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Long before the advent of electronic systems,
different methods of information scrambling
were used. Early attempts at data security in
electronic computers employed some of the
same transformations. Modern secret key
cryptography brought much greater security, but
eventually proved vulnerable to brute-force
attacks. Public key cryptography has now
emerged as the core technology for modern
computing security systems. By associating a
public key with a private key, many of the key
distribution problems of earlier systems are
avoided. The Internet public key infrastructure
provides the secure digital certification required
to establish a network of trust for public
commerce. This paper explores the details of the
infrastructure.

Public key cryptography has emerged as a core
technology and has been adopted in many mod-

ern computing security systems. The concept of re-
lated private and public key pairs is probably its most
appealing aspect. The notion that one cryptographic
operation—encryption—can be performed using one
key from the pair, while the reverse transformation
can only be computed using the other key in the pair,
is indeed a giant step toward solving the secret key
distribution problem. The proliferation of public
cryptographic keys, on the other hand, needs to be
achieved in a controlled fashion to ensure that pub-
lic keys are securely bound to legitimate entities. The
Internet public key infrastructure defines secure dig-
ital certification for public keys. This paper explores
the details of this infrastructure. We begin with an
overview of secret key cryptography; we then intro-
duce the secret key distribution problem and explain
how public key cryptography contributes to its res-
olution. Subsequently, we discuss the foundations of

the Internet public key certification, the reasons it
is needed, and its defining components.

Overview of secret key cryptography

By “data confidentiality” we mean an attempt to con-
fine knowledge of the represented information within
a particular set of entities, either human or program-
mable. Secrecy is achieved by scrambling the plain-
text form of the data into a representation that per-
haps has no syntax, and certainly should have no
semantics.

Long before the advent of electronic systems, dif-
ferent methods of data-scrambling transformations,
known in contemporary terms as the science of cryp-
tography, have been used. A cryptographic transfor-
mation of data is a deterministic procedure by which
data, in their plaintext form, are disguised to result in
a ciphertext representation that does not reveal the
original data. Similarly, the ciphertext can be reverse-
transformed in a deterministic fashion by the target
recipient so that the original data can be recovered.

Early cryptographic algorithms manipulated the
plaintext input, character by character, using the
methods of substitution and transposition. A sub-
stitution operation replaces a character in the input
stream by another character from the alphabet set
of the target ciphertext. On the other hand, a trans-
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position, also referred to as a permutation, replaces
a character from the input stream by another char-
acter of that same input and thus results in shuffling
character positions and preserving all characters of
the plaintext in the final ciphertext. An example of
a substitution is the famous “Caesar cipher,” which
is said to have been used by Julius Caesar to com-
municate with his army. This cipher replaces each
character of the input text by the third character to
its right in the alphabet. Formally, this transforma-
tion consists of adding 3 to the position of the input
character (modulo 26) to yield the substituting char-
acter. Figure 1 shows how this simple transforma-
tion is applied.

A transposition cipher, generally, consists of break-
ing the plaintext into separate blocks; a determin-
istic procedure is then applied to shuffle characters
across the different blocks. Figure 2 illustrates a char-
acter transposition example in which the secret mes-
sage “RETURN TO BASE” is first split into two blocks
consisting of “RETURN” and “TO BASE,” then
characters are shuffled across the two blocks in a
cyclic fashion to result in the ciphertext
“ROTBRS TE UANE.”

Even though it employs a very basic algorithm, the
substitution example points to the concept of the se-
cret key (the number of positions to shift right, 3).
Keeping the key secret while divulging the algorithm
will, in this case, permit the plaintext to be recov-
ered only by exhaustively processing the key space,
which simply consists of the set of integers {1, 2, 3,
4, . . . , 26}. The strength of the methods used in this
era rested on the secrecy of the encryption algorithm
itself.

With the advent of electronic computers, early mod-
ern cryptography carried on these same concepts,
employing transposition and substitution transfor-
mations. The primary difference is that these trans-
formations are now applied at the bit level, rather
than the character level, of the binary representa-
tion of data. Strength of the encryption method no
longer rests in the secrecy of its algorithm, but rather
in the secrecy of the key used by that algorithm. This
development gave rise to modern secret key cryp-
tography, best known through the Data Encryption
Standard (DES) algorithm.1

DES, a symmetric cipher in which the same key is used
for encryption and decryption, was developed by IBM
cryptographers in the early 1970s and has been
adopted as a U.S. government standard since 1976.

The algorithm is a block cipher, in which a 64-bit
input block is transformed into a corresponding 64-
bit output ciphertext. It employs a 56-bit key ex-
pressed as a 64-bit quantity in which the least rel-
evant bit in each byte is used for parity checking. DES,
in its standard form, iterates over 16 rounds, in each
of which data are manipulated using a combination
of permutation and substitution transformations
along with standard arithmetic and logical opera-
tions, such as exclusive-OR, based upon the key. For
many years the DES algorithm withstood attacks, but
in recent years and mostly due to the increased speed
of computing systems, DES has come under brute-
force attack on several occasions, demonstrating its
vulnerability to exhaustive search of the key space.2

Figure 1 A simple substitution cipher

RETURN TO BASE
UHWXUQ WR EDVH

Plain Message:
Enciphered Message:

Figure 2 A character transposition 
  enciphering/deciphering example

Line 1:  R    E      T         U      R     N   space

Line 2:  T     O   space  B      A     S       E

Line 1:   R    O      T         B      R     S   space

Line 2:   T     E    space   U      A     N     E

Deciphered Message:  RETURN TO BASE

Enciphered Message:  ROTBRS TE UANE
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The secret key distribution and management
problem

Assume that a group of n people decides to estab-
lish a cryptographic communications channel among
its members based on a symmetric cipher. Different
scenarios for secret key distribution may arise within
the group. In the first, all the group members decide
to share a single secret key and use it to encrypt and
decrypt any exchanged messages. In this basic sce-
nario the shared secret key requires n distributions,
and each user needs to manage a single key. A breach
in secrecy of the key results in all communications
among the group members being compromised.

