will produce modest differ-
ences between their respective vectors. A distance
metric has to be defined such that visual differences
that a human perceives as unimportant result in nu-
merically small values of measured distance.

With the image vector defined as macro vector of
five blob vectors, the task of comparing two image
vectors naturally divides into two subtasks: (1) mea-
suring the differences between individual blob vec-
tors; and (2) combining these differences to produce
an aggregate difference between the two image vec-
tors.

Figure 11 Scale-space contour representation. Samples of a scale-space representation of the contour outlining the
    six New England states. Four levels of detail are selected by controlling σ in Gaussian filter:

(A) σ=7; (B) σ=20; (C) σ=38; (D) σ=77. Dominant points are marked by circles along the contour.

(B) (C) (D)(A)

Figure 12      Measuring convexity/concavity. For each 
contour segment defined by a pair of 
dominant points, the convexity or concavity 
is measured as the integral along the 
subtended contour segment. The straight-line
connection between the end points 
delineates the polarity of the area.

–

+

SUBTENDING LINE

CONTOUR

DOMINANT POINTS
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Measuring distance between blobs. The difference be-
tween two blob vectors is computed as the itemized
difference between the subcomponents, i.e., as the
weighted difference between the functional models,
the region tokens, and the contour tokens. There-
fore, only blobs of identical type can be compared.
For example, a motion blob can only be compared
against another motion blob; it cannot be compared
against a lighting blob.

The distance between the functional descriptions is
computed as the L2 norm42 of the distance between
each of the components. For the case of two light-
ing blobs, the functional distance would be computed
using Equation 9.

Î~DA!2 1 ~DB!2 1 ~DC!2 1 ~DD!2 1 ~DE!2 1 ~DF!2

(9)

Similarly, the difference between the shape portions
of two vectors is computed as the L2 norm of the
difference between each of the component parts.
Equations 10, 11, 12, and 13 illustrate this break-
down. Given two contours to be compared, the first
step is to apply match filtering to establish a corre-
spondence between the contour segments. Once the
correspondence is defined, the differences between
the segments are measured and accumulated.

Dshape 5 ÎDregion 2 1 Dcontour 2 (10)

Dregion 5

ÎDsize 2 1 Dxcentroid 2 1 Dycentroid 2 (11)

Dcontour 5

ÎDseg1
2 1 Dseg2

2 1 . . . 1 DsegN
2 (12)

Dseg 5 ÎDlength 2 1 Dconcavity 2 (13)

This distance metric with a contour represented as
extremal points of curvature yields a measure that
is surprisingly robust in light of typical image ma-
nipulations. Consider the illustration in Figure 13:
13A and 13B show the model and the image. One
of the blobs returned by the analysis system is a gain
blob, which models the shadow. Figure 13C shows
the contour of the shadow blob upon which the de-
tected points of extremal curvature are superim-
posed. Figure 13D shows the recomputed contour
after the blob has been synthetically scaled and ro-
tated about its centroid. The measured distance be-
tween the two blob vectors is vanishingly small.

Measuring distance between image vectors. As in the
case of tunable authentication, authentication of an
image involves comparing two characteristic image
vectors; the one that has been precomputed (the ref-
erence image) and the one computed “on the fly”
(the modified image). A “best match” strategy is em-
ployed to do this comparison. For a given blob vec-
tor in the reference image vector, the closest match
is found among the blob vectors of the modified im-
age vector. The differences between blob vectors are
aggregated to arrive at the total difference between
the two image vectors, with unmatched blob vectors
contributing a predefined maximum.

The application of midlevel vision to information hid-
ing is at an immature state. There is further work
to be done in image characterization, blob charac-
terization, blob comparison, etc. Future work in-
cludes the manipulation of blob vectors in order to
embed information in images.

Conclusion

Looking forward, there are two questions regarding
information hiding: (1) What is its potential as a tech-

Figure 13    Robustness of blob representation to rotation

(D) CONTOUR AND EXTREMAL POINTS 
     COMPUTED ON A SYNTHETICALLY 
     SCALED AND ROTATED VERSION 
     OF THE ORIGINAL SHADOW BLOB. 
     THE COMPUTED DISTANCE 
     BETWEEN THE BLOB VECTORS IS 
     NEGLIGIBLE.

(A) PRESTORED MODEL (B) IMAGE ANALYZED AGAINST 
     MODEL—NOTE SHADOW ON
     THE WALL

(C) CONTOUR OF THE SHADOW 
     WITH POINTS OF EXTREMAL 
     CURVATURE SUPERIMPOSED
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nology? and (2) What is its potential as an applica-
tion solution?

