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The STCL test
tools architecture

The Software Test Community Leaders (STCL)
group is an IBM-wide initiative focused on
improving software test and quality practices
within the corporation. In 1999, we began
working to develop an architecture to integrate
both new and existing test tools into solutions
for use in the testing organizations across IBM.
This paper discusses the requirements for the
architecture, as well as the issues associated
with developing a solution architecture for a
large base of tools that span a variety of
platforms and domains. The architecture is being
designed and developed to address three
concerns for integrating testing tools: integration
of the data across tools and repositories,
integration of the control across tools, and
integration to provide a single graphical user
interface into the tool set. Because of the
heterogeneous nature of the platforms and
domains the architecture must support,
extensibility is essential. We address each of
these three integration concerns using an open-
source framework that operates on a set of
standardized but extensible entities.

In 1998, 1BM formed the Software Test Commu-
nity Leaders (STCL) group to address issues as-
sociated with software testing and quality. The group
consists of key technical professionals and manag-
ers from testing groups across the various divisions
of 1BM. They collectively represent the depth and
breadth of software testing expertise available within
the corporation. One of the first tasks the technical
team undertook was to identify and categorize lead-
ing tools and practices in use across the divisions,
with the idea that this would enable key tools and
practices to be shared. As a result of this exercise,
the team produced a list of best practices with sup-
porting tools and discovered two problems that
would inhibit tool and practice sharing.
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1. Different labs within IBM had different tools sup-
porting the same practice. A variety of manual,
STCL supported, and third-party or homegrown
tools are used across labs within IBM.

2. Testing groups were mixing manual processes with
both STCL recommended and homegrown and
third-party developed tools. Because these tools
were not designed to work together, human in-
tervention or custom integration was required
(Figure 1).

The multitude of tools with similar functionality
within IBM is due to the variety of platforms and prod-
ucts the corporation develops and supports. Also,
different labs across IBM have variations in their test-
ing processes. A process is composed of one or more
testing practices. While the practices might be ba-
sically the same, the processes that the practices sup-
port can be markedly different from lab to lab. This
leads to the development of tools customized for site-
specific processes, even though they are based on prac-
tices that are common throughout the corporation.

In mid-1999, the STCL technical leaders decided to
take an architectural approach to addressing these
two problems. The STCL Architecture Committee
was formed from a subset of the technical leaders
who represented the various labs and were interested
in developing an architecture. The committee started
its work by exploring high-level solutions that de-
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Figure 1

A sample of heterogeneous and disconnected test tools
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scribed how tools might interoperate when supported
by an architecture. Figure 2 shows one example of
such a solution. The group developed other views
as well, with the ultimate goal being an architecture
that would provide support for customizable solu-
tions.

In the remainder of the paper, we cover the follow-
ing topics. First, we discuss the requirements that
the architecture must satisfy. Then we present the
architecture, focusing on three concerns: data, con-
trol, and GUI (graphical user interface) integration.
Next we discuss how new tools can use the architec-
ture, how legacy tools can be integrated, and how
the architecture meets the requirements. Finally, we
present conclusions and future work.

The requirements

At the highest level, there are three requirements
that the architecture must meet:

1. It must provide a mechanism for integrating the
variety of tools recommended by the STCL.
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2. It must support site-specific tools and testing pro-
cesses.

3. It must support legacy tools, while also providing
aroad map for new tool development within IBM.

The problem of integrating heterogeneous, indepen-
dently developed tools has received attention from
other parties, both inside and outside 1BM."? The in-
tegration is usually accomplished using a three-phase
approach, which includes data integration, control
integration, and interface integration. This is the ap-
proach that the STCL architecture committee se-
lected, and it led to a more detailed set of integra-
tion requirements:

la. Data integration must make test-related data
available in an open manner regardless of the
tool or repository in which the data are stored.

1b. Data integration must provide a way to main-
tain associations among related data, even if the
data reside in different repositories.

1c. Control integration should support invocation
of externally available functionality on tools that
comply with the architecture. This will be impor-
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Figure 2  High-level view of an architecture-supported testing solution
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tant for building highly automated testing envi-
ronments.

1d. GUI integration will result in a single user inter-
face for accessing all of the architecturally com-
pliant tools.

le. GUI integration should not preclude using the
tools as they are currently used today. This is
important because different groups will migrate
to the new architecture as business conditions
permit.

In order to meet requirement 2 (support for site-
specific tools and processes), we developed the fol-
lowing set of more detailed requirements:

2a. A “plug-and-play” mechanism for incorporating
site-specific tools must be part of the architec-
ture. This mechanism should be easy for tool
owners to adopt.