In a second scenario, each group member decides
to maintain a separate secret key and therefore needs
to communicate it to each of the other members of
the group. Here n(n 2 1) key distributions are re-
quired, and n keys need to be stored and managed
by each user. Compromising one key results in ex-
posing all the communications destined to that key
owner.

In the second scenario, the secret key of each user
is divulged to the rest of the group members. One
user might masquerade under another user’s iden-
tity—a potential security threat. To resolve this prob-
lem, each pair of users may resort to a separate key
for their communications. In a scenario where ev-
ery two members of the community require a com-
munications channel, the group must distribute
n(n 2 1)/ 2, whereas each member must manage
n 2 1 keys. Figure 3 illustrates three variations in
the communication patterns that can take place
within a group of seven users. Each member of the

group is represented by a node of a graph, with the
edge adjacency in the graph representing two-way
communication links among the members. Assum-
ing that each pair of users maintains a distinct se-
cret key, the total number of key distributions in each
scenario will be equal to the number of edges of the
corresponding graph. Therefore, in (A) 7 key dis-
tributions are required; in (B), where users are par-
titioned along a bipartite graph, 12 key distributions
are required; and in the case of complete graph (C),
in which each user needs to communicate with the
rest of the group, a total of 21 key distributions are
needed.

These scenarios point out the fact that the number
of secret key distributions among a population of
users is increasingly proportionate to the number of
communication links among the group. Upon re-
newal of a secret key, the key distribution process
takes place all over again. Naturally, the more often
a secret key is distributed, the more likely it is to be-
come compromised. A compromise can occur when
the key is in transmission or while it is on a storage
medium. Distribution of long-term secret keys goes
against the core premise of symmetric key cryptog-
raphy, for which the strength lies in the secrecy of
the key.

Advances in software systems have mitigated the
problem posed by secret key distribution and man-
agement by adopting a central repository of keys,
managed by a single server, the key distribution cen-
ter (KDC). Each of the communicating entities di-
vulges its secret key to the KDC only, resulting in n
key distributions where n is the size of the commu-
nity involved. The mere presence of a KDC, however,

Figure 3 Number of secret key distributions is directly related to the underlying communication pattern

 A CB
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is not sufficient to disseminate the secret keys across
the community of users. A security protocol is also
needed, to introduce the communicating parties to
one another. The Needham-Schroeder scheme3

presents a novel method for achieving such a secure
introduction of entities. Authenticity and confiden-
tiality of a communication is achieved through a tem-
porary secret key, generated by the KDC. This key
applies only to the active session and is shared be-
tween the two communicating entities. Advancement
in this area came in a variant of the Needham-
Schroeder scheme known as the Kerberos4 protocol,
which has proven to be one of the best third-party
authentication protocols ever devised. Figure 4 il-
lustrates the concept of the trusted third-party KDC;
the number of secret key distributions necessary is
always equal to the size of the community involved.

Kerberos version 5 has been integrated in a number
of operating systems and has become an Internet
standard. With all its protocol elegance and secu-
rity, it still has a few shortcomings in today’s per-
vasive paradigm of computing over the Internet. For
one thing, the use of the third-party KDC server re-
quires its availability to the communicating parties
for the introduction step. Additionally, the KDC, in
maintaining all the secret keys, becomes a single
point of a catastrophic failure once it is compromised.

The problem with secret key distribution is not so
much the number of distributions needed to prop-
agate the keys; rather it is the need to find a secure
channel for their distribution. Due to the recursive
nature of this problem, secret key cryptographic sys-
tems alone cannot resolve the key distribution issue.
In the next section we introduce public key cryptog-
raphy, which deals with the key distribution problem.

Foundations of public key cryptography

Public key cryptography emerged in the mid-1970s
with the work published by Whitfield Diffie and Mar-
tin Hellman5 and separately by Ralph Merkle.6 The
concept is simple and elegant, yet it has had far-
reaching effects on the science of cryptography and
its applications. Public key cryptography is based on
the notion that encryption keys come in related pairs,
private and public. The private key remains con-
cealed by the key owner, while the public key is freely
disseminated. The premise is that it is computation-
ally infeasible to compute the private key by know-
ing the public key—data encrypted using the public
key can only be decrypted using the associated pri-
vate key. The elegance and strength of public key

cryptography are derived from its reliance on purely
mathematical foundations that are based on the one-
way “trapdoor” functions that exist in the abstrac-
tions of number theory. Encryption is the easy di-
rection; decryption is hard. With knowledge of the
trapdoor, or private key, decryption can be as easy
as encryption. Two of these currently known one-
way functions form the basis of modern public key
cryptography. We discuss these functions in the next
sections.

The problem of factoring large numbers. The first
of these one-way functions is based on the ease of
multiplying two large prime numbers; the reverse
process, of factoring a very large number, is far more
complex. Factoring an integer n means finding a se-
ries of prime factors such that their product yields
n. A prime number is one that has only two irreduc-
ible factors, itself and 1. Factoring large numbers
(more than 1024 bits) is known to be computation-
ally infeasible with today’s computers; with modu-
lar arithmetic, the multiplication of such numbers is
far easier. With this in mind, we now summarize the
widely adopted Rivest-Shamir-Adleman public key
algorithm, known by its acronym RSA.7

Randomly pick two large prime numbers p and q
(of 100 to 200 decimal digits). Compute the product
n 5 p 3 q. Then randomly select another number
e that is relatively prime with the product of ( p 2
1) 3 (q 2 1); i.e., the greatest common divisor of
e and ( p 2 1) 3 (q 2 1) is equal to 1. Compute
w(n) 5 ( p 2 1) 3 (q 2 1) 5 n 1 1 2 p 2 q.
Then use the extended Euclidean algorithm8 to com-
pute the multiplicative inverse d of e modulo w(n).
The numbers e and n define the public key and are
known as the exponent and the modulus, respectively,
while d becomes the private key. Both encryption

Figure 4 A centralized key distribution scheme

KDC
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and the inverse function of decryption consist sim-
ply of modular reduction operations that map an el-
ement of Z/nZ onto another element of Z/nZ, where
Z/nZ is the set of integers modulo n. For any block
of plaintext T, the following equations hold:

C 5 f~T! 5 T e mod n and

T 5 f 21~C! 5 C d mod n

Computing both f(T) and its inverse is optimized
using modular reduction techniques, such as expo-
nentiation by the repeated squaring method. For in-
stance, instead of performing seven multiplications
and one large modular reduction, we perform three
smaller multiplications and three simple modular re-
ductions as follows:

a 8 mod n 5 ~~a 2 mod n! 2 mod n! 2 mod n

Breaking the RSA algorithm is conjectured to be
equivalent to factoring the product of two large prime
numbers.