The technology at the heart of most information-hid-
ing technologies, spread spectrum, was invented by
actress Hedy Lamarr and composer George An-
theil26,43 in 1942. While its use as the basis of infor-
mation-hiding techniques has led to numerous re-
finements and improvements in efficiency and
robustness, it is a well-worn technology. In contrast,
object- or semantic-based techniques are relatively
new. (Steganographic techniques have tended to lag
somewhat behind those of the field of image com-
pression. Techniques based upon transform coding
have only been in vogue in steganography since the
late 1990s, whereas they have been incorporated into
compression standards [e.g., JPEG] since the late
1980s.) As object-based compression protocols, such
as MPEG4,44 become more commonplace, it is likely
that object-based techniques will be embraced by the
information-hiding community. Time will tell
whether these approaches will be as fruitful when
applied to the information-hiding problem space.

Most of the applications of information hiding are
likewise well worn. The classic application is secret
communication. This is the application that moti-
vated Lamarr and Antheil as it has motivated oth-
ers throughout history. (The first recorded use of
steganography was by the Spartans, who used a ci-
pher device as early as 400 BC.45) The “growth” ap-
plication of information hiding in the 1990s was wa-
termarking. Watermarks are known to have existed
in Italy before the end of the thirteenth century.46,47

More recently they have been considered as a pan-
acea for intellectual-property protection on the In-
ternet (however, there is some skepticism about the
ultimate utility of information hiding thus applied48).

We have explored diverse applications of informa-
tion hiding that can be characterized by exchanging
robustness with bandwidth, including marking play-
ing cards,20 monitoring newspaper reading habits,
tracking images in a production process,36 adding au-
dio links to photographs, providing a channel for de-
vice-to-device communication,8 embedding decod-
ing information, interaction methods, or multimedia
object behavior,47 and a variety of augmentations to
presentation.9,10,49,50 These embedded data examples
are of the class of signals with a sense of themselves.
We expect these will be the growth applications of
information hiding over the next ten years, especially
in light of network computing.
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nology (EPFL/LTS), École Polytechnique Fédérale de Lau-
sanne, see http://ltssg3.epfl.ch/publications/.

15. University of Geneva, Switzerland, Computer Science De-

BENDER ET AL. IBM SYSTEMS JOURNAL, VOL 39, NOS 3&4, 2000566



partment, Computer Vision Group (CUI), see http://
cui.unige.ch/;vision/Publications/.

16. A. Piva, University of Florence, http://cosimo.die.unifi.it/
;piva/Watermarking/watermark.html.

17. F. Mintzer and G. W. Braudaway, “If One Watermark Is
Good, Are More Better?” Proceedings of the International
Conference on Acoustics, Speech, and Signal Processing
(ICASSP), IEEE Signal Processing Society, Phoenix, AZ
(March 15–19, 1999), pp. 2067–2070.

18. J. Fridrich and M. Goljan, “Comparing Robustness of Wa-
termarking Techniques,” Security and Watermarking of Mul-
timedia Contents, P. W. Wong and E. J. Delp, Editors, The
Society for Imaging Science and Technology (IS&T) and the
International Society for Optical Engineering (SPIE) 3657,
San Jose, CA (January 25–27, 1999), pp. 214–225.

19. W. Bender and D. Gruhl, “Information Hiding to Foil the
Casual Counterfeiter,” Information Hiding: Second Interna-
tional Workshop, D. Aucsmith, Editor, Lecture Notes in Com-
puter Science 1525, Springer-Verlag, Portland, OR (April 15–
17, 1998), pp. 1–15.

20. R. Hwang, A Robust Algorithm for Information Hiding in Dig-
ital Pictures, M.Eng. thesis, MIT, Cambridge, MA (May 1999).

21. S. Pereira and T. Pun, “Fast Robust Template Matching for
Affine Resistant Image Watermarking,” International Work-
shop on Information Hiding, Lecture Notes in Computer Sci-
ence 1768, Springer-Verlag, Dresden, Germany (September
29–October 1, 1999), pp. 200–210.

22. F. Paiz, Tartan Threads: A Method for the Real-Time Digital
Recognition of Secure Documents in Ink Jet Printers, M.Eng.
thesis, MIT, Cambridge, MA (May 1999).

23. L. M. Marvel, C. G. Boncelet, and C. T. Retter, “Reliable
Blind Information Hiding for Images,” Information Hiding:
Second International Workshop, D. Aucsmith, Editor, Lecture
Notes in Computer Science 1525, Springer-Verlag, Portland,
OR (April 15–17, 1998), pp. 48–62.