2b. Control integration should allow workflow cus-
tomization to support variations in the testing
process.

By “plug-and-play,” we mean that a tool that has
complied with the architecture should be able to be
incorporated by a testing group into an architecture-
based solution with minimal effort. Furthermore, this
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solution should support customization of processes
using a workflow definition language.

Requirement 3 addresses two needs: to support and
protect the existing investment in legacy tools, and
to provide a road map so that new tools are designed
to interoperate from the start. The following detailed
requirements support these high-level goals:

3a. Enhancements to legacy tools must be localized,
with no changes to internal tool control struc-
tures or data representations.

3b. The architecture should provide guidance for the
design of new tools in the form of standardized
application programming interfaces (APIs), stan-
dardized testing entities, and other reusable
items.

3c. Both legacy and new tools should be supported
using reusable components.

3d. The legacy and new tool requirements should
be met with as little variation within the archi-
tecture as possible.

These requirements form the foundation for the de-
velopment of the architecture. Given the size of IBM,
converging on a set of requirements is a difficult and
ongoing challenge. To help with this task, our pro-
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cess involves pilot installations of beta technology
to ensure that the solutions built using the architec-
ture meet the needs of real testers within IBM. We
also check with tool owners to determine whether
or not the architectural components are easy to use
and well documented.

The architecture

The STCL architecture addresses three types of tool
integration: data integration, control integration, and
GUI integration. With data integration we attempt
to provide a unified view of the data within the test-
ing organization, regardless of where the data are
stored. We also address associations among related
data artifacts that might be stored in separate repos-
itories. Control integration allows unrelated tools to
invoke behavior on one another in a generic way.
For example, a tool invoking behavior on another
tool does not need to know about the API of that tool.
With GUI integration we attempt to provide a sin-
gle, consistent interface for all of the architecturally
enabled tools.

Although the architecture specifies three levels of
integration, we recognize that not all levels are ap-
propriate for all tools. For example, certain execu-
tion tools do not require a GUI, and hence would not
be part of the GUI integration level. The ability to
support varying levels of integration is implemented
by using a hierarchical layering approach.” We
discuss this approach in detail in this section. The
defined levels of integration for the architecture are:

1. Data exchange. The tool supports the ability to
read and write data in the data-exchange format
of the architecture.

2. Dataintegration. The tool supports standard func-
tionality on its artifacts (create, read, update, de-
lete) as well as associations with artifacts within
other tools.

3. Control integration. The tool provides the ability
to invoke operations on it via the generic control
integration services.

4. GuI integration. The tool supports an interface
within the standard GUI environment.

The high-level layered architecture. The three lev-
els of integration are supported by four basic archi-
tectural components: the GUI integration compo-
nent, the control integration component, the data
integration component, and the communication
component. Each component supplies a set of ser-
vices that can be used by a tool. The GUI integration
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Figure 3 The modified layered architecture
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component provides a set of common GUIT services.
The control integration component offers services
for operation invocation and automation, while the
data integration component manages data content
and associations. The communication component
connects the tools to the GUI, control, and data in-
tegration components.

The approach of using components that provide a
set of reusable services is similar to the NIST/ECMA
Reference Model for Frameworks of Software En-
gineering Environments, a model that provides a
common foundation for software engineering envi-
ronments.* This standard defines a set of service
groupings that support the three levels of integra-
tion just described. These service groupings are a su-
perset of the above components and can be com-
bined in a precise way to specify an architecture.

At the highest level, the STCL architecture is a mod-
ified layered architecture (Figure 3). It is modified
because an architecturally compliant tool may use
any of the services in the three integration compo-
nents. Tools within the tool layer may communicate,
directly or by using the communications component,
with either adjacent layer (GUI integration and
control integration) and via the communications
component with the data integration component. In
contrast, the GUI, control, and data integration com-
ponents obey a strict layering constraint and can ini-
tiate communication with only the layers directly ad-
jacent to them. In Figure 3, the tools following the
strict layered model are shown in green. This means
that the GUI layer initiates communication only with
the tool layer, the control integration layer initiates
communication only with the tool or data integra-
tion layers, and the data integration layer initiates
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Figure 4  Three-tier logical architecture for data integration
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communication only with the control integration
layer. This layering structure makes modifying and
maintaining the integration components easier by
limiting the interfaces that must be maintained
among them.