Computing discrete logarithms in a large finite field.
The second well-known trapdoor function in num-
ber theory is the ease of computing a function f that
consists of raising a number to a power in a large
finite field, while the inverse function f 21 , of com-
puting discrete logarithms in such a field, is known
to be much harder. A finite field, also known as a
Galois field, denoted by GF( p), is the field of in-
tegers modulo a prime number p, and thus each el-
ement in the field is guaranteed to have a multi-
plicative inverse that is also in GF( p). The time
complexity required for the computation of f( x) 5
a x in Z/pZ is polynomial in log x. Computing x 5
f 21( y) 5 logb ( y), given y, is a much harder task
known as the discrete logarithm problem. Here both
x and y are constrained to be elements of the dis-
crete set Z/pZ as opposed to the much easier con-
tinuous problem in the set of real numbers. A num-
ber of modern public key cryptographic algorithms
are based on the discrete logarithm trapdoor func-
tion. Due to the simplicity that it exhibits, we use
the ElGamal algorithm9 as an example, even though
it results in a ciphertext that is twice the size of its
plaintext. Here the private deciphering key, x, is a
randomly picked number, in a very large finite field
GF( p) such that 0 , x , p 2 1. Similarly, a second
number, g, is randomly picked in GF( p). The pub-
lic key becomes g x computed in GF( p). Encrypting
a block of plaintext T then consists of picking a third

random number k that is relatively prime to p 2 1
and computing the pair: (C1 , C2) 5 ( g k , Tg xk). To
decrypt the ciphertext (C1 , C2), we compute T 5
C2/C1

x mod p.

It is worth noting another source of one-way trap-
door functions—in recent years, elliptic curves over
finite fields have been proposed for use with exist-
ing public key cryptographic systems. Elliptic curves
provide a natural source for both public and private
components of such systems.

The fate of secret key cryptography

The advent of public key cryptography did not sig-
nal the end of secret key cryptography. Rather, one
cryptographic method complements the other. Pub-
lic and secret key cryptography together form most
cryptographic protocols in use today. These are
called hybrid cryptographic systems.1 A public key
system is used for the distribution of a secret key,
which can be a long-term key or specific to a par-
ticular communications session. Thereafter, the se-
curely distributed secret key is used to encrypt and
decrypt a communications channel between two ends
of a security protocol. The performance of secret key
cryptography over that of public key, and the appeal
of key distribution inherent to public key cryptog-
raphy, are the main reasons for the wide adoption
of these hybrid systems. Most notable and elegant
of such systems is the Diffie-Hellman key exchange
algorithm10 used to exchange a secret key over a non-
secure channel. Recently, the IETF (Internet Engi-
neering Task Force)11 has proposed an algorithm
that provides proof of possession of private keys by
the entities engaged in the Diffie-Hellman key agree-
ment protocol,12 therefore strengthening the authen-
ticity of the protocol steps.

Public key cryptography and digital
signatures

Public key cryptography combined with one-way hash
functions gave rise to documents with digital signa-
tures that can withstand repudiation. A one-way hash
function, H( p), maps or “digests” its input p onto
a fixed-length hash, h, and satisfies the following
properties:

● For an arbitrary input p, it is easy to compute
H( p).

● It is computationally infeasible to compute the in-
verse p 5 H21(h).

● It is also computationally infeasible to determine
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p9 such that H( p) 5 H( p9) (known as collision-
resistance).

The goal of using a one-way hash function is to com-
pute a unique “fingerprint” that then represents the
document over which it is computed. Widely used
one-way hash functions include MD513 and SHA-1,14

which digest an input onto 128 and 160 bits, respec-
tively.

To digitally sign a document using a public key cryp-
tographic algorithm, a hashing function is applied
to the document, then the hash is encrypted using
the private key of a public key pair. The premise is
that the signature can only be verified using the pub-
lic key corresponding to the private key used during
signing. Thus, with the assumption that the private
key remains confined to the secrecy of the owner,
and furthermore by preventing users from obtain-
ing direct access to their own private keys, a digital
signature prevents a user from denying the signing
of a document. This property is referred to as non-
repudiation of the signing action. Preventing direct
access to the private key precludes someone from
intentionally disclosing his or her own private key
and later denying the signing process. Commonly
used digital signature algorithms are RSA and DSA.15

Figure 5 illustrates the process of computing and val-

idating a signature using a public key cryptographic
algorithm.

By definition, verifying a digital signature automat-
ically proves the authenticity of the signer. With its
inherent support for data origin authentication and
nonrepudiation, public key cryptography has taken
computer security to a new level. However, there is
still a weak point in binding the publicly available
key to the legitimate owner of the associated private
key. In the next section we provide further details.

Trusting a public key

From the outset, public key cryptography elegantly
solved the key distribution and management prob-
lem introduced by secret key cryptography. Anyone
can use the public key to encrypt data, but only the
owner of the private key can decrypt it. The com-
munity of users in our earlier example can now adopt
a public key cryptographic system for securing its
communications, dispelling concerns over key dis-
tribution and simply sharing a repository that main-
tains the public keys of its members. Consider a sce-
nario in which Elyes and Aicha, two members of this
community, wish to communicate with each other.
Elyes looks up the public key of Aicha from the re-
pository of keys, then uses it to encrypt and send a

Figure 5 (A) Generating and (B) validating a digital signature using a public key encryption algorithm such as RSA 
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message to Aicha. A third person, Alice, wants to
listen in on this communication channel, mounting
the attack illustrated in Figure 6. Before any com-
munication takes place, in step 1, Alice replaces the
public key of Aicha in the key repository with her
own public key. In step 2, while Elyes thinks he re-
trieved the public key of Aicha, he in fact now has
the public key of Alice. In step 3, Elyes uses the key
he retrieved in step 2, encrypts a message, and sends
it to Aicha. In step 4, Alice intercepts the message,
uses her private key to successfully decrypt it, reads
the message, then re-encrypts it using the public key
of Aicha, and forwards the message. Finally, Aicha
receives the message and decrypts it using her pri-
vate key, unaware of the eavesdropping.

