
Metrics to evaluate
vendor-developed
software based on test
case execution results

by K. Bassin
S. Biyani
P. Santhanam

Various business considerations have led a
growing number of organizations to rely on
external vendors to develop software for their
needs. Much of the day-to-day data from
vendors are not available to the vendee, and
typically the vendee organization ends up with its
own system or acceptance test to validate the
software. The 2000 Summer Olympics in Sydney
was one such project in which IBM evaluated
vendor-delivered code to ensure that all
elements of a highly complex system could be
integrated successfully. The readiness of the
vendor-delivered code was evaluated based
primarily on the actual test execution results.
New metrics were derived to measure the degree
of risk associated with a variety of test case
failures such as functionality not enabled, bad
fixes, and defects not fixed during successive
iterations. The relationship of these metrics to
the actual cause was validated through explicit
communications with the vendor and the
subsequent actions to improve the quality and
completeness of the delivered code. This paper
describes how these metrics can be derived from
the execution data and used in a software
project execution environment. Even though we
have applied these metrics in a vendor-related
project, the underlying concepts are useful to
many software projects.

Appropriate use of software metrics is vital to any
software project.1–3 From the software release

management point of view, there have been exam-
ples of metrics used in various companies.1,4–6 These
metrics help track aspects of an ongoing software
project, such as changing requirements, rates of find-
ing and fixing defects, and growth in size and com-
plexity of code. From the testing point of view,6,7 the
metrics typically focus on the quantity and quality

of software, the progress of testing, and the effec-
tiveness of testing. Examples of typical metrics in-
clude product or release size over time, defect dis-
covery rate over time, defect backlog over time, test
progress over time (plan, attempted, actual), and per-
centage of test cases attempted. Although each of
these metrics has merit, overall they were insufficient
to address the special requirements imposed by the
IBM project for the 2000 Summer Olympics, held in
Sydney, Australia, particularly with regard to eval-
uating components developed by an external ven-
dor.

The status of these metrics is typically reported ei-
ther as measured against expected goals in the sched-
ule or against a previous release with similar con-
tent for comparison. In the case of the 2000 Summer
Olympics, data from prior Olympics were either not
available or not sufficiently similar in content to be
useful. Thus, the assessment of progress being made,
the stability of the product in terms of functional con-
tent and code quality, and the effectiveness of test
activities had to depend on being measured against
expected goals in the current project rather than on
historical evidence.

The trend toward increased outsourcing of software
development demands the regular use of new met-
rics and methodology to assure adequate quality and
schedule integrity. One of the challenges a vendee

�Copyright 2002 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002 0018-8670/02/$5.00 © 2002 IBM BASSIN, BIYANI, AND SANTHANAM 13

organization faces is the evaluation of the delivered
code in terms of functionality, performance, etc. Be-
cause of the implicit risks in software projects, the
contractual commitments for quality and complete-
ness are generally at a high level, and typically the
vendee organization defines and executes its own sys-
tem or acceptance test to validate expectations. Of-
ten the code is delivered in an incremental fashion
through multiple iterations, and many of the detailed
operational data from the vendor are not available
to the vendee.

This paper presents a set of metrics that can be de-
rived by the vendee organization based on the eval-
uation of its own test cases on code delivered to it,
without depending on a sparse amount of informa-
tion typically provided by the vendors. These met-
rics can significantly enhance the strength of vendee
organizations in accepting vendor code by giving
them objective measures of the vendor’s perfor-
mance. Though problems typical to vending software
development are known, there appears to be noth-
ing in the literature describing the derivations and
validation of quantitative metrics from actual test
case execution records.

Background of project

The 2000 Summer Olympic Games were considered
to be the largest single sporting event in the world.
Table 1 shows some of the facts that reflect the scope
of this endeavor. In addition to capturing and report-
ing event results, IBM’s role in those Summer Olym-

pics had expanded to include managing and mon-
itoring the information technology (IT) infrastructure
and many other aspects of a total of 39 venues. This
role included everything from keeping track of each
of the 15836 athletes, coaches, and officials to man-
aging food service for the 5.5 million spectators at
the games. Preparing for the Olympic Games has
been described as building a billion dollar company
with 200000 employees in less than four years, then
tearing it down in 90 days. One critical challenge was
the development, test, and integration of the venue
results systems. The diagram in Figure 1 is a rep-
resentation of the overall architecture and the com-
plex data flows and interfaces to and from venue re-
sults. These systems are responsible for capturing and
collecting the results of each sporting event and re-
porting these results to 15000 accredited media per-
sonnel (journalists and broadcasters), sport officials,
coaches, participants, and 3.7 billion remote spec-
tators.

Project description. The focus of this paper is on the
development and testing of the venue results compo-
nents. These components were developed by a vendor
in Spain, and the testing and integration of these and
other components were executed by the IBM Games
System Center (GSC) in Spain. Specific responsibilities
were defined at the beginning as follows:

● Design of the venue results components was pri-
marily the responsibility of the vendor, with IBM
providing input and participating in design reviews.

● The vendor was responsible for coding and early

Table 1 The scope and complexity of Olympics events

Winter Games Summer Games

Number of medal events 68 300
Different sports 7 28
Competition venues 12 39
Accreditation venues 25 30
Concurrent events 9 7
CIS (Commentator Information

System) screen formats
535 800

Languages supported English, French, Japanese English, French
Timing vendor Seiko (Nagano) Swiss T (Sydney)
Timing performance Subsecond Subsecond
Report types 2,000 3,000
INFO users 84,000 260,000
INFO terminals 1,500 2,000
News records 4,000 10,000
Biographical records 8,000 35,000
Historical records 500,000 1,500,000
Average INFO requests per day 710,000 6,500,000
Internet hits per day 56M peak 874.5M peak

BASSIN, BIYANI, AND SANTHANAM IBM SYSTEMS JOURNAL, VOL 41, NO 1, 200214

testing (including code inspections, unit test, and
simple functional testing for each sport).

● GSC was responsible for multiple test activities: ver-
ification test (straightforward tests intended to ver-
ify that the component was sufficiently stable to
proceed to subsequent test activities), function test

(thorough testing within each component in terms
of basic functional requirements), function inte-
gration test (testing of integrated components to
ensure functional interaction and interfaces meet
requirements), and system integration test (test-
ing of fully integrated system).

Figure 1 Major applications and critical data flows and timing requirements for 2000 Summer Olympics (trigger in this figure
not related to ODC trigger)

WNPA SYSTEM
SPORTS-RELATED
PARTICIPANTS

D
B

C
O

P
Y

 T
O

 H
O

S
T

D
B

C
O

P
Y

 F
R

O
M

 H
O

S
T

B
IO

G
R

A
P

H
IC

A
L

IN
F

O
R

M
AT

IO
N

P
R

IN
T

 R
E

Q
U

E
S

T

R
E

S
U

LT
S

 D
AT

A
 F

O
R

 P
R

IN
T

R
E

S
U

LT
S

 D
AT

A
 F

O
R

 P
R

IN
T

RESULTS-INFO
TRIGGER

RESULTS DATA

DATA

(WNPA)

ORTO

SCOREBOARD PRINT
RECEIVER

CIS RESULTS
DATA

INTERNET

GLOBAL
COMMUNICATIONS
EMAIL

INTERNATIONAL
FEDERATIONS

TEAM
CAPTAINS

NAOC
SPORT

ACCREDITATION
SYSTEM

CENTRAL RESULTS
SYSTEM HOST

SYSTEMS OPERATIONS
CENTER

WNPA FEED

INFO DATA
COLLECTION

NAOC
COMMITTEE

INFO
INFORMATION
MANAGEMENT

SEIKO
TIMING

CIS

OFFICIALS
VENUE RESULTS

IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002 BASSIN, BIYANI, AND SANTHANAM 15

● Acceptance testing, performance test, and a more
extensive and final system integration test were
conducted by the team in Sydney, Australia.