Having shown a high-level view of the architecture,
we now discuss the data integration, control integra-
tion, and GUI integration components in more de-
tail. The communications component, based on Hy-
perText Transfer Protocol (HTTP) and interprocess
communication (IPC), is straightforward and does not
require a detailed discussion. We present the three
components using the logical, process, and physical
views of the architecture, where appropriate. These
views are part of the “4 + 1” approach to describing
software architectures.® The logical view shows how
components are structured from a conceptual point
of view. Process views specify the thread and pro-
cess structure that provides the dynamic behavior of
the components in the logical view. Physical views
show how the various processes are allocated to hard-
ware resources in groups using the architecture. The
development view is implementation-specific and is
not discussed here.

The data integration component. The data integra-
tion component provides a coherent way to access
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and manage all of the test-related data within an or-
ganization. If there were no legacy tools, and if data
artifacts were not constantly being defined and re-
fined, data integration would be straightforward. This
is not the case. Legacy tools often contain vast
amounts of data that need to be shared and inte-
grated with data in other tools. New artifacts are a
necessity, and artifact structures change as product
teams change their focus. The data integration com-
ponent must take into account two factors: (1) The
data in the organization are distributed within a het-
erogeneous set of repositories and tools; (2) the data
artifacts need to be flexible and extensible. Further-
more, associations among related data should be cap-
tured and preserved, even when the data reside in
different repositories.

Data integration: Logical view. Logically, the data in-
tegration component reflects a three-tier architec-
ture, where the first tier is the data abstraction tier,
the second tier is a server for accessing the heter-
ogeneous data repositories and tools available within
an organization, and the third tier is the data repos-
itory tier containing these tools and repositories. This
is shown in Figure 4.

Data abstraction is the ability to represent and op-
erate on all data in a uniform way, regardless of
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where the data reside. To support this capability, the
data abstraction tier serves two purposes. First, it of-
fers support for creating and managing the various
artifact types, wherever they reside. Second, it pro-
vides management services to maintain associations
among artifacts, even when they are stored in sep-
arate repositories. To support data abstraction, we
developed a representation of a data artifact that
standardizes the basic set of operations that an ar-
tifact must support. These include create, read, up-
date, and delete operations as well as locking and
writing the artifact out as a stream in the standard
data resolution format. When combined with the
data resolution and data transport capabilities, data
abstraction is a powerful mechanism for uniformly
representing and managing data.

In addition to the generic STCL artifact representa-
tion, the STCL Architecture Committee has defined
adraft set of standard, extensible representations for
common test-related artifacts including test cases,
test suites, defects, and testing-related host config-
uration information. As part of this process, the com-
mittee plans to join with representatives from other
organizations to discuss standardizing these testing
artifacts. Because these artifact definitions will be
developed based on feedback from representatives
across IBM and other interested parties, we believe
they will be widely applicable. Other industries have
developed similar standards, such as FpML** (Finan-
cial products Markup Language) for financial prod-
ucts.” Standards for test management artifacts could
be a very potent force for better software develop-
ment and testing tools.

The transport tier addresses the issue of sharing the
data between the abstraction tier and repositories
within the architecture. Because we may have sev-
eral repositories running on several separate ma-
chines, the transport mechanism must support net-
worked data sources. It must also support a simple,
open structure for accessing data that can be mapped
to proprietary mechanisms used by particular tools
and repositories.

HTTP/WebDAV is a transport mechanism that meets
these requirements, and it serves as a basis on which
a robust transport structure is constructed. WebDAV
stands for Web Data Authoring and Versioning. It
is an IETF (Internet Engineering Task Force) stan-
dard for reading, writing, and updating resources us-
ing the World Wide Web, and it has emerged as a
tool for building complex collaborative environ-
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ments.® It has three major advantages: (1) It is in
widespread use and is available on all platforms used
within IBM; (2) it is easy to understand; and (3) it
is an open extension of the popular HTTP standard.

The WebDAV standard basically makes the Web writ-
able by adding several capabilities to HTTP, beyond
the ability to obtain data as a stream of HTML (Hy-
perText Markup Language) or XML (Extensible
Markup Language). WebDAV works with resources,
which can be logically considered as pages on a Web
server. WebDAV provides the capability to access, up-
date, lock, write, and delete these resources. They
are referenced using a URI, WebDAV commands, and
HTTP. (URI stands for Uniform Resource Identifier.
URI is the preferred w3c [World Wide Web Con-
sortium] term that subsumes what is also known as
a URL.) The transport and repository tiers in the ar-
chitecture provide a mapping from what appears to
be a standard URI location on the Web server into
an actual data location in a repository. Each artifact
on the abstraction tier has a URI that can be used
to update or access it in a shared data repository or
tool.