This illustrates the weakness in using a public key
without securely verifying that it indeed belongs to
the designated party. It raises the fundamental ques-
tion of how a secure binding can be achieved between
a publicly available key and its holder so that a user
of a public key, referred to as a reliant party, can se-
curely verify the binding prior to using the key.

One promising answer lies in the certification pro-
cess that a public key infrastructure (PKI) can provide.
At the heart of a PKI is the digital signature tech-
nology that we introduced earlier. Parties reliant on

public keys place their trust in a single entity, known
as the certificate authority (CA). Before a user’s pub-
lic key is disseminated to a public repository, the un-
derlying high-assurance CA uses its own private key
to digitally sign it. A reliant party securely installs
the public key of the trusted CA and uses it to verify
the signature of each user’s public key. Only upon
a successful verification of the signature does a re-
liant party initiate a communications channel. This
simple method of certification thwarts an attacker
who does not have a public key signed by the same
CA as that of the two communicating parties, but fails
to do so when the attacker is also in possession of
a key signed by the same CA.

In order to provide reliable assurance, a comprehen-
sive public key certification process requires more
security elements than simply a signed encryption
key. These elements are embedded in the data con-
struct to be certified. For the Internet, this construct
is an X.509 version 3 certificate, and the secure infra-
structure that provides it is the public key infrastruc-
ture for X.509 (PKIX); the repository in which certif-
icates are kept is based on the standard Lightweight
Directory Access Protocol (LDAP) service. We fo-
cus on the details of this infrastructure throughout
the remainder of the paper.

Figure 6 Compromising a public key

PUBLIC KEY REPOSITORY

XXXXXXXXX XXXXXXXXX XXXXXXXXX

AICHA: XXXXXXX
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2
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The Internet public key infrastructure

The basic premise of PKIX is the high level of assur-
ance and confidence in a public key that it certifies.
It provides a provable binding of a public key with
its associated private key. In addition to the public
key, such a binding implies a set of other attributes,
such as a distinguished name (DN). Furthermore, the
infrastructure can securely disassociate itself from
a previously certified public key binding when it is
deemed no longer valid for use. This disassociation
is achieved by generating another construct, the cer-
tificate revocation list (CRL). A PKIX therefore man-
ufactures two distinct digitally signed data types—a
certificate and a CRL. We next describe the main data
elements that define an Internet digital certificate (ver-
sion 3) and its associated CRL (version 2). Figure 7
depicts the content of an Internet X.509 certificate.16

Three fundamental elements of the certificate con-
tribute greatly to its secure binding with its subject:
the certificate serial number, the name of the issu-
ing certificate authority, and the subject name (own-
er of the certificate). The serial number is a unique
integer assigned by the CA to the certificate at the
time it is issued. There must be a one-to-one map-
ping between the serial numbers and the set of cer-
tificates issued by a particular CA. In the eavesdrop-
ping scenario we described earlier, the certificates
of all three parties involved would be assigned dif-
ferent serial numbers, when issued, by the same CA.

The issuing CA name is a hierarchical X.500 name,
for example CN 5 SecureWay CA, OU 5 SecureWay,
O 5 IBM, C 5 US, that uniquely identifies the cer-
tification authority within the naming space. The is-
suing name is common to all certificates issued by
the same CA. Similarly, the subject name is a hier-
archical X.500 name, such as CN 5 Elyes, OU 5 Se-
cureWay, O 5 IBM, C 5 US, that uniquely identifies
the subject of the certificate within the naming space.
Note here that the DN representation is based on
RFC148517 and represents distinguished names in
a user-oriented manner. As a good security practice,
it is generally mandated that certificate holders
within a particular enterprise be assigned distinct
X.500 names.

It is the role of the CA to ensure that a particular
subject name is not issued multiple certificates that
differ only in the public key value. Multiple certif-
icates can be issued for functionally meaningful rea-
sons; e.g., one key for signing documents and another
for enciphering data. In the absence of functionally

differentiating factors, such as those defined by Cer-
tificate Policy18 rules, a comprehensive PKIX should
require that an old certificate for a subject be revoked
before issuing a new one. The key to enforcing the
uniqueness rule is the requirement that the CA main-
tain a repository of all the certificates it issues dur-
ing its entire time of operation. The CA repository,
or Issued Certificates List (ICL), along with a reg-
istration procedure enforced by the enterprise PKI,
provides control over granting certificates. It should
be noted here that a reliable PKIX is one in which
certificates are always issued in a controllable way,
analogous to the practice of creating users in a leg-
acy authentication registry.

The validity period of a certificate is the time inter-
val during which the certificate maintains its validity
of use, provided it has not been explicitly revoked.
It is defined by beginning and end dates. Time is rep-
resented according to an international standard and
is computed with respect to Greenwich Mean Time
(GMT), ensuring independence from the physical lo-
cation of applications using PKIX.

The subject public key field contains the bit string rep-
resenting the public key material that is being cer-
tified. The extensions field represents an interesting
aspect of the extendability of an X.509 v3 certificate.
It may contain zero or more extensions, each of which
adds specific information about the certificate, such
as the intended usage of the underlying public key.
A number of these extensions have been defined by
the IETF body. Private extensions can also be ex-
ploited within a particular enterprise.