Late in 1998 it was decided that advanced analysis
and decision support, which included the use of Or-
thogonal Defect Classification (ODC),8–10 was re-
quired for the evaluation of progress and risk asso-
ciated with testing and integrating components.

Metrics used prior to work reported in this paper.
Many tools and methodologies to evaluate quality
were already in place. Quality plans had been de-
veloped to define acceptable outcomes. Inspec-
tions of a wide variety of artifacts, including require-
ments, design, code, use cases, and object and class
definitions, were defined as key process steps. Sta-
tus reviews were an integral part of all major check-
points during the test and integration activities. Many
process and product evaluation metrics were already
being used by the vendor and GSC. The vendor re-
sponsible for developing the venue results compo-
nents was highly respected and experienced in deliv-
ering these types of applications, having participated
in such high-profile (albeit single venue) international
events as the Wimbledon tennis competition. The
vendor had implemented a set of metrics based on
Rational Rose** technology, including such object-
oriented measurements11 as attributes per class, as-
sociations per class, and number of children per class.
In addition, they were systematically measuring code
complexity primarily by means of cyclomatic com-
plexity.12 Given these considerations, why was there
a perceived need for additional decision support?

Need for additional metrics. One concern was the
cyclomatic complexity metrics used by the vendor.
These metrics were able to detect variances in com-
plexity and implied risk; however, the measurements
could not be taken until after the design and code
were complete, resulting in the risk that there would
be insufficient time to address exposures and still
meet the demanding schedule. Of greater signifi-
cance was the fact that applying these measurements
to the venue results components independently from
the rest of the system precluded an evaluation of how
the components would behave when integrated. This
fact was particularly relevant with regard to the
multivenue Olympics system, whose architecture and
components consisted of many platforms, compo-
nents, and technology.

A key inhibiting factor was that the plan called for
not only incremental deliveries of the vendor prod-

uct overall but for individual functions for each sport
component to be delivered incrementally on inde-
pendent schedules. This delivery routine had impli-
cations in terms of defining and executing a test plan
based not on the full functional content of a sport
product upon delivery, but rather on those functional
elements that were presumed to be part of the de-
livery. Thus, it was extremely difficult to define an
expectation in terms of conventional metrics with re-
gard to the overall product.

The extent to which defect backlog over time was
a concern had implications with regard to both prod-
uct stability and test effectiveness, and it ultimately
could inhibit progress. Unfortunately, it was diffi-
cult to identify a trend for a model that called for
defect fixes to be held for relatively long, inconsis-
tent intervals and delivered in large batches, as was
the case in the 2000 Summer Olympics. The ability
to utilize an S-curve model to track progress was also
impacted by the frequency and interval inconsistency
of incremental code and fix deliveries. An S-curve
model is ideal for an environment in which defect
discovery is random and test effort is steadily exe-
cuted. In the 2000 Summer Olympics, testing for each
sport would be halted for long periods of time until
the new increment had been received.

Organizational churn was also a factor. Up to 80 per-
cent of the test team members changed every few
weeks as attention was directed to each individual
sport and corresponding specialists were brought in.
Thus there was a relatively small core team of test
experts able to provide continuity in terms of assess-
ing status, identifying weaknesses, and putting ac-
tions in place to address them.

Because of the severe schedule stress, interaction be-
tween the technical team and the analyst was kept
at an absolute minimum. This limitation meant that
the evaluations had to be based almost entirely on
what could be derived by available data. Fortunately,
the collection of data by the test team was very thor-
ough and, with a few exceptions, complete. The fol-
lowing section describes the data that were collected
during the project and identifies those elements that
were available for the specific analysis described in
this paper.

Data

Although there were gaps in terms of defect data,
as previously described, there was nevertheless a
great deal of valuable data collected throughout the

BASSIN, BIYANI, AND SANTHANAM IBM SYSTEMS JOURNAL, VOL 41, NO 1, 200216

project. These data originated from three sources:
vendor, GSC, and test activities.

Vendor metrics, data, and measurements. The ven-
dor captured measurements that enabled its analyst
to assess productivity and complexity, and to pro-
ject quality for each sport. The vendor initially pro-
vided GSC with complexity values based on Rational
Rose as well as a projection of quality for each sport,
although not the underlying data. The measurements
and projections were helpful in the initial planning
stages. As time progressed, however, decisions were
made to deviate from the original plan in terms of
technology and function, creating a dynamic envi-
ronment difficult to size and measure accurately. Not
any of the actual results for defect detection and re-
moval activities, the defect record counts, nor the
defect records themselves were made accessible to
GSC. Additionally, information regarding the re-
quired fixes for defects that were discovered and re-
ported by IBM (GSC and Australia) was not available
to IBM.

GSC metrics, data, and measurements. The quality
plan of GSC described many process- and product-
related metrics designed to ensure a high standard
of quality in terms of all deliverables as well as main-
taining the planned schedule.

The process-related metrics were primarily target-
ing the assessment of current status and, to some de-
gree, anticipating changing needs for resource and
skill. Because of the nature of the Olympics project
(i.e., it was a single engagement, executed once), con-
tinuous improvement over multiple generations of
a product was not a priority in terms of the process-
related metrics. It was, however, important to be able
to identify process weaknesses and exposures over
the series of incremental product deliveries. Process
metrics included summary-level evaluations of effort,
staffing, schedule, successful completion of an activ-
ity, cost, and productivity. These metrics could be
used early in the project to anticipate resource and
skill requirements, and during the project they could
be used to provide executive-level views of status.
They proved to be inadequate, however, at more
granular views in isolating cause and effect and pro-
viding sufficient insight to enable management and
technical teams to address deficiencies quickly.

Product-related metrics included many that are typ-
ical of software development activities such as sys-
tem size, defect density, defect removal rate, incom-
ing defect rate, and defect closure rate.

The success of these metrics was, by definition,
greatly affected by the availability of accurate infor-
mation regarding component and increment sizes.
As the project content and design evolved, the orig-
inal form of these metrics was inadequate for keep-
ing pace with the changes. The set of metrics was
enhanced through the implementation of ODC,8–10

which enables evaluation based on distributions of
semantic attributes rather than defect rates, and as
such are not as dependent on the accuracy of prod-
uct size measurements as metrics based on defect
rates per kloc (thousands of lines of code). Unfor-
tunately, since defect data were not complete, it was
necessary to find other measurements that would “fill
in the gaps” and improve the accuracy of the anal-
ysis.

Test data. Fortunately, the data collected in plan-
ning and executing test activities were extensive—
much more so than a typical project, and more
thoroughly than many large, complex projects.
Considerable effort was invested in the early stages
to plan and evaluate the comprehensiveness of the
various test activities. ODC was used innovatively13

in classifying and analyzing test cases. This use made
it possible to evaluate the completeness of the
planned effort across many dimensions (for exam-
ple, depth and variety of testing relative to each sport,
event reporting with regard to media and content
requirements, and adherence to test strategy) and
to set expectations for test execution. The investment
in terms of capturing data in test cases and their as-
sociated execution and defect records proved to be
invaluable in terms of analysis that could be per-
formed throughout the project.