Even with standard representation and transport
tiers for the various artifacts, an integral step in ob-
taining an integrated view of the data is to obtain
access to the data within a given repository. For a
repository to participate in the architecture, it must
allow data access via the WebDAV method. This can
be supported directly by the repository, or by using
a simple framework that we have developed to sup-
port legacy tools. Legacy tool support will be dis-
cussed in more detail in a later section.

Each repository must also offer its data in a form
that can be understood and managed in the abstrac-
tion tier, a capability known as data resolution. In
the past, data resolution across the variety of plat-
forms and applications in use within IBM was a sig-
nificant issue, with proprietary formats being the rule.
The advent of the Extensible Markup Language
(xML) has greatly simplified the question of data res-
olution. Each artifact defined in the architecture can
have an associated schema defined using XML. Tools
that store and provide access to artifacts simply ob-
tain the data and format the data into well-formed
XML as defined by the schema. Tools using the data
receive and parse the XML, which is straightforward
given the variety of XML parsers available.

Data integration: Process view. For a given artifact
that has persistent residence in a single repository,
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Figure 5 Process structure of the data integration layer
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three threads are relevant: the thread of control re-
lating to the artifact itself within the abstraction man-
agement system, the thread of control that handles
transport within the Web server, and the thread of
control in the back-end repository system. These are
captured in Figure 5.

We use threads in this discussion because many com-
ponents have been realized using the Java** lan-
guage. If similar components are realized in other
languages, processes can be substituted if necessary.
The basic processing paradigm is as follows:

1. Atool requests an operation on an artifact in the
artifact abstraction layer. Certain operations (such
as read) return the information directly if the ar-
tifact is already present in the layer. Others re-
quire further processing.

2. If the operation requires processing involving ei-
ther a read from or an update to the repository
layer, the artifact is locked and the appropriate
command is issued to the transport thread.

3. The repository management thread fulfills the re-
quest and returns any data to the transport thread,
which returns it to the artifact task thread.

We must address synchronization because several
artifacts can be present within the abstraction layer,
and they can be accessed by multiple tools at any
given time. When a tool updates an artifact in the
abstraction tier, the following sequence of events oc-
curs:

1. The update operation requests a lock on the ar-
tifact. The artifact issues a WebDAV lock command
via HTTP to the transport thread.

2. The transport thread forwards the locking mes-
sage to the appropriate repository management
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thread, which obtains a repository lock or a fail-
ure message.

3. If the repository lock was successful, the artifact
is locked in the abstraction layer and the oper-
ation proceeds. When the update operation is
complete, both locks are released.

4. If the lock could not be obtained, the operation
returns a message to the requester.

Data integration: Physical view. There are several
possibilities for the physical layout of the data in-
tegration portion of the system. Figure 6 shows two
common views. On the left is the enabled repository
view. The actual thread structure might differ from
that shown, because the repository developer can
customize the implementation. On the right is the
nonenabled repository view, in which the WebDAV
requests must be handled by a Web server, which
will typically reside on its own hardware platform.
The repository runs on a third piece of hardware,
and is accessed via RMI/RPC (Remote Method
Invocation/Remote Procedure Call) as shown in the
process view. In both views, the artifact task thread
is shown physically running on the tool platform. This
is because the artifact abstraction management tier
is provided via an included library. There are many
other possible configurations for the physical archi-
tecture, including configurations that provide redun-
dancy and fault tolerance by duplicating components.
A group can choose which of these to use, depend-
ing on its needs and resources.

The control integration component. Control integra-
tion confers the ability to distribute and customize
the flow of control among the various tools that are
integrated in the architecture. A flexible, customi-
zable control integration mechanism is essential to
allow support of the multitude of testing processes
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Figure 6 WebDAV enabled (left) and nonenabled (right) physical views
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used across the labs. This is especially important to
support the creation of an integrated test environ-
ment (ITE), which is analogous to the integrated de-
velopment environments (IDEs) that developers use,
but focused on testing. ITEs and IDEs have a signif-
icant overlap in functionality, because testing projects
usually involve code development. However, testing
also addresses executing the software system under
test to determine whether or not it meets its require-
ments. Execution is a complex and time-consuming
operation, because it involves steps beyond simply
running a test case. These steps include setting up
the environment, executing the test, recording the
outcome, cleaning up after the test is complete, and
recording failure information. Further complicating
matters is the fact that most of these steps are quite
specific to the product being tested, the execution
environment, and the processes used by the testing
organization. It is especially important that the con-
trol integration strategy offer support for multiple
platforms and processes.