Finally, the signature value field contains the CA dig-
ital signature computed over the Distinguished En-
coding Rules (DERs) of the X.509 data type as rep-

Figure 7 Core content of an X.509 v3 certificate

version number:
serial number:
signature algorithm:
issuer name:
validity period:
subject name:
subject public key:
extensions:
signature algorithm:
signature value:

v3
xxxxxxxx
xxxxxxx
xxxxxxxxxx
xxxxxxx
xxxxxxxxxxxxx
xxxxxxxx
xxxxxxxxxxx
xxxxxxx
xxxxxxxxxxxx
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resented by Abstract Syntax Notation One (ASN.1),19

an International Telecommunication Union (ITU)
standard syntax for data transfer. It is worth noting
here that the CA signature certifies the entire con-
tent of a certificate and not just the public key por-
tion of it.

One other fundamental element that builds trust in
an enterprise PKIX is the ability to certify a public
key for an end-user entity without requiring the cor-
responding private key be communicated on line or
off line to the certification authority or any other en-
tity. In most practical cases, the public and private
key pair is generated at the end-user side of the in-
frastructure with the private key remaining securely
stored in the user’s local environment. The under-
lying storage mechanism can be chosen appropriately
based upon the exploiting applications. An example
of such a mechanism would be a smart card token.

The protocol underlying certification management
allows for proof of possession, known as POP, of the
private key to be communicated through secure cryp-
tographic means, such as a signature, and verified
by the serving CA. An enterprise-level PKIX should
support the proof of private key possession in ways
appropriate to the type of key usage specified by the
requesting entity. For example, when the key to be
certified is intended for enciphering data, the CA
should use the public key to encrypt a specific data
item and challenge the entity to decrypt it using the
private key.

The infrastructure topology

As shown in Figure 8, a PKIX has three main com-
ponents: the end entity (EE) representing the user
side, the registration authority (RA) in the middle,
and finally the certifying authority (CA). The RA, an
optional but integral component of the CA, repre-
sents an intermediary point of trust through which
an EE request is channeled to the CA. It performs
a number of functions, most notably the registration
of candidate certificate requesters and their authen-
tication, in a secure fashion. The RA may also per-
form some processing on the EE request, such as the
verification of the POP calculated using the EE pri-
vate key, or the validation of certain requested cer-
tificate extensions in accordance with a policy im-
plemented by the enterprise. The RA also represents
the access point for the infrastructure’s administra-
tor to perform interactive tasks, such as registration
and approval or denial of requests.

Additionally, a directory service such as LDAP is gen-
erally made available to the infrastructure for the
publication of certificates and CRLs. In an enterprise
PKIX, the CA interactions should be limited to the
RA, the one entity with which it has established trust.
The directory service should connect to the RA that
performs certificate and CRL publication in response
to CA notifications. Communications between the EE,
RA, and CA are driven by the standard Certificate
Management Protocol (CMP),20 which is in turn
based on the syntax defined by the Certificate Re-

Figure 8 The main PKIX participating components
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quest Message Format (CRMF).21 It is worth noting
that, although not widely adopted, certificate man-
agement over CMS (CMC)22 is also a proposed IETF
draft standard for a certificate life-cycle management
protocol. CMS23 (Cryptographic Message Syntax) is
the IETF standard for a cryptographic enveloping
technique for protecting messages.

CMP is a secure protocol that carries a data protec-
tion field of its own and thus does not rely on an un-
derlying secure transport for the security of its mes-
sages. It consists of a relatively large set of message
types and is independent from the transport layer of
the underlying communications system. Common
implementations have been written mainly over di-
rect Transmission Control Protocol (TCP) with some
others over the HyperText Transfer Protocol (HTTP).
Additionally, the industry de facto standards com-
monly known as Public Key Cryptographic Stan-
dards24 of PKCS #10 and PKCS #7 are also widely
adopted messaging formats for certificate enroll-
ment. CMP has been widely implemented by PKIX
vendors, including IBM and Lotus, and has lately been
the subject of interoperation testing.

Certificate revocation

A certificate may cease to be valid for two explicit
reasons: first, when the current date is not within the
validity period stated in the certificate (the certif-
icate has expired or has not yet entered use), sec-
ond, when the certificate subject is no longer enti-
tled to the certificate. In the latter case, the certificate
is revoked by the issuing CA. The breakup of the bind-
ing represented in a certificate is announced by a cer-
tification authority, through a CRL. The CA period-
ically issues and signs CRLs, updating them with
recently revoked certificates. A typical X.509 version
2 CRL contains the data illustrated in Figure 9.

A CRL shares five data types with a certificate: a ver-
sion number, a signature algorithm identifier, the is-
suing CA name, zero or more extensions, and a sig-
nature value. The signature is computed over the
flattened DER encoding of the CRL content. Each re-
voked certificate is identified by its serial number.
Since certificate serial numbers are unique with re-
spect to the issuing CA, a reliable PKIX revokes cer-
tificates through the same CA entity that issued them.
The first time stamp encountered in a CRL indicates
its date of issuance; the second one is the date for
the next CRL update. The most notable component
of the extensions field is the issuing distribution point
name, a standard extension that indicates the loca-

tion where the CRL is to be published. In the next
section we discuss CRL distribution points in further
detail.

CRL distribution points. Reliable applications that
use X.509 certificates are required to actively verify
the validity of a certificate at the time of its use, in-
cluding whether or not the certificate has been ex-
plicitly revoked. Conceptually, this verification step
is a simple one; it consists of determining whether
or not the certificate has become a member of any
applicable CRL. Such a simple yet time-sensitive task
requires a number of cooperating elements. First,
where is the applicable CRL? With the globalization
of today’s Internet computing, interacting applica-
tions are not necessarily tightly coupled within an
enterprise-specific environment.

The CRL distribution points extension is an X.509 v3
certificate extension that indicates the location of the
revocation information. Distribution points, there-
fore, represent a bridge between the certificate and
its controlling CRL. CRL distribution points also ad-
dress the issue of scale that might be introduced in
an enterprise that could revoke large numbers of cer-
tificates. By distributing CRLs across multiple loca-
tions, applications are able to off-load smaller por-
tions of CRLs while performing validation. The format
of a CRL distribution point name is generalized
enough to allow a variety of CRL hosting services,
for example, an X.500 directory name, a remote uni-
form resource identifier (URI) such as an LDAP URL

Figure 9 Core content of an X.509 v2 CRL
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(uniform resource locator), or some other server
based on the Internet HTTP protocol.