Categorization. All data were organized first by a main
category based on 39 competition venues plus 12 gen-
eral information categories. The main categories
were subdivided into scenario groups. Typically, these
groups represented different events within a sport
(such as men’s singles within tennis), as well as cer-
tain additional categories, such as installation, con-
figuration, and dynamic information. Another cat-
egorization, called function type, was used to describe
the functionality under test, such as different types
of data entry, and reports before, during, and after
the event. Many scenarios and test cases were ex-
ecuted during multiple test activities (i.e., verifica-
tion test, function test, etc.) to ensure that functions
could be successfully invoked as a component be-
came more complete, the configurations increased
in complexity, and the environment evolved to be
more realistic.

IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002 BASSIN, BIYANI, AND SANTHANAM 17

Hierarchical structure. The planned test effort, as well
as the current status of successful execution, can be
understood and evaluated by examining the hierar-
chy of records representing it. Figure 2 depicts this
hierarchy and illustrates some typical sequences. Test
Case 1 shows a successful execution under Activity
1 with no defects found. Test Case 2 shows an un-
successful execution under Activity 1 with its asso-
ciated defect. A subsequent execution under the
same activity verifies the fix. Test Case 3 shows that
the first execution under Activity 1 was successful,
whereas the execution in Activity 2 failed. This fail-
ure may be caused by a more complex environment
during Activity 2 or by regression of the code. Test
Case 4 was executed for the first time in Activity 3
and revealed two defects. In Test Case 3 and Test
Case 4, for simplicity we have not shown the exe-
cution records associated with the successful retest-
ing of the fix.

Test case data. The data collected for each test case
included the categorization outlined above, the test
activities during which the test case was to be exe-
cuted, and some ancillary information such as the
author and last modification time. In addition, an
ODC trigger8 was assigned to each test case. ODC de-
fines a trigger as the environment, catalyst, or spe-
cial conditions that must exist in order for a defect

to surface. The description or instruction normally
associated with a test case includes this information.
For example, the test setup would specify a certain
hardware or software configuration, or an explicit
condition such as simulation of a heavy workload.
These descriptions map to specific definitions of ODC
triggers. Thus, the focus or intention of the test case
is understood when it is defined and can be repre-
sented by an ODC trigger at that time. Later during
test execution, if a defect was revealed, the trigger
would be automatically copied to any defect records
associated with that test case. The trigger values in
the defect records were validated against the descrip-
tion of the failure for accuracy. Reference 13 de-
scribes this use of ODC in the Olympics project, pro-
viding details of the method, validation, and results
achieved.

Execution data. When a test case execution was at-
tempted for a given release (e.g., increment deliv-
ery), an execution record was created. Each execu-
tion record included an execution history consisting
of an entry for each time the test case was attempted
within the same release and the result of each at-
tempt. These entries would reflect the date and time
of the attempt and the status (pass, completed with
errors, fail, not implemented, or blocked). A status
of “failed” or “completed with errors” would result

Figure 2 Hierarchy and relationship of test scenarios, test cases, execution records, and defects
T

E
S

T
 A

C
T

IV
IT

Y
 1

TEST SCENARIO

TEST CASE 1 TEST CASE 2 TEST CASE 3 TEST CASE 4

EXECUTION
RECORD 2

EXECUTION
RECORD 2

EXECUTION
RECORD 1

DEFECTDEFECTDEFECT

EXECUTION
RECORD 1

EXECUTION
RECORD 1

EXECUTION
RECORD 1

T
E

S
T

 A
C

T
IV

IT
Y

 1

T
E

S
T

 A
C

T
IV

IT
Y

 1

T
E

S
T

 A
C

T
IV

IT
Y

 3

T
E

S
T

 A
C

T
IV

IT
Y

 1

T
E

S
T

 A
C

T
IV

IT
Y

 2

DEFECT

BASSIN, BIYANI, AND SANTHANAM IBM SYSTEMS JOURNAL, VOL 41, NO 1, 200218

in the generation of an associated defect record. A
status of “not implemented” indicated that the test
case attempt did not succeed because the targeted
function had not yet been implemented. “Blocked”
status was used when the test case attempt did not
succeed because access to the targeted area was
blocked by code that was not functioning correctly.
Defect records would not be recorded for these lat-
ter two statuses. Additional information in the ex-
ecution record included the test activity, pointers to
any defects found during execution, and other an-
cillary information.

Defect data. For each defect found during testing,
the associated execution and test case information
was recorded along with defect description, sever-
ity, priority, status (open, closed, canceled, etc.), open
date, close date, etc. In addition, defects were clas-
sified according to ODC, providing information about
the semantics of the defect, including test activity,
trigger, and impact. Trigger has been previously de-
fined. Activity refers to the task being performed
when the defect was uncovered (for example, func-
tion test, performance test, or system test). Impact
reflects the expected affect the defect would have on
an end user should it have escaped the test (for ex-
ample, reliability or usability). Aside from these at-
tributes known when the defect was uncovered, ad-
ditional defect attributes were classified based on the
fix information: target, defect-type, and qualifier.
ODC target reflects the high-level view of what
needed to be fixed (such as design, code, or docu-
mentation). Defect-type expresses the complexity
and scope of the fix, as well as its characteristics (for
example, simple defects such as initializing a vari-
able or complex defects such as timing or serializa-
tion). Qualifier describes the defect-type in terms of
whether the defect was an incorrect, missing, or ex-
traneous element. Since fix information was not pro-
vided by the vendor, it was necessary to classify fix
attributes using the discovery information and a re-
lationship model based on comparable projects and
experience.

Data quality. The overall quality of the data was very
good. As is often the case with large data sets, not
all records were “clean.” Some invalid values crept
in, and it was necessary to apply some filters to elim-
inate them. Defect records were validated for accu-
racy. Inconsistency in date formats used was another
problem area. Although the time stamps were gen-
erated automatically by the test environment, vari-
ation in local settings caused a mix of two-digit and
four-digit years as well as a mixture of U.S. format

(month-day-year) and European format (day-month-
year) often within the same sport. Although this
problem could have been avoided with better input
controls, avoidance is not always easy in a multi-
national environment, and careful handling of date
data after the fact solved most of the problems.

Metrics

The collection of data is critical, but the value the
data provide can only be achieved through use of
the data in analysis and feedback. In addition to over-
all project goals (for example, quality and delivery
requirements), the depth of captured data made it
possible to define goals and associated metrics to sup-
port technical decisions.

Goals associated with the metrics. Through analy-
sis of test case, execution, and defect records it was
possible to define a new set of metrics that could suc-
cessfully relate cause and effect relationships and iso-
late exposures and opportunities. The set of metrics
was applied to the overall project but also to indi-
vidual sports or test activities, making it possible to
identify the critical opportunities or exposures by
team. Goals that could be supported included:

● Establish clear and precise checkpoint exit crite-
ria for each sport increment.

● Quickly identify actions that could be put in place
to target exposures and mitigate risk.

● Track and evaluate the degree to which the exe-
cuted actions were successful with regard to sched-
ule and effectiveness.

● Anticipate the impact of projected product weak-
nesses and rework on the current and subsequent
test activities.

● Enhance the team’s ability to successfully nego-
tiate the resolution of exposures with the vendor.

Metrics based on test data. To capture a good over-
view of the test execution process, both planned and
executed, we extracted information for each main
category, subcategorized two ways: by scenario group
and by function type. The following discussion de-
scribes the basic and derived metrics that were used.

Metrics based on counts. The first group of metrics,
presented below, represents a sample of basic record
counts used. Some were useful in the initial evalu-
ation of the planned test effort, as well as during test
to evaluate progress and risk. The related metrics
on which we focused included:

IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002 BASSIN, BIYANI, AND SANTHANAM 19

● Number of scenarios
● Number of scenarios by function type
● Number of test cases defined
● Number of test cases executed
● Total number of execution records (over multiple

releases)
● Number of defect records
● Number of test cases with failures but no associ-

ated defect records

The percentage of test cases attempted was used as an
indicator of progress relative to the completeness of
the planned test effort.