At a high level, a control integration strategy must
support the following capabilities:

1. It should define a tool- and environment-neutral

mechanism for coordinating control among the
tools used in the testing process.
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2. It must provide a tool- and environment-indepen-
dent way to specify and enforce a software test-
ing process.

We address these goals using two types of control
integration: event management and workflow pro-
cess control. Event management is essential for con-
trol integration. It allows resource providers within
the architecture to be made aware of asynchronous
events when they occur, and they in turn respond by
performing actions specified in their event handlers.

Workflow process control is more complex. It in-
volves coordinating and enforcing control and infor-
mation flow among several distributed applications,
and it is essential for supporting varied testing pro-
cesses.

The Software Testing Automation Framework
(STAF) offers both of these control integration fa-
cilities, as well as many others. STAF is a highly por-
table framework that provides reusable services for
automating testing tasks in a peer-to-peer manner.
Here we present only the services that are relevant
to the control integration architecture. STAF also sup-
ports many other services including queues, trust ser-
vices, semaphores, process control, logging, etc.;
more information on STAF is available in a separate
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Figure 7 The logical structure of the control integration architecture
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paper.’ Additionally, the framework is extensible,
meaning that groups and tool owners can write other
services as needed.

STAF's event service provides the facilities for implicit
invocation. To use the event service, a particular ma-
chine is typically designated as the event server. All
tools interested in receiving information about a par-
ticular event register with this server, and other sys-
tems generate events to the server in order to in-
voke behavior on all registered tools. In addition to
registration and event generation, the service also
supports mechanisms to acknowledge events, query
events, and “unregister” for events. To support con-
trol integration across tools, we are currently refin-
ing a set of standard but extensible events (analo-
gous to the standardized artifacts in the data
integration component). This set includes invocation
events (such as starting a test harness), notification
events (such as software build notification, test com-
pleted notification, and problem notification), excep-
tional events, and others.

STAF also provides the STAX (STAF eXecution en-
gine) workflow manager as a service. This service ac-
cepts workflow definitions, which define the work-
flow that accomplishes particular testing processes.
The workflow definition language is very expressive

82 wiLLIAMS ET AL.

and has the ability to invoke any of the STAF services.
It also contains high-level programmatic function-
ality, including selection, iteration, sequential and
parallel grouping, signal handling, and exception
handling. STAX works using the event service, and
together they form the basis for the control integra-
tion component.

Control integration: Logical architecture. The logical
structure of the control integration architecture is
shown in Figure 7. The heart of the logical archi-
tecture for control integration is the control integra-
tion component. Within this centralized component
is a copy of the STAF daemon, as well as the event
and STAX services. The control integration compo-
nent is connected via the control integration “tool”
to the GUI component. This allows the GUI compo-
nent to interact with non-GUI tools in the architec-
ture via STAF events or STAX jobs. Other STAF-
enabled tools can also use the control integration
component as the hub for control of other tools via
events or STAX jobs.

Controlintegration: Process and physical architecture.
Figure 8 shows a combined view of the process and
physical architecture of the control integration com-
ponent. Each hardware platform that participates in
the control integration infrastructure must have a
STAF daemon running on it. To communicate with
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Figure 8 The process and physical architecture of the control integration layer
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the STAF control integration infrastructure, and to
reduce the amount of overhead required across the
system, the control integration “tool” thread runs
within a Java virtual machine (JVM) on the same
hardware platform as the STAF control component.
Thus, this is indeed a virtual tool, not directly run-
ning in the tool layer, even though it appears to from
the perspective of the GUI integration component.

A control integration “tool” thread communicates
directly with the STAF daemon running on the same
hardware platform. This allows events to be gener-
ated or STAX jobs to be initiated from the GUI com-
ponent. Individual events and STAX jobs all run
within separate threads, but within the same JVM.
In turn, these services use the STAF dacmon to com-
municate with other tools using the architecture. As
the figure shows, two possible modes exist for tools
to use the control integration services. One mode
allows the tool to communicate with the STAF sub-
system via an API on the tool, which means that no
STAF commands will appear in the tool’s “native”
code. The other mode lets the tool invoke and re-
spond to STAF directly within its code, which in es-
sence is the tool acting as an external STAF service.
Which of these two modes of integration is used will
depend largely on the architecture of the tool.
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In addition to the event and STAX workflow services
provided by STAF, several other services can be used
in the architecture. For example, the semaphore ser-
vice can be used to synchronize access to resources
across multiple hardware platforms within the envi-
ronment. Also, STAF supports the development of
additional services as required. In fact, we are cur-
rently exploring the definition of a new set of ser-
vices that would provide data integration capabili-
ties for any tool that is already STAF-enabled.