CRL distribution points also allow redundant CRL lo-
cations, so that certificate validation is not affected
by a CRL hosting server that becomes unavailable.
CRLs can be stored in an LDAP server as attributes
of the issuing CA. Figure 10 illustrates three CRLs lo-
cated at three distribution points in the form of a
directory name: CN 5 CRL DP0, OU 5 SecureWay,
O 5 IBM, C 5 US, CN 5 CRL DP1, OU 5 SecureWay,
O 5 IBM, C 5 US, and CN 5 CRL DP2, OU 5 Secure-
Way, O 5 IBM, C 5 US.

All CRLs located at these points are issued by a CA
with name CN 5 SecureWay CA, OU 5 SecureWay,
O 5 IBM, C 5 US. In this example the CRLs are phys-
ically stored at their respective directory names as
indicated by the distribution points under the at-
tribute certificateRevocationList, defined by the stan-
dard PKIX LDAP schema.25

Cross-domain certification

The proliferation of public key infrastructures ulti-
mately leads to their extension across the boundaries
of certification domains. Such domains may consist
of multiple organizations, or departments within a
single enterprise, or multiple independent enter-
prises. Bridging multiple domains can be driven by

the need to maintain the benefits of PKI-based se-
curity in applications that support interactions across
enterprises. The basic issue is to join independently
deployed public key infrastructures with minimal dis-
ruption and the greatest transparency possible, al-
lowing each certification authority to remain the sole
authority for its own domain of operations.

PKIX provides two methods for achieving cross-do-
main certification. The first is through hierarchical
certification authorities; the second is through a peer-
to-peer relationship in which a CA from one domain
is cross certified with a CA of another domain. Fig-
ure 11A illustrates a hierarchical relationship be-
tween two domains served by CA1 and CA2. The
hierarchy implies that CA1 and CA2 are not in pos-
session of self-signed certificates (one in which the
issuer and the subject names are the same). Instead,
both of these certificates are issued by the root CA
bridging the two domains. (Note that the depth of
a hierarchy is not limited to a single level as shown
in the figure.) Validating a user certificate in the do-
main served by CA1 or CA2 is a recursive process that
applies to the chain of certificates extending from
the root CA to the user. Additionally, a certificate
issued within the domain of CA1 can be validated by
an application running within the domain of CA2 by
similarly finding a validation path starting at the high-
assurance root CA.

O=IBM

OU=SecureWay

certificateRevocationList=xxxx certificateRevocationList=xxxx certificateRevocationList=xxxx

CN=CRL DP0CN=SecureWay CA CN=CRL DP1 CN=CRL DP2

C=US

Figure 10 An example of three CRLs stored at distribution points, all of which are in the form of a directory name 
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Cross certification is a peer-to-peer joining of two
disparate infrastructures. As illustrated in Figure
11B, CA1 issues a cross certificate for CA2 to indicate
that user certificates issued by CA2 for its popula-
tion are now trusted for use within the domain served
by CA1, provided of course that they pass the stan-
dard test of validity. A cross certificate is simply an
X.509 CA certificate that is signed by another author-
ity. A reliant party in the domain of CA1—such as
an application server—that receives a service request
with a certificate attached to it from a client in the
domain of CA2 will perform the following steps:

● Determine that CA2, the issuer of the requester’s
certificate, is cross certified by CA1. This could be
done by looking up the crossCertificatePair attribute
in the CA2 entry of the requester’s directory server.

● Validate the requester’s certificate using the pub-
lic key of CA2

● Validate the cross certificate using the public key
of CA1 and hence establish trust in the client cer-
tificate

Similarly, CA2 can also cross certify CA1, and thus cer-
tificates issued by both certification authorities can
be interchangeably consumed by applications across
the two domains. Essentially, the two domains then
become fully bridged. Note that each of the certi-
fication authorities remains the root CA for its own
domain and each is still known through its self-signed
certificate.

In the hierarchical case, each of the subordinate cer-
tificate authorities maintains a certificate issued by
a higher CA. This certificate validation path spans
an entire branch of the tree starting from the root
down to the leaf user entity. This process is applied
each time a certificate is used. In the cross-certifi-
cation scenario, however, validating a certificate from
an application running in the same domain does not
require use of any CA cross certificates.

The hierarchical scheme establishes the cross-do-
main trust via a single third-party certification au-
thority. A higher assurance in the infrastructure can,
therefore, be maintained by strongly securing one
entity, the root certificate authority. Prior knowledge
of the legitimate validation path by an application
leads to the detection of any compromise of a sub-
ordinate authority. In the cross-certification case, the
same high level of assurance is required in all of the
certificate authorities in order to avoid a compro-
mise. Leaving any of the certification authorities ex-
posed may lead to the compromise in using certif-
icates across domains.

Note that a hybrid method that combines hierarchies
and horizontal cross certification can also be used
to join disparate infrastructures. Figure 11C illus-
trates a hybrid cross-domain topology that includes
four certification authorities in which CA1 and CA2
are subordinate to a common root, while CA2 and
CA3 participate in a horizontal cross-certification re-

CA3

CA1 CA2

Figure 11 Some scenarios of cross-domain relationships: (A) purely hierarchical, (B) cross certification, and (C) a hybrid 
scheme

CA1 CA2

ROOT CA
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lationship. CA hierarchies are generally recom-
mended when joining multiple domains that require
a high level of assurance.

Finally, it is worth noting that the trust relationship
in the case of horizontal cross certification is not a
transitive one; i.e., CA1 cross certifying CA2 and CA2,
in turn, cross certifying CA3 does not imply that CA1
has cross certified CA3. Certification here is not im-
plied; it must be explicitly designated. In the hier-
archical case, however, the relationship is transitive
upwards.