The number of defects per executed test case was an
indicator of the quality of code as it progressed
through the series of test activities. Since the com-
prehensiveness of the planned test cases had already
been validated,13 this metric could also be used to
evaluate the effectiveness of the test effort associ-
ated with each activity in uncovering defects.

The number of failing test cases without defect records
was an indicator of the completeness of the defect
recording process.

Metrics derived from execution history. The availabil-
ity of execution results for each test case and the time
sequence gave us a unique opportunity to consider
some aspects not often scrutinized. Each of these
aspects and the preceding list of metrics were input
for the evaluation of risk at critical intervals in terms
of product stability as well as test progress and ef-
fectiveness. Specifically, we considered the follow-
ing:

Success rate: The percentage of test cases that passed
at the last execution was an important indicator of
code quality and stability.

Persistent failure rate: The percentage of test cases
that consistently failed or completed with errors (but
did not change from fail to error or vice versa) was
an indicator of code quality. It also enabled the iden-
tification of areas that represented obstacles to pro-
gress through test activities.

Defect injection rate: We used the percentage of test
cases whose states went from pass to fail or error,
fail to error, or error to fail, as an indicator of the
degree to which inadequate or incorrect code changes
were being made.

Code completeness: The percentage of test execu-
tions whose status remained “not implemented” or
“blocked” throughout was important in terms of eval-
uating the completeness of the coding of component
design elements. It was also useful to measure progress.

Statistically significant cases. A critical requirement
we were asked to address was decision support for
management, project management, and technical
teams. Since it is not easy to make sense from a ta-
ble with a large number of metrics for each subcat-
egory, we highlighted the statistically “extreme” val-
ues of the following metrics as possibly needing
attention. Some of the key, statistically significant
cases are identified in this list.

● Low percentage of test cases executed
● High number of defects per test case
● High unrecorded defects
● Low success rate
● High persistent failure rate
● High defect injection rate
● Low code completeness

Identifying values as “significant” was based on the
statistical distributions appropriate to the respective
metrics. For the number of defects per test case, a
Poisson model was used, with the expected number
of defects in a subcategory proportional to the num-
ber of test cases. A subcategory was flagged as sig-
nificant if the actual number of defects was within
the upper five percent of the Poisson distribution.
For all other metrics (based on percentages), the sig-
nificance calculation was based on the hyper geo-
metric distribution of the counts within a subcate-
gory. For metrics where a high value would be of
concern, values in the upper five percent of the dis-
tribution were flagged as significant. For metrics with
undesirable low values, the values in the lower five
percent of the distribution were flagged as signifi-
cant.

Defect data summaries. We generated the follow-
ing summaries for each sport using the ODC data.

Summary of defect state by severity: The focus of
attention here is the possible presence of a large
number of open defects of high severity. Priority in
fixing and retesting was to have been given accord-
ing to the severity of the defects, and this metric was
one mechanism by which exceptions could be iden-
tified.

Summary of defects by test activity: Having first es-
tablished an expectation for each activity based on

BASSIN, BIYANI, AND SANTHANAM IBM SYSTEMS JOURNAL, VOL 41, NO 1, 200220

the test case classification and analysis, these sum-
maries were used as one element of evaluating the
effectiveness of each test activity in terms of defect
removal.

Summary of defects by trigger: This metric provides
evidence of how comprehensive the test effort as-
sociated with a particular activity has been. A broad
range of triggers would indicate that the code has
been exercised in a diverse manner, both simple and
complex.

Summary of defects by impact: This summary allows
an assessment of the nature of the effect the defects
are likely to have had if they would have escaped
discovery by testing. A broad range of impacts re-
flected in the defect data suggests that the effort was
comprehensive in terms of testing for such areas as
reliability, usability, and capability.

Summary of defect type versus qualifier: Analysis of
the relationships between defect type and qualifier
uncovers weaknesses in explicit areas of require-
ments, design, and coding activities. These exposures
can be targeted in subsequent increments by the de-
velopers. In addition, this information helps test
management understand the implications of a retest-
ing effort in terms of schedule and resource con-
straints based on the implied scope of the fault.

The defect data summaries, along with the new met-
rics based on the execution data, provided detailed
insight into various parts of the system. This insight
was used to guide the test teams toward more effec-
tive defect discovery and evaluation of risk to the
overall plan. In addition, the analysis pinpointed fo-
cus areas for early prevention or removal of defects
by the vendor development team and provided ac-
curate evaluations of progress.

Application of metrics

The decision of where the metrics should be applied
to the ongoing project was dictated by when and how
critical decisions would be made. Some of these de-
cision points had been long established as part of
the original test plan. Others evolved as the project
came closer to the completion date and any expo-
sure could mean the difference between success and
failure. The comprehensiveness of the planned test
effort had been previously verified, as alluded to ear-
lier in this paper and described more fully in Ref-
erence 13. This verification was a key element in the
analysis of progress, completeness, and effectiveness,

and formed the baseline and expectation against
which results could be measured. We will begin with
a discussion of the formal checkpoints and how the
new metrics were integrated into decision support.

Exit criteria. The project had several major check-
points when progress and status were to be evalu-
ated in terms of four criteria:

1. There may not be any open Severity 1 problems.
2. There should not be any open Severity 2 prob-

lems.
3. Analysis must demonstrate that the test effort has

been sufficiently effective and comprehensive
(against the planned objectives for this check-
point).

4. Analysis must demonstrate that the component
has reached a sufficient stability level in terms of
design (functional content) and code (reliabili-
ty).

Criteria 1 and 2—Severities. The first two criteria
would appear to be quite clear: there either are, or
are not, Severity 1 and Severity 2 defects. However,
since the checkpoint represents a moment in time,
but the analysis of risk does not, it was necessary to
look beyond the current open defects. One obvious
solution would be to build a metric that captures de-
fect trends over time by severity. Unfortunately, the
incremental delivery schedule was such that there
would be relatively long periods of inactivity with re-
gard to defects, followed much later by a substantial
code drop including fixes for many defects. Standard
growth models were simply not effective in this envi-
ronment. Taking a series of “snapshots,” however,
using the applicable metrics outlined in the previ-
ous section, subset by severity, enabled specific trends
to be identified. The relevant metrics and their ap-
plication to these criteria are described in the fol-
lowing subsections.

The analysis pinpointed focus
areas for early prevention

or removal of defects by
the vendor development team

and provided accurate
evaluations of progress.

IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002 BASSIN, BIYANI, AND SANTHANAM 21

Success rate. This rate is the percentage of test cases
that passed at the last execution. In a mature orga-
nization, a typical set of metrics for performing the
analysis associated with measuring test progress
would likely include one that calculates the percent-
age of the planned test activity that has been com-
pleted. Although this calculation may appear to be
satisfied by a straightforward, simple metric, there
are mitigating factors that must be considered. In
this project, for example, the same test cases were
frequently used in two and sometimes three test ac-
tivities. It was not sufficient to count each unique test
case only once. Even basing the same metric on each
test activity was not sufficient to provide an accurate
view of progress.

In the example reflected in Table 2, both Compo-
nent A and Component B should have progressed
at least 60 percent through the overall test effort at
the time the data were analyzed. Using the first met-
ric (percent of unique test cases attempted), we can
see that both components are at risk, with Compo-
nent A having only achieved 43 percent, while Com-
ponent B is only 30 percent of the overall test effort.
The second metric (percent of test cases attempted
by activity) provides additional insight but leaves the
observer perhaps even more confused as to the risk
associated with each component. It does seem clear
that Component A has progressed further than Com-
ponent B and that risk is apparently only associated
with the last test activity, function verification test
(FVT). For Component B, it seems that both func-
tion test (FT) and FVT are at risk, perhaps FVT less
so than FT, though this seems counterintuitive. When
we use the metric of test case attempts that have suc-
cessfully passed, however, we see that the risk as-
sociated with both components is actually signifi-
cantly higher than the first two metrics would suggest.