The GUI integration component. The goal of GUI
integration is to provide testers with an interface rich
enough to serve as a single point of access for the
tools typically used in the testing process. This in-
terface, when combined with the data and control
integration capabilities of the architecture, will pro-
vide testers with an integrated test environment (ITE)
similar to the integrated development environments
(IDEs) commonly used in development today. We are
currently using the Eclipse-based WebSphere™* Stu-
dio Workbench (hereafter referred to as “the work-
bench”) to develop a sophisticated desktop environ-
ment for use on the testers’ workstations. Eclipse is
an extensible, open-source platform that provides a
common set of components and services for build-
ing development tools."” The workbench provides
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Figure 9 The logical view of the GUI integration
components
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extension points, which are well-defined locations for
functional extension by plug-ins. Plug-ins provide
implementations (known as extensions) for these
points, thereby enhancing the capabilities of the plat-
form. Plug-ins may define their own extension points,
and thus can be extended by other plug-ins. New tools
can integrate into the platform by developing plug-
ins that use the APIs and extensibility services of the
environment to participate in the ITE.

The appeal of an ITE is that the tester has a single
interface at which to work, one that leverages ex-
isting tools used in the organization. The interface
uses the data and control integration infrastructure
to present a coherent, unified view of the testing proj-
ect. Today, testers move from tool to tool as they
perform different tasks. For example, a tester might
use an execution tool to run tests, a different tool to
log the results, and yet a third tool to enter the prob-
lems discovered during testing. Not only is this in-
efficient, but it also fragments the data in the testing
organization; hence the need for data integration via
the architecture. Developing a common user inter-
face that can be used by various tool types will sig-
nificantly boost productivity and help testers to re-
alize the gains made possible by data and control
integration.

The remainder of this section presents a high-level
view of how we are using the workbench to develop
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an ITE. We do not present an in-depth discussion of
the Eclipse project; that is beyond the scope of this
paper. Instead, we give an overview of how it sup-
ports GUI integration in the architecture and inter-
acts with the other integration components discussed
earlier.

GUl integration: Logical architecture. The workbench
is a user interface (UI) plug-in that runs on top of
the Eclipse platform core. The core components in-
clude the platform run-time code and two sets of ser-
vices: plug-in services for integrating new behavior
into the workbench and workspace and resource
management services for managing projects, fold-
ers, and files.

A tool owner using the workbench provides imple-
mentations of specific extension points in the work-
bench or another plug-in. He or she can then use all
of the services supported by the workbench. Figure
9 shows the basis structure of the core components,
the UI, and a tool implemented as a plug-in to the
workbench environment.

The STCL is developing an extensible plug-in that can
be used or extended to deliver an ITE to a testing
organization. This plug-in will support the set of ex-
tensible artifacts discussed in the subsection on data
integration. Tool owners may use the artifact def-
initions and plug-in directly, or they may extend and
customize them using built-in extensibility mecha-
nisms.

GUl integration: Process and physical architecture. The
process and physical architecture of the workbench
is straightforward. The core components and tools
typically run on the same hardware platform. A dis-
cussion of the workbench thread structure is beyond
the scope of this paper, other than to note that all
plug-in components run within the UI thread(s) of
the workbench.

Application of the architecture

In this section, we explore how the architecture af-
fects the creation of new tools, as well as how legacy
tools can be integrated into the architecture. We also
use simple examples to explain how the architecture
provides the required capabilities identified earlier.

Building new tools for the architecture. New tool
owners can build tools that are “architecture-ready”
by complying with the architecture across three ba-
sic areas: artifact representation (data integration),
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event representation (control integration), and
plug-in representation (GUI integration). These three
areas are supported using standard, extensible com-
ponents and code available within the STCL frame-
works library.

If a tool owner wishes to communicate with other
tools via data integration, he or she must follow two
guidelines during design. First, the tool must use the
standard STCL artifacts. This set is extensible, so that
tools defining new artifacts not previously available
in the STCL can use the data integration services.
However, any new artifacts must be extensions of
the base STCL artifact. Second, the tool should use
the abstraction management tier when creating,
reading, updating, or deleting objects. The tier guar-
antees support for associations between objects that
exist in other repositories. Access to this tier is via
a set of APIs, which are provided as part of the data
integration library.