Certificate validation

While a certificate explicitly carries a time period that
can be checked for validity with respect to the time
of use, it can also become completely invalid for other
reasons. A certificate may be revoked by its CA
through a CRL issuance. A certificate may also be
compromised by replacing it with a masquerading
certificate that is issued by the same or a different
authority. Certificate validation, therefore, should
precede every use of the public key it certifies. Such
a procedure consists of a number of validity checks,
some of which are summarized here.

Validate the trust chain. Determine a trust path from
the root CA to the end entity. The path can span a
hybrid scheme in which both horizontal and hierar-
chical cross-domain certification can be in use. In a
purely hierarchical trust topology, the highly assured
public key of the root CA is first used to verify the
integrity and authenticity of the immediate subor-
dinate CA certificate. This is used to extract the cer-
tified public key of the immediate subordinate CA,
which now inherits the highly assured trust property.
The process is then recursively applied down the tree
until the end entity certificate is reached. In the hor-
izontal cross-certificate case, the certificate of the
cross-certified CA is verified using the assured key
of the certifying peer CA. The verified CA key is then
extracted and used to verify the integrity of possibly
a subordinate CA certificate or the underlying end
entity certificate.

Determine the certificate revocation status. Com-
pute a Boolean decision on the membership of the
underlying certificate within an appropriate CRL. The
certificate here is uniquely defined through its serial
number relative to the issuing certificate authority.
The verification process should check for these two
elements in the set of revoked certificates repre-
sented by the CRL. Due to the reliance of this com-

putation on the most up-to-date CRLs, which are gen-
erally stored at a central network location such as
an LDAP repository, this task is gradually shifting to
a specialized server. This server is known as the On-
line Certificate Status Protocol (OCSP) responder,26

which specializes in computing the Boolean decision
of a particular certificate membership in the pub-
lished CRLs.

Determine the certificate usage. Validate the use of
the certificate against any applicable policy. An ex-
ample would be to compare the cryptographic func-
tion for which the public key is about to be used
against the key usage extension found in the certif-
icate.

Managing the private key

While a public key infrastructure provides a reliable
solution to the key distribution problem, a PKI user
remains in control of his or her private key material.
A breach in the private key eventually leads to the
total compromise in security of any communication
channel that is governed by the certificate associated
with the private key. The process of managing the
private key generally centers around the method by
which the key material is stored in some encrypted
form. Perhaps the simplest of such methods is the
wrapping provided by the PKCS #824 de facto stan-
dard where the private key is encrypted using a mas-
ter key derived from a user password, which is never
maintained in any stored form. A more thorough so-
lution that is similar in concept is provided by the
PKCS #1224 standard, which has become widely used
as an off-line means of transporting PKI credentials
of a user, including certificates and private keys. The
wrapping of private keys that is employed here can
also be based on secret key encryption where the en-
cryption key is derived from a password.

One method that brings a higher level of assurance
and reliability to PKI-based applications is embod-

Certificate validation
should precede every use

of the public key
it certifies.
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ied in the de facto standards of PKCS #11 and PKCS
#1524 for managing and manipulating private keys.
The main concept adopted is the isolation of any ma-
nipulation of the private key by a security layer of
an application to within the confines of a single com-
ponent (usually in the form of a shared dynamic li-
brary). The component provides a set of crypto-
graphic operations and interacts directly with a
storage medium called a credentials token, widely
implemented as a hardware device. Software imple-
mentations of the token are also available.

Existing Internet browsers are good examples of ap-
plications that provide software implementations of
the PKCS #11 tokens. As illustrated in Figure 12, the
PKCS #11 library, commonly known as cryptoki (short
for cryptographic token interface), provides for a
common logical view of the cryptographic token.
When invoked by a security layer of an application,
through a standard set of interfaces, the PKCS #11
library interacts with the device driver of the token
for cryptographic services based upon the user’s pub-
lic and private keys. PKCS #11 seeks not only to main-
tain secure storage of a private key through a secret
personal identification number (PIN) access, but
equally important it provides a portable security layer
that isolates users from the details of the hardware
tokens in which public key credentials reside.

Jonah: The IBM PKIX reference
implementation

IBM and Lotus Development Corporation demon-
strated commitment to the evolving PKIX standards
through a project dubbed Jonah27 that implements
a core set of PKIX. Jonah was subsequently made
available as freeware to the Internet development
community. The philosophy behind this project is to
encourage the industry adoption of the PKIX-based
security technologies and thereby advance the state
of e-business over the Internet. As a reference im-
plementation, the Jonah architecture shied away
from proprietary software systems and instead re-
lied on standard components. Most notable is its use
of Intel’s Common Data Security Architecture28

(CDSA). This specification has been adopted by the
Open Group and is backed by a publicly available
reference implementation.

CDSA consists of a framework that supports dynamic
loading of pluggable low-level services that provide
cryptographic functions, known as the Cryptographic
Service Providers (CSPs), data storage and retrieval
of security constructs such as cryptographic keys and

certificates (Data Library, or simply DL), as well as
interfaces for the manipulation of certificates (Cer-
tificate Library, or CL) and for the verification of
Trust Policies (TPs) that an enterprise may elect to
enforce. This wide range of security services is ac-
cessible through a consistent layer of programming
interfaces referred to as the Common Security Ser-
vices Manager (CSSM). Figure 13 illustrates the uni-
fied Jonah run-time architecture that is logically rep-
licated across each of the three services provided by
Jonah: the EE, the RA, and the CA.

The model is logical, in that each of the services per-
forms the functions associated with its role, but all
share a common architecture. The EE, for example,
consists of a lightweight execution run-time environ-
ment with a smaller footprint than that of the RA or
the CA. The RA and the CA are multithreaded serv-
ers that provide the PKIX transactional functions of
the certificate life cycle. The RA securely preregis-
ters users, validates any transactions requested by
the EE against an existing policy, and approves such
requests, which it then forwards to the CA. The CA,
having established a trust relationship with its RA
through an earlier enrollment process, issues and
signs a certificate or a CRL. While it is the CA that
drives the LDAP publishing events, the RA interacts
with the LDAP server that publishes certificates and
CRLs.