Defect injection rate. The percentage of test cases that
showed an execution state sequence of pass to fail,

fail to error, or error to fail was interpreted as the
extent to which defects were injected while attempt-
ing to fix a defect or the attempt to fix a defect was
either incomplete or incorrect. The fluctuations in
this rate and fluctuations in the volumes of Severity
1 or Severity 2 defects were studied to determine
whether there was a correlation. If a relationship did
exist, it was used to project the change in volumes
for these severities in future test case executions.

Defects per test case, by severity. The rates at which
test cases revealed defects and how those rates
changed in the course of multiple “snapshots” was
an indicator of whether the product was becoming
more stable. Measuring the rates, subset by sever-
ity, enabled this insight to be used in projecting fu-
ture risk relative to each severity. Figure 3A and Fig-
ure 3B show both the cumulative rates and current
period rates relative to Component A and Compo-
nent B, respectively. We can see that overall, the de-
fects of Component A are primarily low severity,
although the most recent period revealed a few
Severity 2 defects. It is a very different picture with
Component B, where we see a predominance of Se-
verity 2 defects, and the most recent period is con-
tinuing this distribution.

Defect state, by severity—summary. This view is
mainly concerned with revealing the possible pres-
ence of a significant volume of open defects of high
severity.

Criterion 3—Test effectiveness. Test effectiveness re-
quires measurements across many dimensions. It is
not only necessary to evaluate the extent to which
the planned effort has been successfully executed,
but it is also important to validate that the plan was
sufficiently comprehensive and that the actual results
matched the plan. The validation of the plan was per-
formed13 initially and on an ongoing basis as changes
were made to product content and associated test

Table 2 Results of three metrics intended to represent progress shown relative to two components when approximately 60
percent of testing should have been completed

Component A
(%)

Component B
(%)

Percent of unique test cases attempted 43 30
Percent by activity

Percent of DVT attempted 95 100
Percent of FT attempted 100 27
Percent of FVT attempted 6 32

Percent of test execute � pass 24 14

BASSIN, BIYANI, AND SANTHANAM IBM SYSTEMS JOURNAL, VOL 41, NO 1, 200222

efforts. Thus, the validated plan was used as the ex-
pectation against which the results were compared.
Since the plan could be translated into aggregates
of domain-specific test cases and their associated ex-
ecution and defect records, it was possible to track
progress and evaluate the effectiveness of a test rel-
ative to each domain. In addition to the question of
test effectiveness, it is imperative that the test man-
ager understand whether the test resource is being
used efficiently, whether there are obstacles that will
inhibit or delay the plan execution, and how these
obstacles can be managed.

The metrics described in the following subsections
were used to analyze these areas of concern.

Success rate. This metric is as critical, if not more so,
for evaluating the effectiveness of a test as it was for
assessing risk associated with severity. The implica-
tion for both Component A and Component B at
the checkpoint reflected in Table 2 is that very little
progress had been made and that there was still a
long way to go.

Persistent failure rate. This metric, as a percentage of
test cases that consistently failed, provides insight
into one reason why the success rate is reflecting ex-
posures for both components. Excessive and persist-
ent failure rates result in rework for testers and
wasted effort. These discoveries are not new but
rather are old defects not yet addressed. In compar-
ing our two components in Table 3, we can see that
this situation was a very real concern for both com-
ponents and continues to be a factor for Component
B.

Defect injection rate. This metric is also relevant to test
effectiveness and provides additional evidence of
wasted effort. Both the persistent failure rate and
defect injection rate were used to calculate the de-
gree to which the schedule had to be inflated and,
in conjunction with other metrics, was used to as-
sess the risk of not retesting specific areas.

Code completeness. This metric captures another as-
pect of wasted effort on the part of testers, that is,
the extent to which test cases fail because the func-
tion has not yet been implemented or the successful
execution of the test case is blocked because other
pertinent function is not available. Table 4 shows that
as of the later period, this was not an exposure for
either component. In previous periods, it was a con-
sideration for Component A but had not ever been
an exposure for Component B.

Percentage of test cases attempted overall, percentage
of test cases attempted by subset. These two simple
metrics, although not reflecting as accurate a view
of progress as other metrics, do serve to indicate the

Figure 3A Results of the execution of test cases
in exposing defects at two different stages
during development for Component A

Figure 3B Results of the execution of test cases
in exposing defects at two different stages
during development for Component B

IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002 BASSIN, BIYANI, AND SANTHANAM 23

changing focus and to what extent the component
has been verified. The percentage of test cases at-
tempted by test activity, scenario, and schedule re-
flect to what extent each is being targeted, and the
number of test cases organized by these subsets al-
lows the overall plan to be scrutinized in terms of
its comprehensiveness.

Failing test cases without defect records. Initially the
results of this metric caused concern, especially in
the area of severity and product stability since it ap-
peared that defect records were not being written
against all defects. Eventually it was verified that
these unrecorded defects were, in fact, duplicates of
other defects. The metric is not without value, how-
ever, since it shows the extent to which the test team
has wasted effort attempting to test a function that
has known defects not yet fixed. As we see in Table
5, this was a greater concern for Component A than
Component B in the previous periods and contin-
ues to be for the most recent period.

Defect data summaries. ODC-based analysis of the de-
fect data was another critical element of the risk as-
sessments. A summary by each ODC attribute re-
vealed specific weaknesses or strengths pertinent to
testing. For example, examining the relative distri-
butions of the “trigger” attribute showed whether
the majority of the effort had been focused on sim-
ple, basic testing, or whether test cases spanning sim-
ple to complex use cases had been attempted. The
implication of distributions in which simple cases
dominate is that the component has not been per-
vasively tested, it may not be stable, and the test ef-
fort to date has not yet been effective. The impli-
cation of distributions that show populations across
all triggers relevant to the test activity being per-
formed (as defined by the test team at the beginning
of the project) is that testing has been comprehen-
sive and the product is relatively stable at least with
regard to executing basic function. Another impor-
tant contribution of the ODC-based analysis was to
verify the extent to which added value was provided

Table 3 Percentage of test cases having a pattern of multiple “fail” or “complete with errors” and the most current status is
not “pass”

Component A
(%)

Component B
(%)

Previous periods (cumulative) 25 70
Most recent period 0 52

Table 4 Percentage of test cases that failed because the function had not yet been implemented or the execution is
blocked since another function is not available

Component A
(%)

Component B
(%)

Previous periods (cumulative) 9 2
Most recent period 0 0

Table 5 Counts of unrecorded (duplicate) defects potentially camouflage wasted effort on the part of testers in rediscoveries

Component A Component B

Previous periods (cumulative)
Count of total defects 201 (100%) 356 (100%)
Count of recorded defects 106 (53%) 317 (89%)
Count of unrecorded defects 95 (47%) 39 (11%)

Most recent period
Count of total defects 29 (100%) 101 (100%)
Count of recorded defects 15 (52%) 101 (100%)
Count with unrecorded defects 14 (48%) 0 (0%)

BASSIN, BIYANI, AND SANTHANAM IBM SYSTEMS JOURNAL, VOL 41, NO 1, 200224

by those test cases executed across multiple test ac-
tivities. Were these test cases serving as little more
than a regression test, i.e., an insurance policy that
the same failures were not recurring? If this were
the case, we would expect to see similar relationships
between trigger values and defect-types in any test
activity in which the test case was attempted. Or, as
the product became more stable and the underlying
environment became more complex, would the same
test case be able to reveal additional faults? Results
for the majority of test case attempts showed that
the behavior resembled a regression test—not much
that was new was revealed. However there was, in
fact, some evidence in specific areas that the rela-
tionship of triggers to defect types did change some-
what with regard to the redundant test cases from
early test activities to later ones. Additional inves-
tigating should be performed to understand the im-
plications more fully.