Control integration is supported by building tools
that provide facilities for using the STAF event ser-
vice. This requires that tools use the appropriate stan-
dard STCL events, which are defined in the STCL con-
trol integration library. Like the artifacts, these
events are extensible. The tool must also support the
standard STAF API and provide facilities to generate
or respond to any relevant events. This requirement
can be supported by creating a tool-specific API and
a component that maps STAF events to the tool us-
ing this API, as well as by building the tool itself as
a STAF service.

GUI integration is supported by building the user in-
terface as a workbench-ready plug-in. The STCL GUI
integration library is currently under construction,
and will consist of a set of plug-ins for developing
an ITE. Like the STCL artifact and event sets, these
plug-ins will be extensible. They will allow plug-in
extensions to interact with the data abstraction tier
and control integration layer.

We hope to support the development of architec-
turally compliant test tools through the use of an STCL
test tool development environment (TTDE) built
within the workbench. This environment will be re-
lated to the standard plug-in development environ-
ment (PDE) and will support the development of tools
that can be easily plugged into the data, control, and
GUI integration frameworks.

The architecture and legacy tools. As we noted in
requirement 3, the architecture must also allow the
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Figure 10 The modified layered architecture for legacy tools
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use of legacy tools within an ITE solution. New tools
developed with an awareness of the architecture
would use the services as just described; however,
legacy tools are often unable to do this directly with-
out significant modification. To avoid these modi-
fications, legacy tools will use the STCL virtual tool
facility (VTF), which we are developing to enable ar-
tifact management, control integration, and GUI in-
tegration capabilities that are difficult or impossible
from the legacy tool directly. The virtual tool plug-in
(VTP) maps between the API used by the VTF and
the APIsupported by the legacy tool. Figure 10 shows
the VTF within the modified layered architecture. In
this configuration, the VTF plays the role of a tool
within the tool layer, and the VTP provides connec-
tion between the legacy tool and the VTF. We have
developed a beta version of the VTF that contains
limited functionality and have deployed it in pilot
projects. We are currently enhancing this facility
based on the feedback of legacy tool owners who
have used it.

When it is completed, the VTF will provide the fol-
lowing capabilities:

1. Connection with legacy tools for data integration
using the vTP. This functionality provides for the
definition and management of artifact types
stored in the legacy tool. The VTF implements the
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abstraction management tier on behalf of the leg-
acy tool.

2. Support for displaying information in the legacy
tool via the workbench UI. The VTF acts as a
plug-in for legacy tools, mapping new artifacts and
actions into the data and control integration frame-
works, as well as into the legacy tool via the VTP.

The VTF/VTP basically acts as a surrogate tool, mak-
ing the legacy tool appear to be a STAF event-enabled
repository.

The VTF communicates with the VTP via the com-
munications component. Typically, there will be a
separate Web server acting as a transport layer be-
tween the VTF and the vTP. The VTP maps the cre-
ation, reading, updating, and deletion of artifacts into
the native API of the legacy tool. It also provides a
modular component for generating events and re-
ceiving event notifications. These events are then
converted into actions on the tool’s native API.

Legacy tools that make use of the VTF must imple-
ment the VTP. The VTP requires that the tool have
awell-defined API that can handle the creation, read-
ing, updating, and deletion of the artifacts within the
legacy tool. If the tool is going to participate in con-
trol integration, the API must also provide the re-
quired functionality to respond to or generate the
events of interest. Because data and control integra-
tion requests can come into the legacy tool from mul-
tiple clients, the tool must support server-like behav-
ior. Fortunately, most of the legacy tools within IBM
that are currently under consideration for integra-
tion with the STCL architecture meet these require-
ments.

The requirements revisited. We identified three main
requirements for the architecture. It should provide
a way to integrate the various STCL and other tools,
support easy installation and customization, and sup-
port legacy tools. Each of these gave rise to several
subrequirements, which are now discussed.

Integration of STCL tools. Subrequirements on the
integration of STCL tools include: the capability to
access data regardless of which repository the data
reside in; maintenance of associations among data
across repositories; ability to invoke functionality on
tools within the architecture; possessing a single GUI
for tester access; and the ability to use legacy tools
in the manner available today. The following scenario
illustrates how these requirements are supported in
the architecture:
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1. A tester defines a new test case artifact in the in-
tegrated GUI, which is provided as a plug-in to
the workbench by the tool that manages the ar-
tifact. This covers the single GUI for tester access
requirement.