24. A. Herrigel, J. J. K. Ó Ruanaidh, H. Petersen, S. Pereira, and
T. Pun, “Secure Copyright Protection Techniques for Dig-
ital Images,” Information Hiding: Second International Work-
shop, D. Aucsmith, Editor, Lecture Notes in Computer Sci-
ence 1525, Springer-Verlag, Portland, OR (April 15–17,
1998), pp. 169–190.

25. J. Fridrich, “Robust Digital Watermarking Based on Key-
Dependent Basis Functions,” Information Hiding: Second In-
ternational Workshop, D. Aucsmith, Editor, Lecture Notes in
Computer Science 1525, Springer-Verlag, Portland, OR
(April 15–17, 1998), pp. 143–157.

26. M. K. Simon, J. K. Omura, R. A. Scholtz, and B. K. Levitt,
Spread Spectrum Communications Handbook, McGraw-Hill,
New York (1994).

27. A. Drake, Fundamentals of Applied Probability Theory,
McGraw-Hill, New York (1967).

28. A. N. Netravali and B. G. Haskell, Digital Pictures: Represen-
tation, Compression, and Standards, Applications of Commu-
nications Theory, Plenum Publishers, New York (1995).

29. W. Bender, “Adaptive Color Coding Based on
Spatial/Temporal Features,” Proceedings of SPIE—the Inter-
national Society of Optical Engineering 901, Los Angeles, CA
(January 13–15, 1988), pp. 253–257.

30. S. Walton, “Image Authentication for a Slippery New Age,”
Dr. Dobb’s Journal, 18–26 (April 1995).

31. Personal communications with Ken Haase and Alan Wex-
elblat (January 2000).

32. C.-Y. Lin, Bibliography of Multimedia Authentication Re-
search Papers, ADVENT Lab, Columbia University, see
http://www.ctr.columbia.edu/;cylin/auth/bibauth.html.

33. J. Dittmann, “Overview,” Multimedia and Security Workshop
at ACM Multimedia, Orlando, FL (October 30–31, 1999), see
http://www.darmstadt.gmd.de/mobile/acm99/.

34. F. A. P. Petitcolas, “Attacks on Copyright Marking Systems,”
Information Hiding: Second International Workshop, D. Auc-
smith, Editor, Lecture Notes in Computer Science 1525,
Springer-Verlag, Portland, OR (April 15–17, 1998), pp. 219–
239.

35. F. A. P. Petitcolas and R. J. Anderson, “Evaluation of Copy-
right Marking Systems,” Proceedings IEEE Multimedia Com-
puting and Systems 1, Florence, Italy (June 7–11, 1999), pp.
574–579.

36. S. Pogreb, W. Bender, and D. Gruhl, “Tunable Tamper Proof-
ing,” unpublished technical report, MIT Media Laboratory,
see http://nif.www.media.mit.edu/DataHiding/ttp.pdf.

37. Gamma represents a numerical parameter that describes the
nonlinearity of intensity reproduction. See Charles Poyn-
ton’s Gamma FAQ: http://www.inforamp.net/;poynton/
GammaFAQ.html.

38. See http://mathworld.wolfram.com/Entropy.html/.
39. D. Marr, Vision: A Computational Investigation into the Hu-

man Representation and Processing of Visual Information,
W. H. Freeman and Company, New York (1983).

40. V. M. Bove and W. Butera, “The Coding Ecology: Image Cod-
ing via Competition Among Experts,” Proceedings of the Pic-
ture Coding Symposium Among Experts (PCS’99), Corvalis,
OR (April 21–23, 1999), pp. 403–406.

41. S.-C. Pei and C.-N. Lin, “The Detection of Dominant Points
on Digital Curves by Scale Space Filtering,” Pattern Recog-
nition 25, No. 11, 1307–1344 (1992).

42. The L2 norm is also known as the Euclidian norm. See
http://mathworld.wolfram.com/L2-Norm.html.

43. H. K. Markey and G. Antheil, Secret Communication System,
U.S. Patent No. 2,292,387 (August 11, 1942).

44. The MPEG4 Standard, International Organization for Stan-
dardization ISO/IEC JTC1/SC29/WG11 Coding of Moving
Pictures and Audio ISO/IEC JTC1/SC29/WG11 N3342
(March 2000).

45. D. Kahn, The Codebreakers—The Story of Secret Writing, Scrib-
ner, New York (1996).

46. “Watermarks,” Encyclopædia Britannica, http://www.
britannica.com.