Criterion 4—Product stability. Metrics discussed in
the previous section were found to be sufficient for
evaluating the stability of each component. Those
that were pertinent included the following:

Success rate: The degree to which the execution at-
tempts were completing without failure or error and
how this rate changed across the checkpoints was an
indicator of code quality and design stability.

Persistent failure rate, defect injection rate: Test
cases that consistently failed, when viewed from the
perspective of functional scenarios or test activity,
enabled the identification of specific focus areas that
may not have been well understood by the develop-
ment team.

Code completeness: This metric represents the ex-
tent to which the design of the product is incomplete
(“not implemented” or “blocked”). Although some
omissions were planned for and expected (since the
plan called for the incremental delivery of function
within each component), an unusually high rate or
one that continued beyond the date of code drops
could be easily identified and scrutinized.

Defects per test case, summaries by defect-type, qual-
ifier, and impact: The rate of defects per test was
expected to decrease, and exceptions were easily
identified. The combinations of the ODC attributes
defect-type, qualifier, and impact revealed a great
deal with regard to high-level, detailed, and coding
exposures associated with a particular component.
Components with a large proportion of function, in-

terface, timing or serialization, or relationship defect-
types, particularly if they were “missing” elements,
would be considered high risk as the delivery date
drew near. If algorithms were the highest priority,
that suggested detail design was the weakness. In
these cases, further investigation was performed to

identify other characteristics of the design concerns.
Since fixes associated with algorithm defects are rel-
atively small, risk is considered to be less both in
terms of product stability and the impact to testing.
Assignments and checking, particularly if incorrect,
are usually associated with coding oversights. These
have the lowest degree of risk since the fixes are very
small, and there would be much less impact to test
in terms of delays.

An overall risk value, as well as values for each in-
dividual criterion, were included in the assessments.
These values were on a scale of 0 (no risk) to 5 (high-
est risk). The individual criterion risk values were
derived by calculating the risk indicated by each of
the measurements associated with that criterion,
weighted by the importance of each measurement
relative to that criterion. For example, the defect in-
jection rate would only be important as a risk mea-
surement relative to Severity 1 criteria if there was
a correlation between the rate of defect injection and
the volume of Severity 1 defects. In contrast, the de-
fect injection rate would always be critical in eval-
uating risk associated with product stability. The
overall risk value was calculated by a weighted av-
erage of the criteria values. The two criteria, based
on severity since that exposure could be addressed
relatively swiftly, were weighted as less significant
than the criteria of test effectiveness and product sta-
bility. The primary purpose of the overall value was
to provide a consistent mechanism for comparing risk
across all of the components and to measure pro-
gress from one checkpoint to the next.

Analysis not only quantified and
defined risk at critical checkpoints

but provided important
information for resource, schedule,

and product decisions.

IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002 BASSIN, BIYANI, AND SANTHANAM 25

Decision support

The analysis guided by exit criteria was a key ele-
ment of decision support—at a summary level for
executives and management, and at a more detailed
level for the test manager. This analysis not only
quantified and defined risk at these critical check-
points, but the details of the analysis provided im-
portant information for resource, schedule, and
product decisions.

The checkpoint analysis was also used on several oc-
casions as the basis for negotiation between IBM and
the vendor to resolve issues. A situation arose with
regard to one component in which the vendor be-
lieved significant progress had been made but the
test team did not agree. The vendor felt that much
of the risk associated with the component had al-
ready been mitigated but had not yet been reflected
in the test results because of the time needed to in-
tegrate the code increments. Analysis based on these
metrics was able to show that even after allowing for
the progress reported by the vendor, explicit expo-
sures remained. As a result of the negotiations, the
developer for the component worked side by side
with the testers to resolve the issues, and the com-
ponent was stabilized very quickly.

In addition to the in-depth checkpoint analysis, as-
sessments and outlook reports were provided on a
weekly basis. The reports included defect data sum-
maries, defect projections, delivery outlooks, and sta-
tistically significant values that represented poten-
tial concerns. The reports were used to check status
and progress by executives, management, and solu-
tion managers. Solution managers were responsible
for ensuring that any issues or concerns relative to
one or more sports were resolved expediently.

In fact, this analysis was instrumental in verifying the
need for additional testing for certain components
before their delivery to IBM for formal testing. An
agreement was reached for IBM testers to participate
in “joint tests” at the vendor’s site, ensuring that the
components were adequately stable before delivery
to the IBM test organization. The impact of the early
tests was incorporated into the measurements, and
the success of these efforts was evaluated in terms
of subsequent test results. In each case, the compo-
nents were shown to be significantly more stable than
their predecessors.

Validation

In any commercial software development environ-
ment, a controlled experiment on establishing cause
and effect is not feasible. In the Olympics project,
which involved hundreds of people in many locations
across at least three continents, there was enormous
complexity in execution, making any attempt for a
controlled experiment impossible. Nevertheless, val-
idation of the approach described in this paper was
performed, to the extent possible, in terms of two
key aspects: verification of the correctness and com-
pleteness of data and the evaluation of the useful-
ness of the metrics.

A benefit of performing analysis at such a detailed
level was that any specific problem with the data was
quickly exposed. The introduction of the metric,
number of failing test cases without defect records,
is one example. The process required that a test case
that failed or completed with errors had to have at
least one associated defect record. It became clear
during the analysis that this process was not always
being followed and that it was necessary to under-
stand the degree to which that was the case as well
as to interpret the broader implications. Although
the metric revealed that the situation was pervasive
in some areas, discussions of the results with the tech-
nical teams led to the understanding that the unre-
corded defects should be interpreted as duplicates
of known defects. Thus, the usefulness of the metric
shifted from evaluating the accuracy of the data to
exposing an important concern with regard to wasted
test effort and its impact on an already compressed
schedule. It could be argued that in-depth analysis
often serves the dual purpose of verifying the data
and producing meaningful interpretations of the re-
sults achieved. In the case of the Olympics project,
when inconsistencies or gaps in the data were re-
vealed, explicit actions were taken to address the in-
consistencies and fill the gaps with alternative met-
rics.

Validation of the metrics was accomplished through-
out the course of the project in terms of understand-
ing the value of the metric in decision-making, of
verifying the results against expectation, and of on-
going discussions with management and technical
leaders. The selection, adaptation, and introduction
of metrics were made based on their usefulness in
critical decision support. The earliest metrics were
a key factor in defining the plan and expectations
and were verified against the documented plans and
interviews with management and technical leads. The

BASSIN, BIYANI, AND SANTHANAM IBM SYSTEMS JOURNAL, VOL 41, NO 1, 200226

early metrics were followed by metrics that were
mainly intended to show progress in terms of prod-
uct content and stability, to show thoroughness of
test, and to identify specific exposures.