2. When submitted, the test case is created on the
abstraction management tier and is associated
with any other artifacts specified during its cre-
ation. Association specification may be either
explicit or implicit (based on the context of the
creation). This fulfills the requirement that asso-
ciations be maintained across repositories.

3. A permanent version of the test case is created
in a test case repository, using the data integra-
tion WebDAV capabilities. The correct repository
is determined by site-specific mappings on the ar-
tifact management tier. This artifact will be per-
manently accessible to any tool using the data in-
tegration component by retrieving it using the URI
established when it is created. This is an example
of access across repositories.

4. The tester may also invoke an execution tool to
run the test case from the GUI The execution tool
is connected to the GUI via a control integration
plug-in in the tool layer, which generates the ap-
propriate STAF event to invoke the tool. This is
an example of generic invocation using STAF. Note
that GUI-based tools may also provide direct ac-
cess to their functionality via API calls from a tool-
specific plug-in in the workbench.

Finally, we required that legacy tools be usable in
their current manner until it is possible to migrate
to the architectural version. The VTP that makes a
legacy tool compliant with the architecture does
nothing to change the tool, so it can continue to be
used outside of the ITE solution when necessary.

Ease of installation and customization. The second
high-level requirement the architecture must sup-
port is the capability to build customized solutions.
This includes the ability to introduce new architec-
turally compliant tools into the solution in a “plug-
and-play” manner, as well as the ability to custom-
ize the solution to the process used within the testing
group. New tools are introduced by simply adding
their plug-in code to the plug-ins directory for the
workbench, or installing the tool if it is not a
GUI-based tool. As long as the necessary integration
components are available on the platform, the tool
will be ready to run in the architecture.
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Process customization is supported via the STAX ser-
vice. The following scenario shows how this capa-
bility is used:

1. The tester creates a STAX workflow description,
which defines a specific process that the tester
wishes to automate.

2. The STAX description is stored as a resource on
the workbench.

3. When the tester wishes to activate the process,
he or she invokes it using the control-integration
plug-in, which starts the STAX service on the de-
scription. The steps in the description are carried
out. Workflow process invocation can also be au-
tomated, occurring when a particular event is de-
tected.

4. The tester may review the outcome of the various
steps in the process within the workbench GUIL

Current status of the architecture. We have devel-
oped the four integration components that comprise
the architecture. The data integration component ex-
ists in prototype form, and we are currently working
on enhancing and extending its capabilities. Many
groups in IBM have deployed and are using the con-
trol integration component (STAF) and the GUI in-
tegration component (the WebSphere Studio Work-
bench) in production mode. We have defined in draft
form the basic STCL standard artifacts (including test
cases, test suites, hardware configurations, and re-
lated data) and we are preparing to circulate these
definitions across IBM and to other interested par-
ties. Similarly, we are constructing a draft version of
the STCL standard events, along with an ITE plug-in
for the workbench.

To guarantee that we are meeting the real require-
ments of IBM testers, we are doing pilot roll-outs of
beta technology to three large IBM testing organi-
zations. Feedback from these beta deployments will
drive enhancements to the architecture and guaran-
tee that solutions built using it meet the needs of
the testing organizations.

Conclusions

Because testing tools vary widely across the labs
within IBM, our goal is to develop an architecture
and supporting frameworks so that tool owners can
easily integrate their tools with others that comply
with the architecture. The ultimate goal is to pro-
vide an integrated testing environment. At a high
level, there are three requirements that the archi-
tecture must satisfy:
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Integrate the various STCL and other testing tools

2. Support easy installation and customization to
meet site-specific processes

3. Support legacy tools

The paper offers two different visions of integration
with the architecture. One addresses the design con-
cerns that new tool developers should consider in
order to be architecturally compliant. The other ad-
dresses the capabilities we are currently developing
for making legacy tools compliant with the architec-
ture. We demonstrate that the components we de-
scribe provide a basis for meeting the requirements
defined earlier.

Development of the architecture is ongoing, with a
prototype framework for the data integration por-
tion completed. The control and GUI integration
frameworks are deployed within IBM, but the stan-
dard definitions for extensible artifacts, events, and
the ITE plug-in are still evolving. Our work has been
greeted with considerable excitement by both the
testing and tools development communities at IBM.
Itis our hope that the architecture will provide a flex-
ible, sound basis for designing and developing test
tool solutions that enhance the effectiveness and ef-
ficiency of the testing process across IBM.
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