47. T. Leary, “Cryptology in the 15th and 16th Century,” Cryp-
tologia XX, No. 3, 223–242 (July 1996).

48. R. J. Anderson and F. A. P. Petitcolas, “On the Limits of
Steganography,” IEEE Journal of Selected Areas in Commu-
nications 16, No. 4, 474–481 (May 1998).

49. N. Abramson and W. Bender, “Context-Sensitive Multime-
dia,” Proceedings of the International Society for Optical En-
gineering (SPIE) 1785, Washington, DC (September 10–11,
1992), pp. 122–32.

50. W. Bender and P. Chesnais, “Network Plus,” Proceedings of
SPIE—the International Society for Optical Engineering 900,
Los Angeles, CA (January 12–13, 1988), pp. 81–86.

Accepted for publication June 26, 2000.

Walter Bender MIT Media Laboratory, 20 Ames Street, Cam-
bridge, Massachusetts 02139-4307 (electronic mail: walter@media.
mit.edu). Mr. Bender is a senior scientist at the MIT Media Lab-
oratory and principal investigator of the laboratory’s News in the
Future consortium. He received the B.A. degree from Harvard
University in 1977 and joined the Architecture Machine Group
at MIT in 1978. He received the M.S. degree from MIT in 1980.
Mr. Bender is a founding member of the Media Laboratory.

IBM SYSTEMS JOURNAL, VOL 39, NOS 3&4, 2000 BENDER ET AL. 567



William Butera MIT Media Laboratory, 20 Ames Street, Cam-
bridge, Massachusetts 02139-4307 (electronic mail: bill@media.mit.
edu). A native of Washington, DC, Mr. Butera received his B.S.
and M.S. degrees from MIT in 1982 and 1988. In 1982 he joined
the Research and Development Department of ITT Industries
in Stuttgart, Germany, where he worked on video coding schemes
for broadband ISDN (Integrated Services Digital Network). In
September of 1986 he joined the Movies program at MIT’s Me-
dia Lab as a research assistant and basketball coach. From 1988
through 1994, he was a system designer in the Concept Engineer-
ing Department at Intermetall in Freiburg, Germany, where he
developed digital video components for the consumer electron-
ics market. In 1995, he joined MIT’s Media Lab, where he works
as a research assistant on programming models and algorithms
for dense, decentralized computing ensembles. An early partic-
ipant in MPEG, he has authored several articles and holds five
patents in the field of digital formats for video compression and
storage. His interests include architectures for parallel process-
ing, image coding, and machine vision.

Daniel Gruhl IBM Research Division, Almaden Research Center,
650 Harry Road, San Jose, California 95120-6099 (electronic mail:
dgruhl@almaden.ibm.com). Dr. Gruhl is a research staff mem-
ber at the IBM Almaden Research Center, where he is a mem-
ber of the Exploratory Database Systems group. He received his
doctorate degree in electrical engineering from MIT in 2000; his
research was done at the MIT Media Laboratory.

Raymond Hwang Harvard Medical School, 25 Shattuck Street,
Boston, Massachusetts 02115 (electronic mail: raymond_hwang@
student.hms.harvard.edu). Born and raised in Cleveland, Ohio, Mr.
Hwang received his B.S. and M.Eng. degrees in computer sci-
ence and electrical engineering from MIT. Currently he is a stu-
dent at Harvard Medical School.

Fernando J. Paiz There, 165 Jefferson Drive, Menlo Park, Cal-
ifornia 94025 (electronic mail: fpaiz@there.com). Mr. Paiz grad-
uated from MIT in June 1999, simultaneously earning bachelor’s
and master’s degrees in computer science and electrical engineer-
ing and a bachelor’s degree in theater arts. Since graduation he
has been applying his multimedia interests and skills toward his
role as a software engineer at There, a Silicon Valley start-up
company.

Sofya Pogreb MIT Media Laboratory, 20 Ames Street, Cambridge,
Massachusetts 02139-4307 (electronic mail: spogreb@mit.edu). Ms.
Pogreb graduated from MIT in June, 2000, with degrees in both
computer science and management. She began working for
McKinsey & Company in Palo Alto, California, in the summer
of this year. Past work experience has included internships at
Hewlett-Packard Company and Intel Corporation, as well as re-
search projects at the MIT Media Lab and the Lab for Computer
Science.

BENDER ET AL. IBM SYSTEMS JOURNAL, VOL 39, NOS 3&4, 2000568