Initially the metrics were reviewed with management
and technical leads to ensure that they addressed spe-
cific requirements. As the project progressed, the
analysis was reviewed at critical checkpoints with the
key participants. Checkpoint risk assessments were
validated through subsequent results and through
confirmation from the technical leaders and man-
agers based on their observations and hands-on ex-
periences. For the most part, the assessments
matched the perception of the key participants, and
on occasion areas of risk not previously known were
revealed. The metrics in the last six months of the
project, while continuing to focus on product con-
tent and stability, also targeted schedule and deliv-
ery dates. Status reports, defect projections, deliv-
ery date outlook, and associated risk assessments
were all provided and tracked on a weekly basis. The
analysis was done independently based almost en-
tirely on available data, with as little interaction with
the teams as possible (given the severe schedule pres-
sure on them). The weekly reviews were important
not only to demonstrate progress and risk, but to
identify and validate the analysis and address any
anomalies that surfaced.

Results. Where actions were taken to target either
product stability or test effectiveness concerns, the
impact of those actions was estimated, and corre-
sponding actual results were tracked. The assess-
ments were consistent with the results observed at
the time the assessment was made and until the next
code drop took place. Since these metrics were avail-
able on a weekly basis, it was possible to anticipate—
with only a few anomalies—any evidence of miti-
gated or increased risk. Where there were anomalies
between the assessment and apparent actual results,
it was discovered that additional test effort had taken
place in partnership with the vendor, with defects
being recorded only at the vendor site. Test case and
related execution records were not captured in the
IBM database for these special, joint tests. However,
defect counts were provided and accounted for the
difference between predicted and actual results.

In addition to the checkpoint risk assessments,
weekly component reports were generated for the
solution managers. These reports provided informa-
tion relevant to each sport and also reported excep-
tions such as the statistically significant cases de-

scribed earlier. The Appendix contains an example
of this report.

In the previous section examples were provided of
decisions that were supported by the metrics de-
scribed in this paper.

The collective set of metrics was an integral part of
management decision support at all levels, and as
such it is not possible to enumerate all of the ways
in which the analysis was used. However, we can re-
port some of the key contributions:

● They formed the set of metrics against which ev-
ery activity and checkpoint exit was evaluated for
each sport component and increment.

● They were the key factor in delivering defect and
schedule projections as well as ongoing weekly sta-
tus and risk assessments.

● They were cited as important tools in negotiations
with the vendor, particularly in terms of risk mit-
igation actions.

Reaction. The executive and management team re-
sponded very favorably to the assessments and eval-
uations. They were satisfied with both the accuracy
and timeliness of the assessments and were able to
use the reports in regular status meetings to review
status with the vendor and to demonstrate the abil-
ity of GSC to manage the project to the Olympic Com-
mittee.

The test manager in particular expressed appreci-
ation for receiving insight not available to him by
any other means. He indicated that the code complete-
ness, defect injection rate, and persistent failure rates
were especially useful in managing schedule risks and
negotiating with the vendor for additional early test-
ing.

Feedback received from solution managers indicated
that they felt the summary reports and prioritized
exposure lists enabled them to quickly target or ver-
ify areas of concern and mitigated to at least some
extent the complexity of their responsibilities. They
also appreciated the fact that the assessment was de-
rived independently from the key participants in the
project.

The test leaders were pleased to have quantified, ir-
refutable confirmation of their perceptions. In ad-
dition, they acknowledged that the assessments re-
vealed exposures that were previously not known to
them. They also expressed appreciation for the fact

IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002 BASSIN, BIYANI, AND SANTHANAM 27

that they considered this method to be minimally in-
trusive and that it had not imposed additional over-
head of any significance.

Value

The Summer Olympic Games in Sydney were con-
sidered to be a resounding success as an informa-
tion technology project. According to GSC manage-

ment, the analysis and metrics described in this paper
were instrumental in helping them successfully man-
age one of the world’s most demanding projects and
were tremendously helpful in allowing them to gain
insight to process and schedule corrections that were
required. In addition, there are implications to the
industry as a whole. Any project that has been de-
fined with developers in one organization and testers
in another, whether or not it is a vendor-vendee re-
lationship, could benefit from the execution record
metrics as a means of verifying the quality levels af-
ter delivery. If acceptance test is an activity that is
performed, these metrics provide a mechanism for
performing such an evaluation in a quantifiable man-
ner.

In the case of the Olympics project, the tester pop-
ulation was extraordinarily dynamic because experts
had to be brought in for each sport as each incre-
ment was being tested. Many software organizations
can be characterized as having a good deal of move-
ment within the test organization for a variety of rea-
sons. Distributed development and test also share
similar concerns in terms of distant and diversified
populations. These metrics were perceived as non-
obtrusive by the test leaders, and consistency of data
capture was not an issue in spite of the cultural di-
versity across the team. Each component was deliv-
ered incrementally through many builds as planned.
Even when planned for, evaluating product stability
and test effectiveness in conjunction with these types
of development models is extremely complex. It be-
comes increasingly difficult with each decision to
change functional or content deliveries. The use of
these metrics at regular intervals throughout the test

activities makes it possible to evaluate the risk as-
sociated with these characteristics in spite of the com-
plexity inherent in an iterative model.

We described a means by which the value of redun-
dant test cases was measured. Many software devel-
opment teams are attempting to strike a balance be-
tween defining adequate but not excessive regression
test suites and ensuring that the test cases are com-
prehensively testing the product across pertinent en-
vironments. Examining the ODC defect types re-
vealed by regression suites or redundant test cases
provides a means of identifying the value of the in-
vestment and suggests whether additional test cases
are needed.

It bears noting that the investment in collecting and
validating data during planning and execution of the
Olympics project was not trivial and not typical of
most projects. The classification of test cases was nec-
essary in order to evaluate the completeness of the
planned test effort and establish the baseline against
which results could be measured. The metrics de-
scribed in this paper require a database containing
scenarios, test cases, execution records, and defect
records, with their hierarchical associations. In ad-
dition to the collection of data, a significant com-
mitment was also made in terms of validating and
analyzing the data. Although the scope and complex-
ity of the Olympics project justified this invest-
ment, it would not be feasible or appropriate for all
projects.

Conclusions

The 2000 Summer Olympics was an extraordinarily
challenging software project due to many circum-
stances that characterized it. A highly complex soft-
ware architecture was required in order to address
many demands inherent in such an enormous un-
dertaking, including tracking results of competition
venues and events, extracting and incorporating bio-
graphical information on athletes, coaches, and of-
ficials, and delivering these results and information
in many formats, on demand, to multitudes of me-
dia representatives, athletes, and spectators.

The specialized knowledge required to test each of
the sports components resulted in a high degree of
movement in terms of the test personnel, leaving only
a small core team of testers to ensure continuity and
understand the status of the test effort. Having ac-
cess to reliable metrics to support their determina-
tions was a valuable ingredient to their success. The

The collective set of metrics
was an integral part of

management decision support
at all levels.

BASSIN, BIYANI, AND SANTHANAM IBM SYSTEMS JOURNAL, VOL 41, NO 1, 200228

delivery schedule was aggressive and final, and the
risk associated with exceptions had to be clearly un-
derstood and addressed swiftly. Portions of the proj-
ect were outsourced to vendors who delivered their
components following an iterative model in many
increments—a model not easily managed using stan-
dard software metrics. These and many other con-
siderations resulted in the need for a new set of met-
rics that could quickly, but effectively, evaluate and
measure risk, progress, product stability, and test ef-
fectiveness, without requiring extensive input and in-
volvement from the vendor or the testers. The test
metrics described in this paper were highly success-
ful in addressing these needs and were found to be
minimally intrusive.