Each of the Jonah servers is controlled via its graph-
ical user interface (GUI) layer that starts and con-
figures the server in its intended role. Jonah CMP im-
plementation is over direct TCP. An abstraction layer
is created around the socket interface to easily al-

Figure 12 Isolating the manipulation of a private key
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low for additional transports defined for CMP, such
as HTTP and SMTP (Simple Mail Transport Proto-
col). As we discuss in the next section, the separa-
tion of the CA from the RA and the adoption of a
transactional model that is based on an object store
prevent the loss of PKIX transactions and allow the
CA to run in off-line mode. The core functionality
of the Jonah RA and CA servers was subsequently
integrated into the IBM/Tivoli PKI Trust Authority29

product offering. IBM Trust Authority provides a ro-
bust and reliable registration and approval frame-
work of PKIX client entities as well as a rich set of
certificate life-cycle management functions that can
be initiated through a browser-based or a native
graphical interface. Two Jonah developments are
worth noting here: the adoption of a computational
model centered on an object store and the devel-
opment of a well-structured native ASN.1 library.

The Jonah object store. Naturally, certificate enroll-
ment transactions may require some intervention for
human approval of a request. Such intervention may
incur prolonged service time. Instead of blocking the
initiator, CMP was designed as a polling protocol that
guarantees a synchronous response to a request. If
a service response cannot be completed, it sends back
a polling response that tells the initiator to period-
ically poll until the request is serviced. The polling

nature of CMP, along with the possibility of PKIX serv-
ers going off line, led to Jonah’s architecture around
a nonvolatile object store as a medium for represent-
ing and maintaining all the PKIX transactions (Fig-
ure 14). Processing threads are spawned in response
to events detected by monitoring state changes in
the object store entities. For instance, an end entity
may construct a certificate request by creating an ob-
ject representing the request, storing it in the object
store, then submitting the request to the RA and
marking the underlying object as a surrogate in the
object store indicating that it is active in another
server, the RA in this case. When a polling response
is returned, the request object is updated with poll-
ing information that will subsequently drive a series
of polling requests until a complete response is re-
ceived, at which time the object is marked complete.
Similarly, when the RA server first receives the re-
quest it parses it in order to determine its type. It
then creates an object in its object store represent-
ing the request, marking it active. An event is then
triggered to dispatch a thread that processes the re-
quest. To aid the performance of Jonah servers, the
object store on disk is backed by a run-time cache
that maintains a subset of the objects representing re-
cently active transactions. Jonah transactional messages
are immediately mapped into entries in the object store.
As long as they are captured in the object store, Jonah

Figure 13 The unified Jonah servers architecture
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PKIX transactions are prevented from loss even when
a participating Jonah server goes off line.

Jonah processing: Computing over ASN.1 objects.
All of the PKIX constructs, including protocol for-
mats, are described in terms of ASN.1 data types. The
Jonah developers have designed and implemented
an ASN.1 class library for parsing ASN.1 encodings and
building run-time ASN.1 C11 objects. The library di-
rectly implements the ASN.1 primitive types, such as
character string and integer, and provides a well-struc-
tured class hierarchy for building up constructed
ASN.1 types such as sequences and sets. High-level
PKIX objects (e.g., a certificate or a CRL) are easily
defined. Functions needed for the manipulation of
a newly defined high-level object become immedi-
ately available through the generic methods defined
by the class hierarchy. The use of C11 polymorphism
allows Jonah ASN.1 objects, where applicable, to be
manipulated through common interfaces that in turn
behave differently based upon the type of the ob-
ject. The computational model in Jonah presents a
uniform and consistent aspect for transforming and
manipulating first-class ASN.1 C11 objects, includ-
ing object store processing.

Attribute certificates: The next evolution of
PKIX

A Public Key Certificate (PKC) serves as the basis
for the authentication of the subject it identifies. Pro-
vided a user’s certificate is validated with respect to

a trusted root authority, a simple method, such as
a verifiable digital signature, leads to proof of pos-
sessing the underlying identity, otherwise known as
authentication. Secure identification is the key pre-
condition for granting access to controllable re-
sources. A resource manager will attempt to enforce
an access control policy only after a successful au-
thentication.

The X.509 attribute certificate30 (AC), of which an
X.509 certificate is a fundamental part, seeks to cer-
tify or securely bind a set of authorization capabil-
ities to a subject, in the same way that an X.509 PKC
binds a public key to its subject. The distinction be-
tween these two types of certificates is dictated by
the dynamic nature of authorization roles that a par-
ticular entity can assume over time, while possess-
ing the same public key certificate. Figure 15 shows
how a trust path is established in an AC by tracing
back the holder to the associated X.509 PKC.

It is worth noting that the authority issuing an AC
uses the public key certified by its PKC in order to
sign it. Thus, the validation path of an AC ultimately
requires the presence of the holder’s PKC and the
PKC of the issuer of the AC, as well as a valid trust
chain to the root signing authority for each of the
public key certificates. The set of authorization priv-
ileges that an AC certifies are defined by an ASN.1
Attribute type, which is a sequence of (key, value)
pairs identifying access right types and their asso-
ciated values; for example, a clearance is identified

Figure 14 Capturing PKIX transactions using the Jonah object store model
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through an ASN.1 object identifier of {2 5 1 5 55}
whereas its value may carry a security labeling based
on a multilevel security policy.

Conclusion

Public key cryptography is rapidly transforming the
technical aspects surrounding systems and network
security. The concept is based on mathematical foun-
dations and is computationally reliable, simple, and
elegant. The ramifications are far-reaching. The In-
ternet public key infrastructure for X.509 certificates
is an attempt to remedy the lack of assurance in the
public key. The underlying PKIX technologies pro-
viding the solution are robust and promising. Inter-
net-based e-business applications are quickly adopt-
ing PKIX as the cornerstone of their security solutions.
While PKIX attribute certificates for authorization
credentials are evolving, enterprises will largely rely
on mappings between X.509 public key certificates and
local identities, so that legacy access control systems
can remain in effect.
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