Although the 2000 Summer Olympics could not be
considered an average or typical project, the met-
rics developed to address specific needs in that proj-
ect are applicable to a wide range of projects across
the software industry. Projects in which various roles
(such as developers and testers) are managed in sep-
arate organizations, including those that have out-
sourced portions of their product to third-party ven-
dors, are often characterized by incomplete data and
information. It has been shown that test-based met-
rics can be used with a high degree of success when
little if any preceding data are available. Projects
characterized as dynamic, in terms of a significantly
changing workforce, would benefit from these met-
rics, which rely on input that is standard and easy
to understand, requiring little, if any, specialized
training. These metrics are particularly useful in
projects that have defined an iterative model with
incremental code deliveries, where a standard set of
metrics such as S-curve are often inadequate for mea-
suring progress. They were also shown to be useful
in measuring the value or deficiencies inherent in
using the same test case across multiple test activ-
ities.

The combination of ODC-based metrics and a new
set of test execution-based metrics collectively ad-
dress the measurement and evaluation of complex,
dynamic projects, particularly those with vendor-pro-
videdcomponentsdelivered incrementally.Specifically,
the metrics provide decision support in quantified
terms with regard to assessing progress, analyzing
test effectiveness and product stability, and calculat-
ing the degree of risk associated with each of these
topics.

Acknowledgments

We want to thank Tom Furey, Patricia Cronin, and
Lois Dimpfel of the Olympics executive team for the
opportunity to participate in such an exciting en-
deavor. We appreciate the management support
from Toni Plana Castillo and Joe Ryan of the GSC,
Spain, for close partnership during the critical times
of the testing activities. We thank David Perez Cor-
ral and Fernando Dominguez Celorrio of the GSC
for integrating ODC in the Quality Management
Framework System and for the data capture and en-
ablement of the Lotus Notes*-based infrastructure
that was critical to the success of this project. We
thank Roy Bauer for the use of Figure 1 and the data
for Table 1.

Appendix: Solution manager report for
Sport S

Summary:

The overall assessment places Sport S at high risk.

Criteria High
Risk

Medium
Risk

Low
Risk

There may be no open
Severity 1 defects.
Volume of open Severity 1

defects X
Trend X

There may be no open
Severity 2 defects.
Volume X
Trend X

Is test progressing sufficiently?
Test plan progress

(against schedule) X
Test effectiveness

Spread of ODC trigger
values X

Spread of ODC defect
types X

Is product adequately stable?
Defect type volumes X
Specific trends X

Overall
* DVT � 100% complete, FT � 27% complete, FIT �

32% complete
* 65% of attempted executions concluded successfully

Detail
• Event: Woman’s Qualification (551) has a high defect

rate—167/88 (number of defects per number of test
cases)

• Event: Woman’s Qualification (551) has a high
repeated failure pattern—170/239

• Test Case Title: After-Event Reports (90) has a high
repeated failure pattern—139/159

• Test Case Title: Sports Level TV Graphics (51) has a
very low percentage attempted test cases—7/136

IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002 BASSIN, BIYANI, AND SANTHANAM 29

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Rational Software Cor-
poration.

Cited references

1. R. B. Grady and D. L. Caswell, Software Metrics: Establishing
a Company-wide Program, Prentice-Hall, Inc., Englewood
Cliffs, NJ (1987).

2. K. H. Moeller and D. J. Paulish, Software Metrics, Chapman
and Hall, London (1993).

3. N. E. Fenton and S. L. Pfleeger, Software Metrics—A Rigor-
ous and Practical Approach, PWS Publishing Co., Boston, MA
(1997).

4. M. K. Daskalantonakis, “A Practical View of Software Mea-
surement and Implementation Experiences Within Mo-
torola,” IEEE Transactions on Software Engineering 18, No.
11, 998–1010 (1992).

5. G. Stark, R. C. Durst, and C. W. Vowell, “Using Metrics in
Management Decision Making,” Computer 27, No. 9, 42–48
(September 1994).

6. D. M. Marks, Testing Very Big Systems, McGraw-Hill, New
York (1992).

7. S. H. Kan, J. Parrish, and D. Manlove, “In-Process Metrics
for Software Testing,” IBM Systems Journal 40, No. 1, 220–
241 (2001).

8. R. Chillarege, I. S. Bhandari, J. K. Chaar, M. J. Halliday, D. S.
Moebus, B. K. Ray, and M.-Y. Wong, “Orthogonal Defect
Classification: A Concept for In-Process Measurements,”
IEEE Transactions on Software Engineering 18, No. 11, 943–
956 (1992).

9. IBM Research, Center for Software Engineering, http://
www.research.ibm.com/softeng.

10. K. Bassin, T. Kratschmer, and P. Santhanam, “Evaluating
Software Development Objectively,” IEEE Software 15, No.
6, 66–74 (1998).

11. M. Lorenz and J. Kidd, Object-Oriented Software Metrics: A
Practical Guide, Prentice Hall, Englewood Cliffs, NJ (1994).

12. T. J. McCabe, Structured Testing, IEEE Computer Society,
Los Alamitos, CA (1983).

13. K. Bassin, S. Biyani, and P. Santhanam, “Evaluating the Soft-
ware Test Strategy for the 2000 Sydney Olympics,” Proceed-
ings of the IEEE 12th International Symposium on Software
Reliability Engineering (November 2001).

Accepted for publication October 1, 2001.

Kathryn Bassin IBM Research Division, Thomas J. Watson Re-
search Center, P.O. Box 218, Yorktown Heights, New York 10598
(electronic mail: bassinka@us.ibm.com). Ms. Bassin holds a B.S.
degree from SUNY Brockport and an M.B.A. degree from Bing-
hamton University. She is a senior software engineer with the Cen-
ter for Software Engineering at the Watson Research Center. She
has been with IBM since 1981 and, prior to joining IBM Research
in 1993, worked on a wide range of products, performing in a
variety of capacities, including management, development, test,
and service. Her research interests, likewise, span many areas,
most notably software metrics and modeling, and the application
of scientific methods to define relationships and influences across
the life of a software product. Ms. Bassin developed the Butterfly
Model, which provides a comprehensive view of software devel-
opment, linking design, development, test, and customer usage.

Named after the popular analogy associated with chaos theory,
the Butterfly Model exploits the use of categorical data including
ODC to make rational, objective assessments of the software pro-
cess and product.

Shriram (Ram) Biyani Dr. Biyani passed away since the orig-
inal submission of this paper, in a hiking accident. He obtained
a B.Sc. degree from Nagpur University, an M.S. degree from the
Indian Agricultural Research Institute, a Ph.D. degree in statis-
tics from Iowa State University and an M.S. degree in computer
science from North Carolina State University. He joined IBM
Research in 1992 and was involved in statistical consulting, re-
search, and tools development. His primary interests in software
engineering were in software quality and test design. Earlier, he
had provided statistical support to the quality assurance area at
IBM East Fishkill and contributed to the development of
ALORS2 (A Library of Reliability Specifications). He had also
contributed to AGSS (A Graphical Statistical System), developed
by the Watson Research Center. Before joining IBM, Dr. Biyani
also served as a faculty member at the University of Minnesota
and East Carolina University.

Padmanabhan Santhanam IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (electronic mail: pasanth@us.ibm.com). Dr. Santhanam
holds a B.Sc. degree from the University of Madras, India, an
M.Sc. degree from the Indian Institute of Technology, Madras,
an M.A. degree from Hunter College, The City University of New
York, and a Ph.D. degree in applied physics from Yale Univer-
sity. He joined IBM Research in 1985 and has been with the Cen-
ter for Software Engineering, which he currently manages, since
1993. He has worked on deploying Orthogonal Defect Classifi-
cation across IBM software laboratories and with external cus-
tomers. His interests include software metrics, structure-based
testing algorithms, automation of test generation, and realistic
modeling of processes in software development and service. Dr.
Santhanam is a member of the ACM and a senior member of the
IEEE.

BASSIN, BIYANI, AND SANTHANAM IBM SYSTEMS JOURNAL, VOL 41, NO 1, 200230

